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Abstract

The H.E.S.S. Galactic Plane Survey (HGPS, H.E.S.S. Collaboration, 2018f) represents one of the most sensitive surveys of the
Galactic Plane at very high energies (VHE, 0.1 < E < 100 TeV). However the source detection algorithm of the HGPS pipeline
is not well-suited for complex regions, including sources with shell-like morphologies. As an alternative and complementary
approach, we have investigated blind search methods for VHE γ-ray source detection based on well-known and widely used image
processing and pattern recognition techniques.

Our goal is to build in a short amount of computational time a list of potentially valuable objects without prior case-specific
morphological assumptions. We aim to classify and rank the detected objects in order to identify only the most promising source
candidates for further multi-wavelength-association searches, dedicated analyses, or deeper observations.

In the approach proposed, we extract sparse and pertinent structural information from the significance maps using a edge detection
operator. We then apply a Hough circle transform and detect a collection of objects as local maxima in the Hough space. On the
basis of morphological parameters we can characterize different object classes. Classification can be used to identify valuable
source candidates sharing the characteristics of well-known sources.

We show that using these pattern recognition techniques we can detect objects with partial circular symmetry irrespective of a
morphological template (e.g. point-like, Gaussian-like, or shell-like). All the shell-type supernova remnants (SNRs) catalogued in
the HGPS (from dedicated analyses) are associated with at least one detected object. Catalogue cross-matches indicate that several
detected objects not catalogued in the HGPS are spatially coincident with multi-wavelength counterparts.

This paper can be seen as a prospective study for the search of VHE γ-ray sources based on Hough transform and morphological
classification. The algorithm have been tested on bootstrap simulations and applied to significance maps of the H.E.S.S. Galactic
survey. Further investigation on the most promising candidates will be conducted in dedicated follow-up analyses.

Keywords: Gamma rays: Sources, TeV: supernova remnants, Methods: data analysis

1. Introduction

The H.E.S.S. Galactic Plane Survey (HGPS, H.E.S.S. Col-
laboration, 2018f) represents the one of the most sensitive sur-
veys of the Galactic plane (-110◦ < l < 65◦, |b| ≤ 3◦) in the
very high energy (VHE) γ-ray domain (0.1–100 TeV). The5

HGPS source catalogue includes 64 sources detected with the
HGPS analysis pipeline and 14 additional sources analysed in-
dependently. The latter have been excluded from the HGPS
source detection and analysis pipeline because of their com-
plexity, and include in particular sources in the Galactic Cen-10

tre region (H.E.S.S. Collaboration, 2005, 2016, 2018b) and
sources with shell-like morphologies (H.E.S.S. Collaboration,
2011, 2018d,e,c,a).

The HGPS catalog differentiates four classes of identified
sources: pulsar wind nebulae (PWNe), (shell-type) supernova15

remnants (SNRs), composite SNRs, and γ-ray binaries. The

∗Corresponding author
Email address: quentin.remy@mpi-hd.mpg.de (Q. Remy)

SNR class includes both well-resolved shell-type SNRs and un-
resolved VHE sources, or sources with unclear morphology,
for which the association of the VHE emission with a SNR is
highly probable (as in the case of W28, W49B and G353.6- 20

0.7). PWNe refer to plerionic objects with no observed shell,
or to resolved plerionic components in composite SNRs, which
consist of a PWN inside an SNR shell. HGPS sources clas-
sified as composites refer to VHE sources which are spatially
coincident with a known composite SNR, but which are not suf- 25

ficiently well-resolved to distinguish between the PWN and the
SNR shell as the origin of the VHE emission (H.E.S.S. Collab-
oration, 2018f).

The source detection procedure applied to the H.E.S.S. GPS
is based on iterative template fitting. Starting with an em- 30

pirical model of the diffuse background emission, the most
significant γ-ray excesses have been iteratively fitted with
two-dimensional symmetric Gaussian components by means
of a maximum-likelihood estimation (H.E.S.S. Collaboration,
2018f). The last step of the HGPS catalogue pipeline consists 35

in merging the overlapping Gaussian components, not clearly
resolved as separate emission peaks, into single sources. Such
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an approach presents two major drawbacks: on the technical
side, the convergence of the iterative scheme is time consum-
ing, especially as the computation time greatly increases with40

the number of objects and the associated confusion; on the
physics side, the morphological description of an extended γ-
ray source is limited by the simplistic template in use. In partic-
ular, as Gaussian morphology is imposed, a search for shell-like
source has been conducted independently (H.E.S.S. Collabora-45

tion, 2018a). Such an approach limits the capability to detect
complex-shape or nested sources, and could induce a selection
bias in further population studies.

In this paper we propose an alternative object detection ap-
proach, complementary to the iterative template-fitting method.50

We have investigated blind search methods for VHE γ-ray
source detection based on well-known and widely used image
processing and pattern recognition techniques. Our goal is to
build in a short amount of computational time a list of poten-
tially valuable objects without prior case-specific morphologi-55

cal assumptions. This list of objects could be used to:

- provide seed source candidates with robust guess on their
position and morphological parameters to be tested by
conventional analysis pipelines and/or dedicated analyses
using template-fitting approach (as done for the Fermi-60

LAT point-source catalogues Fermi-LAT Collaboration,
2017, but generalized to extended sources);

- give a detailed description of the sub-structures in com-
plex regions that would ease multi-wavelength (MW) as-
sociation search and so help firmly identify multiple nested65

sources;

- evaluate potential valuable targets to support additional
observation proposals, in particular toward source candi-
dates below the significance threshold at the sensitivity of
current observations that could be confirmed as sources by70

deeper surveys.

In the following we show that Hough circle transform can be
used to detect objects with partial circular symmetry regardless
of a shell-like or Gaussian-like morphology. We have tested
the robustness and the efficiency of the algorithm to reconstruct75

the position and extent of simulated sources and to detect the
firmly identified sources in the HGPS catalogue. We also in-
vestigate how the morphological parameters of the detected ob-
jects can be used to differentiate the various source populations
in the HGPS. We discuss on the identification of new source80

candidates based on such morphological classification, and/or
supported by spatial coincidence search in MW catalogues.

The paper is structured as follows: In Sect. 2 we present the
data and catalogues used; In Sect. 3 we describe the detection
algorithm based on Hough circle transform, the parameters de-85

rived in order to classify the detected objects, and the associa-
tion procedure. In Sect. 4 we discuss the tests on bootstrap sim-
ulations. In Sect. 5, we present the list of objects found in the
HGPS maps compared to the catalogued sources; In Sect. 6, we
discuss the identification of the objects based on the morpho-90

logical classification and MW coincidence search; In Sect. 7 we

briefly summarize the results and discuss possible future stud-
ies. In supplements, the production of the simulated skies is
detailed in Appendix A; potential improvements of the algo-
rithm are discussed in Appendix B; and additional tables and 95

figures are given in Appendix C.

2. Data

2.1. H.E.S.S. Galactic Plane Survey (HGPS) maps

We have used significance and flux maps of the HGPS sur-
vey1 presented in H.E.S.S. Collaboration (2018f). Pixels of the 100

significance maps contain the values of the statistical signif-
icance of the γ-ray excess in the sense of Li and Ma (1983)
within a given correlation radius Rcorr. The background level is
estimated by counting the number of photons in OFF-regions,
bearing in mind that the large-scale emission from the Galaxy 105

is not taken into account in this computation. The value of a
given pixel in the flux maps corresponds to the integrated flux
above 1 TeV of a potential source centered on the pixel and
fully enclosed within the correlation radius of the map, assum-
ing a power-law spectrum with a spectral index of 2.3 (see Eq. 110

2 to 4 in H.E.S.S. Collaboration, 2018f, for more details).

2.2. Catalogues

In order to associate the objects detected by our algorithm to
known sources at various wavelengths, we have made use of the
following catalogues: 115

- The HGPS source catalogue, containing 78 sources of
VHE γ-rays (H.E.S.S. Collaboration, 2018f). The ma-
jority of the HGPS sources are spatially coincident with
known sources at other wavelengths that could potentially
account for the production of γ-rays at VHE energies but 120

only 40% of the HGPS sources could be firmly identi-
fied. Among the 31 firmly identified sources there are 12
PWNe, 8 SNRs, 8 composite SNRs (where both the inte-
rior PWN and SNR shell may contribute to the emission)
and 3 high-energy binary systems. Most of the so-called 125

unidentified sources are associated with multiple objects
but one cannot pinpoint the precise origin of the VHE
emission because of the source confusion induced by the
relatively broad point-spread function (PSF) of VHE γ-
ray observations compared to those in other domains. The 130

unassociated sources could emit exclusively in the VHE
domain (truly dark sources) or may have been missed at
other (radio, X-ray) wavelengths. If so, they would require
either a more sophisticated MW association procedure or
deeper observations. 135

- the gamma-cat package2 (version 0.1, July 2018) which
provides a collection of data and catalogues for VHE γ-
ray astronomy. .

