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Abstract

Our aim is to complement observer-dependent approaches of immune cell evaluation in

microscopy images with reproducible measures for spatial composition of lymphocytic infil-

trates. Analyzing such patterns of inflammation is becoming increasingly important for thera-

peutic decisions, for example in transplantation medicine or cancer immunology. We

developed a graph-based assessment of lymphocyte clustering in full whole slide images.

Based on cell coordinates detected in the full image, a Delaunay triangulation and distance

criteria are used to build neighborhood graphs. The composition of nodes and edges are

used for classification, e.g. using a support vector machine. We describe the variability of

these infiltrates on CD3/CD20 duplex staining in renal biopsies of long-term functioning allo-

grafts, in breast cancer cases, and in lung tissue of cystic fibrosis patients. The assessment

includes automated cell detection, identification of regions of interest, and classification of

lymphocytic clusters according to their degree of organization. We propose a neighborhood

feature which considers the occurrence of edges with a certain type in the graph to distin-

guish between phenotypically different immune infiltrates. Our work addresses a medical

need and provides a scalable framework that can be easily adjusted to the requirements of

different research questions.

Author summary

In this study, we developed a workflow to detect and classify immune infiltrates in giga-

pixel microscopy images. It allowed us to measure the degree of organization in lympho-

cyte clusters with graph-based features and finally to distinguish between tertiary lym-

phoid organs and other infiltrates. As a clinically relevant use case, we applied it to three

different types of tissues and diseases. Our method addresses the need for observer-inde-

pendent, large-scale evaluation of immune cell patterns and is a prerequisite to capture
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spatial composition of immune cells that can be used to parameterize mathematical mod-

els in systems immunology.

This is a PLOS Computational Biology Methods paper.

Introduction

Visual evaluation of immune infiltration is the current state-of-the-art in many fields of trans-

lational research, such as transplant pathology and immuno-oncology. Despite efforts to

benchmark immune cell evaluation, most approaches remain highly observer-dependent and

large-scale quantitative slide consideration is limited by the time and availability of trained

pathologists. A particularly difficult task is to distinguish between early stages of tertiary lym-

phoid organs (TLOs; also known as tertiary lymphoid structures, ectopic lymphoid tissue) and

other immune infiltrations [1]. Nevertheless, these structures play an important role in medi-

cal biomarker research.

TLOs are highly organized structures that consist of distinct B-cell clusters and surrounding

T-cell compartments with a supporting function. In contrast to primary and secondary lym-

phoid tissue in anatomically predefined locations (lymph node, tonsil) [2], these structures

occur in ectopic sites of chronic inflammation [3]. Ectopic lymphoid tissues were termed dys-

morphic [4] and simulations suggest that the diversity of shapes observed in histology is a

result of highly dynamic shape of ectopic follicles [5]. Mature TLOs can form functional ger-

minal centers [6, 7] with high endothelial venules (HEVs) and follicular dendritic cells (FDCs),

where further lymphocytes can enter the lymphoid organs from blood [8]. They are implicated

with B-cell maturation in chronic inflammation [3] and have different clinical relevance in

cancer, transplantation, and inflammation.

In cancer, TLOs and corresponding HEVs, which are frequently occurring in tumor

regions, are correlated to a longer disease-free survival [9–11]. Breast cancer cases with B-cell

containing structures have a better prognosis than those with T-cell dominant immune infil-

trates [12].

In transplantation medicine, TLOs are rarely observed in renal biopsies early after trans-

plantation, but frequently in explanted non-functioning kidneys with chronic inflammation

due to allograft rejection [13]. This suggests a role in chronic responses to persistent donor

antigens. In routine, renal biopsies are graded by pathologists based on Banff, a descriptive

and partially formalized classification system [14]. Immune cells are only scored in tubuli and

blood vessels. However, immune infiltration in the interstitium can have a prognostic value

and could improve the current evaluation [15, 16].

In the respiratory tract of human adults, TLOs are also called inducible bronchus-associated

lymphoid tissue (iBALT) due to a similar structure as gut-associated lymphoid tissue (GALT)

belonging to mucosa-associated lymphatic tissues (MALT). However, iBALT in human lungs

is mediated by chronic inflammatory diseases and does not occur in healthy cases in contrast

to BALT in other mammals [17–19].

