
HAL Id: hal-02632657
https://hal.science/hal-02632657v1

Submitted on 20 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary Decision Diagrams: from Tree Compaction to
Sampling

Julien Clément, Antoine Genitrini

To cite this version:
Julien Clément, Antoine Genitrini. Binary Decision Diagrams: from Tree Compaction to Sampling.
14th Latin American Theoretical Informatics Symposium, May 2020, Sao Polo, Brazil. �10.1007/978-
3-030-61792-9_45�. �hal-02632657�

https://hal.science/hal-02632657v1
https://hal.archives-ouvertes.fr

Binary Decision Diagrams:
from Tree Compaction to Sampling?

Julien Clément1 and Antoine Genitrini2

1 Normandie Univ, unicaen, ensicaen, cnrs, greyc, 14000 Caen, France
Julien.Clement@unicaen.fr

2 Sorbonne Université, cnrs, lip6, F-75005 Paris, France.
Antoine.Genitrini@lip6.fr

Abstract. Any Boolean function corresponds with a complete full bi-
nary decision tree. This tree can in turn be represented in a maximally
compact form as a direct acyclic graph where common subtrees are fac-
tored and shared, keeping only one copy of each unique subtree. This
yields the celebrated and widely used structure called reduced ordered
binary decision diagram (robdd). We propose to revisit the classical
compaction process to give a new way of enumerating robdds of a given
size without considering fully expanded trees and the compaction step.
Our method also provides an unranking procedure for the set of robdds.
As a by-product we get a random uniform and exhaustive sampler for
robdds for a given number of variables and size.

1 Introduction

> ⊥

x2

x1

x3

x2 x2

x1

x4

x3

x1

> ⊥

x2

x3

x4

x2

x3

x2

x4

x2

Fig. 1. Two Reduced Ordered Binary De-
cision Diagrams associated to the same
Boolean function. Nodes are labeled with
Boolean variables; left dotted edges (resp.
right solid edges) are 0 links (resp. 1 links).

The representation of a Boolean func-
tion as a binary decision tree has been
used for decades. Its main benefit,
compared to other representations like
a truth table or a Boolean circuit,
comes from the underlying divide-and-
conquer paradigm. Thirty years ago a
new data structure emerged, based on
the compaction of binary decision tree,
and hereafter denoted as Binary Deci-
sion Diagrams (or bdds) [1]. Its take-
off has been so spectacular that many
variants of compacted structures have
been developed, and called through
many acronyms as presented in [14].
One way to represent the different diagrams consists in their embedding as di-
rected acyclic graphs (or dags). One reason for the existence of all these variants
of diagrams is due to the fact that each dag correspondence has its own internal

? This work was partially supported by the anr projects Metaconc ANR-15-CE40-
0014 and Ping/Ack ANR-18-CE40-0011. An implementation of the results is pro-
vided at https://github.com/agenitrini/BDDgen.

ar
X

iv
:1

90
7.

06
74

3v
3

 [
cs

.D
S]

 2
4

M
ay

 2
02

0

https://github.com/agenitrini/BDDgen

2 Julien Clément and Antoine Genitrini

agency of the nodes and thus each representation is oriented towards a specific
constraint. For example, the case of Reduced Ordered Binary Decision Diagrams
(robdds) is such that the variables do appear at most once and in the same or-
der along any path from the source to a sink of the dag, and furthermore,
no two occurrences of the same subgraph do appear in the structure. For such
structures and others, like qobdds or zbdds for example, there is a canonical
representation of each Boolean function.

In his book [9] Knuth proves or recalls combinatorial results, like properties
for the profile of a bdd, or the way to combine two structures to represent a more
complex function. However, one notes an unseemly fact. There are no results
about the distribution of the Boolean functions according to their robdd size.
In fact in contrast to (e.g.) binary trees where there is a recursive characterization
that allows to well specify the trees, we have no local-constraint here for robdds
ans thus a similar recurrence is unexpected. Very recently, there is a first study
exploring experimentally, numerically, and theoretically the typical and worst-
case robdd sizes in [12]. We aim at obtaining the same kind of combinatorial
results but here we design a partition of the decision diagrams that allows us to go
much further in terms of size. In particular we obtain an exhaustive enumeration
of the diagrams according to their size up to 9 variables. This was unreachable
through the exhaustive approach proposed in [12] due to the double exponential

complexity of the problem: there are 22k Boolean functions with k variables.
Our c++ implementation fully manages the case of 9 variables (see Fig 2) that
corresponds to 2512 ≈ 10154 functions. In particular for 9 Boolean variables, our
implementation shows one seventh of all robdds are of size 132 (the possible
sizes range from 3 to 143). Furthermore, robdds of size between 125 and 143
represents more than 99.8% of all robdds, in accordance with theoretical results
from [13,8].