1available online at: https://www.mpi-hd.mpg.de/hfm/HESS/hgps/
2http://gamma-cat.readthedocs.io/
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- the SNRcat3, including Galactic SNRs and PWNe (Fer-
rand and Safi-Harb, 2012). The list of SNRs with their140

basic physical properties is based on the Catalogue of
Galactic SNRs by Green (2014) and on the list of Galac-
tic SNRs Interacting with Molecular Clouds maintained
by Bing Jiang4. Entries have also been cross-checked with
the Pulsar Wind Nebula catalogue (Kaspi et al., 2006) and145

the SGR/AXP catalogue from the McGill Pulsar Group
(Olausen and Kaspi, 2014). This catalogue is updated reg-
ularly, we used the same version as that considered in the
HGPS catalogue (from Oct 10, 2015).

- the Fermi-LAT eight-year source catalog5 (4FGL v19,150

The Fermi-LAT collaboration, 2019) based on eight years
of data in the 100 MeV – 1 TeV range. The 4FGL cata-
log includes 5065 sources above 4σ significance. Seventy-
five sources are modelled explicitly as spatially extended.
Compared to the 3FGL catalogue (Fermi-LAT Collabora-155

tion, 2015), the 4FGL source list has twice as much ex-
posure as well as a number of analysis improvements, in-
cluding an updated model for the Galactic diffuse γ-ray
emission6 .

- the first Fermi-LAT Supernova Remnant Catalogue7
160

(SC1). Fermi-LAT Collaboration (2016b) have analysed
36 months of Fermi-LAT γ-ray data in the 1–100 GeV
range toward 279 regions containing known radio SNRs.
They found 102 source candidates among which 30 have
sufficient spatial overlap with their corresponding radio165

SNRs and significance with respect to various diffuse
emission models to suggest these are the GeV counter-
parts, and 14 additional candidates which may also be re-
lated to known radio-emitting SNRs.

3. Methods170

3.1. Object detection in Hough space

We have applied the object detection algorithm to signifi-
cance maps with Rcorr = 0.1◦ from the HGPS survey and boot-
strap simulations. We have performed a single scan of the large
region of the sky covered by the HGPS in order to detect poten-175

tial VHE γ-ray sources in a uniform and automated way. In the
following sub-sections we detail the algorithm step by step.

3http://snrcat.physics.umanitoba.ca/
4http://astronomy.nju.edu.cn/~ygchen/others/bjiang/

interSNR6.htm
5https://fermi.gsfc.nasa.gov/ssc/data/access/lat/8yr_

catalog/
6https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/

aux/4fgl/Galactic_Diffuse_Emission_Model_for_the_4FGL_

Catalog_Analysis.pdf
7https://fermi.gsfc.nasa.gov/ssc/data/access/lat/1st_

SNR_catalog/

3.1.1. Pre-processing
The goal of the pre-processing is to extract a sparse descrip-

tion of the relevant structures in the image that can be used to 180

compute the Hough transform efficiently. In practice it consists
in applying an edge detection operator, such as the Canny filter
(Canny, 1986).

The edge detection procedure is described as follows: First
we smooth the significance image by applying a convolution
with a Gaussian kernel (σ = 0.09◦ = 4.5 pixels). Then we
use the Sobel-Feldman operator8 (Sobel, 1968) to compute an
approximation of the image gradient. For an image I, the Sobel-
Feldman operator returns a value for the first derivative in the
horizontal direction (Gx) and the vertical direction (Gy) as :

Gx = I ∗

−1 0 1
−2 0 2
−1 0 1

 , Gy = I ∗

−1 −2 −1
0 0 0
1 2 1

 (1)

At each point in the image, the gradient magnitude is then de-

rived as G =
√

G2
x + G2

y , and the gradient direction as θ = 185

arctan(Gy/Gx). The gradient magnitude provide thick edges
of the structures so a non-maximum suppression is applied to
obtain 1-pixel thin edges. These first steps are performed fol-
lowing the implementation of the Canny filter in scikit-image
python package9 while the subsequent steps differ. Then we fil- 190

ter the thin edges using conditions on both gradient and signif-
icance values. We mask the thin edges where gradient magni-
tude is lower than its 86.6 percentile value (∼ 1.5σ for a Gaus-
sian distribution). The significance maps are filtered by hystere-
sis thresholding with a high threshold of 4.5σ and a low thresh- 195

old of 1σ (pixels between these two thresholds are masked only
if they are not connected to a pixel above the high threshold).
Contrary to the hard threshold usually applied in VHE γ-ray
studies for source detection (as in the HGPS procedure), a hys-
teresis thresholding better preserves the global spatial coher- 200

ence of the extended excess even if the whole structure is not
strictly above the hard threshold. In order to exploit the infor-
mation of the significance maps with Rcorr = 0.1◦ and Rcorr =

0.2◦ we combine their respective hysteresis masks with an or
condition. The boolean mask (named ”blob mask”) associat- 205

ing the gradient and significance filters is shown in Fig 1 and
A.24 (third panel) for one of the simulated maps. Finally, we
removed the small edges of less than 3 pixels long. The final
result is a boolean mask (named ”edge mask”) highlighting the
sharp edges of the significance map, as illustrated in Fig. 1 and 210

A.24.
The structure of the gradient associated to the diffuse back-

ground has a latitudinal symmetry centred on the Galactic
Plane, while the sources can be seen as spherical perturbations
to this background gradient. In order to improve the contrast 215

between the source and the diffuse structures we applied a lon-
gitudinal thickening to the edge mask: for each pixel in the edge

8https://www.researchgate.net/publication/239398674_An_

Isotropic_3_3_Image_Gradient_Operator
9for further details see https://scikit-image.org/docs/dev/api/

skimage.feature.html?highlight=feature\%20canny#skimage.

feature.canny
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mask we extend the mask by one pixel (i.e. 0.02◦) along the lon-
gitude axis, so that the sources appear on average thicker than
the diffuse structures, which often already appears as longitu-220

dinal features. This simple step reduces the weight of diffuse
structure compared to sources in Hough space, and should re-
duce the false detections triggered by the diffuse background
(particularly toward the dense clouds of the Central Molecular
Zone in the vicinity of the Galactic Center, see second line of225

Fig. 6).

3.1.2. Finding local maxima in Hough space
The classical Hough transform is meant to identify lines in an

image, and was introduced by Hough (1959) to detect particle
trajectories in bubble chamber images. The generalized Hough230

transform proposed by Duda and Hart (1972) extends the prin-
ciple to any analytically defined shapes, usually circles or el-
lipses. More recent implementations generalize the concept
to arbitrary complex shapes by performing template matching
(Ballard, 1981). For our purpose a simple Hough circle trans-235

form can be used to indifferently detect sources with point-like,
Gaussian-like or shell-like morphologies.

For a circle transform the Hough space is represented by a 3D
accumulator matrix in longitude, latitude, radius. The accumu-
lator resolution is set to 0.04◦ in longitude-latitude and 0.01◦ in240

radius. We fix the minimal radius to 0.1◦, to match the minimal
correlation radius of the significance maps used. These choices
limit the computational time to less than 5 minutes to process
the whole HGPS region, without limiting the sampling preci-
sion which remains lower than the H.E.S.S. angular resolution.245

In practice for each point of the edge mask, (li, bi), and for
each radius sampled, Ri, we can define a circle, C(li, bi,Ri),
in the Hough space. So the values of the accumulator matrix,
HA(l, b,R), (initially zeros) are incremented toward the pixels
where the circle passes through: HA(lC , bC ,Ri)+=1 ∀(lC , bC) ∈250

C. The angle sampling used to compute the circles is limited to
1◦. We normalize the accumulator values by the angle sampling
dimension, so the value of the accumulator can be assimilated
to a fraction of the circle circumference in the original space.
In the following, we will refer to this parameter as the circu-255

larity of the object. Once the accumulator matrix is built the
next step is to find its local maximum. To do so we select only
the pixels that are at maximum within a 3D sliding window of
0.3◦×0.3◦×0.5◦ in longitude-latitude-radius or 0.5◦×0.5◦×0.5◦

if their radius is larger than 0.25◦ (we use two window sizes to260

scan different structure scales). We discard objects with circu-
larity lower than 0.6 or 0.5 if their radius is larger than 0.25◦ (so
the detected objects are at least half-circular). We also discard
objects with radius lower than 0.25◦ if the significance at their
center is not larger than 3σ in significance maps with Rcorr =265

0.1◦ or Rcorr = 0.2◦. Finally we remove potential duplicates
with both inter-center distance and radius difference lower than
0.1 ◦. The position of a local maximum in the Hough space
gives the centre and the radius of the object in the original
space.270

The different threshold values introduced here and previ-
ously in Sect. 3.1.1 have been empirically optimized in order
to maximize the fraction of the simulated sources which are

well-reconstructed, given the association criterion introduced
in Sect 3.3. We have also ensured to maintain the fraction of 275

detected objects associated to a simulated source higher than
about 30% in average (or similarly the detected objects to sig-
nificant sources ratio lower than about three, see discussion in
Sect. 6.1).

