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It is shown that even a weak multidimensional Suita conjecture fails for any bounded non-pseudoconvex domain with C 1 boundary: the product of the Bergman kernel by the volume of the indicatrix of the Azukawa metric is not bounded below. This is obtained by finding a direction along which the Sibony metric tends to infinity as the base point tends to the boundary. The analogous statement fails for a Lipschitz boundary. For a general C 1 boundary, we give estimates for the Sibony metric in terms of some directional distance functions. For bounded pseudoconvex domains, the Blocki-Zwonek Suita-type theorem implies growth to infinity of the Bergman kernel; the fact that the Bergman kernel grows as the square of the reciprocal of the distance to the boundary, proved by S. Fu in the C 2 case, is extended to bounded pseudoconvex domains with Lipschitz boundaries.

Results

Let D be a domain in C n , z ∈ D, X ∈ C n . Define the Bergman kernel, the Azukawa metric, and the Sibony metric, respectively, as follows (see e.g. [JP]): Z. B locki and W. Zwonek [START_REF] Locki | Estimates for the Bergman kernel and the multidimensional Suita conjecture[END_REF]Theorem 2] proved the following.

Theorem 1. If D is a pseudoconvex domain in C n , then

K D (z)V A D (z) ≥ 1, z ∈ D.
1 Theorem 1 for n = 1 is known as the Suita conjecture (see [Sui]). The first proof of this conjecture was given in [B lo].

On the other hand, by [START_REF] Nikolov | Two remarks on the Suita conjecture[END_REF]Proposition 2], even a weaker version of Theorem 1 fails for bounded non-pseudoconvex domains with C 1+ε boundaries. Our first aim is to extend this result to C 1 boundaries.

Proposition 2. Let D is a bounded non-pseudoconvex domain in C n with C 1 boundary. Then there exists a sequence (z j ) j ⊂ D such that The proof will be given in Subsection 2.1.

lim j→∞ K D (z j )V A D (z j ) = 0. Since D is non-pseudoconvex and ∂D is of class C 1 , there exists a point p ∈ ∂D such that lim sup z→p K D (z) < ∞.
Combining Theorem 1 and Proposition 3, it follows that

lim z→p K D (z) = ∞
if, in addition, D is pseudoconvex. Proposition 5 below says more.

On the other hand, Proposition 3 may fail in the Lipschitz case even for

V A D . Example 4. Let D := {z ∈ C 2 : 1 < |z 1 | + |z 2 | < 2}. Then lim sup x→1 + A D ((x, 0); X) < ∞
uniformly in the unit vectors X. In particular,

lim inf x→1 + V A D ((x, 0)) > 0.
The proof follows as the proof of [DNT, Proposition 5] (for S D , see also the proof of [START_REF] Fornaess | Carathéodory and Sibony metric[END_REF]Proposition 2].) Proposition 5. Let D be a bounded pseudoconvex domain D in C n with Lipschitz boundary near p ∈ ∂D. Then

lim inf z→p K D (z)δ 2 D (z) > 0.
When the boundary is C 2 , Proposition 5 is due to S. Fu [START_REF] Fu | A sharp estimate on the Bergman kernel of a pseudoconvex domain[END_REF]Theorem,p. 979]. The proof for the Lipschitz case is given in Subsection 2.2.

Lemma 8 and [DNT, Proposition 5] lead to the following generalization of [START_REF] Fornaess | Carathéodory and Sibony metric[END_REF]Theorem 2] and [START_REF] Dieu | Estimates for invariant metrics near non-semipositive boundary points[END_REF]Corollary 6]. Proposition 6. Let f : R + → R + be a continuous function such that f ≡ 0, f (0) = 0, and f (t)/t is an increasing function for t > 0. Let D be a bounded domain in C n given by Re(z

1 ) + O(| Im(z 1 )|) < f (||z ||) near 0 ∈ ∂D. There exists a constant c > 1 such that if δ > 0 is small enough and X ∈ C n , then c -1 B(δ; X) ≤ S D (q δ ; X) ≤ A D (q δ ; X) ≤ cB(δ; X),
where q δ := (-δ, 0 ) and B(δ; X)

:= f -1 (δ) δ |X 1 | + ||X||.
The hypothesis that f (t)/t is increasing is a sort of local concavity of the domain D. We can remove this assumption for the lower bound. Let D be a domain in C n with C 1 boundary near p ∈ ∂D. For q ∈ D near p choose a point p q ∈ ∂D such that ||q -p q || = δ D (q). Let L q be the complex line through q and p q , which contains the real line normal to ∂D at p q . Let H q * be the complex hyperplane through q * := 2p q -q which is orthogonal to L q . Set δ * D (q) := min 1, δ D c ∩H q * (q * ) (the 1 is there because the hyperplane H q * could fail to intersect D, for example, if D is convex).

