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We study the Vainshtein mechanism in the context of slowly rotating stars in scalar-tensor theories.
While the Vainshtein screening is well established for spherically symmetric spacetimes, we examine its
validity in the axisymmetric case for slowly rotating sources. We show that the deviations from the general
relativity solution are small in the weak-field approximation outside the star: the solution for the frame-
dragging function is the same as in general relativity at leading order. Moreover, in most cases the
corrections are suppressed by powers of the Vainshtein radius provided that the screening operates in
spherical symmetry. Outside the Vainshtein radius, the frame dragging function receives corrections that
are not suppressed by the Vainshtein radius, but which are still subleading. This suggests that the Vainshtein
mechanism in general can be extended to slowly rotating stars and that it works analogously to the static
case inside the Vainshtein radius. We also study relativistic stars and show that for some theories the frame-
dragging function in vacuum does not receive corrections at all, meaning that the screening is perfect
outside the star.

DOI: 10.1103/PhysRevD.102.044046

I. INTRODUCTION

Away to test the validity of general relativity (GR) is to
put constraints on theories that deviate from it. One of
the approaches to modify GR is to add extra fields
mediating the gravitational force, and the simplest exten-
sions are scalar-tensor theories with one additional scalar
field. However, GR passes all local experimental tests,
therefore it is necessary to have a mechanism that screens
the effect of the scalar field (fifth force) close to the
gravitational source, i.e., in the Solar System. Such a
mechanism, analogous to the Vainshtein mechanism in
the decoupling limit of massive gravity [1–4] (see also
[5–10] and a review [11]), allows one to recover GR inside
a so-called Vainshtein radius, while deviations from GR
may be observed at large radii [12]. The Vainshtein
mechanism has been extensively studied in scalar tensor
theories for spherically symmetric spacetimes, in particular,
in Horndeski [12–19] and beyond Horndeski [20–25]
theories, and in degenerate higher order scalar tensor
(DHOST) theories [26–30].
However, realistic astrophysical objects typically rotate,

and one may naturally ask whether rotation affects the
validity of the Vainshtein mechanism. Indeed, it has been
found that the chameleon screening mechanism is shape
dependent [31,32], i.e., the fifth force does depend on the
deviation from spherical symmetry. In the case of the
Vainshtein mechanism, the recovery of GR for nonspheri-
cal configurations in particular models has been previously
considered in [18,25,33,34].

The aim of this work is to make a systematic study of the
Vainshtein screening in scalar-tensor theories for slowly
rotating bodies. We consider generic quadratic DHOST Ia
theories, meaning that the Lagrangian contains at most terms
quadratic in the second derivatives of the scalar field, and can
be mapped to the Horndeski theories via a general disformal
transformation [35]. To study the effects of slow rotation, we
follow the Hartle-Thorne formalism developed for GR and
include the scalar field in the discussion. We consider both
time-dependent and static scalar fields, and derive thegeneral
equation for the frame-dragging function in a compact form.
For a particular subclass of the DHOST theories with shift
symmetry, we are able to establish the full recovery of GR in
vacuum for slow rotation. The rest of our results are found in
the weak-field approximation, i.e., the metric is assumed to
be almost flat, which allows us tomake an expansion in small
deviations from Minkowski spacetime. We study various
cases of scalar-tensor theories and coupling to matter.
The key feature of the Vainshtein mechanism can be

most easily demonstrated for nonrelativistic spherically
symmetric static configurations outside the source. The GR
solution for the metric is recovered inside the Vainshtein
radius rV up to small corrections. More precisely, when the
metric is written in the form

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dθ2 þ r2 sin2 θdφ2; ð1Þ

the GR vacuum solutions for the metric functions are
recovered for distances smaller than the Vainshtein radius,
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where rS is the Schwarzschild radius, rV is the Vainshtein
radius, and n is a parameter which depends on the theory at
hand. The deviations from flat spacetime are proportional
to rS=r (as in GR) and the corrections to these deviations
are suppressed due to the Vainshtein mechanism. Note that
when the Vainshtein mechanism does not operate, normally
the corrections to GR are of the same order as the solution
itself, i.e., instead of the Vainshtein suppressed terms one
finds corrections of order rS=r in the above expressions.
A similar picture can be depicted for slow rotation.

While ν and λ are not modified, an extra metric function
ωðrÞ, which we dub the frame-dragging function, is added
to take into account the effects of rotation. As we find later
in the paper, the equation for ω outside the source in the
weak-field approximation can be presented in the form

d2ω
dr2

þ 4

r
ð1þ SÞ dω

dr
¼ 0;

where the termS showsmodificationswith respect to theGR,
for which S ¼ 0. In the weak-field approximation, we will
see below that when the Vainshtein mechanism operates in
spherical symmetry, then generically S ¼ Oð r

rV
Þl, where l

depends on the theory.1 Then, the solution for ω acquires
leading corrections of the sameorder asS,which is analogous
to the screening for nonrotating sources [see Eq. (2)]. On the
other hand, we have S ¼ OðrS=rÞ in the non-Vainshtein
regime, i.e., ω receives corrections of order rS=r, while the
leading term is not modified. This is different from what
happens for themetric functions fλ; νg, whose leading term is
modified when the Vainshtein screening no longer operates.
Inside matter, the situation is more complicated, and the

Vainshteinmechanism for rotating sources can be broken.We
will say that the Vainshtein screening for the frame-dragging
functionoperates if the leading termof the solution forω is the
same as in GR. In situations where the screening works, we
examine the leading corrections to the frame dragging
function in theweak-field limit.Wewill see that the screening
forω is usuallymore effective (meaning that corrections to the
GR solution are suppressed by powers of rV) when the
Vainshtein mechanism operates in the nonrotating case.
However, we show some examples for which this is not true.

The plan of the paper is the following. In Sec. II we give
the action for DHOST Ia theories, describe the Hartle-
Thorne formalism and derive equations of motion for
slowly rotating sources. In Sec. III we apply the formalism
to shift-symmetric DHOST Ia Lagrangians and find, in
some cases, the full recovery of GR in vacuum, i.e., the
equation for the frame-dragging function is exactly the
same as in GR. In the following Sec. IV, we assume
the weak-field approximation in addition to slow rotation.
We examine the equation for the frame-dragging function,
and find leading and subleading terms of the solution in the
general form. In Sec. V, we systematically study the effects
of slow rotation in general scalar-tensor theories for a time-
dependent scalar field. We consider several subcases,
depending on the structure of the equations in the non-
rotating limit, and study subleading corrections to the
frame-dragging function. Section VI is devoted to the
time-independent scalar field, where the nonzero fifth force
is due to a nonminimal coupling of the scalar field to the
curvature. Finally, we conclude in Sec. VII.

II. ACTION AND EQUATIONS OF MOTION
FOR SLOW ROTATION

Wewill consider quadraticDHOST theories,meaning that
the Lagrangian contains terms at most quadratic in second
derivatives of the scala field. The action is given by [36,37]

S ¼ M2
P

Z
d4x

ffiffiffiffiffiffi
−g

p �
fðϕ; XÞRþ Kðϕ; XÞ − G3ðϕ; XÞ□ϕ

þ
X5
i¼1

Aiðϕ; XÞLi

�
þ Sm½gμν;ψm�; ð3Þ

where MP ¼ ð8πGÞ−1=2 is the reduced Planck mass, ϕ is a
dimensionless scalar field, and X ¼ − 1

2
ð∂ϕÞ2. Defining

ϕμ ¼ ∇μϕ and ϕμν ¼ ∇μ∇νϕ, the Li are given by

L1 ¼ ϕμνϕ
μν; L2 ¼ ð□ϕÞ2; L3 ¼ ϕμνϕ

μϕν
□ϕ;

L4 ¼ ϕμϕ
νϕμαϕνα; L5 ¼ ðϕμνϕ

μϕνÞ2: ð4Þ

The most interesting case of the above action is the DHOST
Class Ia [37]. It is obtained by imposing three constraints on
the functions Ai. Assuming f þ 2XA1 ≠ 0, one can express
A2, A4, A5 in terms of f; A1; A3 as follows:

A2 ¼ −A1;

A4 ¼
8XA3

1 þ A2
1ð3f þ 16XfXÞ − X2fA2

3 þ A3A1ð8X2fX − 6XfÞ þ 2fXA1ð3f þ 4XfXÞ þ 2fA3ðXfX − fÞ þ 3ff2X
2ðf þ 2XA1Þ2

;

A5 ¼
ðfX þ A1 þ XA3ÞðA2

1 − 3XA1A3 þ fXA1 − 2fA3Þ
2ðf þ 2XA1Þ2

;

1For some theories it can also happen that S is exactly zero even for relativistic stars, as we show below.
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where the subscript X should be understood as the
derivative with respect to X, i.e., fX ≡ ∂f=∂X, etc. Notice
that the above expressions differ from those in [37] because
of our definition of X. It is known that in spherical
symmetry, theories belonging to this class exhibit the
Vainshtein screening [26], meaning that GR is recovered
inside a radius rV called the Vainshtein radius, and
deviations from GR may be observed at large radii. For
some theories beyond Horndeski, the screening is broken
inside matter [20] when the scalar field depends on time,
and sometimes even outside the matter source [29,30]. In
this work, we will extend these studies by deviating from
spherical symmetry and examining how the Vainshtein
screening is affected.
We consider a slowly rotating source of radius R

modeled by a perfect fluid. We will follow the Hartle-
Thorne formalism [38] developed for general relativity, and
assume a uniform rotation of the fluid at angular velocityΩ.
We take the same ansatz for the metric tensor as in GR,

ds2 ¼ −eνðt;rÞdt2 þ eλðt;rÞdr2 þ r2dθ2

þ r2 sin2 θ½dφ − εωðt; rÞdt�2; ð5Þ

where the frame-dragging function ω is the angular
velocity acquired by an observer falling freely from
infinity, due to the dragging of inertial frames. The book-
keeping parameter ε accounts for the slow rotation of the
source, and we will keep only terms up to first order in ε in
the following. The relation between the functions fλ; νg
used in this work and the Newtonian potentials fΦ;Ψg
often encountered in the literature can be found in the
Appendix B. For the scalar field we take the (generically)
time-dependent ansatz [15,39,40]

ϕ ¼ qtþ ϕðrÞ: ð6Þ

The metric functions can a priori depend on time if the
constant q ≠ 0. Indeed, the Lagrangian functions generi-
cally depend on ϕðtÞ. The solutions for the metric poten-
tials depend on these functions, meaning that they also
depend on time. We assume the energy-momentum tensor
of the perfect fluid,

Tμν ¼ ðρþ PÞuμuν þ Pgμν; ð7Þ

where uμ is the 4-velocity of the fluid, given at first order
in ε by

uμ ¼ ðe−ν=2; 0; 0; εΩe−ν=2Þ: ð8Þ

Wewill calculate the equations of motion up to order 1 in ε.
We will be interested in the differential equation for the
function ω, obtained from the tφ component of the metric
equations:

Et
φ ¼ 1

2M2
P
Tt

φ; ð9Þ

where Eμν ¼ 1ffiffiffiffi−gp δð ffiffiffiffi−gp
LÞ

δgμν and Tμν ¼ − 2ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgμν . At the

same time, for the other nontrivial equations, ðttÞ, ðrrÞ, and
ðtrÞ components as well as for the scalar field equation, it is
enough to keep zero order in ε, i.e., to consider these
equations of motion without rotation,