The resulting list of objects provides a discrete and 280

parametrised view of the pertinent structures in the data that
is easier to interpret and analyse than the continuous values of
a significance map. However the detected objects cannot be di-
rectly interpreted as sources. In order to identify the most valu-
able candidates, that could warrant a dedicated analysis, several 285

approaches are possible: distinguish the sub-structures from the
main objects, guess the source type by comparing its morpho-
logical parameters to well-identified sources, and find possible
associations at other wavelengths. We further discuss these is-
sues in Sect. 6. 290

3.2. Classification based on morphological parameters

Determining a class of objects that can be assimilated to a
known source population is a well-suited problem for machine-
learning techniques. Classification requires a parameter space
in which the different populations can be isolated. We introduce 295

the following set of morphological parameters:

- the radius given by the third coordinate in the Hough ac-
cumulator space;

- significance at central pixel of the object (in the map with
Rcorr = 0.1◦); 300

- the circularity given by the Hough accumulator value;

- the Pearson correlation coefficient (PCC or Pearson-R) of
a 5-point radial profile in flux: for each object we have
integrated the flux map (with Rcorr = 0.1◦) in 5 rings of
equal area between the center of the object and its radius; 305

- a morphology flag, the Pearson-R coefficient of the radial
profile in flux is used to distinguish 3 types of structures:

Peak ≡ PCC < −1/3,

Flat ≡ |PCC| < 1/3,

Cavity ≡ PCC > 1/3; 310

- a nesting flag: for each pair of objects C of radius R and
Rsub, we calculate their inter-center distance, d, and define
5 overlapping configurations :

Class 0 ≡ C(R) : d > R + Rsub, ∀C(Rsub),

Class 1 ≡ C(R) : ∃C(Rsub) | d 6 R+Rsub, Rsub 6 R, 315

Class 2 ≡ C(Rsub) : ∃C(R) | d 6 R+Rsub, Rsub < R,

Class 3 ≡ C(Rsub) : ∃C(R) | d 6 R, Rsub < R,

Class 4 ≡ C(Rsub) : ∃C(R) | d 6 R−Rsub, Rsub < R.
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Figure 1: Objects detection and association – These figures illustrate the application of the method to a simulated sky (see Sect. 4 and appendix Appendix A).
First row, left: Significance map derived using the Adaptive Ring Background method as in the HGPS (Rcorr = 0.1◦). Second row, left: Gradient of the significance
map derived using Sobel operator. Third row, left: Blob mask given by thresholding the significance and gradient values (as described in Sect. 3.1.1). Fourth row,
left: Significance map at Rcorr = 0.1◦ (same as first row but in grey-scale) with the Edge mask obtained after applying the Canny filter overlaid in red. Second
row, right: objects detected in Hough space. Third row, right: Detected objects associated to simulated sources using criterion on inter-center distance and surface
overlap as described in Sect. 3.3. Note that we test for associations regardless of the expected TS values. Fourth row, right : Simulated sources, the dotted circles
correspond to the outer radii of radial shells, the plain circles correspond to the sigma of radial Gaussians, point sources are shown as crosses. Light and dark blue
colors correspond to sources with an expected TS value below and above 30, respectively.
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In the following, Class 0 and 1 are defined as main objects;
Class 0 objects are non-overlapping, while Class 1 are large320

objects partially overlapping with smaller ones. These smaller
objects are considered as sub-structures, and are of Class 2, 3
or 4 depending on the inter-center distance to the main object.

From a basic point-of-view, the pertinence of a Gaussian-
like object with R < 0.2◦ can be filtered by threshold conditions325

in significance at its center, the pertinence of a shell-like ob-
ject can be filtered by threshold conditions in circularity and
Pearson-R. The unresolved objects should reach minimal ra-
dius and maximal circularity. The potential of automated object
classification and source population identification on this basis330

is further discussed in Sect. 6. We will present simple classi-
fication schemes based on the comparison of detected objects
with well-identified H.E.S.S. sources in the parameter space in-
troduced here.

3.3. Catalogue cross-matches335

In order to associate the detected objects with the known
sources we test for spatial coincidence using two criteria based
on inter-center distance and surface overlap. For each ob-
ject we search for known sources within an inter-distance:
dc < 0.1 + 0.3 × Rob ject and we report only the source maximiz-
ing the surface overlap fraction, defined as:

SFoverlap =
Sobject ∩ Ssource

Sobject ∪ Ssource
. (2)

We choose to report only the strongest positional coincidence
in order to limit the possible associations for extended objects.
As the objects are detected on significance maps with a cor-
relation radius of Rcorr = 0.1◦, we can not compare directly
their radius (and so their surface) to those of known sources340

(simulated or catalogued). So for each known source we intro-
duce an effective radius as Reff =

√
R2

source + R2
corr. We define

Rsource as the outer radius for shell-like sources, the 1σ width
for Gaussian-like sources, the radius for disk-like sources, and
zero for point-like sources.345

In the following we set SFoverlap > 0.3 as association crite-
rion. We also enforce that each source can be associated to
only one object and conversely. This association criterion is
used to estimate the fraction of simulated sources associated to
a detected object (reconstruction fraction, see Sect. 4), and the350

fraction of objects associated to a known source (association
fraction, see Sect. 6).

We have tested associations with the HGPS catalog sources
and their Gaussian components separately. Correlations in po-
sition and radius of detected objects with HGPS sources are355

further discussed in Sect. 5. Additionally, based on the infor-
mation provided by the 4FGL, SNRcat and Fermi-LAT SNR
catalogues, we report on possible MW associations for each
object.

4. Tests on simulations360

4.1. Simulated datasets
We have performed a bootstrap of the sources catalogued in

the HGPS survey. We produced 10 sky realisations, each one

including 100 sources, a model for hadronic background emis-
sion and a toy-model for diffuse Galactic background emission. 365

Details on the production of the simulated flux, counts, ex-
posure and final significance maps are given in Appendix A.
We did not intend to produce a realistic model for the various
components of the diffuse Galactic emission, instead we used
a simplistic toy-model that we can tweak in order to test how 370

the source reconstruction is affected by an increase of the dif-
fuse background level. To do so, we arbitrarily tweaked the
contrast in flux between the source and the diffuse background
with one parameter. The contrast parameter Cism has been set to
0.1 in the minimal case and 0.3 for a stronger diffuse emission. 375

In order to test the systematics related to background estima-
tion, we produced significance maps using the exact simulated
background model (noted SBG in figures) or through the adap-
tive ring background method as defined in the HGPS (noted as
ARBG in figures). We show in Fig. 2 the H.E.S.S. significance 380

map and 10 simulated ARBG significance maps in the minimal
diffuse emission case (Cism = 0.1). We illustrate the application
of the method on one of the simulated sky in Fig. 1 and A.24

4.2. Object detection performance
By design the detection algorithm will find more structures 385

than there are sources. So its performance depends on the ca-
pability in reconstructing the sources correctly, among the sub-
structures. We define the reconstruction fraction as the frac-
tion of simulated sources associated to detected objects using
the procedure introduced in Sect. 3.3. The association criterion 390

based on inter-center distance and surface overlap are strong
enough to ensure a close match in position and extension be-
tween the simulated sources and detected objects (as shown
in Fig. 3). The differences in the longitude, latitude and ra-
dius have a mean value compatible with zero with a root-mean- 395

square dispersion (rms) lower than 0.05◦. The difference in
radius increases with radius, but the absolute relative error is
mostly stable around its average value of ∼15%.

The detectability of γ-ray sources is usually expressed in
terms of their statistical significance. For each simulated source 400

we can estimate their expected test statistic (TS) as the log-
likelihood ratio between the exact simulated model and the
same model excluding the source. In Fig. 4 we show that
the reconstruction fraction of simulated sources increases with
their expected TS, and exceeds 70% above TS> 30. Fig. 4 405

also shows that the use of the adaptive ring background rather
than the perfect simulated background in the significance map
calculation changes the reconstruction fraction by only a few
percent, even when we considered a higher diffuse background
level (Fig. C.26). 410

In order to quantify the effect of the source confusion on the
source reconstruction capabilities, we plot in Fig. 5 the recon-
struction fraction as a function of the nearest neighbour distance
of the simulated source, dnn. The reconstruction fraction pro-
gressively increases from 40% to 80% for sources closer than 415

1◦. For the closest sources the low fraction is primarily ex-
plained by the source confusion while the effect of the diffuse
background level is secondary. For sources with dnn larger than
1◦ and with an expected TS> 30 the reconstruction fraction is

6



Figure 2: Significance maps sample – Top row: Significance map from the HGPS survey. Other rows: Significance maps for 10 simulated skies, each one including
100 sources and a toy-model for background emission (with Cism = 0.1, see Appendix A). In all panels, significance maps are derived using the Adaptive Ring
Background method with Rcorr = 0.1◦. We display only |l| < 50◦ but simulations have the same coverage as the HGPS survey.
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Figure 3: Positional correlations between detected objects and simulated sources – The left and middle panels give the differences in longitude and latitude,
respectively. The right panel shows the absolute relative error on radius. Note that the effective radii, Reff given in the right panel are the quadratic sum of the
simulate radii and the 0.1◦ correlation radius of the significance map used to determine the Hough circle radii, so their values can be readily compared. In each
panel the mean and standard deviation values are given by the plain and dotted black lines, respectively. The colors correspond to the morphological models used
for the simulated sources.
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Figure 4: Reconstruction fraction as a function of the expected TS – Top:
Histogram of the number of simulated sources within bins in expected TS
values. Bottom: Fraction of simulated sources associated to a detected object
in the same bins in expected TS values. Magenta and blue bars correspond to
objects detected as Hough circles in the significance map derived using sim-
ulated background (SBG) and through the adaptive ring background method
(ARBG), respectively.
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Figure 5: Reconstruction fraction as a function of the nearest neighbor dis-
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ground level
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stable around 80% while it drops if we also consider sources420

with lower TS (see Fig. C.27).
Note that we generated the simulated source sample from

the detected source distribution and we did not extrapolate the
distribution to include sources with lower flux, so the effect of
source confusion is potentially underestimated. The reconstruc-425

tion fraction will likely be lower for the low TS values (see the
two first bins of Fig 5).