Proposition 7. Let D be a bounded domain in C n with C 1 boundary near p ∈ ∂D. There exists a constant c > 0 such that if q ∈ D near p and X ∈ C n , then cS D (q; X) ≥ δ * D (q) δ D (q) ||X q || + ||X||,
where X q is the orthogonal projection of X onto L q .

The proofs of Propositions 6 and 7 are given in Subsections 2.3 and 2.4.

It would be interesting to know whether Proposition 7 is still valid in the case of a Lipschitz boundary.

Proofs

2.1. Proof of Proposition 3. By a linear change of coordinates, we may assume that p = 0 and the outer normal to ∂D at p is (1, 0, . . . , 0).

There exists an open polydisk U centered at the origin and included in the unit polydisk so that, with z 1 =: x 1 + iy 1 and z := (z 2 , . . . , z n ),

(1)

D ∩ U = U ∩ {x 1 < f 0 (y 1 , z )} ,
where f 0 is a real-valued C 1 function such that f 0 (y 1 , z ) = o((y 2 1 + z 2 ) 1/2 ) and f 0 (y 1 , z ) < 1. By the localization property of the Sibony metric [START_REF] Fornaess | Carathéodory and Sibony metric[END_REF]Lemma 5], it will be enough to prove the property for D∩U, and we may restrict the neighborhood further to reduce ourselves to a model situation.

Since D is bounded, I S D is a bounded convex set. Thus it will be enough to prove that for any q close enough to 0, there is a unit vector X q such that lim q→0 S D (q, X q ) = ∞. Choose a point p ∈ ∂D such that p -q = δ D (q), and X q = p -q -1 (p -q), which is the outward unit normal at p. We want to have some uniform version of (1) as p varies. Let ρ(z) = x 1 -f 0 (y 1 , z ) be the (local) defining function of D. For q close enough to 0, ∇ρ(p) is close enough to (1, 0) so that the signed distance from a point z ∈ ∂D to its projection on the tangent hyperplane T p∂D is comparable to

f 0 (y 1 , z ) -(f 0 (Im p1 , p ) + Df 0 (Im p1 , p ) • (y 1 -Im p1 , z -p )) .
By the Mean Value Theorem, there is some θ ∈ [0, 1] depending on all the variables involved so that the above expression equals

Df 0 (1 -θ) Im p1 + θy 1 , (1 -θ)p + θz -Df 0 (Im p1 , p ) • (y 1 -Im p1 , z -p ).
Since f 0 is of class C 1 , its differential is uniformly continuous on any compact set, so there exists some positive continuous function f 1 : R × R + → R + with f 1 (y, x) = o(|y| + x) such that for any q ∈ U, a possibly smaller neighborhood of 0, if we make a linear change of coordinates so that p becomes 0 and the unit outer normal to ∂D at p becomes (1, 0), then the defining function of

∂D becomes ρ p(z) = x 1 -f p(y 1 , z ) with |f p(y 1 , z )| ≤ f 1 (y 1 , z ).
From now on we work with those coordinates.

We can find a function

f = f (y 1 , r) strictly increasing with respect to r ∈ [0, ∞) such that f (y 1 , r) = o(|y 1 | + r) and D ∩ U ⊂ D, where (2) D := {(z 1 , z ) : |z 1 | < 1, z < 1, and x 1 < f (y 1 , z )} , by setting f (y 1 , r) := cr 2 + max 0≤ z ≤r f 1 (y 1 , z ),
with c > 0 some small constant. By a slight abuse of notation, let f -1 stand for the inverse function of r → f (0, r). Proposition 3 follows from: Lemma 8. There is a constant c 1 > 0 such that if D is defined as in (2), with f (0, 0) = 0 and f a continuous function strictly increasing over R + in the second variable, then

S D(q δ , (1, b )) ≥ c 1 f -1 (δ) δ , b ∈ C n-1 .
Proof. The construction is a modification of the proof of [START_REF] Fornaess | Carathéodory and Sibony metric[END_REF]Proposition 3].