In order to provide reproducible, observer-independent, and quantitative evaluation of

immune infiltrates, image analysis approaches could automatically detect regions of interest

(ROIs) [20–22] and classify cells based on immunohistochemistry [23]. The increasing medical

need for evaluation of particular cell types in anatomically or immunologically defined ROIs

falls into an era of massive advance in machine learning (ML), with deep learning and
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pixel-based ML (as opposed to feature-based approaches to ML) holding great promise for

identification, classification, and quantitative assessment of relevant patterns in medical

images including microscopy [24–28]. Evolutionary algorithms have successfully been devel-

oped, and applied to different tasks including hyperspectral remote sensing image analysis,

classification in different common benchmark data sets, and brain tumor medical imaging

[29–32]. While the success and great potential of ML is undisputed, there is still a rationale to

consider approaches of manually curated features according to domain-specific knowledge as

they may help to biologically understand the result and consequently increase the acceptance

by medical experts. Methods broadly considered by pathologists are descriptive, purely den-

sity-based, or include spatial characteristics by distance metrics [33, 34]. In contrast, graph-

based concepts could include complex neighborhood characteristics [35–41].

To distinguish between infiltrates with varying B-cell composition, we herein combine

image analysis in whole slide images (WSIs) with graph-based cluster analysis, enabling large-

scale studies and robustness. Our concept captures neighborhood relations between T- and B-

lymphocytes and classifies immune infiltrates into categories by their spatial organization. In

particular, we developed a feature describing the neighborhood organization to detect TLOs.

We applied the method to three examples of chronic adaptive immune response to persisting

antigens; (1) breast cancer (2) renal transplantation (3) chronic lung infection.

Results

Workflow

Our workflow (Fig 1) detects and characterizes lymphocyte clusters in the full WSI aiming at

overcoming the current lack of reproducible, quantitative, and context-specific methods of

immune cell evaluation. For this, we constructed cell graphs based on Delaunay triangulation.

We applied the method to (1) label immune infiltrates based on their degree of organization

using a support vector machine (SVM) and to (2) compare their occurrence and characteristics

in different diseases.

Graph-based description

Neighborhood graphs. For each ROI, neighborhood graphs G = (V, E) in which a node

v = (xv, yv) 2 V represents a certain cell with the coordinates (xv, yv) and e = (v1, v2) 2 E an

edge between the nodes v1 and v2 are built (Fig 2). At first, a Delaunay triangulation is calcu-

lated for all cell coordinates independent of their specific cell type.

Our concept considers that pathologists define infiltrates based on the common practice to

delineate grouped cells relying on visual perception. Therefore, we introduce a threshold t to

define clusters correspondingly. Then, all sides of a Delaunay triangle are included as edges if

the radius of its circumcircle is smaller than t. All resulting connected components are consid-

ered as independent neighborhood graphs, representing an infiltrate.

Features of infiltrates. An edge e = (v1, v2) is labeled as α if v1 and v2 have the same cell

type. All remaining edges are labeled based on the number of cells of a certain type A in the

direct neighborhood of the corresponding A-cell (Fig 2E; A-type illustrated in red), i.e.

Egi ¼ fe ¼ ðv1; v2Þ j e 2 EnEa ^ v1 2 VA has i � aA edgesg:

In an application case, the predominant cell type could be chosen as A. We defined the edges

as α or γ to investigate cell clusters with same type and their neighborhood for indications of

organization. For example, this may differentiate between a B-cell zone of a TLO and other

types of immune infiltrates. The following features characterize each neighborhood graph:
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1. number of nodes |V|, |VA|/|V|

2. number of edges with certain type |E|, |Eα|,

3. relative number of edges between A-cells jEaA j=jEj,

4. homogeneity H = |Eα|/|E|,

5. TLO-like organization κ(a),

kðaÞ ¼ jEj � jEaj �
Xa

j¼0

jEgj j

 !

ðjEj � jEajÞ
� 1

ð1Þ

κ is higher for graphs that form separated B- and T-cell zones as the case for TLOs (for

A = B-cells).