5. Application to the HGPS survey

The object detection procedure was applied on the publicly
available HGPS significance map with a correlation radius of430

0.1◦. The detection procedure results in a list of 462 objects
among which 207 have centers inside the extraction radius of a
HGPS source. Their spatial distribution across the whole region
studied is shown in Fig. C.28. We illustrate the detected objects
compared to catalogued sources toward few smaller regions in435

Fig 6 and 7. Following the cross-match procedure described in
Sect. 3.3, 72 objects are coincident with a HGPS source within
the inter-center distance limit (dc < 0.1 + 0.3 × Rob ject) and 64
also match the association criterion based on surface overlap
(SFoverlap > 0.3). Similarly, we have 74 objects close to a HGPS440

Gaussian component and 67 fulfilling the surface overlap crite-
rion.

For each object associated to a HGPS source we flag its type
according to the HGPS identification (PWN, composite, SNR
or binary). However, we have differentiated two sub-classes445

of SNRs based on the information provided by the gamma-
cat. We reduce the so-called SNR class to only resolved shell-
like SNRs (HESS J0852-463, HESS J1442-624, HESS J1534-
571, HESS J1713-397 and HESS J1731-347), while the SNR-
MC class includes unresolved HGPS-SNRs (HESS J1718-374,450

HESS J1911+090), and sources coincident with a radio SNR
or associated to a Molecular Cloud (HESS J1800-240, HESS
J1801-233). This differentiation is essential for accurate mor-
phological classification. It should be also noted that the “com-
posite” type in the HGPS refers to sources for which the angular455

resolution does not allow for a separation of the PWN from the
SNR shell, so that formally one cannot discriminate between
the PWN and the shell as the dominant source of the VHE emis-
sion (H.E.S.S. Collaboration, 2018f). Nonetheless, the VHE
PWN population study (H. E. S. S. Collaboration, 2018) con-460

siders most of these VHE sources to be PWNe based on physics
arguments. The HGPS sources morphologically classified as
composites would then mostly be younger and more compact
PWNe than those firmly identified as PWNe.

In Fig. 8 we show the reconstruction fraction for the different465

source types catalogued in the HGPS. All the shell-type SNRs
catalogued (based on dedicated analyses) are associated to at
least one object. In Fig. 9 we show the significance maps, their
gradients and the edge masks used in the detection procedure
toward the 5 well-resolved SNR shells in the HGPS. We found470

a good agreement in position and radius between the HGPS
sources and the main objects detected, as shown in the first and
last rows of Fig. 9.

The position and size correlations between the detected ob-
jects and the HGPS sources are shown in Fig. 10. This figure 475

demonstrates the excellent reconstruction in longitude and lat-
itude. The error on the position given by the inter-center dis-
tance is 0.03◦ on average with a standard deviation of 0.04◦.
By construction we cannot find objects with radius lower than
0.1◦ as we set the minimal radius in Hough space to the corre- 480

lation radius of the significance map. We compare the detected
radii with Reff given as the quadratic sum of the catalogued radii
and the 0.1◦ correlation radius. Most of the objects present a
reasonably good correlation in radius within 20% error, even
though we note a systematic trend toward lower detected radii 485

for sources larger than 0.2◦ in radius. These differences can be
explained because the Hough transform tends to decompose a
source in more sub-structures than the HGPS Gaussian compo-
nents.

The HGPS components not associated to detected objects 490

generally belong to one of the following cases:

- Large Gaussian components may be decomposed in sev-
eral sub-structures in the object list so there is no exact
match (as seen in Fig. 7 for HESS J1843-033).

- Large Gaussian components associated to a smooth gra- 495

dient are not seen because the edge detection imposes to
preserve only sharp gradients (as seen in Fig. 6 for HESS
J1837-069). Thus, the object detection procedure is less
sensitive to the diffuse background and to extended/faint
PWNe. 500

- The 0.15◦ limitation in the separation of objects with simi-
lar radius does not allow one to detect very close point-like
sources; as an example, HESS J1745-290 in the Galactic
center region is detected but not HESS J1746-285. In that
case only the most prominent source is detected (because 505

of a sharper significance gradient). This issue could be ad-
dressed by using another complementary technique, such
as the object detection based on wavelet decomposition
which is very efficient at isolating very close-by point-like
objects from one another and from the underlying back- 510

ground (Starck and Pierre, 1998; Schmitt et al., 2010).

In Fig. 16 we represent the detected objects in three mor-
phological parameter spaces. The distributions of the differ-
ent source types tend to indicate that they are separable using
our set of parameters. For example, sources identified as com- 515

posites or binaries are close to the maximum circularity (unity)
and the minimal radius (0.1◦), while those identified as PWNe
have mostly lower circularity and larger radius (see left panel).
The well-resolved shell-type SNRs are clearly separated from
all the other identified source populations by their Pearson-R 520

(see middle panel). We also note that sources detected by the
HGPS pipeline (which exclude well-resolved SNRs and several
unidentified sources) populate a more restricted fraction of the
parameter space than the detected objects. The HGPS detection
procedure, based on an iterative detection of Gaussian compo- 525

nents, does lead to a selection bias that can explain such a differ-
ence. However, due to the uncertain nature of detected objects,
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Figure 6: H.E.S.S. sources as seen through edge detection and Hough circles – Left column: Significance maps (Rcorr = 0.1◦) and catalogued source components
from the HGPS (circles correspond to the sizes of the Gaussian components if available or to the source radii otherwise, squares indicate point-like sources; the
source given in the panel title appears in white and the others in grey). Middle column: Edge masks obtained after applying the Canny filter. Right column:
Significance maps (same as the left column but in grey-scale) and objects detected; dashed circles denote cavities or flat regions, plain circles represent peaks; blue
circles flag isolated objects (class 0), orange circles main-objects associated with sub-structures (class 1), and other colors correspond to the sub-structures (green,
red, purple for class 2, 3, 4 respectively). Further information on classification flags is given in Sect. 3.2.
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Figure 7: Comparison between catalogued sources and detected objects – Left column: Significance maps (Rcorr = 0.1◦) and catalogued source components from
the HGPS (same description as first column of Fig. 6). Middle column: Significance maps (Rcorr = 0.1◦) and MW catalogued sources; blue squares are Fermi-LAT
sources from the 4FGL list; yellow items correspond to radio sources given by the SNRcat, circles give the radii when available, dotted circles correspond to
SNRs (Ferrand and Safi-Harb, 2012); magenta items correspond to extended Fermi-LAT sources from the SC1 (Fermi-LAT Collaboration, 2016b). Right column:
Significance maps and objects detected (same description as the last column of Fig. 6).
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Figure 8: Reconstruction fraction with source types – Fraction of HGPS sources
associated to a detected object depending on their types (as given in the HGPS
catalog).

a fraction of the parameter space would correspond to spurious
detection associated with sub-structures or background. In the
following we discuss this issue and how we could identify the530

most valuable objects.

6. Discussion on the objects identification

6.1. Disclaimer: not all detected objects are sources

By design the object detection algorithm will find much more
objects than there are sources, but this is expected for a prelim-535

inary list of seeds. For example, the latest Fermi-LAT point
source catalogues (4FGL or the preliminary FL8Y) contain
about 5 000 sources while their initial detection step provides
more than 13 000 objects (The Fermi-LAT collaboration, 2019).
According to our HGPS bootstrap simulations, we detect about540

3.5 times more objects than simulated sources with an expected
TS of 30 (or 3 times more if we consider sources with TS> 10).
In our case the main problem is that we have to deal mostly
with nested extended objects. Among the nested objects, many
will be internal sub-structures of the same source and not nec-545

essarily unrelated sources. Among the isolated objects, even
if our detection procedure is by construction more sensitive to
sources than background, several objects will be spurious detec-
tions triggered by statistical fluctuations or background struc-
tures from the Galactic large-scale emission.550

We performed tests on simulations containing only noise and
given the hysteresis threshold imposed on the significance maps
we found on average only 8 fake objects detected per simulated
sky (compared to about 250 detected on each baseline simula-
tions containing 100 sources), so pure noise is marginal in the555

fraction of spurious detections. Additionally we produced sig-
nificance maps without and with diffuse Galactic background
for two different flux levels. For 100 sources simulated per sky
we found on average 253 objects for the case without Galac-
tic background, 224 for the minimal background case, and 265560

when increasing the Galactic background flux by a factor of 3.
According to Fig. 5 and 11, the reconstruction and association
fractions tend to decrease when the diffuse Galactic background
level increases, but only by 5% on average.