For any a ∈ R, let ϕ(z) := z-a z+a . When a ≤ 0, ϕ is holomorphic and bounded by 1 in modulus on {z ∈ C : Re z < 0}. In what follows, the square root of a complex number z is defined on

C \ R -with -π < arg z < π. For δ > 0 and z ∈ C \ [δ, ∞), we let ψ δ (z) := -(-z + δ) 1/2 . Let a δ := ψ δ (-δ) = -δ 1/2 √ 2, and Φ := ϕ a δ • ψ δ . Then |Φ(z)| < 1 for Re z < δ, Φ(-δ) = 0, Φ (-δ) = 1/(8δ).
Now we claim that, for any δ > 0 and γ ∈ (0, 1), we can choose a constant c δ such that u = u δ ∈ A(D, q δ ) where

u δ (z 1 , z ) := max c δ (|Φ(z 1 )| 2 + z 2 ), z 2(1+γ) , for z < f -1 (δ), z ∈ D, u δ (z 1 , z ) := z 2(1+γ) , for z ≥ f -1 (δ), z ∈ D. We set c δ := f -1 (δ) 2(1+γ)
1+f -1 (δ) 2 . Clearly, in a neighborhood of q δ , u δ coincides with the first term in the maximum, so it is locally smooth and, for δ small enough,

∂ 2 u δ ∂z 1 ∂ z1 (q δ ) 1/2 = c 1/2 δ |Φ (-δ)| ≥ f -1 (δ) 1+γ 9δ .
We still need to see that u δ is well defined and in the appropriate class. For z < f -1 (δ), if Im z 1 = 0 and z ∈ D, then Re z 1 < δ, so Φ(z 1 ) is well defined, and clearly 0 ≤ u δ (z) ≤ 1. In each of the domains where a definition is given, one easily sees that log u δ is a maximum of plurisubharmonic functions, so itself plurisubharmonic.

We need to see that both definitions of u δ agree in a neighborhood of { z = f -1 (δ)} ∩ D. It follows from the fact that on that set,

z 2(1+γ) = f -1 (δ) 2(1+γ) = c δ (1 + f -1 (δ) 2 ) > c δ (|Φ(z 1 )| 2 + z 2 ). Finally, we obtain S D(q δ , (1, b )) ≥ f -1 (δ) 1+γ 9δ
. Since this holds for any γ > 0, it follows that S D(q δ , (1, b )) ≥ f -1 (δ) 9δ .

2.2. Proof of Proposition 5. The proof is based on the well-known Ohsawa-Takegoshi extension theorem which easily reduces the situation to the case n = 1. Since ∂D is Lipschitz near p, the uniform exterior cone condition is satisfied, that is, we may assume that Γ

z := {z} + Γ ⊂ D c for z ∈ ∂D near p, where Γ = {ζ ∈ C n : r > Re(ζ 1 ) > r -1 Im 2 (ζ 1 ) + ||ζ || 2 }, r > 0.
For q near p, let p q ∈ ∂D be such ||q -p q || = δ D (q). Set

D q = {ζ ∈ C : (ζ, q ) ∈ D} .
Denote by p 1,q ∈ ∂D q and p 2,q ∈ ∂Γ pq the closest points to q on the half-line q + (R + × {q }). Set δ = ||q -p 1,q ||, δ = ||q -p 2,q ||. Then, since B(q, δ D (q)) ⊂ D and D q × {q } ∩ Γ pq = ∅, a bit of plane geometry shows that

(3) δ ≤ δ ≤ δ D (q) r √ 1 + r 2 .
We may assume that p 1,q = 0, q = (-δ, 0 ) and

D q ⊂ G r := C \ [0, r].
Using the notations of the proof of Proposition 3, a conformal mapping from G r to a punctured unit disk is given by Φ

:= ϕ a • ψ • ξ, where ξ(z) := z r-z , ψ(z) := -(-z) 1/2 , a := ψ • ξ(-δ) = -δ 1/2 (r+δ) 1/2 . The domain Φ(G r ) = D \ { -1-a
-1+a } has the same Bergman kernel as the disc itself. The Bergman kernel of G r is given by K Gr (z) = |Φ (z)| 2 K D (Φ(z)), where D stands for the complex unit disc. Since Φ(-δ) = 0 and K D (0) = 1/π, we get that (4)

K Dq (q) ≥ K Gr (-δ) = 1 π r 4δ(r + δ) 2 .
On the other hand, it follows by [START_REF] Ohsawa | On the extension of L 2 holomorphic functions[END_REF]Theorem p. 179] that there exists a constant c > 0 depending only on diamD such that (5)

K D ≥ c n-1 K Dq .
Now, (3), (4), and (5) imply the desired result. Remark. Adding an argument to make the situation uniform, as in the proof of Proposition 3, to the proof of [START_REF] Jarnicki | Behavior of the Carathéodory metric near strictly convex boundary points[END_REF]Proposition 2], it follows that if ∂D is of class C 1 near p, then

lim z→p K Dq (z)δ 2 D (z) = 1 4π and hence lim inf z→p K D (z)δ 2 D (z) ≥ c n-1 4π .
2.3. Proof of Proposition 6. The lower bound follows easily from Lemma 8 and the boundedness of D.