Fig 1. General workflow. CD3+ T- and CD20+ B-cells are identified in whole slide images (WSIs). In large WSIs,

regions of interest (ROIs) could be selected based on lymphocyte density maps. In each ROI/small WSI, neighborhood

graphs are built by detected cells, results visualized by concave hulls.

https://doi.org/10.1371/journal.pcbi.1007385.g001
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6. global clustering coefficient C,

C ¼
1

jVj

X

l2V

2 � nl

jNlj � ðjNlj � 1Þ
ð2Þ

where nl is the number of actual edges between the neighbors Nl of node l (i.e., v 2 Nl if

(v, l) 2 E) and |Nl| is the number of neighbors of l [42].

We assume that density and connectivity of cell groups may potentially reflect biological

interactions and therefore included C as a standard approach to analyze clusters.

7. degree distribution P(k) = nk/|V| with nk number of nodes with k edges [42],

8. average degree hKi = 2|E|/|V| [42], and

Fig 2. Graph workflow. A: Blue and red dots represent cells of different phenotypes. B: Cells’ Delaunay graph. C:

Neighborhood graphs G1, G2, where triangles with large circumcircle radius were excluded. Edges between cells of

different phenotype are illustrated as dashed lines. D: Classification based on the composition of nodes and edges. E:

Illustration of edge labels used in the feature κ(a), see Section Features of infiltrates; nodes of type A are represented in

red. For the illustrated graph G2 = (V, E), kð2Þ ¼
jEg3 jþjEg4 jþjEg6 j

jEj� jEa j
¼ 0:4 and kð5Þ ¼

jEg6 j

jEj� jEa j
¼ 0:05.

https://doi.org/10.1371/journal.pcbi.1007385.g002
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9. average Euclidean distance between all nodes.

Clustering and classification of infiltrates

A pathologist labeled 700 automatically identified infiltrates based on the corresponding

image area in the same staining into “T-cell area” with only a small number of B-cells, “mixed,

unstructured” with no obvious connections between present B-cells, “intermediately orga-

nized” with some B-cell connections, or “TLO-like” with clustered B-cells. This ground truth

is used to train and test classifier based on features extracted from a neighborhood graph. To

select powerful features, we applied a principal component analysis (PCA) to study the data

including |V|, |E|, jEaA j=jEj, |VA|/|V|, κ(2), κ(5), H, C, hKi, and the average Euclidean distance

between all nodes with B-cells designated as A as features. Then, an SVM with a radial kernel

was used in a 5-fold cross-validation including |E|, jEaA j=jEj, |VA|/|V|, κ(2), and κ(5), see

Eq (1), with B-cells designated as A as features.

For each class, we measured the sensitivity (true positive rate TPR), the specificity (true neg-

ative rate TNR),

TPR ¼
TP

TP þ FN
; TNR ¼

TN

TN þ FP
;

the positive (precision PPV) and negative (NPV) predictive value,

PPV ¼
TP

TP þ FP
; NPV ¼

TN

TN þ FN
;

the accuracy (ACC),

ACC ¼
TP þ TN

TP þ TN þ FP þ FN
;

and the F1 score

F1 ¼
2 � TP

2 � TP þ FP þ FN

as average over each of the five test sets in the cross validation with the numbers of true posi-

tives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Optimization of infiltrate detection

Our method relies on the classification of cells into clusters based on a critical distance that

separates groups of cells into different clusters. This distance is associated with the circumcir-

cle radii cutoff t of triangles defined by the cell centers (see Section Neighborhood graphs). As

this critical distance is not know a priori, a phenomenological approach based on the experi-

ence of a pathologist is used to estimate its value. The pathologist delineated several immune

infiltrates of each category in 14 images of different tissues, yielding 259 objects with an aver-

age area of 66533 μm2. These drawn structures are in the following considered as ground truth

for infiltrates. The rationale for this decision is that infiltrates delineated by a pathologist

are generally based on the assumption that an immune infiltrate is a local accumulation of

immune cells, characterized either as proliferation of motile immune cells or invasion induced

by local signaling.

A sharp delineation of an infiltrate neglects the fact that in most cases they are surrounded

by further lymphocytes (distance to closest lymphocyte inside the infiltrate in the same range
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as between two lymphocytes inside the infiltrate). In some cases, these lymphocytes of the

neighborhood belong to another annotated infiltrate. Obviously, a low radius threshold

destroys infiltrates into small fragments, whereas high cutoffs consider large areas as a single

infiltrate (S2).