EðstÞ
tt ¼ 1

2M2
P
TðstÞ
tt ; ð10Þ

EðstÞ
rr ¼ 1

2M2
P
TðstÞ
rr ; ð11Þ

EðstÞ
tr ¼ 0; ð12Þ

EðstÞ
ϕ ¼ 0; ð13Þ

where the superscript (st) implies that one should set
ε ¼ 0 in the equations of motion. Note that not all of
the equations (10)–(13) are independent, because of the
following relation due to the diffeomorphism invariance
of the action:

∇νEμν ¼ −
1

2
∇μϕEϕ: ð14Þ

With the choice (7) for Tμν, Eq. (9) can be written as

ω00 þ K1ω
0 þ K2

M2
P
ðρþ PÞðω −ΩÞ ¼ 0; ð15Þ

where the functions K1 and K2 depend on the specific
theory considered and on the solution in the nonrotating
limit,

K1 ¼
4

r
−
λ0 þ ν0

2
þ d
dr

ln ðf þ 2XA1Þ; ð16Þ

K2 ¼ −
eλ

f þ 2XA1

; ð17Þ

and 0 denotes a derivative with respect to the radial
coordinate. Thus the system of equations to solve is given
by (10)–(13) and (15) with (16) and (17), where all the
functions depend on ϕ given by (6) and X evaluated in the
spherically symmetric limit,

X ¼ 1

2
ðe−νq2 − e−λϕ02Þ: ð18Þ

Using (18), Eq. (16) can be written in an expanded form,
which will be useful in the following, as
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K1 ¼
4

r
−
λ0 þν0

2

þð2XA1Xþ2A1þfXÞX0 þϕ0ð2XA1ϕþfϕÞ
2XA1þf

; ð19Þ

where

X0 ¼ 1

2
½e−λϕ0ðλ0ϕ0 − 2ϕ00Þ − q2e−νν0�: ð20Þ

Equation (15) with the coefficients given by (16) and (17) is
the main equation we will focus on throughout the paper.
Note that the GR case is easily obtained from the above

equations. Indeed, we set L ¼ R=2, corresponding to G3 ¼
K ¼ Ai ¼ 0 and f ¼ 1=2. Using (16) and (17) in (15) one
obtains

ω00 þ
�
4

r
−
λ0 þν0

2

�
ω0−

2

M2
P
eλðρþPÞðω−ΩÞ¼ 0; ð21Þ

which coincides with the GR equation for ω [38]. In
vacuum we impose ρ ¼ P ¼ 0, which implies λ0 ¼ −ν0 in
GR, so that Eq. (21) becomes

ω00 þ 4

r
ω0 ¼ 0: ð22Þ

The solution to this equation is

ω ¼ 2JG
r3

; ð23Þ

where J is the total angular momentum of the star [38,41],
and we have set limr→∞ ω ¼ 0. The angular momentum
can be expressed in terms of the moment of inertia I of the
star as J ¼ ΩI. In the following, we will examine the
solutions for ω in DHOST Ia theories and compare them to
the GR expression Eq. (23).

III. SLOW ROTATION OF RELATIVISTIC
SOURCES IN SHIFT-SYMMETRIC THEORIES

In this section, we study the slow rotation of relativistic
stars for shift-symmetric theories that are invariant under

ϕ → −ϕ, meaning we set G3 ¼ 0 throughout this section.
We also assume slow rotation, but otherwise the equations
are fully nonlinear in the metric functions λ and ν, i.e., we
do not assume the weak-field approximation in this section.

A. Horndeski theories

We first consider Horndeski theories with general
functions fðXÞ and KðXÞ. The Lagrangian density reads

L ¼ KðXÞ þ fðXÞRþ fX½ð□ϕÞ2 − ϕμνϕ
μν�: ð24Þ

The authors of [34] studied slowly rotating neutron stars in
the case when fðXÞ and KðXÞ are linear functions of X.
They showed that the equation for ω in vacuum reduced to
the GR expression, meaning that we haveK1 ¼ 4=r and the
term proportional to K2 in Eq. (15) is absent. We extend
this result to a more general class of theories. We assume
fXX ≠ 0, while the case fXX ¼ 0 was treated in [34]. With
this assumption, the scalar field can be obtained in terms of
fλ; ν; ν0g from the equation Etr ¼ 0:

ϕ02 ¼ eλ½2fXð1þ rν0 − eλÞ þ rð2q2fXXν0e−ν − rKXe−λÞ�
2fXXð1þ rν0Þ :

One then substitutes this expression into the ðrrÞ compo-
nent of the metric equations to obtain λ in terms of ν0:

eλ ¼ 2ð1þ rν0Þðf2X þ ffXXÞ
2f2X þ r2fXKX þ fXXð2f þ r2K þ r2P=M2

PÞ
:

Using the ðttÞ equation one can then obtain λ0 in terms of
fλ; ν;ϕ0;ϕ00; ρg. After substituting this expression in
Eq. (19), the second derivatives of ϕ disappear and we
are left with a coefficient K1 which depends only on
fλ; ν; ν0;ϕ02g. Upon substituting the expressions for ϕ02 and
λ the final expression for K1 depends only fρ; P; ν; ν0g.
Finally, the coefficients read

K1 ¼
4

r
−

reνð1þ rν0Þ2ðf2X þ ffXXÞðρþ PÞ
2M2

Pe
ν½2f þ r2ðP=M2

P þ KÞ�ðf2X þ ffXXÞð1þ rν0Þ − 2q2fX½2f2X þ r2fXKX þ ½2f þ r2ðK þ PÞ�fXX�
;

K2 ¼ −
eλ

f − 2XfX
:

One can see that the GR case is recovered in vacuum, where
we simply have K1 ¼ 4=r. This shows that the result of
[34] can be extended to general functions f and K in
Horndeski theories.

It is also worth pointing out a mistake in formulas (44)
and (53) of Ref. [34]. In their notations [obtained from ours
by ω → Ω� − ω, eν → b, q → Q and K2 → −K2ðρþ PÞ],
these formulas should read
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uφ ¼ ε
r2 sin2 θωffiffiffi

b
p ;

K2 ¼
4ðbþ rb0Þ2ðPþ ρÞ

b½ðPr2 þ 4κÞðbþ rb0Þ − ηQ2� :

With the above expression for uφ, one recovers the correct
expression for the 4-velocity vector [38]:

uμ ¼ ðu0; 0; 0; ϵΩu0Þ;

unlike the case of Ref. [34].

B. Quadratic GLPV theories

The above result—namely, that the equation for ω
reduces to the one of GR in vacuum—shown for
Horndeski theory with arbitrary fðXÞ and KðXÞ can be
extended to quadratic Gleyzes-Langlois-Piazza-Vernizzi
(GLPV) theories. We consider the following Lagrangian
density [42]:

L ¼ KðXÞ þ fðXÞRþ fX½ð□ϕÞ2 − ϕμνϕ
μν�

þ A3ðXÞ
2

εμνασεληκσϕμλϕνηϕαϕκ; ð25Þ

where εμνασ is the totally antisymmetric Levi-Civita tensor,
and we have set

f¼ fðXÞ; A1 ¼−A2¼−fX −XA3ðXÞ; A4 ¼−A3ðXÞ;
K¼KðXÞ; A5¼G3 ¼ 0: ð26Þ

The inclusion of A3 makes Etr ¼ 0 a quadratic equation in
ϕ02, in contrast to the Horndeski case, where the analogous
equation is linear in ϕ02. In order to obtain the desired
result, we use the metric equations in a different order than
in the previous case for Horndeski theory. First, we use Err
to express ϕ0ϕ00 in terms of fϕ0; λ; ν; ν0g. Then, we sub-
stitute this expression into Ett to obtain λ0 in terms of
fϕ0; λ; ν; ν0g, which we inject into Etr. This yields a
quadratic equation for ϕ02, and the two solutions are
expressed in terms of fλ; ν; ν0g. Using the expressions
for fϕ0ϕ00; λ0;ϕ02g, one can obtain that K1 ¼ 4=r in
vacuum, which means that the GR equation for ω is fully
recovered in the case of (25) as well.

C. DHOST Ia with constant X

Assuming in addition constant X, i.e., X0 ¼ q2=2, the
previous result can be extended to shift-symmetric DHOST
theories. Indeed, when X ¼ const., A4 and A5, defined in
(4) drop out of the field equations, because one can rewrite
them as

L4 ¼ XμXμ; L5 ¼ ðXμϕ
μÞ2:

Since the above expressions are quadratic in Xμ, their
variation will not give any contribution to the field
equations when X is constant. Then it immediately follows
from (16) that

K1 ¼
4

r
−
λ0 þ ν0

2
;

since fðX0Þ þ 2X0A1ðX0Þ is a constant. With the choice
X0 ¼ q2=2, the scalar can be expressed in terms of fλ; νg as

ϕ02 ¼ q2eλðe−ν − 1Þ: ð27Þ

Using (27) in the tt, tr, and rr components of the metric
equations, one can show that

λ0 þ ν0 ∼ rðPþ ρÞ;

so once again the GR equation for ω, Eq. (22), is recovered
in vacuum.

IV. WEAK-FIELD APPROXIMATION:
EQUATION FOR THE FRAME-DRAGGING

EQUATION AND ITS SOLUTIONS

From now on we will employ the weak-field approxi-
mation [4], assuming that λ, ν, ϕ and their derivatives are
small, which one can check once the solutions are found:�

rn
dnλ
drn

; rn
dnν
drn

; rn
dnϕ
drn

�
≪ 1; ð28Þ

where n is a positive integer. Additionally, we assume that

ω ≪ Ω;

which is the appropriate approximation in the Newtonian
regime [38]. Physically, the above conditions correspond to
nonrelativistic sources, for which we also assume P ≪ ρ.
These assumptions considerably simplify Eq. (15), since it
becomes a first order equation for ω0:

ω00 þ 4

r

�
1þ rδK1

4

�
ω0 ¼ K2ðrÞΩ

M2
P

ρðrÞ; ð29Þ

where

δK1 ≡ K1 −
4

r

marks the departure from the vacuum GR behavior (ρ ¼ 0).
The integration of Eq. (29) with the conditions ω0ð0Þ ¼ 0
and limr→∞ ω ¼ 0 leads to

ωðrÞ ¼ Ω
M2

P

Z
r

∞

I1ðvÞ
v4

�Z
v

0

K2ðuÞρðuÞ
I1ðuÞ

u4du

�
dv; ð30Þ
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where we have defined the function

I1ðrÞ ¼ e−
R

δK1dr:

We see that the overall integration constant for I1 is not
important, as it disappears in the final result for ω. Note
that (30) is valid for δK1 not necessarily small. In order to
make a comparison of a generic situation with GR,
let us briefly go through the GR case, i.e., f ¼ 1=2 and
G3 ¼ K ¼ Ai ¼ 0. The linearization of Eqs. (10) and (11)
gives, respectively,

λþ rλ0 ¼ 1

M2
P
r2ρ;

rν0 − λ ¼ 1

M2
P
r2P:

In the case of nonrelativistic matter, P ≪ ρ, we obtain
from (21)

ω00 þ 4

r

�
1 −

GM0

4

�
ω0 ¼ −

4GM0Ω
r2

�
1þ 2GM

r

�
; ð31Þ

where M ¼ 4π
R
r
0 ρu

2du. This is the weak-field equivalent
of the relativistic GR equation found in [38]. As one can
see by comparing (29) and (31), outside the source δK1

measures the departure from GR, while inside the source it
takes into account both GR and non-GR corrections due to
the presence of matter.