In Fig. 13 we show that the unassociated objects are mostly565

located at the edge of the simulated sources and have radii

smaller than those of their parent sources. Moreover the number
of unassociated objects decreases with the distance to simulated
sources. The fraction of unassociated objects beyond ∼ 8-radius
away from the sources matches the average false detection rate 570

of the noise-only simulations. So we expect that the spurious
detections are mostly bad reconstructions due to source confu-
sion or irrelevant sub-structures within, or large and faint wings
of, extended sources.

In order to minimize the spurious detections we can filter 575

the objects as to maximize the association fraction to simulated
sources or MW-catalogues without impairing the reconstruc-
tion fraction. To do so we can adjust the minimal thresholds on
circularity or significance as defined in the Sect. 3.1.2. Alter-
natively we can focus on a subset of objects: isolate the main 580

ones from their sub-structures; select objects that share similar
morphological parameters to the firmly identified sources; or
search only for objects with a MW-association in at least one
wavelength. In the following, we aim to classify and filter the
objects in order to narrow down the list to the most valuable 585

ones for further dedicated MW analyses and deeper VHE ob-
servations.

6.2. Candidate selection maximizing association fraction
We can flag valuable objects by searching for a MW-

coincidence. The selection can be further improved by identify- 590

ing a subset of objects that maximize the ratio between the as-
sociation fraction and the probability of coincidence by chance.

In order to quantify the fraction of coincidence by chance
we have evaluated the association fraction to MW-catalogues
of a randomized list of 10 000 objects. This list is obtained 595

by bootstrapping the list of objects detected on the HGPS map,
so the density of objects in longitudes, latitudes and radius are
preserved (those quantities are independently drawn). In Fig.
14 we show the MW-association fraction to at least one of the
sources from the 4FGL, SNRcat, or SC1 catalogues for the ran- 600

domized list and the original one. Despite the large number of
sources referenced in those catalogues the association fraction
in the randomized list do not exceed few percent while the as-
sociation fraction in the original one is about 10 times larger
in average. This ratio can be further improved by selecting a 605

subset of objects that show an enhanced association fraction.
As shown in Fig. 11 the fraction of detected objects associ-
ated to a simulated source increases with the circularity (i.e.
the fraction of the object circumference that triggered the de-
tection). Note also that the condition we imposed to discard 610

objects with circularity lower than 0.6 if their radius is lower
than 0.25◦ (see Sect. 3) improves the association fraction at low
circularity. The shape of this cut could be improved, but we
prefer to avoid complex cuts by hand. The cut could be directly
inferred from simulations in a more automated way using ma- 615

chine learning, and this also holds for the other parametric fil-
ters we chose for the source candidate identification. This is a
wide topic to explore so we prefer to defer these refinements to
future implementations. In Fig. 12 we show the fraction of de-
tected objects associated with catalogued sources in the HGPS 620

and/or at other wavelengths. We observe the same trend with
an increasing association fraction with circularity.
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Figure 9: Identification of the resolved shell-like SNRs – First row: Significance map with Rcorr = 0.1◦ and catalogued sources from the HGPS. Second row: edge
mask obtained after applying the Canny filter. Third row: Significance map with Rcorr =0.1◦ (same as first row but in grey-scale) and objects associated with the
procedure described in Sec. 3.3 (associations are unique so the eventual nested sub-structures related to those objects are not displayed here, but they are shown in
Fig. C.28).
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Figure 10: Positional correlations between detected objects and HGPS sources – The left, middle, and right panels give the correlations in longitude, latitude and
radius, respectively. Note that the effective radii,Reff , given in the right panel are the quadratic sum of the catalogued radii and the 0.1◦ correlation radius of the
significance map used to determine the Hough circle radii, so their values can be readily compared. In each panel the mean and standard deviation values are
given by the plain and dotted black lines, respectively. The colors correspond to the object types as given in the HGPS, except that we have differentiated the
SNR-Molecular Cloud (MC) from the shell-type SNRs based on the information provided in the gamma-cat (see Sect. 5).
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Figure 11: Association fraction (simulations) – Top: Histogram of the num-
ber of sources within bins in circularity. Bottom: Fraction of detected objects
associated to a simulated source in the same bins in circularity. Magenta and
blue bars correspond to objects detected as Hough circles on the significance
map derived using simulated background (SBG) and adaptive rings background
(ARBG), respectively. Cyan bars correspond to the ARBG case with a higher
diffuse background level.
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source catalogues.
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Figure 13: Distance of the detected objects from simulated sources – Top: Dis-
tribution of the associated (blue) and unassociated objects (black), the quan-
tity on the horizontal axis is the distance of the object to the nearest simulated
source in unit of source radius, dNN /RNN , and the quantity on the vertical axis
is the ratio of the object radius to the source radius, Rob ject/RNN . We show the
results for the ARBG case (see Sect. 4.1). Bottom: Anti-cumulative distribu-
tion of the unassociated objects with object-source distance (number of objects
above a given value of dNN /RNN per 100 source simulated). The dotted line is
the average fake detections rate of noise-only simulations.

Based on these observations we propose as valuable can-
didates a subset of objects with a circularity larger than 0.95
and associated to at least one source in the 4FGL, SNRcat 625

or SC1 catalogues10 (but not catalogued in the HPGS). The 5
candidates resulting from this selection are shown in Fig. 15.
The content of this subset list is given in table C.2. We note
that the Fermi-LAT source coincident with HC 57 candidate
is catalogued as a pulsar (4FGL J1112.1-6108). The candi- 630

date HC 56 is in coincidence with a plerionic composite SNR
source (G291.0-0.1) and a Fermi-LAT plusar (4FGL J1111.8-
6039). The candidate HC 69 is in coincidence with a plerionic
composite SNR source (G308.8-0.1) and a Fermi-LAT plusar
(4FGL J1341.7-6216). Similarly the objects with circularity 635

close to the unity that are associated to a HGPS source corre-
spond mostly to small-size sources referenced as composites.

6.3. SNR-like object identification

In the simplistic object classification previously introduced,
most of the well-known shell-like SNRs are identified as class 640

1 cavities (HESS J0852-463, HESS J1534-571, HESS J1713-
397). In the parameter space that we defined, this class of
objects corresponds to a main object with several nested sub-
structures associated and with a radial profile exhibiting a

10These catalogues contain objects which belong to the two most represen-
tative TeV source classes, namely plerions (PWNe) and SNR shells. Neverthe-
less, these are certainly incomplete and other TeV emitters such as gamma-ray
binaries or stellar clusters would thus be absent from our list of valuable candi-
dates.
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Figure 14: Multi-wavelength association fraction and coincidence by chance – Top: Histogram of the number of objects within bins in longitude, latitude and radius
(from left to right). Bottom: Fraction of objects associated to a 4FGL, SNRcat or SC1 source in the same bins. Black bars correspond to the list of objects detected
in the HGPS significance map, and grey bars correspond to a randomized list generated by bootstrapping of the original list.
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Figure 15: Selection of high value targets based on circularity criterion and coincidence search – First row: Significance maps (Rcorr = 0.1◦) and catalogued sources
from the HGPS. Second row: edge masks obtained after applying the Canny filter. Third row: Significance maps at Rcorr = 0.1◦ (same as first row but in grey-scale).
We select only objects with a circularity larger than 0.95 and coincident with a catalogued source in radio or GeV γ-ray wavelength (SFoverlap > 0.3), but which are
not catalogued in the HGPS. The detected objects are given as orange circles, blue squares are Fermi-LAT sources from the 4FGL list; yellow items correspond to
radio sources given by the SNRcat; magenta items correspond to extended Fermi-LAT sources from the SC1.
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Figure 16: Morphological parameters of the objects detected in the HGPS observations – For each object we display the circularity versus radius (left), the Pearson-
R of the radial profile versus radius (middle) and the Pearson-R versus the circularity (right). The colors correspond to the object type as given in the HGPS or
gamma-cat (for the SNR-MC case). Black points correspond to detected objects with no HGPS counterpart (such that SFoverlap < 0.3)
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Figure 17: Identification of shell-type SNR candidates: morphological classification – Same parameter space as in Figure 16. We filtered the objects detected to
select only class 1 cavities coincident with a catalogued source in radio or GeV γ-ray wavelength or an unidentified H.E.S.S. source (black plus). Class 1 cavities
are defined as a main object with a Pearson-R larger than 1/3.
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Figure 18: Identification of SNR candidates: coincidence search – First row: Significance maps (Rcorr = 0.1◦). Second row: edge masks obtained after applying
the Canny filter. Third row: Same as first row but in grey-scale; We filtered the detected objects to select only class 1 cavities coincident with a catalogued source
in radio or GeV γ-ray wavelength or an unidentified H.E.S.S. source with SFoverlap > 0.3. The main-objects are displayed in orange (the nested sub-structures
associated to the main-objects are not displayed here); blue squares are Fermi-LAT sources from the 4FGL list; yellow items correspond to radio sources given by
the SNRcat, circles give the radii when available, dotted circles correspond to SNRs; magenta items correspond to extended Fermi-LAT sources from the SC1.
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Pearson-R coefficient larger than 1/3. Note that the two other645

known shell-like SNRs, namely HESS J1442-624 and HESS
J1731-347, are classified as flat rather than cavities because the
Pearson-R coefficient of the radial profile is close to zero as
shown in Fig. 16. Given their smaller size, the contrast between
the outer ring and the inner part of the shell is less obvious (see650