We have chosen the smallest threshold such that inside a pathologist’s cluster (ground

truth) the graph is not disconnected into several connected components. The best approxima-

tion based on a comparison between graphs constructed based on different thresholds and the

ground truth reached t = 45 pixels (� 11 μm), resulting in a median edge length of about

11 μm compared to a median length of about 32 μm for removed edges between cell centers.

This refers to interactions that require a direct contact between the cells.

Validation of clustering and classification

We aim at detecting and comprehensively describing all infiltrates in a full WSI with an

increasing B-cell organization from T-cell areas to TLO-like structures (Fig 3). TLOs are bio-

logically defined as distinct B- and T-cell compartments with existence of HEVs and FDCs, i.e.

by markers and cytokines that are not part of routine slide evaluation. In clinically established

immune cell stainings, there are no commonly accepted criteria, especially for less defined

early stages of dysmorphic forms of TLOs [4, 5]. Our approach includes a gold-standard label-

ing based on a state-of-the-art, visual assignment of infiltrates by a pathologist, which is used

for training/testing of standard methods. Herein, we used PCA and/or SVM; whereas depend-

ing on the specific application case other classifiers or simple thresholding could be more use-

ful (see S3).

A PCA confirmed a possible separation of the data into the independent classes T-cell area,

mixed, unstructured regions, and TLO-like structures with a slight overlap at the borders (Fig

4). Intermediately organized structures showed an overlap with TLO-like areas. In general, the

separation between the four classes was visible in all diseases but more pronounced in lung

and breast cases than in kidney. Therefore, we considered the same classes in the SVM (see

S4).

A 5-fold cross validation (including 101 infiltrates in breast cancer cases, 259 in kidneys,

and 340 in lung specimens) for the SVM showed overall quite high F1 scores, see Table 1. For

intermediately organized structures, the TPR and PPV are remarkable small; both driven by a

small number of TP. Besides the relative small size of training data for intermediately orga-

nized (*12%) and TLO-like (*11%) structures, this very low number of TP for intermedi-

ately organized structures reflects the difficulty to separate early stages from mature TLOs

(about three-quarter of these FN are classified as mixed, unstructured and a quarter as TLO-

like). Obviously, this effect also reduces the PPV of mixed, unstructured. An independent

training and test phase for each tissue type resulted in similar overall accuracies (see S7).

Characteristics of the classes

We considered different tissue types with totally different underlying diseases as oncoimmu-

nology, allograft rejection, and chronic inflammation in bronchiectasis. The above presented

SVM successfully identified infiltrates in all these tissues. As expected, the major difference

was in the amount (all breast and lung specimens and 128 of 160 renal cases contained infil-

trates) and composition of inflammatory infiltrates regarding the four classes (Fig 5). In gen-

eral, the frequency of T-cell areas was highest, however, bronchiectasis cases contained a larger

fraction of TLO-like structures compared to the other tissue types.

To better understand the importance of each feature and the specific characteristics of the

infiltrates, we inspected feature weights in SVMs and measured correlations between feature
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and ground truth as well as between features (see S3). The classification was mainly driven by

the TLO organization features κ(2) and κ(5), in contrast the number of edges had only a very

few impact. Further, we systematically analyzed the distribution of all features, explained in

Section Features of infiltrates. Kruskal–Wallis tests showed significant differences between

all classes for all tissue types based on all these features using a significance level of 0.001.

Fig 3. Examples of identified infiltrates. Left: as graph representation. Right: as histological image. T-cells and their

links in brown, B-cells in red, edges between T- and B-cells in blue.

https://doi.org/10.1371/journal.pcbi.1007385.g003
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Fig 4. Principal component analysis between components with highest variance (PC1, PC2) for 700 samples in

total (number of each class and tissue type listed in legend as brackets) that were visually classified by a

pathologist. The number of nodes (|V|, VB|/|V|), edges (|E|, jEaB j=jEj), TLO-like organization (κ(2), κ(5)),

homogeneity (H), clustering coefficient (C), average degree (hKi), and the average Euclidean distance between all

nodes are used as features, see Section Features of infiltrates.

https://doi.org/10.1371/journal.pcbi.1007385.g004
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Mann–Whitney U tests between a considered class and all remaining classes of the same tissue

type confirmed significant differences for most but not all features.