Fig. 2. Proportion of bdds over 9 vari-
ables according to their size

Starting from the well-known com-
paction process (that takes a binary deci-
sion tree and outputs its compacted form,
the robdd), our combinatorial study
gives a way of construction for robdds of
a given size, but without the compaction
step. We further define a total order over
the set of robdds and we propose both
an unranking and an exhaustive gener-
ation algorithm. The first one gives as
a by-product a uniform random sampler
for robdds of a given number of vari-
ables and size. One strength of our ap-
proach is that it allows to sample uni-
formly robdds of “small” size, for instance of linear size w.r.t the number
k of variables, very efficiently in contrast to a naive rejection algorithm. The
usual uniform distribution on Boolean functions [13] yields with high probabil-
ity robdds of near maximal size of order 2k/k, although robdds encountered in

Binary Decision Diagrams: from Tree Compaction to Sampling 3

applications, when tractable, are smaller. As a perspective, once the unranking
method is well understood, and in particular the poset underlying the robdds,
then we might be able to bias the distribution to sample only in a specific sub-
class, e.g. robdds corresponding to a particular class of formulas (e.g. read-once
formulas).

Our results have practical applications in several contexts, in particular for
testing structures and algorithms. The study given in [3] executes tests for an al-
gorithm whose parameter is a binary decision diagram. It is based on QuickCheck
[2], the famous software, taking as an entry a random generator and generating
test cases for test suites. Using our uniform generator, we aim at obtaining sta-
tistical testing, in the sense that the underlying distribution of the samples is
uniform, thus allowing to extract statistics thanks to the tests. Another appli-
cation of our approach allows to derive exhaustive testing for small structures,
like the study in [10], that we also can conduct inside QuickCheck.

In this paper, we focus exclusively on robdds which is one of the first and
simplest variants. Section 2 introduces the combinatorics underlying the decision
tree compaction, leading in Section 3 to a way to unambiguously specify the
structure of reduced ordered binary decision diagrams. We apply this strategy
in Section 4 and obtain an unranking algorithm for robdds.

2 Decision diagrams as compacted trees

This section defines precisely our combinatorial context. Many definitions are
detailed in the monograph of Wegener [14] and in the dedicated volume [9] of
Knuth.

x1

⊥⊥

x1

⊥>

x2

x1

x2

x1

x2

x3 x3

x2

>⊥> ⊥

x1 x1x1

x4

⊥ >>> ⊥>

x1

> ⊥

x2 x2

x3 x3

x2

x1 x1

x4

⊥>

Fig. 3. A decision tree and its postorder com-
paction

In this section we first recall a
one-to-one correspondence between
the representation of a Boolean
function as a binary decision tree
(built on a specific variable order-
ing and seen as a plane tree, i.e.
the children of an internal nodes
are ordered) and a reduced ordered
binary decision diagram (robdds)
also seen as a plane structure. This
approach is non-classical in the
context of bdds, but it allows the
formalization of an equivalence re-
lationship on robdds that is the
key of our enumeration: in fact our approach foundation relies on breaking down
the symmetry in robdds. We consider Boolean function on k variables. We recall

there are 22k such Boolean functions. The compaction process is now formalized.

Compaction and plane decision diagrams A Boolean function can be rep-
resented thanks to a binary decision diagram, which is a rooted, directed, acyclic
graph, which consists of decision nodes and terminal nodes. There are two types

4 Julien Clément and Antoine Genitrini

of terminal nodes > and ⊥ corresponding to truth values (resp. 1 and 0). Each
decision node ν is labeled by a Boolean variable xν and has two child nodes
(called low child and high child). The edge from node ν to a low (or high) child
represents an assignment of xν to 0 and is represented as a dotted line (respec-
tively 1, represented as a solid line). In the following we represent robdds and
decision trees (or bdds in general) as plane structures, i.e. for a node we consider
its low child to be its left child and the high child to be its right child.

