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On the symmetry of Wigner (3-j) and Racah (6-j) coefficients

The Clebsh-Gordan coefficient formulas are determined using the integration of the product of three Wigner D-matrix. So we determine the generating function of these coefficients and the explicit expression of Van der Waerden formula for Wigner 3-j coefficient is derived simply. We also determine a new generating function of Wigner 6-j, by the coupling of three angular moments, and we derive without any difficulty Racah's formula for 6-j. We also propose a new method for the determination of the symmetries of the symbols 3-j and 6-j only from the expressions of these formulas. We also prove the connection of the coupling coefficients in bosons basis (Schwinger) and the analytic Fock space.

Introduction

The angular momentum has been studied for long time ago by many scientists and by different methods [START_REF] Wigner | Gruppentheorie[END_REF][START_REF] Racah | [END_REF][3][START_REF] Regge | Symmetry properties of Clebsch-Gordan's coefficients[END_REF][5][START_REF] Schwinger | Quantum Theory of angular momentum[END_REF][START_REF] Bargmann | [END_REF][START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Rose | Elementary Theory of Angular Momentum[END_REF][START_REF] Wybourne | Classical Groups for Physicist[END_REF]. Many of the formulas of the Clebsh-Gordan and 6-j coefficients have been found by several authors [START_REF] Bargmann | [END_REF][START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Rose | Elementary Theory of Angular Momentum[END_REF][START_REF] Wybourne | Classical Groups for Physicist[END_REF][START_REF] Chaichian | Symmetries in Quantum Mechanics[END_REF][START_REF] Van Der Waerden | Die gruppentheoretische Methode in der Quantenmechanik[END_REF] and by different methods but the calculation methods are generally difficult [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Rose | Elementary Theory of Angular Momentum[END_REF]. In addition, the study of symmetries has been studied mainly by Racah, Wigner, Regge and others [5,[START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Rose | Elementary Theory of Angular Momentum[END_REF][START_REF] Wybourne | Classical Groups for Physicist[END_REF][START_REF] Chaichian | Symmetries in Quantum Mechanics[END_REF][START_REF] Van Der Waerden | Die gruppentheoretische Methode in der Quantenmechanik[END_REF].

This work is the continuation of my paper on the angular momentum for the determination of formulas for coefficients 3-j and 6-j symbols [START_REF] Hage | Some applications of Wigner's D-matrix to the addition formulas for the spherical harmonics and to Wigner D-matrix for the SO(4) group[END_REF][START_REF] Hage | On Wigner's D-matrix and AngularMomentum[END_REF]. Using the triple integral of Wigner D-matrix we determine the generating functions (GF) of 3-j and the Van der Waerden formula [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF]. We determine by the coupling of three angular moments in the analytic Fock space, the GF of 6-j, and the Racah formula for 6-j [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF].

We propose a new simple method for the study of the symmetries of these coefficients only using the Van der Waerden formula for the symbols 3-j and the Racah formula for the study of the 6-j symmetry.

We also summarize the method for the determination of other expressions of the 3-j symbols from the triple integral of Wigner D-matrix.

The connection between the boson space and the Fock space has been studied for a long time [START_REF] Hage-Hassan | la méthode de la fonction génératrice et les Développements en Quasibosons[END_REF] for the study of "Anharmonic vibrations in nuclei " [START_REF] Hage-Hassan | la méthode de la fonction génératrice et les Développements en Quasibosons[END_REF][START_REF] Fallota | Anharmonic vibrations in nuclei[END_REF][START_REF] Chomaz | Collectives excitations in nuclei[END_REF]. We will apply our method for the connection of the expression of the coupling coefficient in bosons (Schwinger) and in Fock-Bargmann space.

The plan of this paper is as follows: We begin, in sections 2 and 3, by reviewing the angular momentum and the coupling of angular momentum. In section 4, we derive the Van der Waerden formula for 3-j symbols. In sections 5, we study the symmetries of Clebsh-Gordan. In section 6 we show the derivation of some other formulas for the three symbols. In section 7 and 8 we derive the Racah formula for the 6-j and we study the symmetries of these symbols. In the appendices we deal with the connection between the boson spaces and the analytic Fock space.