A. Leading term

Let us now calculate the leading term in (30), assuming
that

R
δK1dr is small and K2 is almost constant. We can

then write

I1 ¼ 1þ εδI1;

K2 ¼ κ2ð1þ εδK2Þ; ð32Þ

where κ2 is a constant, fδI1; δK2g ≪ 1, and ε is a book-
keeping parameter used to keep track of small terms.

1. Outside the source

In the exterior region, r > R, Eq. (30) simplifies to

ωðrÞ ¼ 2GJ̃
r3

þOðεÞ; ð33Þ

where we have defined an effective angular momentum

J̃ ¼ −
4πΩ
3

Z
R

0

K2ðuÞρðuÞ
I1ðuÞ

u4du: ð34Þ

This coefficient can a priori be different from the GR value.
However, if the density profile of the star is unknown, I1

and K2 can be reabsorbed in the definition of ρ. Therefore,
unless the density profile ρðrÞ is known, any physical effect
related to frame-dragging outside the star is the same as in
GR at leading order. Thus, one can say that the Vainshtein
screening can be extended outside the star to the case of
slowly rotating bodies in the weak-field approximation.

2. Inside the source

Inside the source, we have from (30)

ω−ωð0Þ¼ κ2Ω
M2

P

Z
r

0

1

v4

�Z
v

0

ρðuÞu4du
�
dvþOðεÞ: ð35Þ

The constant ωð0Þ is not free and it should be fixed by
continuity at the surface of the star. One can see that for
κ2 ≠ −2, the solution for ω differs from its GR counterpart
at leading order inside the star.2 In this case the Vainshtein
mechanism is broken for rotating solutions inside the
star. On the other hand, the Vainshtein screening operates
for theories in which κ2 ¼ −2 (for instance A1 ¼ 0 and
f ¼ 1=2). As an illustration, let us consider a constant
density star with ρ ¼ ρ0 for r < R. From (35) we have

ω − ωð0Þ ¼ κ2ρ0Ωr2

10M2
P

þOðεÞ:

In order for J̃ to be positive at leading order in Eq. (34), one
must have κ2 < 0. This implies that ωðrÞ is everywhere
decreasing (as in GR) and that it is maximal at r ¼ 0.

B. Subleading terms

In this subsection, we examine the subleading terms in
the solution to Eq. (29), when the corrections to the
coefficients K1 and K2 are power laws. The coefficient
K2 is only relevant inside the star where ρ ≠ 0. On the other
hand we will be interested in the corrections to K1 for all r.
As we will see in the following, one can in general identify
three regions of radii, and in each of those the correction
δK1 has a particular power-law behavior. These regions are
r < R, R ≤ r ≪ rV and r ≫ rV , where rV is the Vainshtein
radius of the considered theory. Therefore, we can write
approximately

rδK1

4
¼ a1

�
r
r1

�
s1
Hr≤R þ a2

�
r
r2

�
s2
HR<r≤rV

þ a3

�
r
r3

�
s3
Hr>rV ;

δK2 ¼ a0

�
r
r0

�
s0
;

2Note that nonrotating solutions in some theories require a
renormalization ofMP. In this case one should write (35) in terms
of the renormalized Planck mass and take into account this extra
factor in the definition of κ2.
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whereH is the Heaviside function, ai are constants, and we
assume that ðr=riÞsi ≪ 1. The scaling exponents si depend
on the theory at hand and should satisfy certain constraints in
order for the integral (30) to be finite and for ω to have the
correct boundary conditions. Therefore we set s0 þ 1 > 0,
s1 þ 1 > 0, s2 ≠ 0, and s3 < 0. We also assume s2 ≠ 3,
since we did not find an example of a theory with such a
behavior, although it is not difficult to consider the case
s2 ¼ 3 separately. It is worth noting that in the case of a time-
dependent scalar field, Sec. V, our analysis allows us to
calculate the coefficients K1 and K2 up to r ∼ 1=q. In this
case, instead of imposing the boundary condition at
r ¼ þ∞, we set the boundary condition at r ¼ 1=q, i.e.,
ωð1=qÞ ¼ 0. This does not affect the final result, due to a
very weak dependence of the integral (30) on the upper
bound. In this case, we obtain the following corrections in
the region r > R outside the star:

r3ω

2GJ̃
− 1 ¼ 12ε

�
a3

s3ðs3 − 3Þ
�
r
rV

�
3
�
rV
r3

�
s3

þ a2
s2ðs2 − 3Þ

�
r
r2

�
s2
�
1 −

�
r
rV

�
3−s2

��
HR<r≤rV

þ 12a3ε
s3ðs3 − 3Þ

�
r
r3

�
s3
Hr>rV :

Assuming s2 < 3, one can write the solution in the regions
R < r ≪ rV and r ≫ rV that we will focus on in the
following:

ω ¼ 2GJ̃
r3

�
1þ ε

12a2ε
s2ðs2 − 3Þ

�
r
r2

�
s2
HR<r≪rV

þ 12a3ε
s3ðs3 − 3Þ

�
r
r3

�
s3
Hr≫rV

�
: ð36Þ

The above expression tells us how the corrections to ω
outside the star can be read off from the coefficient K1.

1. Inside the source

As we saw in the above subsection, the leading term
differs from GR inside the star when κ2 ≠ −2, meaning that

the Vainshtein screening is broken. In theories for which
κ2 ¼ −2, the leading term in the solution for ω coincides
with its GR counterpart, and the corrections to the frame-
dragging function come from the subleading terms.
Assuming for simplicity that the star has a constant density
ρ0, the frame-dragging function inside the star can be
written as follows:

ωðrÞ − ωð0Þ ¼ −
ρ0Ωr2

5M2
P

�
1þ 10a0ε

ðs0 þ 5Þðs0 þ 2Þ
�
r
r0

�
s0

−
40a1ε

ðs1 þ 5Þðs1 þ 2Þ
�
r
r1

�
s1
�
; ð37Þ

where ωð0Þ can be determined using Eq. (36) by continuity
of ω at the surface of the star r ¼ R. Once again, the
subleading terms can be read off from the coefficients K1

and K2.

V. SLOW ROTATION IN THE WEAK-FIELD
APPROXIMATION WITH A TIME-DEPENDENT

SCALAR FIELD

In this section, we study the slow rotation in DHOST Ia
theories with q ≠ 0, which means the scalar field is time
dependent. In addition to the weak-field assumption (28),
we also assume that

ϕ02 ≪ q2; ð38Þ

i.e., that the spatial gradient of the scalar field is much
smaller than the time derivative of ϕ. This can be viewed as
a manifestation of the “static” Vainshtein screening and the
failure of the Vainshtein mechanism for the time evolution
of the scalar [43]. Clearly, for static solutions, the condition
(38) does not apply; therefore, we will not use it in the case
of purely static configurations, see Sec. VI. We will also
assume that dimensionless combinations of coefficients are
of Oð1Þ, for instance f ∼ q2fX ∼ q2A1 ∼Oð1Þ. Under the
assumptions (28) and (38), the coefficients K1 and K2,
Eqs. (16) and (17), read

K1 ¼
4

r
−
λ0 þ ν0

2
þ 2ðfϕ þ q2A1ϕÞϕ0 − ðfX þ 2A1 þ q2A1XÞðq2ν0 þ 2ϕ0ϕ00Þ

2ðf þ q2A1Þ
; ð39Þ

K2 ¼ −
1

f þ q2A1

�
1þO

�
λ;
ϕ02

q2

��
; ð40Þ

where we have used Eq. (20) in the weak-field approxi-
mation, and all the functions are evaluated at ϕ ¼ qt and
X ¼ q2=2. The aim is to see how the solution to Eq. (15) for
ω is modified in the case of the scalar-tensor theories, with

respect to the GR solution. We can see that generically the
coefficient κ2 defined in Eq. (32) is not the same as in GR,
signaling that the screening is broken inside the source. If
the condition rϕ0ϕ00=q2 ≪ 1 is verified, it is clear from
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Eq. (39) that the corrections to K1 are small compared to
4=r, in which case ω has the same form as in GR at leading
order outside the star, see Sec. IV. For instance, this
condition is satisfied if the solution for ϕ is a power
law, and we will see in many examples below that this is
generically the case. Note that only the functions f and A1

directly appear in these coefficients. Of course the other
functions of the Lagrangian enter the expression implicitly
via the scalar and metric functions in (15). However, we can
immediately see that in a theory for which fX ¼ A1 ¼ 0
and the Vainshtein mechanism is effective in spherical
symmetry, the coefficient K1 is the same as in GR up to
subleading corrections. Indeed, in this case we have

K1 ¼
4

r
−
λ0 þ ν0

2
þ fϕ

f
ϕ0:

When the Vainshtein mechanism in spherical symmetry is
operational, the fifth force is screened for r ≪ rV, implying
ϕ0 ≪ fλ0; ν0g. Also, the solutions for fλ; νg are those of GR
at leading order. Assuming fϕ=f ≲Oð1Þ, these two con-
ditions show that the GR expression for K1 is recovered up
to rV suppressed corrections, which means that the sub-
leading corrections for ω outside the star are also rV
suppressed.
The Vainshtein mechanism in spherical symmetry was

studied for DHOST Ia theories in [26,27,29,30]. Adopting
similar notations, we define

x ¼ ϕ0

r
; y ¼ ν0

2r
; z ¼ λ

2r2
;

MðrÞ ¼ 4π

Z
r

0

ρðr̄Þr̄2dr̄; AðrÞ ¼ GMðrÞ
q2r3

:

Outside the source, we have A ¼ rS=ð2q2r3Þ, and we will
define the Vainshtein radius rV as AðrVÞ ∼ 1, meaning that

r3V ≡ rS
q2

: ð41Þ

The functions fλ; νg vary slowly with time in this section,
and we assume

_z ∼ qz; _y ∼ qy;

which can be checked once the solutions for fy; zg are
found. The ðttÞ and ðrrÞ field equations for the metric,
Eqs. (10) and (11), can be solved in terms of x and A, and
written in the form

y ¼ α1Aþ β1xþ γ1x2 þ δ1rxx0 þ η1; ð42Þ

z ¼ α2Aþ β2xþ γ2x2 þ δ2rxx0 þ η2; ð43Þ

where all the time-dependent coefficients are listed in
Appendix A. They can be expressed in terms of the
Lagrangian functions evaluated on the background ϕ ¼ qt
and X ¼ q2=2. Note that these coefficients are not neces-
sarily dimensionless. In order to obtain the above Eqs. (42)
and (43), we have also assumed r ≪ 1=q. In terms of the
function A defined above, the Vainshtein screening in the
nonrotating case generally happens when A ≫ 1, which
corresponds to r ≪ rV . However, there are deviations from
GR when A ≪ 1, which we will examine in the region
rV ≪ r ≪ 1=q where our equations are valid. The terms
we neglected should be kept if we want to match to the
appropriate de Sitter solution at cosmological radii
r ≥ 1=q. This is the asymptotic condition consistent with
the linear time dependence of the scalar field, as discussed
in [15] for the cubic Galileon theory.
The expressions (42) and (43) for y and z can then be

used in the scalar field equation, Eq. (13), yielding a cubic
equation for x [26]:

C3x3þC2x2þ
�
C1þΓ1AþΓ2

ðr3AÞ0
r2

�
xþΓ0Aþη3¼ 0:

ð44Þ

Substituting Eqs. (42) and (43) in (39) results in

K1 ¼
4

r
½1þ α0r2Aþ ζ0ðr3AÞ0 þ β0r2xþ κ0r3x0 þ γ0r2x2

þ δ0r3xx0 þ σ0r4ðxx00 þ x02Þ þ η0r2�: ð45Þ

The coefficients of (44) and (45) are listed in Appendix A.
One can see from Eq. (45) that there is always a leading
term in the brackets corresponding to the Minkowski limit
of the metric K1 ≃ 4=r (for radii r ≪ 1=q). We discuss
below various cases of Eq. (44) leading to different non-
rotating solutions [13,26]. Substituting the relevant solution
for x in Eq. (45), we will examine how the modification of
gravity affects slowly rotating solutions, i.e., Eq. (29) for ω.
We will show that the leading corrections to the coefficients
K1 and K2 are small and take the form of power laws. In
this case, we showed in Sec. IV that ω has the GR form at
leading order outside the star, up to an overall factor (which
can be absorbed in the definition of the angular momentum
of the star as measured by an exterior observer, unless the
density distribution of the star is known). On the other
hand, the screening can be broken inside the star. We will
be interested in the subleading corrections to ω when the
leading term is not modified and compare them to those
of GR.

A. Outside the Vainshtein radius

We first examine the linear regime outside the Vainshtein
radius, where we have A ≪ 1. There are two different
cases, depending on the coefficient η3. In this regime the
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Vainshtein mechanism for nonrotating sources does not
operate, and the corrections to the metric for the spherically
symmetric solution are expected to be large. Therefore, we
also expect that the equation for ω receives corrections
larger than those inside the Vainshtein radius.

1. η3 = 0 and C1 ≠ 0

Let us first consider the case η3 ¼ 0. A sufficient
condition for this coefficient to vanish is K ¼ G3ϕ ¼ 0.
In this case, the nonlinear terms in x in Eq. (44) can be
neglected, and the solution for x is

x ¼ −
Γ0

C1

A ∼
rS
r3

:

Substituting this expression into Eq. (45), we obtain the
expression for K1,

K1 ¼
4

r

�
1þO

�
rS
r

��
: ð46Þ

This shows that the corrections due to the scalar field are
not suppressed by powers of the Vainshtein radius, and are
of the order of the Newtonian potentials. This is expected in
the region r ≫ rV where the Vainshtein screening in
spherical symmetry is no longer effective [meaning we
do not have λ0 þ ν0 ≃ 0 in Eq. (39)].

2. η3 ≠ 0 and C1 ≠ 0

If η3 ≠ 0, we have Γ0A ≪ η3, since A ≪ 1. In this case
Eq. (44) reduces to the following cubic equation for x with
r-independent coefficients:

C3x3 þ C2x2 þ C1xþ η3 ¼ 0:

The relevant solution for x must be chosen by taking into
account the asymptotic behavior of the solution at large
radii, r ≫ 1=q. Since the coefficients of the algebraic
equation depend only on time, x does not depend on the
radial coordinate and we have x ¼ x0ðtÞ. Substituting this
solution into Eq. (45), we obtain

K1 ¼
4

r
½1þOðq2r2Þ�: ð47Þ

Note that here the corrections have a clear physical
interpretation; they arise as a backreaction on the metric
due to the “weight” of the scalar field, see e.g., [44]. They
are present even in the simplest theory with a minimally
coupled scalar field. The corrections are larger in this case
than for η3 ¼ 0, considered above. Indeed, using Eq. (41),
we obtain that the ratio of the corrections in (46) to the
corrections in (47) are of order ðrV=rÞ3.

In the rest of this section, we will consider the region
r ≪ rV , where the Vainshtein mechanism usually operates
in spherical symmetry.

B. Case 1: C3 ≠ 0 and Γ1 ≠ 0, inside
the Vainshtein radius

We first consider the generic case Γ1 ≠ 0 andC3 ≠ 0 (see
Appendix A for their expressions). Note that when Γ1 ¼ 0
then we also have C3 ¼ 0. We assume that C3Γ1 < 0 and
we will confirm this choice later. Then the solutions to (44)
for r ≪ rV are3

x1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Γ1A − Γ2

ðr3AÞ0
r2

C3

s
; ð48Þ

where we used A ≫ 1 to simplify. The � sign must be
chosen in order to match the solution at infinity, depending
on the theory. Outside the star ðr3AÞ0 ¼ 0; therefore, our
choice C3Γ1 < 0 is indeed correct to have a real solution in
the exterior region. Extra conditions should be also
imposed on Γ2 for the argument of the square root to be
positive. In particular, a sufficient condition is Γ2 < 0. We
do not consider the third solution to the cubic equation,
since there is no known example where it is matched to de
Sitter asymptotics. (Note however that in [13] the asymp-
totically flat spherically symmetric solutions of this branch
were found, and it was shown that the Vainshtein mecha-
nism is not effective for this branch unless the speed of
gravitational waves cT ¼ 1). Substituting the solution (48)
for x in (45), we obtain

K1 ¼
4

r

�
1þ d

dr
ðι0r3Aþ ι1r4A0 þ ι2r5A00ÞþOðq2r2

ffiffiffiffi
A

p
Þ
�
;

ð49Þ

where we assumed A ∼ rnAðnÞ for the subsubleading part,
and the expressions for the ιi are listed in Appendix A. The
above coefficient K1 generically differs from its GR
counterpart inside the source [see Eq. (31)]. In particular,
as can be seen from Eq. (31), ι1 ¼ ι2 ¼ 0 in GR. In the
exterior region outside the star, R < r ≪ rV , we have
ðr3AÞ0 ¼ 0 and the previous equation simplifies to

K1 ¼
4

r

�
1þO

�
rS

ffiffiffi
r

p

r3=2V

��
:

The corrections to the solution for ω are subdominant, as
we showed in Sec. IV. Furthermore, they are suppressed by
powers of rV , in an analogous way to the screening in
spherical symmetry. In fact, the screening is even more

3For some theories these solutions have been shown to match a
de Sitter asymptotic [24].
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effective for ω, since one has a power rS=rV instead of r=rV
as in Eq. (2). A similar screening also happens for the third
solution to (44) that cannot be matched to the de Sitter
solution at large radii, which we do not consider here.

1. A class of shift symmetric beyond
Horndeski theories

Let us now restrict ourselves to the quadratic sector of
GLPV theories [42], which corresponds to the Lagrangian
(25). In the case of shift-symmetric beyond Horndeski
theories, the Vainshtein mechanism for spherically sym-
metric configurations has been extensively studied. In
particular, in Ref. [19] it was shown that the backreaction

of the scalar field on the metric leads to a redefinition of
Newton’s constant G. Also, in a subclass of the theory, the
Vainshtein screening has been considered for slowly
rotating sources. Indeed, the specific case of constant A3

was studied in [24,25] for relativistic stars. It was shown in
this theory that ω satisfies the GR equation outside the star,
meaning that K1 ¼ 4=r exactly, with no subleading cor-
rections. This result remains true for the shift symmetric
theories defined above, and does not rely on the weak-field
approximation, as we discussed in Sec. III.
Here we discuss the equation for ω in the weak-field

approximation inside the matter source. After substituting
the solution for x, given in (48), the metric potentials read

y ¼ G̃

�
M
r3

−
q4A2

3

2½fðq2A3X þ 4A3 þ 2fXXÞ þ q2A3fX þ 2f2X�
·
M00

r

�
;

z ¼ G̃

�
M
r3

þ q2A3ðq4A3X þ 2fX þ 5q2A3 þ 2q2fXXÞ
2½fðq2A3X þ 4A3 þ 2fXXÞ þ q2A3fX þ 2f2X�

·
M0

r2

�
; ð50Þ

where we have defined an effective gravitational constant:

G̃ ¼ G
2f − 4q2fX − 2q4fXX − 5q4A3 − q6A3X

:

The above equations show that the Vainshtein mechanism
in spherical symmetry is broken inside the source [20], but
that GR is recovered in the exterior region where M is
constant.
Substituting the metric potentials in Eq. (15) with the

coefficients (40) and (45), the equation for ω inside the star
and in the weak-field limit reads

ω00 þ 4

r

�
1 −

GM0

4ð2f − 2q2fX − q4A3Þ
�
ω0

¼ −
4GM0Ω

r2ð2f − 2q2fX − q4A3Þ
½1þOðr2zÞ�;

which is the same equation as in GR (up to the subleading
term in the coefficient K2) provided we redefine Newton’s
constant as

G� ¼ G
2f − 2q2fX − q4A3

≠ G̃:

As we can see, in general the two redefined Newton
constants G̃ and G� do not coincide. This means that the
coefficient κ2 is not the same as in GR, and the Vainshtein
screening is broken inside the star [see Eq. (35)]. This is
expected for A3 ≠ 0 since the Vainshtein screening for
static sources is broken inside matter for these theories [20].
However, this remains true even for A3 ¼ 0 when the
Vainshtein screening in the nonrotating case works inside

the star [as can be seen from Eq. (50)]. The two redefi-
nitions of G coincide in theories with fX ¼ A3 ¼ 0, but in
this case Γ1 ¼ C3 ¼ 0, so the analysis of the present section
is not valid.

C. Case 2: C3 =Γ1 = 0 and C2 ≠ 0
inside the Vainshtein radius

In this section we consider a particular case of the
DHOST Ia theories,

fA1X þ A1fX − fA3 ¼ 0; ð51Þ

which implies C3 ¼ Γ1 ¼ 0. In this case (44) is quadratic,
and the general solution is

x2¼−
r2C1þΓ2ðr3AÞ0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½r2C1þΓ2ðr3AÞ0�2−4r4AC2Γ0

p
2r2C2

:

ð52Þ

Assuming Γ0C2 < 0 and neglecting C1 in the limit A ≪ 1,
the solution for x2 in the exterior region R < r ≪ rV reads

x2out ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
−AΓ0

C2

s
: ð53Þ

Substituting this expression in (45), we obtain

K1 ¼
4

r

�
1þ ξ

rS
r
þO

�
rS

ffiffiffi
r

p

r3=2V

��
; ð54Þ

where the coefficient ξ reads
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ξ ¼ α0
2
þ Γ0

4C2

½3ðδ0 − 4σ0Þ − 2γ0�:

The full expression is rather lengthy, but it can be rewritten
in the form

ξ¼ ½fþq2A1�½fðq2A1Xþ2fXÞþA1ð2fþq2fXÞ�ξ0; ð55Þ

where the coefficients ξ0 is in general a time-dependent
function.
Several interesting observations can be made from (55).