In a (plane) full binary decision tree, no subtree is shared. By contrast we
may decrease the number of decision nodes by factoring and sharing common
substructures. Representing a function with its full decision tree is not space
efficient. In Fig. 3 we depict, on top, a decision tree of a Boolean function on 4
variables. In the bottom of the figure we represent the compaction of the latter
decision tree by using the classical common subexpression recognition notion (cf.
e.g. [4,7]) based on a postorder traversal of the tree.

Definition 1 (Compaction). Let T be the (plane) binary decision tree of a
function f . The dag T is modified through a postorder traversal. When the node
ν is under visit, ν being a child of a node ρ. If an identical subtree than Tν , the
one rooted in ν, has already be seen during the traversal, rooted in a node µ, then
Tν is removed from T and the node ρ gets a pointer to µ (replacing the edge to
ν). Once T has been traversed, the resulting dag is the plane robdd of f .

In our figures of robdds we draw the pointers in red (there is an exception for
the edges to the terminal nodes as we remark in Fig. 3 also drawn in red).

In a classical setting, robdds are obtained by applying repetitively reduction
rules (well detailed in [14]) to obdds, and the process is confluent. Our approach
conceptually takes as a starting point a full decision tree with a given ordering on
variables (meaning all nodes at the same level are labeled by the same variable)
and applies the compaction rules by examining nodes of the tree in postorder.

For example the plane robdd in Fig. 3 corresponds to the leftmost robdd
depicted (in the classical way) in Fig.1. Note that for a given Boolean function,
using two distinct variable orderings can lead to two robdds of different sizes
(see Fig. 1 for such a situation). Nonetheless, an ordering of the variables being
fixed, each Boolean function is represented by exactly one single robdd obtained
through the compaction of its decision tree for this order.

In the rest of the paper, we consider only plane robdds. From now we thus call
them bdds. We also assume the set of variables X = {. . . > xk > . . . > x1} is
totally ordered.

Our first goal aims at giving an effective method to enumerate bdds with a
chosen number k of variables and size n. A first naive approach is: (1) enumerate

all the 22k Boolean functions by construction of the decision trees; (2) apply the
compaction procedure; and (3) finally filter the bdds of size equal to the target
size n. This algorithm ceases to be practical for k larger than 4 (see [12]).

In this paper, we propose a new combinatorial description of bdds providing
the basis for an enumeration algorithm avoiding the enumeration of all Boolean
functions on k variables.

Binary Decision Diagrams: from Tree Compaction to Sampling 5

3 Recursive decomposition

This section introduces a canonical and unambiguous decomposition of the bdds
yielding a recursive algorithm for their enumeration.

Automaton point of view Let us introduce an equivalent representation for a
bdd. A bdd can indeed be described as a deterministic finite automaton with ad-
ditional constraints and properties. This point of view gives a convenient formal
characterization of the decomposition of bdds used in our algorithms.

Definition 2 (BDD as an automaton). A bdd B of index k is a tuple
(Q, I, r, δ) where
– Q is the set of nodes of the bdd. Q contains two special sink nodes ⊥ and >.
– I : Q→ {0, . . . , k} is the index function which associates with every node its

index. By convention the index of both sink nodes is 0.
– r ∈ Q is the root and has index I(r) = k.
– δ : Q \ {⊥,>} × {0, 1} → Q is the full transition function.

There are constraints on δ translating the classical ones of the bdds:
– for any node ν ∈ Q \ {⊥,>}, δ(ν, 0) 6= δ(ν, 1).
– for any distinct nodes µ and ν with the same index, we have δ(µ, 0) 6= δ(ν, 0)

or δ(µ, 1) 6= δ(ν, 1).
– the graph underlying δ forms a dag with a unique node of in-degree 0, the

root r.
– if τ = δ(ν, α) for some α ∈ {0, 1} then I(τ) < I(ν).

We say τ is the low child of ν (respectively high child of ν) if δ(ν, 0) = τ (resp.
δ(ν, 1) = τ).

