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a b s t r a c t Diagonal loading is one of the most popular methods of robust adaptive beamforming, and the solution to many different problems aimed at producing beamformers which are robust to finite samples effects or/and steering vector errors. Among the latter, constraining the white noise array gain (WNAG) is a meaningful approach. However, relating the loading level to the desired WNAG is not straightforward. In this communication, using a generalized sidelobe canceler structure of the beamformer, we prove that the WNAG constraint can be encoded directly in the beamformer, and the latter can be obtained in a rather simple way from a specific eigenvector and without going through the diagonal loading step.

Problem statement

For about forty years, driven by the practical need to cope with uncertainties that unavoidably arise in any radar, sonar or communication system, an uninterrupted thread of research about robust adaptive beamforming has given rise to a vast literature and a myriad of techniques, with many different approaches proposed [START_REF] Van Trees | Optimum Array Processing[END_REF][START_REF] Gershman | Robustness Issues in Adaptive Beamforming and High-resolution Direction Finding[END_REF][START_REF] Vorobyov | Principles of minimum variance robust adaptive beamforming design[END_REF][START_REF] Vorobyov | Adaptive and Robust Beamforming[END_REF] . Yet, one of the earliest proposed methods, namely diagonal loading (DL) [START_REF] Abramovich | Controlled method for adaptive optimization of filters using the criterion of maximum SNR[END_REF][START_REF] Abramovich | An analysis of effectiveness of adaptive maximization of the signal to noise ratio which utilizes the inversion of the estimated covariance matrix[END_REF][START_REF] Cheremisin | Efficiency of adaptive algorithms with regularised sample covariance matrix[END_REF][START_REF] Carlson | Covariance matrix estimation errors and diagonal loading in adaptive arrays[END_REF] , still stands as a reference to which any newly proposed method is systematically compared. The main reason for such a preeminence is that 1)it performs very well and 2)diagonal loading emerges naturally as the solution to various and different optimization problems, all aimed at producing beamformers robust to either finite samples effects or steering vector errors, or both. Indeed, let us start with the minimum power distortionless response (MPDR) beamformer which solves [START_REF] Van Trees | Optimum Array Processing[END_REF] min w w H R w subject to w H a 0 = 1 [START_REF] Van Trees | Optimum Array Processing[END_REF] where ˆ R = K -1 K k =1 x k x H k stands for the sample covariance matrix computed from K independent snapshots x k ∈ C N and a 0 is the assumed signal of interest (SOI) steering vector. Assuming that K ≥ N , the solution to (2) is given by

w MPDR = ˆ R -1 a 0 a H 0 ˆ R -1 a 0 ( 2 
)
while a diagonally loaded beamformer writes

w DL = α ˆ R + μI -1 a 0 (3) 
E-mail addresses: olivier.besson@isae-supaero.fr , olivier.besson@isae.fr where μ stands for the loading level and α is some normalizing factor. The weight vector in (3) is in fact the solution to many problems. Indeed, with α

= [ a H 0 ( ˆ R + μI) -1 a 0 ] -1 , it solves (under the constraint that ˆ R + μI > 0 ) min w w H ˆ R w + μ w 2 subject to w H a 0 = 1 (4) 
which can be interpreted as a regularization of (1) . Similarly, in the landmark paper by Cox et al. [START_REF] Cox | Robust adaptive beamforming[END_REF] , DL is shown to be the solution when one wants to constrain the white noise array gain (WNAG), i.e., it is the solution to min