The upper bound is obtained as in the proof of [DNT, Proposition 5]: we use the fact that the indicatrix for the Azukawa metric is pseudoconvex and contains the indicatrix of the Kobayashi-Royden metric 2 . We will show that a certain Hartogs figure is included in that latter indicatrix.

Let B d stand for the unit ball of C d . By a linear change of variables, we may assume that {-δ} × B n-1 ⊂ D, so for any X ∈ B n-1 , ϕ(ζ) := q δ + ζX provides a map from D to D with ϕ (0) = X. If we show that there exists c 1 > 0 such that any vector

X ∈ c 1 δ f -1 (δ) D × ∂B n-1 2 κ D (z; X) = inf{|α| : ∃ϕ ∈ O(D, D) with ϕ(0) = z, αϕ (0) = X}.
can be realized as the derivative at the origin of a holomorphic map ϕ from D to D with ϕ(0) = q δ , then the whole of c 1

δ f -1 (δ) D × B n-1 will be included in I S D (q δ ). Let ϕ(ζ) := q δ + ζ c 1 δ f -1 (δ) , X where X ∈ ∂B n-1 . Let r(z) = Re z 1 + O(| Im z 1 |) -f ( z ) be the defining function of D. Then, for c 1 well chosen, (6) r (ϕ(ζ)) ≤ -δ + δ f -1 (δ) |ζ| -f (|ζ|) ≤ -f (|ζ|) ≤ 0 when |ζ| ≤ f -1 (δ).
On the other hand, when |ζ| ≥ f -1 (δ), the hypothesis on f implies f (|ζ|) ≥ δ f -1 (δ) |ζ| and we get r (ϕ(ζ)) ≤ 0 again. 2.4. Proof of Proposition 7. We follow the strategy of the proofs of Proposition 3 and Lemma 8. Take coordinates so that the complex line through q and p q be the z 1 axis. An argument of uniformity similar to the one at the beginning of the proof of Proposition 3 shows that we can choose a domain D q locally defined by Re z 1 < f 0 (Im z 1 , z ), with f 0 (0, 0) = 0, Df 0 (0, 0) = 0, D ⊂ D q , and the growth of f 0 is uniformly controlled in a neighborhood of the original point p. Let Then f 1 is continuous, nonnegative, increasing in r. Finally, for any η > 0, let g η (y, r) := f 1 (y, r) + ηr 2 , and let D η be the domain defined locally by Re z 1 < g η (Im z 1 , z ). Note that δ D (q) = δ D η (q). Let g -1 η be the inverse function of r → g η (0, r). By Lemma 8,

cS D (q, (1, b )) ≥ cS D η (q, (1, b )) ≥ g -1 η (δ D (q)) δ D (q) .
Let z (η) be a point such that g η (0, z (η) ) = δ D (q). Letting η → 0, by compactness there is a cluster point z (0) such that z (0) = lim η→0 z (η) = lim η→0 g -1 η (δ D (q)), so that cS D (q, (1, b )) ≥ z (0) δ D (q) , and f 1 (0, z (0) ) = lim η→0 g η (0, z (η) ) = δ D (q), so (δ D (q), z (0)) ∈ ∂D q and by minimality of δ * Dq we have z (0) ≥ δ * Dq (q) ≥ δ * D (q).

K

  D (z) := sup{|f (z)| 2 : f ∈ O(D), ||f || L 2 (D) ≤ 1}; A D (z; X) := lim sup λ→0 exp g D (z, z + λX) |λ| , where g D (z, w) := sup{u(w) : u ∈ PSH(D), u < 0, u < log ||•-z||+C} is the pluricomplex Green function of D with pole at z; S D (z; X) := sup v [L v (z; X)] 1/2 , where L v is the Levi form of v, and the supremum is taken over all functions v : D → [0, 1) such that v(z) = 0, log v is plurisubharmonic on D, and v is of class C 2 near z. Let M D ∈ {A D , S D } and V M D (z) be the volume of the indicatrix I M D (z) := {X ∈ C n : M D (z; X) < 1}.

  On the other side, since S D ≤ A D , then I A D ≤ I S D and hence V A D ⊂ V S D . So, Proposition 2 will be a consequence of the following. Proposition 3. Let D be a bounded domain D in C n with C 1 boundary near p ∈ ∂D. Then lim z→p V S D (z) = 0.

If V A D (z) = ∞, then K D (z) = 0.
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On the other hand, in any direction the Sibony metric is bounded below by the Euclidean norm because the domain is bounded. Taking the maximum of the estimates, we obtain the desired result.