Fig. 9). Filtering the list of detected objects to keep only class
1 cavities associated with a catalogued source results in 7 SNR-
like candidates as shown in Fig. 17. In Fig. 18 we display
maps of the significance, and the edge mask centered on these
objects. Details on their properties are given in Table C.3.655

Among these 7 SNR-like objects, 4 of them are already
catalogued as unidentified sources in the HGPS (HGPSC 059
component of HESS J1809-193, J1800-240, J1852-000 and
J1912+101, H.E.S.S. Collaboration, 2018f), while 3 are found
towards a (discarded) large HGPS structure (HGPSC 015 and660

HGPSC 051). In the HGPSC 015 region, we distinguish two
objects : one (HC 76) coincident with a radio SNR (G312.4-
0.4) and one (HC 73) with a Fermi-LAT extended source, both
showing a reasonably good match in radius with their potential
counterparts (as illustrated in the two first rows of Fig. 18).665

In the HGPSC 051 region, we report one object coincident
with a radio SNR (G359.0-0.9) in the close vicinity of HESS
J1745-303. Among the objects associated to unidentified HGPS
sources, HESS J1912+101 has already been identified as a SNR
candidate due to its shell-like morphology (H.E.S.S. Collabo-670

ration, 2018a), and J1800-240 is potentially associated to the
SNR W28 (Aharonian et al., 2008). Interestingly in the W28
region the shell-like object is associated to the SNR while its
substructures are associated to the surrounding HGPS sources.

Four candidates show no evidence for association with a675

SNRcat source (including HESS J1912+101, see third row of
Fig. 18). Two candidates show partial matches, that is the
main object is not coincident with a known shell but at least
one of its nested sub-structures is coincident with a catalogued
source in both radio and GeV γ-ray domains. Note that our680

MW-coincidence search is only based on catalogued sources,
more information could be collected by looking directly at the
MW images in order to propose additional observations in case
of the presence of a potential, uncatalogued, counterpart.

We stress that focusing on Class 1 Cavities objects limits the685

results to SNR candidates for which the sub-structures are re-
solved. Less restrictive constraints could result in more candi-
dates. For example, one of the sub-structures of the unidentified
source HESS J1843-033, flagged as class 0, is coincident with
G28.6-0.1 and can be considered as a poorly resolved SNR can-690

didate (see the last row of Fig. 7).

7. Conclusion and perspectives

7.1. Analysis products

We provide the full list of objects detected on the HGPS sig-
nificance map together with several short lists for convenience:695

- list of the objects associated with the HGPS sources (pro-
viding a detailed description of their sub-structures)

- list of non-HGPS objects with MW coincidences (which
could be further studied in dedicated analyses)

- list of high-circularity candidates (see Sect. 6.2) 700

- list of SNR-like candidates (see Sect. 6.3)

In addition to the object positions (in longitude and latitude),
these lists contain the morphological information defined in
Sect. 3.2 and the possible association given by the catalogue
cross-match described in Sect. 3.3. All these lists are available 705

in FITS format in the paper data on the editor page. A descrip-
tion of the FITS file columns is provided in Table C.1 in Ap-
pendix. Some examples of FITS file contents are provided in
Tables C.2 and C.3 (see Sects. 6.2 and 6.3).

7.2. Summary and future works 710

We have shown that using pattern recognition techniques we
can extract pertinent structural information from the HGPS sig-
nificance maps and detect objects with partial spherical symme-
try without assuming a morphological template (e.g. point-like,
Gaussian-like, or shell-like). In the approach proposed, sparse 715

structural information is extracted using a edge detection oper-
ator. We then apply a Hough circle transform and detect a col-
lection of objects as local maxima in Hough space. On the basis
of morphological parameters we can characterize different ob-
ject classes. Morphological classification and comparison with 720

known source populations allow one to constrain the nature
of the detected objects. In particular we have shown that the
well-resolved shell-type SNRs catalogued in the HGPS can be
isolated from the other source types with simple classification
rules (Main-object with sub-structures and Pearson-R larger 725

than 1/3). By extension, we can identify new source candidates
that share the characteristics of the well-known sources. More-
over, catalogue cross-matches indicate that several detected ob-
jects not catalogued in the HGPS are spatially coincident with
MW counterparts. Those are more likely to not be coincidence 730

by chance when considering objects with higher circularity.
We have presented a prospective study on the use of pattern

recognition and classification techniques to detect source-like
objects in the VHE γ-ray sky and identify new valuable source
candidates. We have no doubt about the potential of this ap- 735

proach, but there is still a lot to explore as shown by the various
perspectives discussed throughout this paper. We list other pos-
sible technical improvements in Appendix B. Future develop-
ments and prospects will be discussed within the H.E.S.S. Col-
laboration and the CTA Consortium. Meanwhile, we warmly 740

welcome collaboration with anyone interested in writing up
follow-up proposals for deeper MW observations and/or in car-
rying out dedicated analyses with the existing MW archival data
towards the most valuable objects presented here, in particular
those not catalogued in the HGPS. 745
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Appendix A. Construction of the simulated datasets

Appendix A.1. Bootstrap simulations
We performed a bootstrap of the sources catalogued in the 870

HGPS survey. We generated 10 sky realisations, each one in-
cluding 100 sources. Their latitude, longitude and radius are
randomly and independently picked up among the catalogued
value. The spatial distribution of the sources is preserved if the
longitude and latitude distributions are independent. The ra- 875

dius is given either by the source size column when available
or by the R70 column otherwise. For a given radius, we use the
same flux (column Flux map if available) and the same spatial
model than catalogued so the surface brightness and the source
population distributions are preserved. However for sources 880

composed of multiple Gaussian components we generated only
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one Gaussian corresponding to the averaged source given in
the HGPS because we do not have the information on the flux
of its Gaussian components. This is not an issue as the ran-
dom re-sampling of the sources will naturally create multiple885

nested sources. For simplicity the shells are generated with an
unique width fixed to 20% of the inner radius. We simulated
shell-like, Gaussian-like and point-like sources using the spa-
tial models implemented in the Gammapy v0.1 Python package
(Deil et al., 2017). The flux map of each source is given by the890

spatial model (whose integral equals one) times the integrated
flux from the bootstrapped catalogue.

Appendix A.2. Toy-model for background emission and expo-
sure maps

At VHE energies, the γ-ray flux from resolved sources domi-895

nates the total emission observed but a large scale diffuse emis-
sion is still detected (Abdo et al., 2008; H. E. S. S. Collabora-
tion, 2014). The nature of this emission is assumed to be a mix-
ture of γ rays from unresolved sources and γ rays of interstellar
origin. The latter are indirectly produced by the interaction of900

cosmic ray protons with the interstellar gas (production and de-
cay of neutral pions), and by energy losses of cosmic ray elec-
trons and positrons via Bremsstrahlung and inverse-Compton
scattering on radiation fields (see Fermi-LAT Collaboration,
2012; H. E. S. S. Collaboration, 2014; Fermi-LAT Collabora-905

tion, 2016a, and reference therein).
We did not intend to produce a realistic model for the vari-

ous components of the background emission, instead we used
a toy-model that simply mimic a fake contribution from the in-
terstellar γ rays and the instrumental noise. The flux of the
toy-model, FToy−BG, is define as

FToy−BG = FGC (Ciso + Cismτ
norm
353 ) (A.1)

with FGC = 1.65×10−12/[π(Rcorr/dpixel)2] cm−2 s−1 pixel−1, the
HGPS flux at the Galactic center weighted by the surface ratio
between the correlation kernel of the HGPS flux map and the
pixel size dpixel.910

In order to imprint a shape to the diffuse Galactic emission
from the interstellar medium, we used the dust optical depth
at 353 GHz (τ353 from Planck Collaboration, 2016), normal-
ized by its maximum value, τnorm

353 = τ353/τ
max
353 . Note that the

emission from large dust grains and the γ-ray emission from915

CR interaction with molecular clouds are both dependent on
the gas column density so they share many structural similari-
ties. However the dust optical depth per gas nucleon also de-
pends on the grain properties that change across the gas phases
and the Galaxy while the γ-ray emissivity per gas nucleon in-920

dependently varies with energy and Galactocentric radius. So
formally the dust emission cannot be used to linearly trace the
gas column density and precisely model the shape of the γ-
ray emission of interstellar origin. Nevertheless we use this
template parametrisation for simplicity as we only need to test925

how the source reconstruction is affected by an increase in the
diffuse background level. To do so we arbitrarily tweaked the
contrast in flux between the source and the diffuse background
with one parameter. The contrast parameter Cism has been set

to 0.1 in the minimal case, which is about the ratio in flux on 930

the HGPS map between the pixels at the Galactic center and
the surrounding ones toward the central molecular zone clouds.
We also considered a case where Cism=0.3 for a stronger diffuse
background emission.

The isotropic term, Ciso, implicitly assumes that the instru-
mental noise (hadron background) is proportional to the expo-
sure which is not exactly the case. With such an approximation,
we can write the OFF counts as:

NOFF/kpixels = B t w Expo × (CisoFGC) (A.2)

with B the background count rate, t the observation time and 935

Expo = At the exposure for the instrument acceptance A. As
NOFF is integrated within a radius Rspec, we have to normalize
by the surface ratio between the integration radius and the pixel
size, kpixels = π(Rspec/dpixel)2.