Definition 3 (Spine of a BDD, tree and non-tree edges). Let a bdd
B = (Q, I, r, δ) of root-index k. The spine of B is the spanning tree obtained
by a depth-first search of the (plane) bdd (where low child is accessed before
the high one), and omitting the sinks ⊥ and >. For a bdd B, the edges of the
spine forms the set of tree edges (drawn in black). The other edges form the
set of non-tree edges (drawn in red). We describe the spine T as a tuple T =
(Q′, I, r, δ′) with set of nodes Q′ = Q\{⊥,>} (with the same index function I as
for B). The edges of the spine are described using a partial transition function
δ′ : Q′ × {0, 1} → Q′ ∪ {nil} where nil is a special symbol designating an
undefined transition.

Using standard terminology for depth-first search, non-tree edges are either for-
ward or cross edges. We remark that, by definition, a dag admits no cycles and
still in the standard notation, it has no backward edges.

Undefined values of the transition function δ′ can conveniently be seen as
half edges. Since in a bdd every non-sink node has two children, the spine of a
bdd of size n has (n− 2) nodes and (n− 1) half edges (drawn in red in Fig. 1).
The four possible types of a node are depicted, as the roots in Fig. 4.

Definition 4 (Valid tree). A binary tree is said to be valid if it is the spine
of some bdd. The set of spines of size n is denoted as Tn.

6 Julien Clément and Antoine Genitrini

(i) (ii) (iii) (iv)

Fig. 4. The four cases for a node of a spine. From left to right: an internal node with
both transitions defined, two half edges, one low (left) half edge, one high (right) half
edge (cf. Proposition 1)

See Fig. 5 for examples of valid and invalid trees. To the best of our knowl-
edge, there is no way to characterize valid trees, apart from exhibiting a robdd
admitting this tree as a spine. We will discuss this point later.

For enumerating bdds it will prove convenient to introduce the profile list of
a set of nodes and some other useful notation for lists manipulation.

Definition 5. The profile of N , denoted by profile(N), is a list with (k + 1)
components p = (p0, . . . , pk) where k = maxν∈N I(ν) is the maximal index and
pi is the number of nodes of index i in N .

This definition extends naturally to trees, graphs, etc. We also equip the set of
lists with a ‘+’ operation: let two lists v = (v0, . . . , vm) and v′ = (v′0, . . . , v

′
n)

with n ≥ m (w.l.o.g.), the sum v + v′ is equal to w = (w0, . . . , wn) where for all
0 ≤ i ≤ m, wi = vi + v′i and otherwise, when m < i ≤ n, wi = v′i.

In the following, we will use two orderings on the nodes of a plane bdd
induced by depth-first search, and called postordering and preordering. Since the
structure is plane these orderings correspond exactly with the classical postorder
traversal and the preorder traversal of its spanning tree. In a tree, for a node
ν with low child ν0 and high child ν1, the postorder traversal visits the subtree
rooted at ν0 then, the one rooted at ν1 and finally ν. The preorder traversal first
visits the node ν, then the subtree rooted at ν0 and finally the subtree rooted at
ν1. We use the notation µ ≺post ν (resp. µ ≺pre ν) if the node µ is visited before
ν using the postorder (resp. preorder) traversal.

We characterize now how the partial transition function of the spine is related
to the full transition function of the bdd. Introducing the pool and level set of
a node, we describe the valid choices for non-tree edges to yield a bdd.

Definition 6 (Pool and level set). Let T be the spine of a bdd. The pool of
a node ν ∈ T is

PT (ν) = {τ ∈ T | τ ≺pre ν and I(τ) < I(ν)} ∪ {⊥,>} .

The pool profile pT (ν) of a node ν in a spine T is pT (ν) = profile(PT (ν)).
The level set of ν is ST (ν) = {τ ∈ T | τ ≺pre ν and I(τ) = I(ν)}, and the level
rank sT (ν) = |ST (ν)| of a node ν is the rank of ν among the set of nodes with
the same index.

Binary Decision Diagrams: from Tree Compaction to Sampling 7

Informally the pool of a node ν of a tree T is the set of nodes we could choose as
a low child for ν without invalidating the spine. The first component of a pool
profile is always 2 since both sinks ⊥ or > are present in the pool of any node
of the spine (providing the underlying bdd is not reduced to 1 or 0).