First of all, for theories with A1 ¼ A3 ¼ fX ¼ 0 [we also
used the condition (51)], one automatically obtains ξ ¼ 0.
This means that there are only subleading (Vainshtein sup-
pressed) corrections to the coefficient K1, see Eq. (54). For
example, this is the case for the cubicGalileon,whichwewill
discuss in more detail below.
In fact, from (54) one can draw a conclusion for more

general theories, namely those satisfying (51) with fX ≠ 0.
Indeed, assuming that the Vainshtein mechanism in spheri-
cal symmetry is at work, the metric potentials approxi-
mately verify the GR relation in vacuum:

y − z ¼ 0:

This relation is valid whenever the Vainshtein mechanism
in spherical symmetry operates outside the star, up to
subleading corrections. Substituting Eq. (53) into Eqs. (42)
and (43), we obtain

r2ðy − zÞ ¼ −4ξ0fXðf þ q2A1Þ2 ·
rS
r
þO

�
rS

ffiffiffi
r

p

r3=2V

�
: ð56Þ

We see that if fX ≠ 0, one must impose ξ0 ¼ 0 to recover
the Vainshtein screening in the absence of rotation. In
this case, ξ also vanishes, see Eq. (55). On the other
hand, when (51) is satisfied but fX ¼ 0, the Vainshtein
mechanism operates in spherical symmetry, but ξ is not
necessarily zero. We will consider an explicit exam-
ple below.

1. Example 1: Theory with larger corrections to the
frame-dragging function in the exterior region

As we mentioned above, there are theories which allow
for the spherically symmetric Vainshtein screening, but
for which the corrections to the frame-dragging equation
are of the order of the Newtonian potentials (showing that
the screening is less effective for ω than for the metric
potentials). We consider such theories in detail in the
present section. For theories verifying (51), a necessary
condition for the Vainshtein mechanism to work in
spherical symmetry is ξ0 ≠ 0 is fX ¼ 0. This can be seen
from Eq. (56), which shows deviations of the metric
functions from the GR case. If we assume fX ¼ 0,
Eq. (51) implies A3 ¼ A1X. For simplicity, we will set
f ¼ 1=2, although the result below can be extended for
a generic f. In this case, the dimensionless coefficient
ξ reads

ξ ¼ −
ð1þ 2q2A1Þð2q2A1 þ q4A1XÞ½2A1ϕð4þ 6q2A1 − q4A1XÞ þ ð1þ 2q2A1Þð3G3X þ 2q2A1ϕXÞ�

2ð2þ 6q2A1 þ q4A1XÞ2½3A1ϕð2þ 2q2A1 − q4A1XÞ þ 2ð1þ 2q2A1ÞðG3X þ q2A1ϕXÞ�
:

Note that since we consider the caseC2 ≠ 0, eitherG3X ≠ 0
and/or A1ϕ ≠ 0. The metric potentials in these theories read

r2y ¼ ι3
rS
r
þO

�
rS

ffiffiffi
r

p

r3=2V

�
; ð57Þ

r2z ¼ ι3
rS
r
þO

�
rS

ffiffiffi
r

p

r3=2V

�
; ð58Þ

where the coefficient ι3 is given in Appendix A.
After redefining Newton’s constant, the metric poteten-

tials have the GR form up to subleading corrections,
meaning that the Vainshtein mechanism works in spherical
symmetry. Meanwhile ξ ≠ 0, and therefore the corrections
to the frame-dragging function ω are of order rS=r, as
Eq. (54) shows. This implies that the screening for ω is not
as effective as it is for the metric potentials λ and ν. We have
thus demonstrated for a particular theory that the Vainshtein
screening in spherical symmetry is not sufficient to ensure

that the leading corrections to the GR expression for ω are
suppressed by powers of rV .

2. Example 2: Theory with cT = 1 and no decay
of the graviton into dark energy

Most of the DHOST Ia theories as models of dark energy
[45] have been ruled out by the constraint cT ¼ 1 (the
graviton propagates at the speed of light) coming from the
merger of a binary neutron star system [46–48], and
requiring that the graviton does not decay into dark energy
[49]. The surviving theories correspond to the choice

2fA4 ¼ 3f2X; A1 ¼ A2 ¼ A3 ¼ A5 ¼ 0: ð59Þ

The Vainshtein screening in the absence of rotation for
these theories was studied in [29,30]. It was shown that the
screening is broken inside the star, and that it may work in
the exterior region provided the parameters of the theory
are fine-tuned.
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a. Outside the source.
Outside the star, the coefficient K1 is of the form (54),

with

ξ ¼ fX½2fϕðf þ 5q2fXÞ − 3fq2G3X − 2fq2fXϕ�
8ðq2fX − 2fÞ2ðfG3X − 3fXfϕÞ

;

where we used (59). Note that the denominator does not
vanish in the case C2 ≠ 0. It was shown in [29,30] that the
Vainshtein mechanism can work outside the star in this
theory if the parameters verify

fX½2fϕðf þ 5q2fXÞ − 3fq2G3X − 2fq2fXϕ� ¼ 0; ð60Þ

which is exactly the condition for ξ to vanish, as can be seen
from the above expression. This shows that if we fine-tune
the parameters to recover the Newtonian potentials outside
the source, then the screening for ω becomes more
effective, in the sense that corrections to the GR expression
for ω are suppressed by powers of rV [see Eq. (54)].

b. Inside the source.
Let us examine the ðtφÞ equation inside the source,

where ðr3AÞ0 ≠ 0 and we assume rA0 ∼A. We also assume

Γ2 ¼ 24q2f2ð2f − q2fXÞfX ≠ 0;

which implies that the leading term inside the square root of
(52) is the one containing Γ2. One of the branches obtained
with these assumptions is physically unacceptable, as
argued in [29], so we focus on the second branch for which

r2x ≃ −
Γ0

Γ2

r4A
ðr3AÞ0 ∼Oðq2r2Þ:

This expression is only valid when ðr3AÞ0 ≠ 0 and
ðr3AÞ0 ≫ 1. We assume that the Vainshtein mechanism
in spherical symmetry operates outside the source, meaning
that condition (60) is verified. Additionally, one must
rescale Newton’s constant as G̃ ¼ G=ð2f − q2fXÞ. The
frame-dragging equation inside the star reads

ω00 þ4

r

�
1−

q2fX
2f−q2fX

G̃M
r

−
ðf−q2fXÞG̃M0

2ð2f−q2fXÞ
þOðq2r2Þ

�
ω0

¼−
2ð2f−q2fXÞG̃M0Ω

fr2
½1þOðr2zÞ�:

On the left-hand side of this equation there is an extra term
∝ G̃M=r compared to the equation in GR [see Eq. (31)].
Note that this term is nonzero, since we study the case
Γ2 ≠ 0, which implies fX ≠ 0 (see Appendix A). The
screening is broken inside the star, because generically
κ2 ≠ −2 when fX ≠ 0 as can be seen from the equation
above. This behavior is not surprising, since the Vainshtein

mechanism in spherical symmetry is broken inside the
source. Note that the expressions for K1 inside and outside
the star were obtained in different limits [ðr3AÞ0 ≫ 1 in the
former and ðr3AÞ0 ¼ 0 in the latter case], therefore they
cannot be matched at the surface of the star. One would
have to solve the full equation to obtain a continuous
profile, as was done in Ref. [29].

3. Example 3: Cubic Galileon

The time-dependent cubic Galileon was studied in
Ref. [13], and also in Ref. [15], where the appropriate
de Sitter asymptotics were discussed. To get the cubic
Galileon from the general action (3), we set

f ¼ 1

2
; G3 ¼ βX; K ¼ ηX; Ai ¼ 0: ð61Þ

With these choices, the coefficient Γ2 ¼ 0 in Eq. (44), and
the expression for x for r ≪ rV reads

x ¼ �q2
ffiffiffiffi
A
2

r
:

The sign should be chosen when properly examining the
asymptotic behavior for large radii, but it does not affect the
resulting equation for ω [since quadratic terms are dom-
inant in (45) inside the Vainshtein radius] both inside and
outside the star. Then the equation for the frame-dragging
function can be written as follows:

ω00 þ 4

r

�
1 −

GM0

4
þOðq2r2

ffiffiffiffi
A

p
Þ
�
ω0

¼ −
4GM0Ω

r2

�
1þ 2GM

r
þOðq2r2

ffiffiffiffi
A

p
Þ
�
;

where we have assumed A ∼ rA0 and βq2 ∼ 1. By compar-
ing the above equation with Eq. (31) and taking into
account (41), we can see that the corrections for ω to the
GR equation are suppressed by powers of rV inside the
Vainshtein radius both inside and outside the source. Using
the results of Sec. IV, we then conclude that deviations from
the GR expression for ω are also suppressed by powers of
rV in a way analogous to the screening in spherical
symmetry. It should also be noted that nonlinear GR
corrections (which we did not take into account) may be
larger than those due to modified gravity, but they are of
course still smaller than the linear GR terms.

VI. SLOW ROTATION IN THE WEAK-FIELD
APPROXIMATION WITH A STATIC

SCALAR FIELD

In this section, wewill set q ¼ 0, meaning ϕ ¼ ϕðrÞ, and
consider the shift-symmetric sector of the DHOST Ia class
with an additional linear coupling of the scalar field to the
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Ricci scalar of the form αϕR. This term breaks the shift
symmetry, i.e., ϕ → ϕþ const is no longer a symmetry of
the action, and allows one to escape the no hair-theorem of
Ref. [50]. The coupling to the Ricci scalar provides a
nontrivial scalar field configuration with rich phenomenol-
ogy, including k-mouflage gravity [12]—an analog of the
Vainshtein mechanism. In this setup, the scalar equation
can be written in the form

∇μJμ ¼ −αR;

where Jμ ¼ − δL
δð∂μϕÞ is the conserved current associated

with the shift symmetry of the action when α ¼ 0. An
interesting property of the above equation is that it can be
integrated in the weak-field regime:

1

r2
d
dr

½r2Jr þ αð2rλ − r2ν0Þ� ¼ 0:

Even though the action is not shift-symmetric if α ≠ 0,
there is an effective conserved current in the weak-field
limit in this particular case of a linear coupling to the Ricci
scalar. In the following, we will set the integration constant
to 0, in order for the norm of the current JμJμ ¼ eλðJrÞ2 to
be regular at the center of the star. In this case, the scalar
field equation reads

rJr þ αð2λ − rν0Þ ¼ 0: ð62Þ

As it is clear from the above equation, the radial component
of the current cannot be zero, in contrast to the shift-
symmetric time-dependent case, where we have Jr ¼ 0.
The presence of the symmetry-breaking term renders Jr

nonzero. This, and the fact that the ratio ϕ02=q2 is no longer
a small parameter in the equations, cf. Eq. (38), changes the
results in the weak-field approximation. This means that
one cannot simply set q ¼ 0 in the above study, Sec. V, and
we have to proceed starting from square one.

