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Complementary Working Memories using Free-Energy Optimization
for Learning Features and Structure in Sequences

Alexandre Pitti'*, Mathias Quoy!, Catherine Lavandier' and Sofiane Boucenna

Abstract— We propose a global framework for modeling the
cortico-basal system (CX-BG) and the fronto-striatal system
(PFC-BG) for the generation and recall of audio memory
sequences; ie, sound perception and speech production. Our
genuine model is based on the neural architecture called
INFERNO standing for Iterative Free-Energy Optimization of
Recurrent Neural Networks. Free-energy (FE) corresponds to
the prediction error on internal or external noise. FE minimiza-
tion is used for exploring, selecting and learning in PFC the
optimal choices of actions to perform in the BG network (eg
sound production) in order to reproduce and control the most
accurately possible the spike trains representing sounds in CX.
The difference between the two working memories relies in the
neural coding itself, which is based on temporal ordering in
the CX-BG networks (Spike Timing-Dependent Plasticity) and
on the rank ordering in the sequence in the PFC-BG networks
(gating or gain-modulation). We detail in this short paper the
CX-BG system responsible to encode the audio primitives at few
milliseconds order, and the PFC-BG system responsible for the
learning of temporal structure in sequences. Two experiments
done with a small and a big audio database show the capabilities
of exploration, generalization and robustness to noise of the
neural architecture to retrieve audio primitives as well as
long-range sequences based on structure detection. Although
both learning mechanisms are implemented with the same
algorithm of rank-order coding, the CX-BG system realizes
a model-free recurrent neural network (INFERNO) and the
PFC-BG system implements a gated recurrent neural network
(INFERNO GATE).

I. INTRODUCTION

In different brain areas, working memories (WMs) are
hypothesized to embed neural processes with forward and
inverse models that can encode, anticipate and eventually
control incoming signals to be more robust and to overcome
their variability [1]. Two brain areas namely the Basal Gan-
glia (BG) that selects actions with respect to current states [2]
and the Prefrontal Cortex (PFC) that represents forthcoming
actions with respect to current contexts [3], are important for
embedding these WMs. Being part of two different loops but
connected at the BG level, they realize reactive (BG) and
proactive (PFC) control, processing information differently
and at different speed, see Fig.

II. RELATED WORKS

On the one hand, some evidences indicate that the striatum
in BG has a principal function in learning-related plasticity
associated with selecting one set of actions from many,
resulting in the acquisition of habitual behavior [4]. On the
other hand, PFC achieves behavioral planning in terms of the
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end result, rather than in terms of the movement required to
perform the task [5].

Graybiel and Grafton suggest in [6] that proactive control
is associated with sustained and/or anticipatory activation of
lateral PFC, which reflects the active maintenance of task
goals. By contrast, reactive control should be reflected in
transient activation, along with a wider network of additional
brain regions such as the BG. Therefore, these two control
mechanisms differ in terms of the involvement during learn-
ing and retrieving tasks or sequences, with the BG dynamics
working at a faster pace than the PFC.

In Machine Learning, reactive and proactive control relate
to what is called model-free and model-based systems in
Reinforcement Learning (RL) [7], [8], having one system
for stimulus-response tasks doing greedy-like optimization
and the other learning distinct policies for prediction, which
serves for planning goal-directed behaviors.

These features are linked therefore to what is called now
the Bayesian theory of the brain [9] and to the paradigm of
predictive coding for cognition [10]. These general theories
describe how our expectations (as well as our errors) on
sensory inputs are used as attention signals to adjust the prior
expectations for the next events. Brain areas are hypothesized
to use error prediction as a core information to control
their dynamics from each others, not just for binding them
mutually.

Under this framework, two or more brain networks can
interact dynamically (eg Cortex CX with Basal Ganglia BG)
so that we have always one network (eg the controller) that
infers the reliability of another (eg the observer) with respect
to a specific context. Along with Bayes theory, predictive
coding has also its link with optimal control theory [11],
which we think interesting in terms of perspective for
modeling the corticostriatal system as it moves the problem
of learning and retrieving memory sequences into a control
problem.