The distributions of the relative number of edges between B-cells and κ(2) are given in

Fig 6. The TLO-like organization κ considers the B-cell cluster characteristics for the neighbor-

hood of each edge between T- and B-cells. The number of B-cells and the organization κ(5)

showed a similar trend, see S5. The number of edges between B-cells increases with the

number of B-cells starting with about 17 B-cells out of 100 cells in T-cell areas to 70 in interme-

diately organized structures. In the same way, the organization increases starting with

κ(5) = 0.001 for T-cell areas to κ(5) = 0.075 for intermediately organized structures on average.

This is in agreement with our expectation, as the probability to form B-cell clusters increases

with the relative number of B-cells. The accumulation of B-cells is the core process of TLO

genesis initiating B-cell clustering and CCR5–CXCL13 signaling [8], which may be the case in

TLO-like and intermediately organized structures. Indeed, the differences between intermedi-

ately organized and TLO-like structures were less developed for both features (EaB and κ).

In comparison, the homogeneity and clustering coefficient showed less differences between

the classes (S6). Obviously, areas consisting mainly of T-cells were quite homogeneous. In con-

trast, the homogeneity feature could not distinguish well between the other classes. In general,

the clustering coefficient measures how dense a network is connected, suggesting that it could

be useful in this context. Our observation that this feature was unsuitable to characterize an

immune infiltrate can be explained by construction of Delaunay triangulation which avoids

cliques. Further, the clustering coefficient neglects the information about the cell type. For

example, there was no significant difference between mixed, unstructured and other areas in

lung specimens.

Table 1. Feasibility of support vector machine using 5-fold cross validation.

Measure TPR TNR PPV NPV ACC F1

T-cell area 0.881 0.864 0.786 0.929 0.870 0.830

mixed, unstructured 0.709 0.742 0.660 0.785 0.729 0.682

intermediately organized 0.130 0.972 0.424 0.894 0.874 0.186

TLO-like 0.616 0.950 0.618 0.952 0.913 0.606

overall 0.584 0.882 0.622 0.890 0.846 0.576

measured in the test set of each fold and then averaged over all folds

https://doi.org/10.1371/journal.pcbi.1007385.t001

Fig 5. Composition of infiltrates: The absolute number of infiltrates and the estimated area considered to detect

infiltrates (given in mm2).

https://doi.org/10.1371/journal.pcbi.1007385.g005
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Fig 6. Distribution of relative number of edges between B-cells (A) and organization (B): Gray border represents

significant difference between corresponding class and all remaining classes of same tissue type by Mann–

Whitney U test using a significance level of 0.001. Each distribution is displayed as raw data (left) and a box plot

(right) with mean (line), quartiles (color box), and standard deviation. The TLO-like organization κmeasures the

number of edges between T- and B-cells that are connected to a B-cell cluster, see Eq (1).

https://doi.org/10.1371/journal.pcbi.1007385.g006
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The degree of the neighborhood graphs was Poisson distributed as expected by construc-

tion using Delaunay. Therefore, most nodes have a degree� hKi, which was higher for more

organized structures (4.5 for T-cell areas and 5.4 for TLO-like structures on average).

Overall, our results show that the organization feature κ differs clearly between the two clas-

ses with potentially higher degree of B-cell organization (intermediately organized and TLO-

like) and other structures. It can be considered as “TLOness marker”, with the caveat that it

does not distinguish between early and mature forms.

Discussion

Analyzing immune infiltrates in WSIs has the clear advantage of considering the full informa-

tion included in a tissue section in comparison to the common practice in histopathology to

visually choose “representative” areas. A formalized way is less observer-dependent and is

expected to increase concordance of immune cell scoring, for example between different clini-

cal centers. Additionally, our approach avoids arbitrary cutting of infiltrates by tile borders.