w w H ˆ R w subject to w H a 0 = 1 and w 2 ≤ A -1 WN ( 5 
)
where A WN ≤ N is the desired WNAG. In the same vein, the minimization problems ( 6) - [START_REF] Vorobyov | Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[END_REF] which are stated and solved respectively in [START_REF] Vorobyov | Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[END_REF][START_REF] Lorenz | Robust minimum variance beamforming[END_REF][START_REF] Li | On robust Capon beamforming and diagonal loading[END_REF][START_REF] Li | Doubly constrained robust Capon beamformer[END_REF][START_REF] Shahbazpanahi | Robust adaptive beamforming for general-rank signal models[END_REF] min are all meant to produce beamformers which are robust to steering vector errors and/or to finite samples errors in ˆ R . It turns out that their solution can always be equivalently written as in (3) even if the solution is not computed explicitly in this form. For instance, in [START_REF] Vorobyov | Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[END_REF] , the problem in ( 6) is recognized and formulated as a second order cone program and the solution is computed accordingly without resorting to computation of a loading level and a vector as in [START_REF] Vorobyov | Principles of minimum variance robust adaptive beamforming design[END_REF] . Similarly, the approach we propose below computes the solution to (5) as [START_REF] Rubsamen | Maximally robust Capon beamformer[END_REF] , which is different from (3) but equivalent. In contrast, the problems in ( 7) - [START_REF] Vorobyov | Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[END_REF] are solved using Lagrange multipliers and the solution is indeed computed as in (3) where α and μ are calculated from the parameters of the problem, i.e., , γ . Therefore, while different implementations could be used to obtain the solutions to these optimization problems, the latter can always be equivalently written as a diagonally loaded beamformer.

w w H ˆ R w subject to min a -a 0 ≤ w H a ≥ 1 (6) min w w H ˆ R w subject to min a -a 0 ≤ Re w H a ≥ 1 (7) 
That being said, diagonal loading is not the unique possible way to achieve robustness and many different approaches have been proposed in the literature. One of them is based on producing a better estimate of the SOI steering vector or/and a better estimate of the interference plus noise covariance matrix, see [START_REF] Feldman | A projection approach for robust adaptive beamforming[END_REF][START_REF] Khabbazibasmenj | Robust adaptive beamforming based on steering vector estimation with as little as possible prior information[END_REF][START_REF] Gu | Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[END_REF][START_REF] Huang | Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method[END_REF][START_REF] Yuan | Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction[END_REF] for examples. Imposing additional constraints [START_REF] Er | An alternative formulation for an optimum beamformer with robustness capability[END_REF][START_REF] Huarng | Performance analysis of derivative constraint adaptive arrays with pointing errors[END_REF][START_REF] Chen | Quadratically constrained beamforming robust against direction-of-arrival mismatch[END_REF][START_REF] Yu | Robust adaptive beamformers based on worst-case optimization and constraints on magnitude response[END_REF][START_REF] Khabbazibasmenj | Robust adaptive beamforming for general-rank signal model with positive semi-definite constraint via POTDC[END_REF][START_REF] Rubsamen | Maximally robust Capon beamformer[END_REF] or adopting a Bayesian perspective [START_REF] Bell | A Bayesian approach to robust adaptive beamforming[END_REF][START_REF] Besson | Robust adaptive beamforming using a Bayesian steering vector error model[END_REF] to take into account steering vector errors also produces effective methods. This is usually achieved at the price of more complicated optimization problems. Another drawback of diagonal loading is the need to fix the loading level, or equivalently to fix A WN , or γ in the beamformers ( 5) - [START_REF] Vorobyov | Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[END_REF] .

