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The compaction behavior of deformable grain assemblies beyond jamming remains bewildering, and
existing models that seek to find the relationship between the confining pressure P and solid fraction ϕ end
up settling for empirical strategies or fitting parameters. Using a coupled discrete-finite element method, we
analyze assemblies of highly deformable frictional grains under compression. We show that the solid
fraction evolves nonlinearly from the jamming point and asymptotically tends to unity. Based on the
micromechanical definition of the granular stress tensor, we develop a theoretical model, free from ad hoc
parameters, correctly mapping the evolution of ϕ with P. Our approach unveils the fundamental features of
the compaction process arising from the joint evolution of grain connectivity and the behavior of single
representative grains. This theoretical framework also allows us to deduce a bulk modulus equation
showing an excellent agreement with our numerical data.
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Powders, clays, rubber particles, cells, bubbles, and gels
are some examples of particulate matter whose individual
body deformation is crucial for understanding their bulk
and mechanical behavior. Such body distortions are often
dismissed or simplified by considering either the rigid body
kinematics as the primary source of deformation or stand-
ing on the small-strain framework. However, explicitly
describing the particles’ large strains is essential for the
development of technological applications such as the
inclusion of rubber in concrete and pavements, and even
for better understanding the flow properties of blood cells.
We focus this work on the compaction behavior of

deformable grain assemblies beyond jamming, a subject
widely investigated, of major industrial and engineering
significance, yet misunderstood. The compaction of
deformable matter has been addressed in experiments using
ceramic, metallic, and pharmaceutical powders [1–5], gels
[6–8], rubberlike particles [9–12], and even blood cells
[13]. More recently, developments of numerical approaches
based on meshless methods [14–16], the discrete element
method [17,18], or the coupled finite element-discrete
element methods [11,19–24] have enabled the exploration
of the physics of deformable granular media.
It is worth mentioning the work of Heckel [2] who,

employing an analogy between the compaction process
and chemical reactions, proposed a model to predict the
relationship between pressure P and solid fraction ϕ (i.e.,
the ratio between the volume of the particles Vs over the
volume of the container V) of the form P ∝ − lnð1 − ϕÞ.
Although this model yields fair predictions, it relies upon
two constants (K and B) not clearly related to physical or
mechanical properties. Kim and Carroll [3] arrived at a

similar relationship while studying metallic powders, but
also introducing three constants yet to be defined by
experiments and data fitting (Y0, μ, and γ). Nezamabadi
et al. [16] also introduced a model of the form P ∝
−ϕ lnðϕÞ employing an incremental formulation of the
mean pressure and the macroscopic effective P-wave
modulus, but standing, nonetheless, upon fitting constants
(c1 and c2). Finally, it is also notable that Zhang et al. [25],
using a multiparticle finite element method, nicely repro-
duced the compaction curve after fitting a double loga-
rithmic equation on their data. However, the origin of such
a relation is not identified. Many other approaches can be
found in the literature [5,26–33], though none of them is
entirely satisfactory.
We can summarize the limitations of current models by

the use of nonphysical parameters, the lack of accuracy at
extreme pressures, and the missing physical derivation of
the compaction equations. This situation calls for further
investigation into the fundamental laws behind deformable
granular media. But such a venture should admittedly rely
on a proper description of the compaction process while
taking into account the multicontact nature of the assembly
and the particles’ deformability.
In this Letter, we analyze the compaction of two-dimen-

sional highly deformable particles for different coefficients
of friction using a coupled discrete element and finite
element method. We introduce an analytical model for the
compaction behavior accounting for the particle connec-
tivity, the applied pressure, and the solid fraction. Our
model, free of ad hoc parameters, accurately predicts the
sample density ranging from the granular jamming point,
up to solids fractions close to the unity for any interparticle
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coefficient of friction. The bulk modulus evolution is also
deduced from our approach.
We simulated assemblies of incompressible deformable

particles undergoing isotropic compression in the frame of
the contacts dynamic and finite element methods. This
numerical coupling, also known as nonsmooth contact
dynamics (NSCD) [34,35], considers unilateral contact
conditions and dry friction between particles previously
discretized in finite elements. Contact forces and body
deformations are then systematically solved within a time-
stepping scheme. For the deformability of the grains, we
used a hyperelastic constitute law following the neo-
Hookean incompressible material model under plane strain
conditions [11,36]. Note that the NSCD approach does not
introduce regularization coefficients for the contact
laws as other discrete element approaches do, making this
numerical scheme robust and stable. Finally, we used an
implementation of the NSCD on the free, open-source
simulation platform LMGC90 [37]. For more details about
the implementation of the numerical method, please see
Refs. [34,38].
Numerical samples were built by depositing Np ¼ 1500