A. K-essence

Let us first consider a k-essence theory, i.e., we take
f ¼ 1=2, Ai ¼ 0 and K ¼ μXp, where p ∈ Nnf0; 1g and μ
is constant. Neglecting the backreaction of the energy-
momentum of the scalar field on the metric, which
corresponds to neglecting nonlinear scalar contributions
in Eqs. (10) and (11), one can integrate Eq. (10) to obtain
the metric potentials:

λ ¼ 2GMðrÞ
r

þ 2αrϕ0;

ν0 ¼ 2GMðrÞ
r2

− 2αϕ0: ð63Þ

After combining these expressions with Eq. (63), we obtain
the following equation for the scalar field:

αGMðrÞ
r2

þ 3α2ϕ0 − p

�
−
1

2

�
p
μϕ02p−1 ¼ 0: ð64Þ

Equation (64) corresponds to the weak-field limit of the
scalar equation in the Einstein frame, obtained by rewriting
the action in terms of the conformal metric ḡμν ¼ e2αϕgμν. In
the weak-field limit, the conformal transformation corre-
sponds to the change λ → λ̄þ 2αrϕ0 and ν → ν̄ − 2αϕ. In
this frame, fν̄; λ̄g satisfy Eqs. (63) with ϕ ¼ 0. The
conformal transformation introduces a coupling of ϕ to
matter, and a kinetic term for the scalar field, which explains
the appearance of the first two terms in Eq. (64).

1. Linear regime and Vainshtein radius

Outside the star, we have 2GMðrÞ ¼ rS, and in the limit
r → ∞ we can neglect the nonlinear term in (64). Then the
solution for the scalar field can easily be found:

ϕ0 ¼ −
rS

6αr2
: ð65Þ

Note that the limit α → 0 is not well defined in (65). This is
a consequence of the absence of a standard kinetic term in
the considered theory. Indeed, due to the mixing term αϕR
the scalar degree of freedom has a kinetic term; however, it
disappears in the limit α → 0, thus making the theory
strongly coupled in this limit. Said differently, the nonlinear
term is dominant for small α, therefore the linear regime is
nowhere valid.
Using (65) in the first two equations of (63), one can see

that in the linear regime, the GR condition λþ ν ¼ 0 is not
satisfied even approximately. Instead, the solution of (63)
reads

λ ¼ 2rS
3r

; ν ¼ −
4rS
3r

; ð66Þ

meaning that deviations of the Newtonian potentials from
the GR solutions are of Oð1Þ. Upon substituting (65) and
(66) into Eq. (39) for ω, we obtain

ω00 þ 4

r

�
1 −

rS
6r

�
ω0 ¼ 0: ð67Þ

This expression is to be compared with (31) in vacuum,
for which M0ðrÞ ¼ 0. One can see that the term propor-
tional to rS has a coefficient different from the GR
case. Thus, according to the results of Sec. IV, the leading
term in the solution for ω is the same as in GR, unlike the
metric potentials. However, the subleading corrections in
the weak-field approximation are of order rS=r, meaning
that the screening is less effective than in the region
r ≪ rV , where the leading corrections are suppressed by
powers of rV .
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2. Inside the Vainshtein radius

The linear regime breaks down at the Vainshtein radius
r ∼ rV where nonlinear terms become important. Let us
determine the Vainshtein radius by taking the solution for
ϕ0 at infinity and evaluating at which radius the nonlinear
term becomes comparable to the linear one [12]. We find

r2V ∼
rS
6

� jμjp
3 · 2pα2p

� 1
2p−2

: ð68Þ

For r ≪ rV, we can neglect the linear term in Eq. (64), and
in this range of radii the scalar field reads

ϕ0 ¼ sgn½ð−1Þpαμ�
�
2pjαjGMðrÞ

pjμjr2
� 1

2p−1
: ð69Þ

Note that the limit α → 0 is well defined, and we have
ϕ0 → 0, in contrast to the solution in the linear regime
Eq. (65). The limit is consistent with the solution to the
scalar equation (64) for α ¼ 0. In the limit α → 0 the
Vainshtein radius (68) is infinite; therefore, the Vainshtein
mechanism operates for all distances and the linear regime
is invalid.
In the region r ≪ rV , one can compare the strength of the

fifth force with the Newtonian force fλ0GR; ν0GRg ∼ 2GM=r2,
obtained by setting ϕ ¼ 0 in (63):

				 ϕ0

fλ0GR; ν0GRg
				 ∼ 1

6α

�
rSr2

2GMðrÞr2V

�2p−2
2p−1

:

Outside the source, in the region R ≤ r ≪ rV , we have
2GM ¼ rS, and it is clear that the fifth force is screened.
Inside the star, assuming it has a constant density ρ0, we have
2GMðrÞ ¼ rSr3=R3. In this case, it is clear from the above
expression that the fifth force becomes dominant for radii
smaller than r� ¼ R3=r2V ≪ R. Meanwhile, in the region
r� ≪ r ≤ R, the fifth force is screened. To examine the
effects of rotation, we substitute Eq. (64) into the ðtφÞmetric
equation.Assuming for instance that ð−1Þpαμ > 0 (the other
case is analogous), the coefficientsK1 (outside and inside the
star, respectively) and K2 read

Kout
1 ¼ 4

r

�
1þO

�
rS
rV

�
r
rV

�2p−3
2p−1

��
;

Kin
1 ¼ 4

r

�
1þ rSr

8r2V

�
3 − 4p

3ð1 − 2pÞ
�
r
r�

� 1
2p−1

−
3r
r�

��
;

K2 ¼ −2
�
1þ rSr2

R3

�
1þO

�
r�
r

�2p−2
2p−1

��
:

This shows that the Vainshtein mechanism operates in the
region r� ≪ r ≪ rV . Furthermore, corrections to the GR
expression for ω are suppressed by powers of rV in this
region. On the other hand, the subleading correction to ω

differs fromGR in the region r ≤ r�, due to a different power
law as compared to theGRcase.Hence, the screening forω is
less effective in this region, meaning that corrections to the
GR expression are not rV suppressed. One can check that the
size of the value of r� is very small in physically relevant
situations, i.e., r� ≪ R.

B. Cubic Galileon

We now discuss the cubic Galileon theory, defined by
(61). The static Vainshtein screening in this theory was
studied in [15], though the authors considered both a time
dependence of the scalar field and a coupling of the scalar
to the matter fields. The slow rotation in this theory has
already been discussed in [18], where they found that the
correction to the ðtφÞ equation coming from the Galileon
term is highly suppressed. The scalar field equation (62) is
quadratic in ϕ0, and the solution reads

ϕ0 ¼ 2αrSr
k2r3V

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2GMr3V

rSr3

s �
; ð70Þ

where we chose the solution that does not diverge at r → ∞,
andwedefined k2 ¼ ηþ 6α2 and r3V ¼ 8αβrS=k22 (assuming
αβ > 0). The solution for the scalar field in the linear regime,
ϕ0 ∼ αrS=ðk2r2Þ, is similar to its counterpart in the case of k-
essence (65). The difference is that in the case of the cubic
Galileon we included a canonical kinetic term; therefore, the
limitα → 0 iswell defined in this regime aswell. In the linear
regime, the equation for the frame-dragging function is
modified in a similar way to the k-essence case (67), and
the conclusions of the previous section about a less effective
screening for ω hold. Inside the Vainshtein radius, i.e., for
r ≪ rV , we expand the solution (70) and obtain

ϕ0 ¼ 2αrS
k2r

3=2
V

ffiffiffiffiffiffiffiffiffiffiffi
2GM
rSr

s
:

In order to study the equation for the frame-dragging function
inside the star, we assume the matter source has a constant
density. It is easy to check from the above expression that the
fifth force is screened everywhere in the region r ≪ rV ,
unlike in the k-essence case, where the fifth force becomes
dominant for small radii inside the source (see Sec .VI A).
Substituting the expression for ϕ0 into the ðtφÞ equation, we
obtain the following expressions for the coefficients K1

(outside and inside the source) and K2:

Kout
1 ¼ 4

r

�
1þO

�
rS

ffiffiffi
r

p

r3=2V

��
;

Kin
1 ¼ 4

r

�
1 −

3rSr2

8R3

�
1þO

�
R3=2

r3=2V

���
;

K2 ¼ −2
�
1þ rSr2

R3

�
1þO

�
R3=2

r3=2V

���
:
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For a star of constant density, ρ0 ¼ 3rS=R3, the leading
corrections to theGRequation (31) are suppressed bypowers
of rV . Thismeans that the corrections to theGRsolution forω
are also suppressed by powers of rV , in a way analogous to
the screening in spherical symmetry.

C. Quadratic sector of Horndeski theory

Wenow consider the quadratic sector ofHorndeski theory,
whereA2 ¼ −A1 ¼ fX, andK ¼ G3 ¼ A3 ¼ A4 ¼ A5 ¼ 0.
We will treat the case fXX ¼ 0 separately.

1. Case fXX ≠ 0

For now let us assume fXX ≠ 0. Neglecting nonlinear
terms in the ðttÞ and ðrrÞ equations, the expressions for
fλ; νg are the same as Eq. (63). After substituting these
expressions for the metric potentials, the scalar equation
reads

αGMðrÞ þ 3α2r2ϕ0 þ ϕ03fXX ¼ 0; ð71Þ

where fXX is evaluated at X ¼ − 1
2
ϕ02. In the nonlinear

regime outside the source, i.e., for R ≤ r ≪ rV, the linear
term in (71) can be neglected. Then the scalar field is
constant and verifies the equation,

2ϕ03fXX ¼ −αrS;

unless fðXÞ ∝ ffiffiffiffi
X

p
, in which case the nonlinear term

disappears in the scalar equation. For these particular
theories, solving Eq. (71) leads to ϕ0 ∼ 1=r2 everywhere
outside the star. A similar case was studied in an application
to black holes in [51]. In the general case, when fðXÞ is not
proportional

ffiffiffiffi
X

p
, so that fXX ≠ 0, the derivative of the

scalar field ϕ0 must be constant. This allows us to simplify
the equation for ω, since ϕ00 ¼ 0. Let us examine what
happens for polynomial functions of the form

fðXÞ ¼ 1

2
þ κXp;

with p > 1 so that fXX ≠ 0, and κ is a constant coefficient.
The spherically symmetric Vainshtein regime in such
theories was discussed in [17]. For large radii, one can
neglect the nonlinear term in Eq. (71), and the solution for
ϕ0 is the same as those for k-essence and the cubic Galileon
discussed above. One can then define a Vainshtein radius
rV by equating the linear and nonlinear terms in Eq. (71),
and show that in the region r ≪ rV the fifth force reads

ϕ0 ∼
rS

6αr2V

�
2GMðrÞ

rS

� 1
2p−1

: ð72Þ

The fifth force is constant outside the source, and one can
easily check that it is screened for r ≪ rV. Inside the source

the situation is similar to the k-essence theories discussed
above. Indeed, for a star of constant density the fifth force
becomes larger than the Newtonian force near the center of
the star when p > 2 (for p ¼ 2, jϕ0j grows linearly and the
Vainshtein screening is effective for all radii r ≪ rV). For
p > 2, the fifth force becomes dominant for radii smaller
than some r�, which is much smaller than R. A simple
estimate, assuming that rV is of the order of the Neptune
orbit, gives r� ≤ 10 m (the case of k-essence is recovered
for large p), while for more realistic Vainshtein radii, the
value of r� is much smaller. As in the k-essence theories,
this small radius is not physically relevant.
Substituting (72) into the ðtφÞ equation, we obtain the

following expressions for the coefficients K1 (outside and
inside the source) and K2:

Kout
1 ¼ 4

r

�
1þO

�
rSr
r2V

��
;

Kin
1 ¼ 4

r

�
1 −

3rSr2

8R3

�
1þ R2

r2V
·O

�
R
r

�2p−4
2p−1

��
;

K2 ¼ −2
�
1þ rSr2

R3

�
1þ R2

r2V
·O

�
R
r

�2p−4
2p−1

��
: ð73Þ

Using the results of Sec. IV, one can see that for p ¼ 2 the
situation is similar to the cubic Galileon case. The correc-
tions to the GR expression for ω are suppressed by powers
of rV , and the screening operates in a way analogous to the
spherically symmetric mechanism. For p > 2, the situation
is similar to the k-essence case, and the subleading terms in
the solution for ω are not the same as in GR in the region
r ≤ r�. However, as we discussed above, this region is not
physically relevant.