Therefore, parameter-free beamformers are of interest [START_REF] Du | Review of user parameter-free robust adaptive beamforming algorithms[END_REF] and a number of papers have focused on finding automatically the optimal loading level, see e.g., [START_REF] Seln | Automatic robust adaptive beamforming via ridge regression[END_REF][START_REF] Du | Fully automatic computation of diagonal loading levels for robust adaptive beamforming[END_REF] . In [START_REF] Seln | Automatic robust adaptive beamforming via ridge regression[END_REF] , ridge regression, also referred to as Hoerl-Kannard-Baldwin (HKB) method [START_REF] Hoerl | Ridge regression: some simulations[END_REF] , is advocated. The idea is to adopt a generalized sidelobe canceler (GSC) structure so that the unit-gain constraint on the SOI is automatically fulfilled and one needs to solve a simple unconstrained leastsquares (LS) problem with respect to the weight vector of the auxiliary channels. This LS problem is regularized and various choices of the regularizing parameter are proposed. Reference [START_REF] Du | Fully automatic computation of diagonal loading levels for robust adaptive beamforming[END_REF] considers a generalized linear combination ˜ R = αI + β ˆ R and proposes to estimate α and β from the data so as to minimize the meansquare error of ˜ R . In this communication, we still consider diagonal loading, or at least a problem whose solution is diagonal loading. Now, while the idea of automatic computation of the loading level is seducing, many engineers and practitioners may wish to have available a parameter that they can tune according to the application they consider, and their experience and knowledge about it. Considering the problems of ( 5) - [START_REF] Vorobyov | Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[END_REF] , it seems to us that the WNAG constraint is the most physically appealing [START_REF] Cox | Robust adaptive beamforming[END_REF] . Indeed, WNAG can be interpreted as the area under the array beampattern. Moreover, we have an upper limit ( N ) for it and it makes sense to fix the WNAG with respect to this upper limit, depending on the tradeoff between mainbeam control and good sidelobe adaptation [START_REF] Ward | A comparison of robust adaptive beamforming algorithms[END_REF] . In contrast, it may not be easy to have a good idea of or γ , that is of the norm of the errors on either the steering vector or the sample covariance matrix. Therefore, in the sequel, we consider the problem in [START_REF] Abramovich | Controlled method for adaptive optimization of filters using the criterion of maximum SNR[END_REF] . Unless w MPDR 2 ≤ A -1 WN in which case w MPDR is the solution, the latter is of the form (3

) with α = [ a H 0 ( ˆ R + μI) -1 a 0 ] -1
and where the WNAG is equal to A WN [START_REF] Li | Doubly constrained robust Capon beamformer[END_REF] . However, solving

w DL 2 = A -1 WN ⇔ a H 0 ˆ R + μI -2 a 0 a H 0 ˆ R + μI -1 a 0 2 = A -1 WN ( 11 
)
is not straightforward [START_REF] Li | On robust Capon beamforming and diagonal loading[END_REF][START_REF] Li | Doubly constrained robust Capon beamformer[END_REF] . Indeed, this requires eigenvalue decomposition of ˆ R followed by the search of the (hopefully) unique solution to a scalar equation [START_REF] Li | On robust Capon beamforming and diagonal loading[END_REF][START_REF] Li | Doubly constrained robust Capon beamformer[END_REF] . Our objective here is to provide an alternative approach that can produce the solution to ( 5 ) without resorting to the diagonally loaded form, see Eq. [START_REF] Rubsamen | Maximally robust Capon beamformer[END_REF] for an expression of this solution as a function of WNAG .

Deriving the white noise array gain constrained beamformer

The basic idea behind our approach is to use a GSC structure, as illustrated in Fig. 1 . Resorting to such a structure in order to derive a quadratically constrained beamformer has already been advocated, see e.g., [START_REF] Tian | A recursive least squares implementation for LCMP beamforming under quadratic constraint[END_REF] . The solution to (5) can be written as w = w CBF -Bw a [START_REF] Li | On robust Capon beamforming and diagonal loading[END_REF] where B ∈ C N ×(N -1) is a semi-unitary blocking matrix, i.e., B H B = I, B H a 0 = 0 , w CBF = a 0 / (a H 0 a 0 ) and the output power can be minimized in an unconstrained manner with respect to w a . Noting that

w CBF -Bw a 2 = w CBF 2 + w a 2 , (5) is equivalent to min w a ≤γ [ w CBF -Bw a ] H ˆ R [ w CBF -Bw a ] (13) 
with γ 2 = A -1 WN -N -1 . Let us rewrite w a = γ u where u belongs to the complex sphere, i.e., u ≤ 1. The interest of this approach is that the weight vector w CBF -γ Bu is written as a function of γ , which is directly related to the desired WNAG . Now, one can write