Proposition 1. Let T = (Q′, I, r, δ′) be a valid spine with set of nodes Q′, root r
and partial transition function δ′ : Q′ × {0, 1} → Q′ ∪ {nil}. The full transition
function δ : Q′ × {0, 1} → Q′ ∪ {⊥,>} is the transition function of a bdd with
spine T if and only for any node ν ∈ Q′, noting ν0 = δ(ν, 0) and ν1 = δ(ν, 1),
the pair (ν0, ν1) satisfies
(i) if δ′(ν, 0) 6= nil and δ′(ν, 1) 6= nil then να = δ′(ν, α) for α ∈ {0, 1}.

(ii) if δ′(ν, 0) = δ′(ν, 1) = nil, then

να ≺pre ν and I(να) < I(ν) for α ∈ {0, 1} and ν0 6= ν1,

and there is no node τ 6= ν with the same index as ν such that δ(τ, ·) = δ(ν, ·).
(iii) if δ′(ν, 0) = nil and δ′(ν, 1) 6= nil, then

ν0 ≺pre ν, I(ν0) < I(ν) and ν1 = δ′(ν, 1).

(iv) if δ′(ν, 0) 6= nil and δ′(ν, 1) = nil, then ν0 = δ′(ν, 0) and

ν1 ≺post ν, ν1 6= ν0 and I(ν1) < I(ν).

Proof. Since δ(·, ·) must extend δ′(·, ·), case (i) is trivial since we must only
extend the transition function where δ(ν, α) = nil. In case (ii), we have to
choose for (ν0, ν1) two nodes in the pool of ν (ν is an external node of the spine).
We use the preorder traversal (but since ν is an external node, the postorder
would also be fine). Moreover ν0 6= ν1 and no node with the same index as ν
can have the exact same descendants (ν0, ν1) in accordance with Definition 2.
In case (iii), the low child must be chosen in the pool of ν since we preserve
the spine. In case (iv), the high child of ν is also chosen in the pool ν or in the
descendants of ν0 in the spine T (still different from ν0 by Definition 2). �

4 Counting and Generating BDDs

In this section, we sketch algorithms in order to count and sample bdds of a
given size n and given number k of variables.

Counting BDDs Given a spine T , we can compute the number of bdds cor-
responding with this spine. Thus counting bdds of a certain size n will consists
in building all valid spines of size (n− 2) and completing the transition function
of the spine in all possible ways according to Proposition 1.

Definition 7 (Weight). Let T = (Q′, I, δ′, r) be a spine, the weight wT (ν) of a
node ν ∈ Q′ is the number of possibilities for completing the transition function
δ′(µ, ·) and yielding a bdd with spine T . The cumulated weight of a subtree Tν
rooted at ν ∈ T is WT (ν) =

∏
τ∈Tν wT (τ). We write W (T) = WT (r) to denote

the cumulated weight of the whole spine T rooted at r.

8 Julien Clément and Antoine Genitrini

Note that the number of choices for the missing transitions out of a node ν are
the ones remaining after previous choices have been made for other nodes of the
spine.

Proposition 2 (Weight of a node). Let T be a spine T , the weight of a node
ν ∈ T is

wT (ν) =

1 if δ′(ν, 0) 6= nil and δ′(ν, 1) 6= nil

‖pT (ν)‖
(
‖pT (ν)‖ − 1

)
− sT (ν) if δ′(ν, 0) = δ′(ν, 1) = nil

‖pT (ν) + profile(T ′)‖ if δ′(ν, 0) 6= nil and δ′(ν, 1) = nil

‖pT (ν)‖ if δ′(ν, 0) = nil and δ′(ν, 1) 6= nil

where pT (ν) is the pool profile of node ν, T ′ = Tν0 is the subtree (when defined)

rooted at ν0 = δ′(ν, 0), and, for a list p = (p0, . . . , pk), we denote ‖p‖ =
∑k
i=0 pi.

In the third case, by pT (ν) + profile(T ′), we mean the profile of the set of nodes
visited before ν with the postorder traversal of T and of index strictly smaller
than I(ν).