disks into boxes using an algorithm based on simple
geometrical criteria [39]. The disks, meshed using 92
triangular similar-size finite elements, presented a slight
size dispersion around an average diameter d to avoid
crystallization. The choice of the mesh resolution is
discussed later in Fig. 5. After deposition, the disks are
initially found in a relatively dense configuration, yet not in
contact. From this state, we set five different values of
interparticle coefficient of friction μ in the interval [0, 0.8],
in steps of 0.2. The coefficient of friction particles-walls
and gravity were set to zero in all cases. A set of loading
steps were then undertaken targeting stable values of
applied pressure and solid fraction. We considered that a
stable state was reached, for a given pressure, once the
variations of the solid fraction remained below 0.05%. Note
that the pressure was gradually applied, so the particle-to-
particle interaction and the particles’ bulk rapidly damped
the kinetic energy and elastic waves had little influence on
the particle reorganization. Figure 1 shows two snapshots
of stable configurations for the frictionless case at relative
pressure P=E, with E the Young modulus. We remark that
as P=E tends to zero, we have the corresponding jammed
state for the rigid assembly of particles. In the following,
values computed for such a reference state are denoted with
the subscript “0”.
Figure 2 shows the evolution of ϕ with P=E for all the

coefficients of friction tested. We also display some of the
compaction models previously mentioned fitting our
numerical results for the frictionless case. Note that, for
the case μ ¼ 0, the isotropic and oedometric loadings
remain indistinct, as shown in Refs. [40,41]. We can
observe that, although the current models may be consid-
ered acceptable to some extent, they miss some of the

principal characteristics of the compaction curve. For
instance, the data present two horizontal asymptotes: one
for the perfectly rigid granular assembly (ϕ0) and the other
for extremely high pressures (ϕmax). The model of Kim and
Carrol does not capture the first asymptote, while the model
of Nezamabadi et al. does not capture the second. The
models of Heckel and Zhang et al. display both asymptotes
but slightly mismatch the evolution of the compaction
curve for intermediate pressures. Recall as well that they
rely on fitting parameters. We can also note that the
coefficient of friction essentially modifies the maximal
and minimal solid fraction since sliding mobilization is
increasingly limited with μ [42,43].

FIG. 1. Snapshots of the frictionless sample under a relative
pressure (a) P=E ¼ 5 × 10−4 and (b) P=E ¼ 5 × 10−1. The color
intensities are proportional to the volumetric deformation within
the particles.

FIG. 2. Evolution of solid fraction ϕ as a function of P=E for
different value of coefficient of friction. We present our data
along with four models set to best fit the frictionless case. Linear
scale is shown in the inset.
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Keeping in mind the discrete nature of these assemblies,
an adequate compaction model should rely on the physical
phenomena taking place at the particles and contacts scales.
Let us then consider the granular stress tensor written as
σij ¼ nchfcilc

ji [44], with nc ¼ Nc=V the density of con-
tact numberNc in the volume V enclosed by the rigid walls,
h•i the average over the contact forces fc and the branch
vectors lc (i.e., the vectors joining the centroids of the
particles in contact). Then, we can compute the average
pressure on the sample as Pσ ¼ ðσ1 þ σ2Þ=2, with σ1 and
σ2 the principal stresses of σij. It is evident that P ¼ Pσ .
It is also possible to express the contact density as

nc ¼ 2ϕZ=πd2, considering a small particle size dispersion
around diameter d, and with the coordination number
Z ¼ 2Nc=Np. These definitions let us rewrite the stress
tensor as σij ¼ ð2ϕZ=πd2Þhfcilc

ji. And, finally, taking into
account the definition of P via the principal stresses of σij,
we can deduce a microstructural equation of the mean
pressure as [45–47]

P ¼ ϕZ
π

σl; ð1Þ

with σl ¼ hfcihlci=d2, a measure of the interparticle
stresses taking into account that contact forces and
branches are not correlated. Equation (1) reveals the joint
relation between P and ϕ and the granular microstructure in
terms of particle connectivity and force transmission. Note
that the connectivity Z of an assembly of deformable grains
is closely linked to the evolution of solid fraction as denser
particle configurations lead to higher coordination num-
bers. Additionally, it has been systematically reported in the
literature that the relation Z − ϕ obeys a power law of the
form ðZ − Z0Þ ¼ kðϕ − ϕ0Þα, with exponent α ≃ 0.5
[11,16,44], and k ≃ 5.1 a structural parameter fully defined
as the P=E → ∞, and ϕ and Z reach maximal values. We
found the same proportionality in our experiments inde-
pendently of the coefficient of friction (see Fig. 3).