The representation of SU(2) and the generating function of Wigner's D-matrix

We starting from the representation of SU [START_REF] Racah | [END_REF] in the analytic Fock's space [START_REF] Bargmann | [END_REF][START_REF] Hage | Some applications of Wigner's D-matrix to the addition formulas for the spherical harmonics and to Wigner D-matrix for the SO(4) group[END_REF][START_REF] Hage | On Wigner's D-matrix and AngularMomentum[END_REF] For the determination of Wigner's D-matrix and its generating function.

2.1-The Analytic Hilbert space

The Analytic Oscillator space (or Fock space) Is defined by: !
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are the wave functions of subspaces of the cylindrical basis of the Harmonics oscillators [START_REF] Messiah | Mécanique Quantique Tomes I et II[END_REF].

The representation of SU(2) in the analytic Hilbert space

We define the generators of SU(2) in the analytic Hilbert space, 2 , 1 ,  i u i , by:
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We find that:
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is the representation of SU(2) in the analytic Hilbert space with:
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It is important to note that the space of the bosons was introduced by Schwinger for the study of the angular moment with:
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2.3-The Wigner's D-matrix

The Wigner's D-matrix [START_REF] Wigner | Gruppentheorie[END_REF][START_REF] Racah | [END_REF][3][START_REF] Regge | Symmetry properties of Clebsch-Gordan's coefficients[END_REF][5][START_REF] Schwinger | Quantum Theory of angular momentum[END_REF][START_REF] Bargmann | [END_REF][START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Rose | Elementary Theory of Angular Momentum[END_REF] of the rotation
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are the angles of Euler. The four dimensions analytic Hilbert space is:
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From formula (2.12) we deduce the expression:
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We can also write this expression in terms of hypergeometric functions by: :
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We emphasize that we have identified using Wigner d-matrix symmetries twenty-four formulas [START_REF] Gradshteyn | table of integrals series and products[END_REF] which are solutions of the Gauss equation.

2.4-The generating function of Wigner's D-matrix

Multiplying (2.12) by ) ( ' v jm  and summing with respect to ' , , m m j we find the generating function of Wigner's D-matrix
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The coupling of angular momentum and the Clebsch-Gordan coefficient

We will determine the coupling of two angular moments and the coefficients of the Clebsh-Gordan and 3-j symbols. And we write the triple integral formula of the Wigner D-matrix, in terms of the symbols 3-j, and which is very useful for the calculation of these coefficients.

The coupling of two angular momentums and the coefficient de clebsh-Gordan

The eigenfunctions of total angular momentum
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The coefficient (3.2) is the clebsh-Gordan and
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is the two uncoupled representation of SU(2).

The Wigner 3-j symbols

The study of symmetries of these coefficients is facilitated by the use of the Wigner 3-j symbols [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF].
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The triple integral formula for Wigner D-matrix

We deduce from the orthogonality of matrices D (Ω) the relations which are very important for the calculation of the symbols of 3-j.
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4-The generating function of Wigner 3-j symbol and the Van der Waerden's formula.

There are several formulas for the Clebsh-Gordan [START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF][START_REF] Rose | Elementary Theory of Angular Momentum[END_REF][START_REF] Wybourne | Classical Groups for Physicist[END_REF][START_REF] Chaichian | Symmetries in Quantum Mechanics[END_REF] but we will determine the Van der Waerden formula by developing the generating function of these coefficients.

The generating function of Wigner 3-j symbol

Using (2.16) and (3.4) we find:
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is the generating function of the 3-j symbols [START_REF] Schwinger | Quantum Theory of angular momentum[END_REF][START_REF] Bargmann | [END_REF].
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The invariance of the determinant by permutation of the columns and the rows of (4.3) allowed Regge [START_REF] Regge | Symmetry properties of Clebsch-Gordan's coefficients[END_REF] to deduce the symmetries of the symbols 3-j, as we write below.

The first derivation of the expression of Clebsh-Gordan coefficients

The development of the first member of the expression (4.4) and its identification with the second member gives us:
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Identification with the first term gives:
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It is quite clear that our method of deriving the Van der Waerden's formula is very simple by comparison with the complexity of the other methods [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF].

5-The symmetries of the 3-j symbols

We can determine the symmetries of the Clebsh-Gordan coefficients or the symbols 3-j from all the formulas of these coefficients [4-9] but we will limit ourselves to Van der Waerden's formula (4.11). So we look transformations that leave invariant the product of the summation formula (4.11). For this we put: B AX 
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The symmetries of the three symbols

a-It is simple to verify from (4.9) and (4.11) that:
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b-Symmetries by permutation

The symmetries by permutation of the components of X = (j 1 , j 2 , j 3 , m 1 , m 2 , m 3 ) give:
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Regge symmetries

We also find (a, b, c, u 1 , u 2 , u 3 ) from the permutations of the components of the column B which leave the coefficients 3-j invariant.