Proof. This is a direct application of Proposition 1. �

This formula allows to detect if a tree is a valid spine. Indeed as soon as the
weight of a node is zero or negative, there is no way to define a total transition
function δ for a bdd. Note that this situation can only happen for external nodes
having two half edges, since for any node ν ∈ Q′ and any spine T , ‖pT (ν)‖ ≥ 2.

x2

x1 x1 x1

x3

x2

x1 x1

x2

x3

x2

x1 x1

x2

x3

Fig. 5. three examples of binary trees (first one
is invalid, the two other have respective weights
4 and 24).

In Fig. 5, the binary tree on the
left is invalid and cannot be the
spine of any bdd. The two other
trees on the right have weights 4
and 24, i.e., are resp. the spines
of exactly 4 and 24 bdds. It is an
open problem to characterize the
set of valid trees (apart from ex-
hibiting corresponding bdds).

Proposition 2 gives access to the total weight of the spine W (T) using a re-
cursive procedure. A natural way to proceed algorithmically is to use a recursive
postorder traversal of the tree maintaining at each node the weight in a multi-
plicative manner. To do so we need to keep track in the traversal of the pool
profile and level rank of the current node.

Initially the pool of the root is reduced to the set {⊥,>}. Thus the initial
pool profile of the root of index k is initialized to (2, 0, . . . , 0) of length k. The
level rank of the root of the spine is 0.

Proposition 3. Let N(n, k) be the number of bdds of index k and size n

N(n, k) =
∑
T∈Tn−2,k

W (T),

where Tm,k is the set of valid spines with m nodes for bdds of index k.

Proof. The weight of a spine is the number of ways of extending the transition
function of T (Proposition 1), hence the number of bdds for this given spine. �

Binary Decision Diagrams: from Tree Compaction to Sampling 9

Combinatorial description of spines The set of spines is not straightforward
to characterize in a combinatorial way. Indeed we need context to decide if the
weight of a particular node in a tree is 0 or less, which in turn yields that the
tree is not valid . To enumerate spines, we build recursively binary trees, and,
while computing weights for its nodes, as soon we can decide the (partially built)
tree is not valid, the tree is discarded.

To decompose (or count) spines of any size or index, T =
⋃
n≥1

⋃
k≥1 Tn,k,

we introduce a partition over subtrees which can occur in a spine T ∈ T . The
goal is to identify identical subtrees occurring within different spines and with
the same weight to avoid redundant computations.

The combinatorial description we are about to present originates from the
following observation: let us fix a spine T and a node ν ∈ T . From Proposi-
tion 2, to compute the cumulated weight of the subtree Tν rooted at ν, the sole
knowledge of the pool profile pT (ν) and the level rank sT (ν) is sufficient.

Let S and S′ be two subtrees with respective roots ν and ν′ in some spines
T and T ′, we denote S ≡ S′ if the following three conditions are satisfied:
– both trees have the same size: |S| = |S′|;
– the roots of both trees have the same pool profile: pT (ν) = pT ′(ν

′);
– the roots of both trees have the same level rank: sT (ν) = sT ′(ν

′).
The set Tm,p,s is the class equivalence for the relation ‘≡’ and gathers trees (as
a set, without multiplicities) which are possible subtrees of size m in any spine,
knowing only the pool profile p and level rank s of the root of the subtree. More
formally:

Tm,p,s = {Tν | (∃T ∈ T) (∃ν ∈ T) pT (ν) = p and sT (ν) = s}.

Note that we have Tn,k = Tn,(2,0,...,0),0, where (2, 0, . . . , 0) has k components.

Proposition 4. The set Tm,p,s of subtrees of size m rooted at a node having
pool profile p = (p0, . . . , pk−1) and level rank s occurring in the set of spines T
is decomposed without any ambiguity. We decompose a subtree T ∈ Tm,p,s as a
tuple (ν, T ′, T ′′) where the root ν has index k and T ′ and T ′′ are its left and right
(possibly empty) subtrees of respective sizes i and m− 1− i, with 0 ≤ i ≤ m− 1,
and verifying (when non empty)

(i) T ′ ∈
⋃

k0∈{1,...,k−1}

Ti,(p0,...,pk0−1),pk0

(ii) T ′′ ∈
⋃

k1∈{1,...,k−1}

Tm−i−1,(p′0,...,p
′
k1−1),p′k1

, with p′ = p + profile(T ′)

(iii) if m = 1 then
(∑k

i=0 pi
)
·
(
− 1 +

∑k
i=0 pi

)
− s > 0.