J(u ) = [ w CBF -γ Bu ] H ˆ R [ w CBF -γ Bu ] = γ 2 u H B H ˆ R Bu -γ u H B H ˆ R w CBF -γ w H CBF ˆ R Bu + w H CBF ˆ R w CBF = u H u -u H η -η H u + w H CBF ˆ R w CBF ( 14 
) with = γ 2 B H ˆ R B and η = γ B H ˆ R w CBF . It thus remains to solve min u ≤1 u H u -u H η -η H u . ( 15 
)
We now examine the various options to solve the problem in [START_REF] Feldman | A projection approach for robust adaptive beamforming[END_REF] . The latter entails optimization over the complex unit sphere, a type of problem for which theory is now well grounded [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] . In fact, solving [START_REF] Feldman | A projection approach for robust adaptive beamforming[END_REF] can now be done conveniently with the help of existing off the shelf toolboxes such as Manopt [START_REF] Boumal | Manopt, a Matlab toolbox for optimization on manifolds[END_REF] . We used the latter and checked that it provides the same solution as the diagonally loaded beamformer which satisfies the WNAG constraint [START_REF] Lorenz | Robust minimum variance beamforming[END_REF] . However, a somewhat simpler route can be taken to solve [START_REF] Feldman | A projection approach for robust adaptive beamforming[END_REF] . First, note that if is full-rank

J(u ) = u --1 η H u --1 η -η H -1 η. ( 16 
)
Therefore, if is full-rank and

-1 η ≤ 1 , then the solution is u = -1 η. Note that -1 η 2 ≤ 1 ⇔ w MPDR 2 ≤ A -1
WN : in this case the MPDR beamformer satisfies the WNAG constraint without diagonal loading.

Next, let us consider the alternative cases, namely when is full-rank and -1 η > 1 or when is rank-deficient. It is known [START_REF] Boyd | Convex Optimization[END_REF] that a solution u ( u ≤ 1) to the problem exists if there exists λ ≥ 0 such that + λ I > 0 and ( + λ I ) u = η. For the two cases mentioned above, one necessarily has λ > 0. Indeed, with a full-rank , if λ = 0 then u = η implies that u = -1 η > 1 which violates the inequality constraint. If is rank-deficient, then λ = 0 ⇒ u = η ⇒ η ∈ R ( ) . The latter condition would imply that a 0 ∈ R ˆ R which happens with probability 0. Note also that with rank-deficient and λ = 0 the matrix + λ I is no longer positive-definite. Therefore, in these two latter cases, λ > 0. As already known, if this solution exists, then the corresponding weight vector in [START_REF] Li | On robust Capon beamforming and diagonal loading[END_REF] can be written in the form of diagonal loading, as in (3) . This can be easily checked:

w = w CBF -γ B ( + λ I ) -1 η = w CBF -γ 2 B γ 2 B H ˆ R B + λ I -1 B H ˆ R w CBF = w CBF -B B H ˆ R B + γ -2 λ I -1 B H ˆ R w CBF . ( 17 
)
Pre-mutiplying the previous equation by

B H ˆ R + γ -2 λ I and not- ing that B H B = I, it ensues that B H ˆ R + γ -2 λ I w = B H ˆ R + γ -2 λ I w CBF -B H ˆ R w CBF = 0 . ( 18 
)
Therefore, since the orthogonal complement of B is spanned by vector a 0 , we have ˆ

R + γ -2 λ I w ∝ a 0 ⇒ w ∝ ˆ R + γ -2 λ I -1 a 0 ⇒ w = ˆ R + γ -2 λ I -1 a 0 a H 0 ˆ R + γ -2 λ I -1 a 0 ( 19 
)
which proves that w = w CBF -γ Bu is indeed a diagonally loaded beamformer with γ -2 λ as the loading level. Simply, it is written in a different form.