2. Case fXX = 0

Let us now look at the case where the Lagrangian
contains a derivative coupling to the Einstein tensor
∼ϕμϕνGμν, which corresponds to fðXÞ ¼ 1=2þ κX. The
spherically symmetric Vainshtein mechanism in spherical
symmetry in this theory was discussed in [16]. The
particularity of this Lagrangian in application to the
Vainshtein mechanism is that the leading nonlinear term
in the scalar equation (71) vanishes. Therefore we have to
keep nonlinear terms in the metric equations, as well as the
subleading term for the scalar current, since the leading
term vanishes. This modifies the expression for λ [com-
pared to (63)], and the metric potentials read

λ ¼ 2GMðrÞ
r

þ 2αrϕ0 þ 2κϕ02;

ν0 ¼ 2GMðrÞ
r2

− 2αϕ0: ð74Þ

Substituting these expressions into the scalar equation, we
obtain
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αGMðrÞ þ 3α2r2ϕ0
�
1þ 2

κϕ0

αr
þ 2

3

�
κϕ0

αr

�
2
�
¼ 0:

Defining the Vainshtein radius as κϕ0ðrVÞ ∼ αrV , which
implies r3V ∼ κrS=α2, both nonlinear terms are of the same
order around r ∼ rV . In the nonlinear regime r ≪ rV , the
expressions (74) for the metric potentials imply that
κrϕ02 ≪ GM in order for the static Vainshtein screening
to work. In this case, one can show that the cubic term
dominates in the scalar equation [otherwise we find
κrϕ02 ∼ GM, which modifies the GR expression for λ in
Eq. (74)], and the fifth force reads

ϕ0 ≃ −
rS
αr2V

�
GMðrÞ
2rS

�
1=3

:

The above expression is similar to the one obtained for
p ¼ 2 in the previous section. This means that the fifth
force is screened for all radii r ≪ rV , inside and outside the
matter source. After substituting this expression in the ðtφÞ
metric equation, we obtain the following coefficients for the
frame-dragging equation:

Kout
1 ¼ 4

r

�
1þO

�
rSr
r2V

��
;

Kin
1 ¼ 4

r

�
1 −

3rSr2

8R3

�
1þO

�
R2

r2V

�
þO

�
rSr2

R2rV

���
;

K2 ¼ −2
�
1þ rSr2

R3

�
1þO

�
R
rV

���
:

The subleading corrections depend on the value of r inside
the star. In any case, however, the corrections to the GR
expression for ω are screened by a power of rV , and the
conclusions are the same as for p ¼ 2 in the previous
section. It is worth stressing again that in addition to these
corrections due to modifications of gravity, there exist
nonlinear GR terms. Both types of contributions can be
seen as higher order corrections to linearized GR. We do
not consider them here, though it is possible for these
corrections to be larger than those coming from modified
gravity.

VII. CONCLUSION

We have studied the Vainshtein mechanism for slowly
rotating stars in scalar tensor theories belonging to the
DHOST Ia class. While the Vainshtein screening is usually
studied for spherically symmetric objects, we have shown
that in general slow rotation does not spoil the Vainshtein
screening. In the weak-field approximation the form of the
leading term in the solution for the frame-dragging function
coincides with the GR expression outside the star (up to an
overall constant that can be reabsorbed in the definition of

the angular momentum of the star). The angular momen-
tum, being a constant of integration in the solution for the
frame-dragging function, can be found if the mass distri-
bution of the star is known. Inside the star, the Vainshtein
screening can be broken for some theories, when the
coefficient K2 in the equation for the frame-dragging
function (15) receives leading order corrections. We also
found that in most situations, when the Vainshtein screen-
ing operates in spherical symmetry, the leading corrections
to the GR expression for ω in the weak-field approximation
are also suppressed by powers of the Vainshtein radius.
An important qualification is in order. Although the

corrections to ω may receive sizable modifications (inside
the star), nevertheless the metric functions ν and λ are not
modified. This means that if the theory exhibits the
Vainshtein mechanism in spherical symmetry, slow rotation
does not change the Vainshtein suppression of non-GR
corrections to the “static” part of the metric ν and λ,
independently of the behavior of the frame-dragging
function ω.
In our approach we applied the Hartle-Thorne formalism

for slowly rotating stars to the scalar-tensor theories of
the DHOST Ia class, Eqs. (3) and (4). We considered both
a time-dependent and a time-independent scalar field,
Eq. (6). For rotating sources, the metric (5) contains the
frame-dragging function ω, which takes slow rotation into
account. Our main purpose in the paper was to study the
equation for ω and compare the results with the standard
GR case. We found the general equation for the frame-
dragging function in DHOST Ia theories, Eq. (15), with
coefficients of the equation given in (16) and (17).
For slowly rotating relativistic sources in a subclass of

Horndeski theory (24), we calculated exact expressions for
the coefficients K1 and K2. We have shown that in vacuum
the GR equation for the frame-dragging function is fully
recovered, see Sec. III. The latter result also applies to the
quadratic beyond Horndeski theories, namely, for the
theories described by the action (25), the vacuum equation
for the frame-dragging function is the same as in GR. This
result can be extended general DHOST Ia theories, with the
additional assumption that the kinetic term for the solution
has the constant value X ¼ q2=2.
In the rest of the paper, Secs. IV, V, and VI, we assumed

that the weak-field approximation (28) is valid. In Sec. IV,
we showed that outside the star the solution for the frame-
dragging function ω is the same as in GR at leading order.
Inside the source, the screening can be broken, in this case
κ2 ≠ −2, see Eq. (32). We also computed corrections to
solution for ω assuming that the coefficients of the frame-
dragging equation acquire small modifications. In Sec. V
we studied the equation for the frame-dragging function for
various subclasses of the DHOST Ia class. We found the
expressions for the coefficients K1 and K2 of the equation
for ω in this approximation, (39) and (40). Outside the
Vainshtein radius, the coefficient K1 receives a correction
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suppressed by rS=r (and by q2r2 in the time-dependent
case), Eq. (46). To study the region inside the Vainshtein
radius, we considered different classes of theories case by
case. In most cases, when the Vainshtein screening works in
spherical symmetry, the corrections to the GR expression
for ω are screened by powers of rV , in a way analogous to
what happens in the nonrotating case. However, we have
found a particular theory for which the suppression is not as
effective, in this case the leading correction is suppressed
by rS=r instead. We also studied a different class of theories
for which the static metric potentials in the nonrotating case
are exactly the same as in GR (possibly up to a redefinition
of Newton’s constant), while the screening for ω is broken
inside the star.
In the case of a static scalar field, see Sec. VI, the results

are quite similar to the time-dependent case. In all the
examples we considered, the Vainshtein mechanism works
for the frame-dragging functionω. Furthermore, the screen-
ing is more effective in regimes where the Vainshtein
mechanism operates in spherical symmetry, meaning that
the corrections to the GR expression are suppressed by
powers of rV . Meanwhile, outside the Vainshtein radius, the
coefficients of the frame-dragging equation receive
nonscreened corrections, see e.g., Eq. (67) for k-essence.
The screening still works for the frame-dragging function
ω, but it is less effective in this region.
Although the results of the paper show that the devia-

tions from GR are always small (outside the source), it is
interesting to see whether local gravity tests can provide
additional constraints on scalar-tensor theories coming
from the subleading modifications to the frame-dragging
function. Probably the simplest way is to check constraints
on PPN parameters (although it should be noted that
precisely speaking the PPN analysis does not apply).
The frame-dragging function ω can be written as (see
e.g., Sec. 4.4 of [52])

ωPPN ¼
�
1þ γ þ 1

4
α1

�
J
r3

:

The deviations from GR are characterized by the combi-
nation γ − 1þ α1=4. This is to be compared to our results
on the frame-dragging function. Generically the deviation
of ω from its GR value is of order rS=r for non-Vainshtein
suppression, and much smaller for the Vainshtein sup-
pressed cases. Therefore the combination of PPN param-
eters γ − 1þ α1=4 is not larger than OðrS=rÞ in our case,
which gives a deviation of order 10−8 at Earth’s orbit. This

value is well within the experimental constraints on both γ
and α1; therefore, we do not get any additional constraints
on the parameters of the scalar-tensor theories from this
estimation. However, it would be worthwhile to look for a
way to constrain particular classes of scalar-tensor theories
by present or future observations using the results of this
paper.
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discussions. The work was supported by the CNRS/RFBR
Cooperation program for 2018-2020 n. 1985 “Modified
gravity and black holes: Consistent models and experi-
mental signatures.”

APPENDIX A: LIST OF COEFFICIENTS

We list here the coefficients of Eqs. (42), (43), (44), and
(45). Each time a function is written, it is evaluated on the
time-dependent background. For instance,

f ≡ f

�
qt;

q2

2

�
:

The time dependence of these coefficients comes from the
ϕ dependence of the functions. We will implement the
constraint A2 ¼ −A1, but in order to keep expressions light,
we will not substitute the expression for A4 in DHOST Ia
theories. One must keep in mind that the following
constraint holds:

A4 ¼
1

8ðfþ q2A1Þ2
½12ff2X þ 16q2A3

1 þ ð12fþ 32q2fXÞA2
1

þ ð24ffX þ 8q4A3fX þ 16q2f2X − 12q2fA3ÞA1

þ ð4q2fX − 8f − q4A3ÞA3f�:

The terms involving A5 were negligible in the field
equations when assuming dimensionless quantities to be
of Oð1Þ, so it does not appear in the following.