This proposition ensures that we can decompose unambiguously subtrees occur-
ring in spines in accordance with the equivalence relation ‘≡’. Practically this
means that instead of considering all possible subtrees for all possible spines,
we can compute cumulative weights for each representative of the equivalence
relation (which are fewer although still of exponential cardinality).

10 Julien Clément and Antoine Genitrini

Algorithm count(n,p, s) in Algorithm 1 enumerates spines of bdds and,
at the same time, computes their cumulated weights. It takes as arguments a
size n for considering all subtrees of size n, assuming an initial pool profile
p = (p0, . . . , pk−1), level rank s and index k for the root of these trees. It returns
in an associative array a list of pairs (t, w) where

– t = (t0, t1, . . . , tk−1, tk) ranges over the set of profiles of trees in Tm,p,s, i.e.,
t ∈ {profile(T) | T ∈ Tm,p=(p0,...,pk−1),s}.

– w is the sum over all equivalent trees of size m with profile t of their cumu-
lated weights when the root has pool profile p and level rank s (which gives
enough information to compute the cumulated weight for each tree using
Proposition 2).

Note that any subtree T with a root of index i has a profile t = (t0, . . . , ti) with
t0 = 0 and ti = 1.

Proposition 5. The number N(n, k) of bdds of size n and of index k is com-
puted thanks to Algorithm count() and is equal to

N(n, k) =
∑

(t,w)∈count(n− 2, (2, 0, . . . , 0), 0)

w,

where (2, 0, . . . , 0) has k components and corresponds with a pool reduced to the
two sink nodes ⊥ and > of index 0.

Proof. Indeed t ranges over all possible profiles for spines of size (n− 2) and we
sum the weights of all spines for these profiles. Hence we compute exactly the
number of bdds of size n. �

An important refinement for this algorithm is to remark when summing over
all spines, we consider subtrees of the same size whose root shares the same pool
profile and same level rank, hence the same context. In order to avoid performing
the same exact computations twice (or more) we can use memoization technique
(that is storing intermediary results). It is an important trick to reduce the time
complexity, although at the cost of some memory consumption.

Complexity of the counting algorithm First, we remark the numbers in-

volved in the computations are (very) big numbers (as seen before, of order 22k).

Proposition 6. The complexity (in the number of arithmetic operations) of the

computations of the Algorithm 1 to evaluate N(n, k) is O
(

1
k23k2/2+k

)
.

For Boolean functions in k variables, although the time complexity of our al-
gorithm is of exponential growth 23k2/2. However the state space of Boolean

functions is 22k thus our computation is still much better than the exhaustive
construction.

Binary Decision Diagrams: from Tree Compaction to Sampling 11

Algorithm 1 Algorithm count(). The initial pool profile of the root (of index
k) is (2, 0, . . . , 0) of length k.

function count(n,p = (p0, . . . , pk−1), s)
d← {} . Empty dictionary
for i← 0 to n− 1 do . Left/right subtrees of size i/n− i− 1

d0 ← {}
if i = 0 then d0 ←

{
ε :

∑k−1
i=0 pi

}
. left subtree is empty, see ∗

else
for k0 ← 1 to k − 1 do . left node has index k0

d0 ← d0 ∪ count(i, (p0, . . . , pk0−2), pk0−1)

for (`, w0)← d0 do
d1 ← {}
p′ ← p+ `

if n− 1− i = 0 then d1 ← d1 ∪
{
ε : −1 +

∑k−1
i=0 p

′
i

}
. right subtree is empty

else
for k1 ← 1 to k − 1 do . right node has index k1

d1 ← d1 ∪ count(n− 1− i, (p′0, . . . , p
′
k1−2), p′k1−1)

for (r, w1)← d1 do
w ← w0 · w1

if n = 1 then w ← w − s
if w > 0 then
t← `+ r + e(k) . index profile of the subtree
if t ∈ d then d[t]← d[t] + w . update if t is already a key in d
else d← d ∪ {t : w} . t is a new key in d

return d

∗ For an integer k ≥ 0, the list e(k) = (0, . . . , 0, 1) is the list with (k+ 1) components where the last
entry is 1 and all others are 0. The empty list of size 0 is denoted ε.