Alternatively, we can assume that the packing
of particles roughly behaves like a continuum medium
and, thus, the mean compressive stress P can be rela-
ted to the macroscopic cumulative volumetric strain
εv ¼ − lnðϕ0=ϕÞ using the bulk modulus KðϕÞ ¼
ðdP=dϕÞðdϕ=dεvÞ. Assuming homogeneous strains within
the sample, we can replace the discrete system by an
assembly of springs of average length hlci [47]. Then,
we can define a local volumetric strain as εv;l ¼
2 lnðhlci=dÞ. Our numerical simulations also revealed that
εv ¼ 2εv;l. Using the above expressions, the power law
between Z and ϕ, and assuming σl ¼ Eεv;l, we can obtain
a first prediction of the bulk modulus employing the
derivative of Eq. (1) and the first-order Taylor expansion
of εv as

K1ðϕÞ=E ¼ Zϕ
π

�
5

4
−
ϕ0

2ϕ

�
−
Z0ϕ

4π
: ð2Þ

This equation is reminiscent of those given in Refs. [44–
51] deduced upon a small-strain framework (i.e., Hertz-
Mindlin contact law) and the effective medium theory.
Figure 4 shows the evolution of the bulk modulus measured
in our simulations and that computed using Eq. (2), both as
a function of ϕ. As also noted in previous studies, fair
predictions of bulk modulus result for the small-strain
domain when standing on the equivalent medium approach.
Yet, we observe an increasing mismatch as the solid
fraction tends to unity since the assembly of grains starts
to behave as a nondeformable solid (i.e., the corresponding
bulk modulus diverges). This observation suggests that
defining local strains only by means of the contact
deflections (i.e., σl ¼ Eεv;l) should be reconsidered.
An alternative approach consists of building the macro-

scopic strain in terms of local contributions of Voronoi cells
enveloping each particle as εc;l ¼ − lnðVl=Vl;0Þ, with Vl
the volume of each Voronoi cell. Note that by construction,
εv ¼ εc;l. The question rising from this approach is to what

FIG. 3. The reduced coordination number Z − Z0 as a function
of the reduced solid fraction ϕ − ϕ0 for all the coefficient of
friction tested (log-log representation in the inset). The dashed
black line displays the power law relation Z − Z0 ¼ kðϕ − ϕ0Þα.

FIG. 4. Measured modulus K normalized by E (empty sym-
bols) along with its microstructural origin proposed in Eq. (3)
(full symbols). The gray line is the prediction using Eq. (2) for
μ ¼ 0, and dashed black and orange lines are predictions using
Eq. (7) for μ ¼ 0 and μ ¼ 0.8, respectively.

PHYSICAL REVIEW LETTERS 124, 208003 (2020)

208003-3



extent can the volumetric behavior of such a local con-
figuration be related to the bulk modulus of the multi-
particle system? We can address this issue by considering
an analogous elementary system composed of a single
particle between four rigid walls following the multiparticle
boundary conditions (see insets of Fig. 5).
Figure 5 shows the evolution of the solid fraction ϕp and

applied pressure Pp for the single-particle case after
applying the same strain increments as for the multiparticle
system (i.e., εv ≡ εv;p, with the latter the volumetric strain
for the single-particle compression). We observe that the
single-particle compression is roughly akin to the multi-
particle trend, supporting the idea of a deep relation
between the two systems. We also tested a different number
of finite elements Ne, corroborating the fact that the mesh
resolution, at least for the element densities tested, has no
major effect on the results. We then computed the bulk
modulus for the single-particle compression as KpðϕpÞ ¼
ðdPp=dϕpÞðdϕp=dεv;pÞ, with εv;p ¼ − lnðϕp;0=ϕpÞ, and
ϕp;0 ¼ π=4 the solid fraction as Pp=E tends to zero.
Figure 4 also shows that the macroscopic bulk modulus

of the assembly K increases as the relation ðZϕ=2πÞ does,
allowing us to reinterpret the micromechanical origin of the
bulk modulus as