1. Coefficients of the metric equations

With the definition

C ¼ fð2f þ 2q2A1 − q4A4Þ þ 2q2fXðq2fX − fÞ;

the coefficients for Eqs. (42) and (43) read

Cα1 ¼ q2f;

Cα2 ¼ q2ðf − q2fXÞ;

2Cβ1 ¼ −2fϕðf − 2q2fXÞ − q2½fGX þ q2fA3ϕ þ ð6f − 4q2fXÞA1ϕ�;
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2Cβ2 ¼ q2½ðq2fX − fÞGX − 2ðf − 2q2A1 − 3q2fX þ q4A4ÞA1ϕ þ ðq2fX − fÞq2A3ϕ� þ 2fϕðf þ 2q2A1 þ q2fX − q4A4Þ;

2Cγ1 ¼ 2fðA1 − q2A1XÞ þ q2fð3A3 þ 2A4Þ þ 2fXðf − 2q2fX − 3q2A1Þ;

2Cγ2 ¼ A1ð3q4A4 − 4fÞ þ q2ð3fA3 þ 2fA4 − 6A2
1Þ − fXð2f þ 6q2A1 þ 3q4A3 þ 2q2fXÞ þ 2q2A1Xðq2fX − fÞ;

2Cδ1 ¼ 2ðA1 þ fXÞðf − 2q2fXÞ þ q2fðA3 þ 2A4Þ;

2Cδ2 ¼ q2fðA3 þ 2A4Þ − 2A1ðf þ 2q2A1 − q4A4Þ − fXð2f þ 2q2fX þ 6q2A1 þ q4A3Þ;

6Cη1 ¼ 2fK þ q2½fðKX − 4GϕÞ − 3fXðK − q2GϕÞ�;

12Cη2 ¼ Kð3q4A4 − 6q2A1 − 2fÞ þ q2½2fKX − 2fXð2K þ q2KX − 4q2GϕÞ þGϕð6q2A1 − 2f − 3q4A4Þ�:

2. Coefficients of the scalar equation

We now list the coefficients of the scalar equation (44). We do not write C1 or η3 because the expressions are
cumbersome, and we always neglect those terms in the nonlinear regime where the Vainshtein mechanism is operational.
The other coefficients read

C2 ¼ −6ff þ q2A1gfA3
1½36q4fϕ − 24q6fXϕ�

− 4A2
1½3q6fϕðA3 − 2A1XÞ þ fXðq6G3X þ 6q6A1ϕ þ 4q4fϕ þ 4q8A3ϕ − 4q8A1XϕÞ

þ q8fXϕð4A1X − 3A3Þ − fð6q4G3X þ 9q4A1ϕ þ 12q6A3ϕ þ 6q2fϕ − 6q6A1Xϕ − 10q4fXϕÞ�
þ q2A1½4q4A3ðq2fϕA1X þ 7q2fXA1ϕ þ 5fXfϕÞ − 3q6fϕA2

3 þ 4q2fXðfX½6q2A1ϕ þ 5fϕ� − 2A1X½4q4A1ϕ þ 3q2fϕ�Þ
þ 8f2ð5G3X þ 12A1ϕ þ 10q2A3ϕ − 5q2A1Xϕ − 2fXϕÞ
− 4A3fð2q4G3X þ 15q4A1ϕ þ 2q6A3ϕ þ 10q2fϕ þ q6A1Xϕ − 5q4fXϕÞ
þ 4fA1Xð3q4G3X þ 12q4A1ϕ þ 4q6A3ϕ þ 8q2fϕ − 6q4fXϕÞ
− 4ffXð3q2G3X þ 28q2A1ϕ þ 8q4A3ϕ þ 18fϕ − 6q4A1XϕÞ�
þ f½A2

3ð5q8A1ϕ þ 2q6fϕÞ − 4A3ðq6A1X½2q2A1ϕ þ fϕ� − 2q4fX½5q2A1ϕ þ 4fϕ� þ f½2q4G3X þ 16q4A1ϕ þ 2q6A3ϕ

þ 8q2fϕ þ q6A1Xϕ − 2q4fXϕ�Þ þ 4q2fXðfX½7q2A1ϕ þ 6fϕ� − 2A1X½6q4A1ϕ þ 5q2fϕ�Þ
− 8ffXð6fϕ þ q2½G3X þ 10A1ϕ þ q2ð2A3ϕ − A1Xϕ�Þ þ 16f2ðG3X þ 3A1ϕ þ q2½2A3ϕ − A1Xϕ�Þ
þ 4q2fA1Xð3q2G3X þ 16q2A1ϕ þ 4q4A3ϕ þ 6fϕ − 2q2fXϕÞ�g;

C3 ¼ 24ðf þ q2A1Þ2ðfA1X þ A1fX − fA3Þð2q2fX þ 3q4A3 − 4f − 6q2A1 − 4q4A1XÞ;

Γ0 ¼ −24q2ff þ q2A1gff½q2ð2fX þ q2A3Þð2q2A1ϕ þ fϕÞ − fð2fϕ þ q2ðG3X þ 4A1ϕ þ 2q2A3ϕ − 2fXϕÞÞ�
þ A1½2q4fXϕð3f þ 2q2A1Þ − q2fϕð4f þ 6q2A1 þ q4A3 þ 2q2fXÞ − q4fG3X − 2q6fA3ϕ�g;

Γ1 ¼ 96q4ðf þ q2A1Þ2ðfA1X þ A1fX − fA3Þ;

Γ2 ¼ 6q2½2fA1 þ q2ð4A2
1 − fA3Þ þ 2fXðf þ 2q2A1Þ�½fð4f þ 6q2A1 þ q4A3Þ − 2q2fXðf þ 2q2A1Þ�:

3. Coefficients of the ðtφÞ equation
We now list the coefficients of Eq. (45), apart from β0, κ0, since we neglect these terms inside the Vainshtein radius.

We define

D ¼ fð4f þ 6q2A1 þ q4A3Þ − 2q2fXðf þ 2q2A1Þ:
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The remaining coefficients read

D2α0 ¼ −2q4ðf þ q2A1Þð2fA1 þ q2fA1X þ fX½2f þ q2A1�Þ;

D2ζ0 ¼ −2q2ðf þ q2A1Þ2ðf − q2fXÞ;

4D2γ0 ¼ ff þ q2A1gff½4q2A1Xð2f þ 4q2A1 þ 2q4A1X − 3q4A3Þ þ 3q6A2
3 − 12q2ðA2

1 þ fA3Þ − 8fA1 − 24q4A1A3�
þ 8fX½3q4A2

1 þ q6A1A1X − f2� þ 4q2f2X½f þ 2q2A1�g;

2D2δ0 ¼ ðf þ q2A1Þð2A1 þ q2A3 þ 2fXÞðf½4f þ 6q2A1 þ 3q4A3 − 2q4A1X� − 2q2fX½f þ 3q2A1�Þ;

4Dσ0 ¼ ðf þ q2A1Þð2A1 þ q2A3 þ 2fXÞ:

4. Other coefficients

We define

B ¼ 16ðf þ q2A1ÞðA1fX þ fA1X − fA3Þ½4f þ 2q2ð3A1 − fXÞ þ q4ð4A1X − 3A3Þ�:
Then, the coefficients of Eq. (49) read

Bι0 ¼ −4q2ðf þ 2q2A1Þ½A2
1 − 2fA3 þ fXð4A1 þ fXÞ� − q6A3ð4A2

1 þ 3fA3Þ − 8fq6A2
1X

− 4q2A1X½2q4A1fX þ fð2f þ 4q2A1 − 3q4A3Þ�;

Bι1 ¼ q2ð2A1 þ 2fX þ q2A3Þ½2fA1 þ 2fXðf þ 3q2A1Þ þ q2ð4A2
1 − 3fA3 þ 2fA1XÞ�;

2Bι2 ¼ q2ð2A1 þ 2fX þ q2A3Þ½2fA1 þ 2fXðf þ 2q2A1Þ þ q2ð4A2
1 − fA3Þ�:

The coefficient of Eqs. (57) and (58) reads

ι3 ¼
4A1ϕ½6þ 4q2A1ð7þ 10q2A1 þ 6q4A2

1Þ − q4A1Xð2þ 10q2A1 þ 4q4A2
1 þ q4A1XÞ�

2ð2þ 6q2A1 þ q4A1XÞ2½3A1ϕð2þ 2q2A1 − q4A1XÞ þ 2ð1þ 2q2A1ÞðG3X þ q2A1ϕXÞ�

þ ð1þ 2q2A1Þ½G3Xð8þ 30q2A1 þ 24q4A2
1 þ q4A1XÞ þ 2q2A1ϕXð4þ 14q2A1 þ 8q4A2

1 þ q4A1XÞ�
2ð2þ 6q2A1 þ q4A1XÞ2½3A1ϕð2þ 2q2A1 − q4A1XÞ þ 2ð1þ 2q2A1ÞðG3X þ q2A1ϕXÞ�

:

APPENDIX B: RELATION BETWEEN SCHWARZSCHILD AND NEWTONIAN POTENTIALS

We briefly remind the reader of the way to switch between the functions fλ; νg used throughout this work to the
Newtonian potentials fΦ;Ψg often encountered in the literature. The two line elements we want to relate in the weak-field
limit are (we set ω ≃ 0)

ds2 ¼ −ð1þ νðrÞÞdt2 þ ð1þ λðrÞÞdr2 þ r2dΩ2;

ds2 ¼ −ð1þ 2Φðr̄Þdt2 þ ð1 − 2Ψðr̄Þ½dr̄2 þ r̄2dΩ2�:
Then, in the Newtonian limit fΨ;Φg ≪ 1, we obtain

r ≃ r̄ð1 −ΨÞ ≃ r̄;

ν ¼ 2Φ;

λ ¼ 2rΨ0:
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straints on Shift-Symmetric Scalar-Tensor Theories with a
Vainshtein Mechanism from Bounds on the Time Variation
of G, Phys. Rev. Lett. 107, 251102 (2011).

[44] E. Babichev and A. Lehbel, The sound of DHOST,
J. Cosmol. Astropart. Phys. 12 (2018) 027.

[45] D. Langlois, M. Mancarella, K. Noui, and F. Vernizzi,
Effective description of higher-order scalar-tensor theories,
J. Cosmol. Astropart. Phys. 05 (2017) 033.

[46] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GW170817: Observation of Gravitational Waves from a
Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101
(2017).

[47] P. Creminelli and F. Vernizzi, Dark Energy after GW170817
and GRB170817A, Phys. Rev. Lett. 119, 251302 (2017).

[48] J. M. Ezquiaga and M. Zumalacrregui, Dark Energy after
GW170817: Dead Ends and the Road Ahead, Phys. Rev.
Lett. 119, 251304 (2017).

[49] P. Creminelli, M. Lewandowski, G. Tambalo, and F.
Vernizzi, Gravitational wave decay into dark energy, J. Cos-
mol. Astropart. Phys. 12 (2018) 025.

[50] A. Lehbel, E. Babichev, and C. Charmousis, A no-hair
theorem for stars in Horndeski theories, J. Cosmol. Astro-
part. Phys. 07 (2017) 037.

[51] E. Babichev, C. Charmousis, and A. Lehbel, Asymptotically
flat black holes in Horndeski theory and beyond, J. Cosmol.
Astropart. Phys. 04 (2017) 027.

[52] C. M.Will, The confrontation between general relativity and
experiment, Living Rev. Relativity 17, 4 (2014).

VAINSHTEIN SCREENING FOR SLOWLY ROTATING STARS PHYS. REV. D 102, 044046 (2020)

044046-21

https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1103/PhysRevLett.114.211101
https://doi.org/10.1103/PhysRevLett.107.251102
https://doi.org/10.1088/1475-7516/2018/12/027
https://doi.org/10.1088/1475-7516/2017/05/033
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.251302
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1088/1475-7516/2018/12/025
https://doi.org/10.1088/1475-7516/2018/12/025
https://doi.org/10.1088/1475-7516/2017/07/037
https://doi.org/10.1088/1475-7516/2017/07/037
https://doi.org/10.1088/1475-7516/2017/04/027
https://doi.org/10.1088/1475-7516/2017/04/027
https://doi.org/10.12942/lrr-2014-4