Then the normalisation factor Ciso is proportional to the ratio
B/A, that can be estimated using the information on the sources
fitted in the HGPS catalogue. Indeed the excess counts are ex-
pressed as:

Nexcess = A t Fexcess = Expo Fexcess (A.3)

so combining the two previous equations we have:

B
A

=
NOFFFexcess

kpixelsNexcess
w CisoFGC (A.4)

with Nexcess, Fexcess and NOFF given in the HGPS catalog as the 940

columns named Excess RSpec Model, Flux Map RSpec Total,
and Background RSpec, respectively. We get an average B/A
ratio per pixel: B/A = 5.01 × 10−15 cm−2s−1pixel−1 (see Fig.
A.19). Then we have the normalization factor Ciso ' 0.24.

In the limit case where NOFF � Nexcess, the significance of
the excess can be expressed as σexcess = Nexcess/

√
NOFF. By

combining this relation with the Eq. A.3 into Eq. A.4 we can
write:

Expolim = π

(
Rspec

dpixel

)2 (
B
A

) (
σexcess

Fexcess

)2

(A.5)

Note that we can also derive an average B/A from this equation 945

and the value found is consistent with the previous one even if
we approximate the significance.

The HGPS sensitivity map is defined as the minimal flux in
cm−2s−1 within a correlation radius Rcorr required to detect a
source with a significance of 5. Thus, according to Eq. A.5, we
can define the simulated exposure map in cm2s as :

Expolim = π

(
Rcorr

dpixel

)2 (
B
A

) (
5σ

Sensitivity

)2

(A.6)

The same exposure map has been used for all the simulations.
In Fig. A.20 we checked that the exposure estimated for each
source in the catalogue using Eq. A.5 and the simulated expo- 950

sure map at each source location are consistent.
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Figure A.19: Average background noise parameter – Top: Estimation of B/A
according to Eq. A.4 using the Nexcess, Fexcess and NOFF of the sources fitted
in the HGPS catalog. The grey line correspond to a slope equal to the average
B/A ratio per pixel. Bottom: Relative error on the average B/A value.
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Figure A.20: Comparison of exposures between catalogue and simulations –
Top: Exposure estimated for each source in the catalogue using Eq. A.5,
Expocat versus the exposure from the simulated map at each source location,
Expomap. The grey line corresponds to a one-to-one correlation. Bottom: Rel-
ative error on the simulated exposure as (Expocat − Expomap)/Expomap.

Appendix A.3. Count and significance maps
The simulated flux maps of the sources and of the back-

ground have been multiplied by the exposure map and con-
volved by a Gaussian kernel of 0.06◦ in order to mimic the in- 955

strument point-spread-function. We then applied Poisson noise
to get the simulated counts.

The significance maps have been derived using the same for-
malism as that of the HGPS survey. The excess counts Nexcess

within an ON region are defined as

Nexcess = NON − αNOFF (A.7)

with NON the counts in the ON region, NOFF the counts in the
OFF region, and α the background normalization factor defined
as the ratio of the integral acceptances in the ON/OFF regions:
α = ξON/ξOFF. The significance has then been calculated using
Eq. (17) from Li and Ma (1983):

S =
√

2
{

NON ln
[
1 + α

α

(
NON

NON + NOFF

)]
+ (A.8)

NOFF ln
[
(1 + α)

(
NOFF

NON + NOFF

)]}0.5

The ON region is defined as a disk of radius Rcorr (correlation
radius). We produced maps with Rcorr = 0.1◦ and 0.2◦. The
OFF counts are determined either from the expected counts of 960

the simulated background or from the adaptive ring background
method. In the first case the OFF region is the same as the ON
region since we have a perfect knowledge of the OFF counts.
In the second case we proceed in a similar way as that devel-
oped in the HGPS. For each pixel, the OFF region is defined 965

as a concentric ring with inner radius of 2 times Rcorr and a
variable outer radius chosen to minimize the difference to a tar-
get α value fixed to 0.02. By comparison the default geometric
α of the HGPS analysis is about 0.01 (surface ratio between
ON/OFF regions) After producing a first significance map we 970

define an exclusion region in order to mask the significant pixels
from the OFF region. Then the background is re-evaluated in
each pixel using the masked adaptive ring, and the significance
map is updated. This iterative procedure is repeated three times
(after that the limited change in the exclusion mask no longer 975

affects the final results).
The exclusion mask is derived by hysteresis thresholding on

the significance maps with a high threshold of 4.5σ and a low
threshold of 1σ. Note that this step differs from the HGPS pro-
cedure where a hard threshold at 5σ is used and the mask is 980

then uniformly extended by 0.3◦ beyond the 5σ contours. The
mask obtained by hysteresis thresholding better preserves the
structure of the excess.

In Fig. A.21 we show the counts, exposure and background
maps for one of the simulated skies. In Fig. A.22 simulated sig- 985

nificance maps derived from the exact background and through
the adaptive ring background method, together with their differ-
ence, are presented. In the edge detection procedure we filter
these significance maps using the information of the maps with
Rcorr = 0.1◦ and Rcorr = 0.2◦ by combining their respective 990

hysteresis mask with an or condition. An example of filtered
significance map for a simulated sky is shown in Fig. A.23.
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Figure A.21: Simulated sky maps ( – First row: Count map. Second row: Exposure map normalized by its maximum value. Third row: Toy-model for the
background emission used in the simulation. Fourth row: Background emission derived using the adaptive ring background method (Rcorr = 0.1◦). The example
displayed correspond to the first simulated sky in Fig. 2 (second row)
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Figure A.22: Simulated significance maps – First row: Significance map derived using the exact background model (with Cism=0.1, see Appendix A); Second
row: significance map derived using the adaptive ring background method (see Fig.A.21); Third row: Difference in significance between the two maps. Note that
significance maps are produced for a correlation radius Rcorr = 0.1◦.
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Figure A.23: Significance map filtering – Top: Significance map derived using the adaptive ring background method (Rcorr = 0.1◦, with Cism=0.1). Bottom: Same
after filtering by hysteresis thresholding (using σhigh = 4.5, σlow = 1).
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Figure A.24: Edge detection on simulated significance map – First row: Significance map derived using the Adaptive Ring Background method as in the HGPS
(Rcorr = 0.1◦). Second row: Gradient of the significance map derived using Sobel operator. Third row: Blob mask given by thresholding the significance and
gradient values (as described in Sect. 3.1.1). Fourth row: Significance map at Rcorr = 0.1◦ (same as first row but in grey-scale) with the Edge mask obtained after
applying the Canny filter overlaid in red.
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Figure A.25: Comparison of detected objects with simulated sources – In all panels the underlying map is the same significance as that shown in Fig. A.24, derived
using the Adaptive Ring Background method as in the HGPS (Rcorr = 0.1◦). First row: Simulated sources, the dotted circles correspond to the outer radii of radial
shells, the plain circles correspond to the sigma of radial Gaussians, point sources are shown as crosses. Light and dark blue colors correspond to sources with an
expected TS value below and above 30, respectively. Second row: objects detected in Hough space. Third row: Detected objects associated to simulated sources
using criterion on inter-center distance and surface overlap as described in Sect. 3.3. Note that we test for associations regardless of the expected TS values.
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Appendix B. Possible technical improvements

On the background removal:
Using the gradient information to extract only sparse structural995

information and detect only sharp edges in the data allow us
in principle to filter most of the diffuse structures associated
to the interstellar background. It should be further tested on
the on-going simulations of the Galactic Plane Survey which
will be conducted by the next generation of imaging atmo-1000

spheric Cherenkov telescopes (IACTs), namely the Cherenkov
Telescope Array (CTA) (Actis et al., 2011; CTA Consortium,
2017). CTA will probe lower energies with a higher sensitivity
and better angular resolution so that the contribution of diffuse
Galactic emission will be larger and hence, more refinement1005

may be necessary to filter the diffuse background. The filters
applied to the edge mask can enhance the response of the
algorithm to sources against background.

On the object detection:1010

In complement to object detection based on the Hough trans-
form, we could use the Wavelet transform. Both Wavelet-based
and Hough-based detections can be used to generate a list of
seeds in a short amount of time that can be further tested in
dedicated analyses or catalogue pipelines using the template-1015

fitting approach. According to our tests, a good agreement
in position and radius is found between the two detection
methods for small-size objects resolved in Hough space.
The wavelets-based detection presents a clear advantage for
dissociating point-like/small-size objects in close vicinity. The1020

Hough-based detection presents a huge advantage for extended
objects, in particular SNR-like objects for which the shell is
not entirely above the noise level. It would be interesting to
further test the complementarity of these two methods in the
framework of the CTA simulations, in order to help in the1025

preparation of the future catalogue pipeline.