Unranking BDDs Using the classical recursive method for the generation of
structures [15] we base our generation approach on the combinatorial counting
approach. Since the class of objects under study seems not admissible in the sense
given in Analytic Combinatorics [6], we cannot directly apply the advanced tech-
niques presented in [5] nor the approaches by Mart́ınez and Molinero [11]. Thus
we devise an unranking algorithm for bdds and get as by-products algorithms
for uniform random sampling and exhaustive generation.

The ranking/unranking techniques for objects of a combinatorial class C of
size N consists in building a bijection between any c ∈ C and an integer (its
rank) in the interval [0 . . N − 1] (if we starts from 0). This leads trivially to
a uniform sampling algorithm by drawing uniformly first an integer and then
building the corresponding object.

Proposition 7. Once the pre-computations are done, the unranking (or uni-
form random sampling) algorithm needs O (n · |Tn,k|) arithmetic operations to
build a bdd of index k and size n.

First, remark that the worst case happens when n is of order the largest possible

size of a bdd over k variables O(2k/2

k) (cf. [9, p. 102]) which corresponds to the
generic case according to Fig. 2. Furthermore, the number of profiles is of order

2
k2

2 . To generate a bdd given its rank, we first identify the correct profile of
its spine (by enumeration). Then according to this target profile, recursively, for
each node, we traverse at most all spines with this profile, in order to decompose
the substructures in its left and right part, yielding the upper bound.

12 Julien Clément and Antoine Genitrini

As a conclusion, note the process of enumerating, counting and sampling we
introduced can be adapted to subclasses of functions (for instance those for which
all variables are essential), but also to other strategies of compaction, like those
used for Quasi-Reduced bdds and Zero-suppressed bdds. A natural question is
also to provide an algorithm enumerating valid spines and not all invalid ones
as well to get more efficient enumeration and unranking algorithms for robdds.
These questions will be addressed in future work.

Acknowledgement. We thank the anonymous reviewers whose comments and
suggestions helped improve and clarify this manuscript.

References

1. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

2. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing of
haskell programs. SIGPLAN Not. 35(9), 268–279 (2000)

3. Dybjer, P., Haiyan, Q., Takeyama, M.: Verifying Haskell Programs by Combining
Testing and Proving. In: QSIC’03. pp. 272–279 (2003)

4. Flajolet, P., Sipala, P., Steyaert, J.M.: Analytic variations on the common subex-
pression problem. In: Automata, languages and programming (Coventry, 1990).
Lecture Notes in Comput. Sci., vol. 443, pp. 220–234 (1990)

5. Flajolet, P., Zimmermann, P., Cutsem, B.V.: A calculus for the random generation
of labelled combinatorial structures. Theor. Comput. Sci. 132(2), 1–35 (1994)

6. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
New York, NY, USA, 1 edn. (2009)

7. Genitrini, A., Gittenberger, B., Kauers, M., Wallner, M.: Asymptotic Enumeration
of Compacted Binary Trees of Bounded Right Height. to appear in Journal of
Combinatorial Theory, Series A (2020)

8. Gröpl, C., Prömel, H.J., Srivastav, A.: Ordered binary decision diagrams and the
shannon effect. Discrete Applied Mathematics 142(1), 67 – 85 (2004)

9. Knuth, D.E.: The Art of Computer Programming, Volume 4A, Combinatorial Al-
gorithms. Addison-Wesley Professional (2011)

10. Marinov, D., Andoni, A., Daniliuc, D., Khurshid, S., Rinard, M.: An evaluation of
exhaustive testing for data structures. Tech. rep., MIT -LCS-TR-921 (2003)

11. Mart́ınez, C., Molinero, X.: A generic approach for the unranking of labeled com-
binatorial classes. Random Structures & Algorithms 19(3-4), 472–497 (2001)

12. Newton, J., Verna, D.: A theoretical and numerical analysis of the worst-case size
of reduced ordered binary decision diagrams. ACM TCL 20(1), 6:1–6:36 (2019)

13. Vuillemin, J., Béal, F.: On the BDD of a Random Boolean Function. In: ASIAN’04.
pp. 483–493 (2004)

14. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM (2000)
15. Wilf, H.S., Nijenhuis, A.: Combinatorial algorithms: An update. SIAM (1989)

	Binary Decision Diagrams: from Tree Compaction to Sampling