K ≡
�
Zϕ
2π

�
Kp þO; ð3Þ

with O negligible high-order terms. Equation (3) suggests
that the single-particle configuration is no other than the
smallest representative scale in our multiparticle system.
Supported on Eq. (3), we can also reinterpret Eq. (1) as

P≡
�
Zϕ
2π

�
Pp; ð4Þ

where we can deduce that theO in Eq. (3) is simply related
to the derivatives ðdZϕPp þ ZdϕPpÞ. Equations (3) and
(4) reveal that the elastic and compaction properties
of a deformable particle assembly are scalable from the
behavior of an individual particle. More precisely, a
description of a single-particle compression should be a
central ingredient for the description of the behavior of the
assembly.
We remark that the compaction behavior of a single

particle can be easily described as

Pp=E ¼ −b ln
�
ϕp;max − ϕp

ϕp;max − ϕp;0

�
; ð5Þ

with ϕp;max the maximal solid fraction attainable and b a
constant of proportionality found to be ≃0.12. This relation
is obtained from the corresponding loss of void space
analogous to the collapse of a cavity within an elastic
medium under isotropic compression [52]. Equation (5) is
displayed in Fig. 5 using a black dashed line.
Finally, introducing Eq. (5) and the relation between Z

and ϕ into Eq. (4), and noting that ϕ can be mapped to ϕp

(since εv ≡ εp;v), we get the compaction equation

P=E ¼ −
bϕ
2π

fZ0 þ kðϕ − ϕ0Þαg ln
�
ϕmax − ϕ

ϕmax − ϕ0

�
: ð6Þ

Figure 6 presents our numerical data and the compaction
equation for the cases μ ¼ 0 and μ ¼ 0.8. As we can
observe, the predictions given by Eq. (6) are outstanding
for any pressure capturing the asymptotes for vanishing and
extremely high pressures and the effect of the coefficient of
friction. Our compaction equation also allows us to predict
the saturation of solid fraction as μ increases. Simple fitting
of Eq. (6) reveals that ϕmax ¼ 0.998 for the frictionless
case, while ϕmax ¼ 0.968 for μ ¼ 0.8.
Going one step further, derivating Eq. (6) and neglecting

high-order terms (e.g., in the form of ϕαþ1 lnϕ), we get a
second expression for the bulk modulus evolution as

K2ðϕÞ=E ≃
bϕ2

2πðϕmax − ϕÞ fZ0 þ kðϕ − ϕ0Þαg: ð7Þ

Finally, Fig. 4 presents the above relation perfectly
reproducing the evolution of K throughout the deformation
for the cases μ ¼ 0 and μ ¼ 0.8. Note, however, that the
coefficient of friction has little influence on the macro-
scopic bulk modulus for the small deformation domain, but
then its effects increase for larger strains. Such a high-
quality capacity of prediction also supports, a posteriori,
the validity of our analysis.
In summary, we developed a compaction model whose

ingredients are deeply encoded in the evolution of grain
connectivity and the bulk behavior of a representative
single particle. Our systematic approach was capable of

FIG. 5. Compaction curve of a single particle for different mesh
resolutions. Red squares (Pp fixed and E varied) and black circles
(E fixed and Pp varied) are tests on a particle with 92 finite
elements. For the other mesh resolutions, E was fixed and Pp

varied. Snapshots for Ne ¼ 968 display the volumetric strain at
different moments of the compression.
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producing a compaction equation free of ad hoc parameters
and stands on well-defined quantities (i.e., solid fraction,
coordination number, and applied pressure). Although our
compaction model is deduced in the frame of the neo-
Hookean material model, our purpose is also to present a
methodical and micromechanically based approach for the
analysis of deformable particle assemblies under compres-
sion. Indeed, this approach could be generalized to different
material models (elastic, hyperelastic, plastic, etc.) or to
other loading configurations such as the oedometric com-
pression test. These alternative mechanical considerations
may lead to distinct functional forms, other than logarith-
mic, but certainty linked to the behavior of individual
particles. It will also be of great interest to extend this work
using different grain shapes, to consider mixtures of bodies
with varying elastic properties, and to characterize the shear
behavior.
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