On the object classification and identification:
We have shown that the different types of well-identified
sources can be separated within a set of morphological1030

parameters using simple linear classification rules. More
sophisticated machine-learning techniques like support vector
machines (Cortes and Vapnik, 1995) could be used to define
the classification rules automatically. In our study, we have
used the well-identified HGPS sources to define a training1035

sample and find new source candidates that share similar
characteristics. In a more general way we could use unsuper-
vised machine-learning techniques as clustering algorithms to
identify different classes of objects and identify them to known
source populations only a posteriori. This could help dissociate1040

sources from spurious detections or find new types of VHE-
emitting sources (not represented in any training sample). Of
course the more object classes we want to separate, the higher
the dimension of the parameter space should be. For instance,
we could improve the classification of the different source1045

types by including their spectral index and their variability.

On the multi-wavelength associations:

In order to firmly confirm the nature of these objects, dedicated
MW analyses, including spectral fitting, are necessary. We 1050

postpone this work for future follow-up studies. As MW cat-
alogues are not exhaustive, deep mining into MW archival data
is essential to find potentially relevant counterparts that have re-
mained below the detection threshold of catalogues. Given the
number of available surveys from radio to γ-rays, collecting all 1055

these data is a complicated and time-consuming task. Moreover
cross-matching all these surveys is far from being straightfor-
ward given the large diversity in the instrumental performances
and characteristics in terms of calibration, resolution, field-of-
view and so on. In order to address this important issue, a new 1060

automated algorithm is being developed by J. Devin and M.
Renaud. In the future, it could be used in order to further look
for MW coincidences toward the most interesting source candi-
dates flagged by the morphological classifier, especially those
which do not show any catalogued counterpart. 1065

Appendix C. Additional figures and tables
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Figure C.26: Reconstruction fraction with TS – Same as Fig. 4 but for a higher
background contagion level (Cism = 0.3). Top: Histogram of the number of
sources within bins in expected TS values. Bottom: Fraction of simulated
sources associated to a detected object in the same bins. Green and cyan bars
correspond to the objects detected as Hough circles on the significance map
derived using simulated background (SBG) and the adaptive ring background
method (ARBG), respectively.
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Figure C.27: Reconstruction fraction with the nearest neighbor distance dnn –
Top: Histogram of the number of sources within bins in dnn. Bottom: Fraction
of simulated sources associated to a detected object in the same bins. Blue and
red bars correspond to the reconstruction fraction of sources with an expected
TS larger than 0 and 30, respectively. In both cases we derive significance
maps using the adaptive ring background method (ARBG) for the simulated
skies with the minimal background level (Cism = 0.1).
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Table C.1: Description of the FITS tables columns
Column name Description

Name Object identifier by reference number

GLON Galactic longitude of the object center in degree

GLAT Galactic latitude of the object center in degree

Radius Radius of the object in degree

Circularity Fraction of circle circumference fraction that have triggered the detection in Hough space

SigCenter Significance at the central pixel of the object (in the map with Rcorr = 0.1◦)

NestFlag Nesting flag: indicate the level of overlapping between obects based on inter-center distances (see Sect. 3.2)

TypeMorph Morphological flag: peak, flat or cavity (see Sect. 3.2)

PearsonR Pearson correlation coefficient of a 5-point radial profile in flux (see Sect. 3.2)

HGPS Region Name of the HGPS region emcompassing the object (see Sect. 3.3)
Regions are defined by the extraction radius of the source if available or its size otherwise

HGPS Object Name of the HGPS source (see Sect. 3.3)

HGPS Otype Type of source as given by the HGPS catalog
differentiation between SNR and snr-mc based on the gamma-cat (see Sect. 5)

HGPS Radius Radius of the HGPS source

HGPS Dist Inter-center distance between the object and the HGPS source associated

HGPS SFoverlap Surface overlap fraction between the object and the HGPS source (see Sect. 3.3)

HGPSG Object HGPS Gaussian component(see Sect. 3.3)

HGPSG Radius Radius of the HGPS Gaussian Component (σ-width)

HGPSG Otype Component class of the HGPS Gaussian

HGPSG Dist Inter-center distance between the object and the HGPS Gaussian component associated

HGPSG SFoverlap Surface overlap fraction between the object and the HGPS Gaussian component (see Sect. 3.3)

SNRCAT Object Name of the radio source in the SNRcat (see Sect. 2.2)

SNRCAT Otype Type of the SNRcat source (Type column from the SNRcat reference in the HGPS catalog)

SNRCAT Radius Radius of the SNRcat source (RADIO RADIUS column from the SNRcat reference in the SC1 catalog)

SNRCAT Dist Inter-center distance between the object and the SNRcat source associated

SNRCAT SFoverlap Surface overlap fraction between the object and the SNRcat source (see in Sect. 3.3)

SC1 Object Name of the Fermi-LAT source from the SC1 catalog (see Sect. 2.2)

SC1 Otype Type of the SC1 source (Classification column of the original catalog)

SC1 Radius Radius of the SC1 source

SC1 Dist Inter-center distance between the object and the SC1 source associated

SC1 SFoverlap Surface overlap fraction between the object and the SC1 source (see Sect. 3.3)

FL8Y Object Name of the Fermi-LAT source from the FL8Y list (see Sect. 2.2)

FL8Y Otype Type of the FL8Y source (CLASS column of the original catalog)

FL8Y Dist Inter-center distance between the object and the FL8Y source associated

FL8Y SFoverlap Surface overlap fraction between the object and the FL8Y source (see Sect. 3.3)
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Table C.2: List of candidates based on high-circularity filter and MW-coincidence search (see Sect. 6.2)

Name HC 43 HC 56 HC 57 HC 115 HC 258

GLON -93.01 -68.97 -68.81 -39.41 0.63

GLAT -0.97 -0.01 -0.53 -0.01 2.27

Radius 0.16 0.14 0.14 0.11 0.12

Circularity 0.98 1 1 1 1

SigCenter 10.51 3.19 4.40 4.09 4.19

NestFlag 3 0 0 0 0

TypeMorph Peak Peak Peak Peak Peak

PearsonR -0.99 -0.99 -0.98 -0.95 -0.97

HGPS Region

HGPS Object

HGPS Otype

HGPS Radius

HGPS Dist

HGPS SFoverlap

HGPSG Object

HGPSG Otype

HGPSG Radius

HGPSG Dist

HGPSG SFoverlap

SNRCAT Object G267.0-1.0 G291.0-0.1 G308.8-0.1

SNRCAT Otype filled-centre plerionic composite plerionic composite

SNRCAT Radius 0. 0.12 0.2

SNRCAT Dist 0.04 0.07

SNRCAT SFoverlap 0.41 0.5 0.26

SC1 Object SNR291.0-00.1

SC1 Otype Classified

SC1 Radius 0.

SC1 Dist 0.11

SC1 SFoverlap 0.25

FL8Y Object 4FGL J1111.8-6039 4FGL J1112.1-6108 4FGL J1341.7-6216 4FGL J1511.2-5803

FL8Y Otype PSR PSR PSR

FL8Y Dist 0.10 0.05 0.05 0.06

FL8Y SFoverlap 0.29 0.52 0.55 0.51
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Table C.3: List of the SNR-like candidates (see Sect. 6.3)

Name HC 73 HC 76 HC 249 HC 282 HC 303 HC 403 HC 450

GLON -48.27 -47.65 -0.97 6.35 11.43 33.23 44.47

GLAT 0.19 -0.25 -0.87 -0.13 -0.29 -0.15 -0.17

Radius 0.27 0.29 0.31 0.38 0.33 0.21 0.42

Circularity 0.56 0.55 0.61 0.55 0.72 0.64 0.8

SigCenter 0.27 1.37 3.18 0.30 5.27 2.63 3.50

NestFlag 1 1 1 1 1 1 1

TypeMorph Cavity Cavity Cavity Cavity Cavity Cavity Cavity

PearsonR 0.53 0.54 0.61 0.90 0.48 0.86 0.54

HGPS Region HESS J1809-193 HESS J1852-000 HESS J1912+101

HGPS Object HESS J1852-000 HESS J1912+101

HGPS Otype Unid Unid

HGPS Radius 0.28 0.49

HGPS Dist 0.12 0.04

HGPS SFoverlap 0.46 0.70

HGPSG Object HGPSC 051 HGPSC 059 HGPSC 090

HGPSG Otype Discarded Large Source Multi Source Single

HGPSG Radius 0.40 0.30 0.28

HGPSG Dist 0.02 0.01 0.12

HGPSG SFoverlap 0.57 0.90 0.46

SNRCAT Object G312.4-0.4 G359.0-0.9 G6.4-0.1

SNRCAT Otype shell shell shell

SNRCAT Radius 0.32 0.19 0.40

SNRCAT Dist 0.15 0.06 0.1

SNRCAT SFoverlap 0.53 0.48 0.70

SC1 Object SNR311.5-00.3 SNR358.5-00.9 SNR011.4-00.1

SC1 Otype Not an SNR Not an SNR Marginally Classified

SC1 Radius 0.30 2.09 0.

SC1 Dist 0.04 0.13 0.17

SC1 SFoverlap 0.74 0.02 0.09

FL8Y Object 4FGL J1411.5-6133 4FGL J1913.3+1019

FL8Y Otype PSR PSR

FL8Y Dist 0.1 0.15

FL8Y SFoverlap 0.12 0.06
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Figure C.28: Objects detected in the HGPS significance map – Black contours correspond to the edge mask and red circles to the objects detected in Hough space.
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