Nevertheless, some limitations should be considered: As immune infiltrates are composed of

motile cells, they are not limited by predefined anatomical borders. Consequently, it is not

possible to draw pixelwise exact outlines of infiltrates. In addition, even in better defined ana-

tomical structures there can be a general interrater disagreement between pathologists in his-

tological annotations [43]. Therefore, the manual annotation can only be an approximation to

outline biologically relevant infiltrates. Even considering that these manually drawn outlines

may not represent pixelwise exact ground truth, we nevertheless conclude that the approach is

sufficient to detect immune infiltrates. We recommend that a transfer to different applications

should carefully consider the importance of ground truth and aim for project-specific annota-

tion strategies.

The recent advances in digital pathology show that robustness of cell detection and labeling

is constantly increasing, even allowing large-scale studies with substantial variability of images.

For graph-based approaches, the quality of the cell detection has a strong impact. To avoid

false classifications, Raymond et al. in 1993 included only manually assigned cells into their

cellular composition in germinal centers of lymph nodes [41]. As the quality of single cell

detection is nowadays not a limiting factor, we used a robust cell detection [23] and ensured

quality by a manual exclusion of artefact regions before hand.

We considered four categories of infiltrates that have been pragmatically chosen based on

obvious differences in their histological appearance. They correspond to a hypothetical biolog-

ical role in alignment with common practice of descriptive immune cell evaluation. It should

be noted, that a specific staining defining early or even more mature TLO-like structures in

histological images is currently not available (presence of HEVs, dendritic antigen-presenting

cells, and lymph vessels can only detect late stages of TLOs; CXCL13/CCR5 signaling mole-

cules are technically limited). Therefore, the functional biological meaning of the four catego-

ries, particularly for the intermediately organized structures, remains to be defined and may

even vary between different infiltrates. One interpretation of the observed structures could be

the underlying dynamics of forming and potentially also resolving TLO-like structures. Alter-

natively, these infiltrates could represent different immunological functions. In general, a

certain degree of overlap between the four categories is expected because we are probably

observing different temporal stages of variable cell interaction patterns in different microenvi-

ronments rather than a sharply defined phase transition of lymphoid cell differentiation like in

primary lymphoid organs.

Our approach resulted in a proposed “TLOness marker” (κ) that specifically measures how

many links between T- and B-cells are connected to a B-cell cluster; independent of overall
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size and density of the infiltrate. κ was developed based on the biological description of TLOs

and therefore characterizes the requirement of B-cell accumulations in the center and consid-

ers a surrounding T-cell zone. In addition, some dispersed T-cells in the middle of the B-cell

predominant center occur frequently in TLOs and have putative supporting functions in B-

cell maturation. They can be rate limiting for B-cell maturation in germinal centers [44–46].

The main advantage of κ compared to evaluation of B-cell quantities or classical clustering

description is that this feature does not strongly penalize the single T-cells inside B-cell

clusters.

Recent progress on deep learning approaches and increasing broader use of these methods

holds promise to find ROIs in general more efficiently than based on conventional approaches

[26]. In this specific application, our method could support such methods and our neighbor-

hood graphs can be analyzed by graph neural networks [47] in the future.

Application to biomedical context

In breast cancer, TLO detection is recently becoming even more relevant as there are correla-

tions between TLOs and other, therapeutically relevant infiltration patterns [48, 49].

In transplantation medicine, further evidence suggested that such “subclinical” patterns of

inflammation are related to long-term decline of transplant function and associated with inter-

stitial fibrosis and tubular atrophy (IF/TA) [50, 51]. Previous studies showed clear limitations

for reliable TLO quantification in kidney biopsies [52] due to their tiny size and the large het-

erogeneity of B-cell areas. Since there is a growing interest in immune infiltrates occurring

after transplantation in patients without evidence for rejection and therefore only small biop-

sies are available, our approach will nevertheless support more robust description of infiltrate

with the risk of sampling error, missing larger or more dense structures elsewhere.

In lung tissue, TLOs are considered as a hallmark of autoimmune disease such as rheuma-

toid arthritis and Sjögren syndrome but can also be found in chronic infection and various

other lung pathologies [53–55]. The exact role of iBALT is a field of active research and their

exact composition may be pivotal in defining their function [56, 57]. Our approach plays an

important role in translational research to better define, characterize, and by this understand

the patterns of chronic inflammation in the lung.

Herein, we focused on these three relevant applications. However, the graph-based assess-

ment could be applied to TLOs in other tissue types or diseases and beyond that could easily

be adjusted to any cell accumulation with a larger number of different cell types.