Let us go back to solving [START_REF] Feldman | A projection approach for robust adaptive beamforming[END_REF] and let us write

u 2 = η H ( + λ I ) -2 η = η H U ( + λ I ) -2 U H η = U U H = z H ( + λ I ) -2 z z = U H η = N-1 n =1 | z n | 2 (λ n + λ ) 2 = f (λ ) . ( 20 
)
Ordering the eigenvalues in decreasing order λ 1 ≥ λ 2 ≥ . . . ≥ λ N-1 , + λ I > 0 implies that λ > -λ N-1 . Moreover, it is easy to see that f ( λ) is monotically decreasing over ] -λ N-1 , + ∞ [ and that lim λ→-λ + N-1 f (λ) = + ∞ and lim λ→ + ∞ f (λ) = 0 so that there is a unique solution λ ∈ ] -λ N-1 , + ∞ [ to f (λ) = 1 . One could solve numerically Eq. ( 20) and then compute u = ( + λ I ) -1 η. This is essentially what was proposed in [START_REF] Tian | A recursive least squares implementation for LCMP beamforming under quadratic constraint[END_REF] and it much resembles the approach [START_REF] Li | On robust Capon beamforming and diagonal loading[END_REF][START_REF] Li | Doubly constrained robust Capon beamformer[END_REF] . However, we now prove that u can be obtained directly, as a specific eigenvector of a certain matrix .

Let us rewrite 1f (λ) as

g(λ) = 1 -z H ( + λI ) -2 z = det I -z z H ( + λI ) -2 = det ( + λI ) -1 det ( + λI ) -z z H ( + λI ) -1 = det ( + λI ) -2 det + λI I z z H + λI = det ( + λI ) -2 det + λI I ηη H + λI = det ( + λI ) -2 det I ηη H + λI . ( 21 
)
Therefore -λ is an eigenvalue of A = I ηη H

. However, we know that λ is the unique solution of f (λ) = 1 in ] -λ N-1 , + ∞ [ . Therefore λ corresponds to the largest eigenvalue of -A or to the opposite of the smallest eigenvalue of

A . Let v = v 1 v 2 denote the corresponding eigenvector. Then, A v = -λ v implies that v 1 + v 2 = -λ v 1 (22a) ηη H v 1 + v 2 = -λ v 2 . ( 22b 
)
It ensues that ( + λ I ) v 2 = -(η H v 1 ) η. Now, we cannot have η H v 1 = 0 , otherwise v 2 = -λ v 2 and v 2 would be an eigenvector of associated with eigenvalue -λ < 0 . Since is positive semi-definite, this implies that v 2 = 0 , which in turn implies that v 1 = -λ v 1 and would also lead to v 1 = 0 which is in contradiction with the fact that v is an eigenvector. Additionally, we know that ( + λ I ) u = η which necessarily implies that

u = - v 2 η H v 1 . ( 23 
)
Therefore, we end up with a direct solution to [START_REF] Feldman | A projection approach for robust adaptive beamforming[END_REF] , which is obtained from the eigenvector of -A associated with its largest eigenvalue . It turns out that u is unit-norm (as expected) since premultiplying the second line of ( 22) by v H

1 gives v H 1 ηη H v 1 = -v H 1 v 2 -λ v H 1 v 2 = -[ v 1 + λ v 1 ] H v 2 = v H 2 v 2 (24) 
which implies that u = v 2

( v H 1 ηη H v 1 )
1 / 2 = 1 . To conclude, our WNAG-constrained GSC beamformer is thus

w = w CBF - N -A WN NA WN 1 / 2 Bu ( 25 
)
where u is obtained from the eigenvector of A associated with its smallest eigenvalue. This beamformer guarantees a white noise array gain equal to A WN while minimizing output power and enforcing a unit-gain in the SOI direction.

Conclusions

In this communication, we considered the problem of finding a robust beamformer with given white noise array gain. We proposed a solution different from diagonal loading. Using a generalized sidelobe canceler structure, we show that the WNAG constraint can be easily enforced and one is left with solving an optimization problem on the complex sphere. We showed that the solution to this problem is obtained as the eigenvector of a given matrix. Although the new beamformer can be written in an equivalent diagonal loading form, its implementation is significantly different and, moreover, the WNAG is directly encoded in the weight vector without the need to go through the step of diagonal loading.
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 1 Fig. 1. Generalized sidelobe canceler structure of the solution. The white noise array gain is related to γ through A WN = N/ (1 + Nγ 2 ) .