For exemple:
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(5.6) We derive the formula.
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(5.8) We find also:
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(5.9) Note that Regge has studied the symmetries of the 3-j symbols starting from the invariance of the determinant [START_REF] Regge | Symmetry properties of Clebsch-Gordan's coefficients[END_REF].

6-Triple integral of the Wigner D-Matrix and The expressions of the Clebsh-Gordan coefficients

In this part, we present the calculation of the Clebsh-Gordan coefficients by a direct calculation using the triple integral formula of the Wigner D-Matrix and its symmetries. By posing in expression
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From expression (2.15) we find that:
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By setting m 1 = j 1 , m 2 = -j 2 and m 3 = -m 1 -m 2 and using (4.8) and (6.2), (6.3) we find that:

)! 1 j j j ( )! j j j ( )! j 2 ( )! j 2 ( j j j j j j j 3 2 1 3 2 1 2 1 2 1 2 1 3 2 1                  (6.4)
As we have already pointed out that the d-matrix can be expressed using several formulas [START_REF] Gradshteyn | table of integrals series and products[END_REF]. Then we get several expressions of the symbols 3-j.

In addition the calculation of (6.1) is carried out using a Beta functions [START_REF] Erdelyi | Higher transcendal functions[END_REF][START_REF] Gradshteyn | table of integrals series and products[END_REF]:

             2 0 1 y 2 1 x 2 d sin sin 2 ) y x ( ) y ( ) x ( ) y , x ( B (6.5)
Note that the symmetries of the 3-j symbols can also be deduced using these formulas.

7-The Racah's formula for 6-j symbols

We summarize the coupling of three angular moments [START_REF] Schwinger | Quantum Theory of angular momentum[END_REF][START_REF] Hage | Some applications of Wigner's D-matrix to the addition formulas for the spherical harmonics and to Wigner D-matrix for the SO(4) group[END_REF][START_REF] Hage | On Wigner's D-matrix and AngularMomentum[END_REF], and the derivation of the Racah coefficients and its compact form in terms of 6-j.

The coupling of three angular momentums and Racah coefficients

The coupling of three angular moments is carried out by two different ways and we arrive at two different states. And the Racah coefficients are the coefficient of passage from one representation to another. The coupling of three angular moments can be done in two ways:

    3 2 23 2 1 12 3 2 1 3 2 1 J J J And , J J J With , J J J J J J J                        (7.1)
1-The base of the first representation is: j ; j j ) j j ( The Racah coefficient is defined by: )

j j ; jj j j ( W ) 1 j 2 )( 1 j 2 ( j ; j ) j j ( j j ; j j ) j j ( 23 12 3 2 1 23 12 23 3 2 1 3 12 2 1    (7.2)

The generating function of the non-coupled representation

The generating function of the first representation is deduced from the non-coupled representation 

        3 3 2 2 1 1 u t u t u t exp     (7.3) By application on                           2 1 1 2 2 1 3 t . x u . x t , t exp (7.4) And                         
                   u j ; j j ) j j ( z ) ( j j j j j j ) 1 j 2 ( u j 3 12 2 1 jm 3 12 12 2 1 2 / 1 1                2 , 1 j , 1 i i j n j 6             
The calculation of this expression can be done using the Gauss formula:

1 t n 1 i i i n )) M (det( ) Mz z ( exp dy dx 1              (7.9)
We find: 

  1 t 3 2 , 1 j , 1 i i j n j 6 )) M (det( ) u M ) u ( exp( du 1 G                With:                                                          vt 1 ut
                                                      1 2 2 2 1 1 1 2 2 2 3 23 1 3 13 2 3 12 1 3 23 2 3 13 3 12 ' ' v ' ' u ' x t y p , ' ' ' ' ' (7.11) 

The generating function of the 6-j symbols

The determinant of the coupling matrix of angular momentum (M) is: 

             
u v x y t p            (7.12) 
Using [START_REF] Bargmann | [END_REF][START_REF] Wybourne | Classical Groups for Physicist[END_REF] we find the generator function of the symbols 6-j:

    ) j j ; jj j j ( W ) ' ( j j j ' j j j ) ( j j j j j j 23 12 3 2 1 23 1 23 3 2 3 12 12 2 1 j j j j j j 23 12 3 2 1          (7.13)   2 1 3 3 1 3 1 3 1 3 2 3 2 3 3 1 1 2 1 2 2 2 2 2 1 ' ' ' ' ' ' ' ' ' ' ' ' 1                                 
It is important to note that we can also make the coupling in terms of bosons, Schwinger [START_REF] Schwinger | Quantum Theory of angular momentum[END_REF] (appendiceI)

The formula of 6-j

We can develop G 6j in the form:

                )! p ( )! n ( )! m ( )! ( ) ' ' ( ) ' ' ( ) ' ' ( ) ' ( )! 1 z ( G p 2 3 3 n 1 1 2 m 1 2 2 2 2 2 1 j 6   )! s ( )! r ( )! q ( ) ' ' ( ) ' ( ) ' ' ( s 1 3 3 1 r 3 1 3 q 1 3 2 3             (7.14) With s r q p n m z         more 1-The powers of i  are : r m ) ( P 1    , q ) ( P 2     and s p ) ( P 3   
We deduce that:

12 2 1 3 1 i i j j j n z ) ( P         then   12 2 1 j j j z n     2-The powers of i  are: s n ) ( P 1    , m l ) ( P 1    et r q ) ( P 1    s p ) ( P 3   
We deduce that:

j j j p z ) ( P 12 1 3 1 i i         then   j j j z p 12 1     3-The powers of i  are. q n ) ' ( P 1    , p m ) ' ( P 2    and s r ) ' ( P 3   
We deduce that:

12 2 1 3 1 i i j j j l z ) ' ( P         then   23 3 2 j j j z l     4 The powers of i  are: s ) ' ( P 1     , n m ) ' ( P 1    and q p ) ' ( P 3   
We find that:

  j j j z r z ) ' ( P 23 1 3 1 i 1          donc   j j j z r 23 1     And z j j j j s z j j j j m z j j j j q 3 2 1 23 2 12 3 12 23 1               
Finally we find the Racah formula for the coefficients 6-j that we will write in the usual notations [START_REF] Regge | Symmetry properties of Clebsch-Gordan's coefficients[END_REF][START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF]. 

Racah's formula

Racah's formula is:

                                    z z ! f e a z ! c b a z )! 1 z ( ) 1 ( dec dbc aef abc f e d c b a (7.16)                               ! z f d e a ! z f e c b ! z e d b a c e d z ! f d b z 1 With   abc 
is given in (4.10).

8-The symmetries of 6-j coefficients

We are looking for transformations which leave the summation invariant (7.16)

The symmetries of 6-j coefficients

We put again:

B AX                                                                                          f d e a f e c b d c b a f d b f e a c b a v v v u u u 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 3 2 1 3 2 1 (8.1)
The symbol 6-j is invariant by permutation of the composantes of: a-the column of X = (abcdef) , b-or the composantes of the column B. 

The symmetries by permutation of the components of X = (abcdef).

                           b c d e f

The symmetries by permutation of the components of the column B or Regge symmetries

                                                   
                                              2 f
                                                              
                                                          2 c f d a 2 b e f c 2
                                                       2 b e d a 2

9-Appendix: The connection between the boson space And the analytic Fock space

The connection between the boson space and the analytic Fock space has been studied for a long time [START_REF] Hage-Hassan | la méthode de la fonction génératrice et les Développements en Quasibosons[END_REF].

a-The coupling coefficients in bosons basis (Schwinger)

Schwinger in his famous paper [START_REF] Schwinger | Quantum Theory of angular momentum[END_REF] took as a starting point the base of bosons for the study of angular momentum:

  0 ! n a n n   (9.1)
The unitary operator [START_REF] Hage-Hassan | la méthode de la fonction génératrice et les Développements en Quasibosons[END_REF] is written with the help of analytic Fock space by: We thus find the passage from the bosons representation to the analytical representation and the computations are carried out simply using the Gauss integral of the determinant of the couplings matrix of angular momentum (M).

6 G

 6 generating functions of the couplings in bosons space are: 1-The generating function of j in the base of the bosons is then written using the unit operator by:

  

	M det(	)	1	xp	uy	vt	12	12	13	13	23	23
					23	12	13		23	12		13	 2

Likewise the generating function of the representation j

The generating function of the coupled representation

The generating function of the 6-j symbols is:

we make the change of the variables i u 2 by i u 2