Conclusion

Our workflow allows to describe relevant immune cell patterns by analyzing the spatial cellular

organization. It could improve throughput, robustness, and objectivity of immune cell evalua-

tion. Our results demonstrate that the immune infiltrates in the considered tissue specimens

differ in their spatial composition and degree of organization. In order to distinguish between

random immune infiltrates and actual TLOs related to the underlying disease, it is necessary

to study possible correlations between graph-based features and clinical outcome.

Materials and methods

Image analysis

A nucleus detection algorithm (Tissue Phenomics framework, Definiens AG, Munich, Ger-

many) using an auto-adaptive slide-specific visual context model based on random forests [23]

was applied to deliver single cell segmentations and cell type classifications for CD3 (T-cells)
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and CD20 (B-cells); for more details, see S8. For further analysis, we considered each full WSI

as a single ROI.

Materials

We considered three data sets to validate our method containing (1) 23 breast cancer specimens

including tumor area and distant normal glandular epithelium, (2) 160 renal transplantation

biopsies from 54 patients, and (3) tissue from explanted lungs of 10 patients with cystic fibrosis

and bronchiectasis with chronic and acute inflammation. The formalin-fixed, paraffin-embed-

ded tissue was cut into 3 μm thick sections and immunohistochemically stained for CD3/CD20

(CD3 [EP449E]: abcam ab52959 colored in brown with 3’–3’–Diaminobenzidine, CD20: DAKO

M0755 colored in red with Neufuchsin) on a Ventana Benchmark Ultra instrument. WSIs were

scanned using Aperio AT2 (Leica Microsystems, Wetzlar, Germany) at a resolution of 0.253

μm/pixel (40x magnification). Staining artifacts or folds of tissue were excluded from analysis.

Ethics statement. Use of anonymized archival surplus tissue (formalin-fixed, paraffin-

embedded tissue; FFPET) under a waiver for individual informed consent was approved by

the institutional review board (ethics committee of Hannover Medical School); Approval

Number 2063–2013.

Supporting information

S1 Fig. Visualization of compartments. All edges between cells of different phenotypes were

removed from the neighborhood graphs (see Fig 2C). A: Then, the graphs were split into con-

nected components of a single phenotype. B: Visualization by concave hull. Single cells/cell

pairs do not span a compartment.

(PDF)

S2 Fig. Choice of parameter t for acceptance of Delaunay triangle according to circumcir-

cle radius: Shown are two independent immune infiltrates (left and right columns) with

varying t (rows). Blue bullets show the centre of the T- and B-cell nuclei, red lines represent α
edges (between nuclei of same cell type) and green lines (between nuclei of different cell type)

represent γ edges.

(PDF)

S3 Fig. Thresholding. Shown are Pearson’s correlation coefficients ρ between ground truth

(GT) and features (illustrated in blue) (A), selected parameters and features to distinguish

between four considered classes (B), and corresponding F1 scores (C). The number of nodes

(|V|, |VB|), edges (|E|, jEaB j=jEj), TLO-like organization (κ), homogeneity (H), clustering coeffi-

cient (C), average degree (hKi), and the average Euclidean distance between all nodes (davg(vl,
vm)) are considered as features, see Section Features of infiltrates for definitions.

(PDF)

S4 Fig. Principal component analysis. Left: variances. Right: PC1 against PC3, where red rect-

angles represent T-cell areas, green dots mixed, unstructured areas, blue snowflakes intermedi-

ately organized structures, and yellow triangles TLO-like structures.

(PDF)

S5 Fig. Distribution. Gray border represents significant difference between corresponding

class and all remaining classes of same tissue type by Mann–Whitney U test using a signifi-

cance level of 0.001. A: relative number of B-cells. B: organization κ.

(PDF)
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S6 Fig. Distribution. Gray border represents significant difference between corresponding

class and all remaining classes of same tissue type by Mann–Whitney U test using a signifi-

cance level of 0.001. A: homogeneity H. B: clustering coefficient C.

(PDF)

S1 Table. Feasibility of support vector machine using 5-fold cross validation, measured in

the test set of each fold and then averaged over all folds.

(PDF)

S1 Appendix. Image analysis. Further information.

(PDF)
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