Problem-solving tasks are good examples for understand-
ing the involvement of the BG-PFC loops in goal-directed
behaviors under uncertainty especially during infancy. These
goal-directed behaviors are also called rask-sets in cognitive
and developmental sciences [12]. Task sets relate to the
novel capabilities acquired by twelve-months-old babies such
as tool-use, sustained attention, spatial memory, asymmetric
imitation and rule-based learning and are argued to be linked
to the maturation of the PFC [13], [14]. Other crucial exam-
ples during infancy are speech production and the sequential
organization of actions [15], [16], [17]. These two important
cognitive tasks presumably involve the BG and PFC loops



to adjust timely and orderly motor primitives [18] and [19].

This neural process has been particularly studied for
speech and language sequences because auditory modality
is the sense especially sensitive to temporal structure. In the
case of speech production, Romanski and colleagues propose
that the phonotopical level requires the implementation of
high-order models for encoding words or sentences as articu-
latory vocal tracks [20]. In other experiments with 3 months-
old children [15], [16], [17], the stronger activation of the
PFC has been observed for detecting temporal dissonance
in regular temporal structures of spoken sequences of totally
random syllabes such as the ABA structure in “tomato” or
“mifumi”, independent of the syllabes pronounced for the A
or B items [21], [22].

A. Proposal framework for feature extraction and structure
learning in sequences

In line with these finding, we propose a neural architecture
to model the CX, BG and PFC systems that combines model-
free and model-based learning for retrieving and controlling
long-range memory sequences hierarchically at the signal
level and at the abstract level, see Figs. [T} The two working
memories are developped within the same framework of
predictive coding and reinforcement learning [23] but each
system is working differently to code information and to
minimize online error and external noise. The models use
spiking neural networks (SNN) in order to learn tempo-
ral delays between pre- and post-synaptic firing neurons
with the mechanism of Spike Timing-Dependent Plasticity
(STDP) [24]. In line with the framework of free-energy
minimization [10], we exploit also intrinsic noise within the
system in order to realize stochastic descent gradient and
novelty detection.

We propose that these neural mechanisms can serve for
the learning of temporal delays between neurons in a self-
organizing manner and makes possible the discovery of
causes and effects necessary for active inference and pre-
dictive coding. This extends previous researches in which
we developped several models of WMs using SNNs corre-
sponding to different brain areas. These models exploited
noise or novelty to iteratively infer a model and minimize
error prediction either to control one system’s dynamics (eg
the hippocampus or BG-like model-free networks [25], [26])
or to select dynamically a better controller (eg a PFC-like
model-based network [27]).

In our BG-like network modeled in [26] and [28], we
showed that it is possible to control long-range memory
sequences of spikes —, above 1000 iterations without loss,—
and to solve the so-called credit assignment problem by
infering causes and effects, even with long-range delays.
Because of its property to optimize and control dynamics
iteratively using noise or free-energy, we named our network
INFERNO, which stands for Iterative Free-Energy Optimiza-
tion for Recurrent Neural Networks [26].

Our framework will be applied to speech learning (per-
ception and production). The global framework combines the
corticostriatal and prefrontal systems for the recognition and

generation of audio memory sequences, see Fig. [T} In the
first part, the WM of the cortico-striatal (CX-BG) system
is developped in order to better describe the process for
retrieving audio primitives for a short time scale. The model
named INFERNO network is then used to solve the credit
assignment problem for retrieving the motor primitives that
cause specific sound signal (vocal tracks). In principle, the
motor primitives should be the vocal articulatory motions of
the mouth and of the vocal cords, or the sound generated
by a vocoder but in our case it is simply the sound vector
reconstruction. In the second part, the combination with the
prefrontal system (PFC) will be presented, with the use of
Rank-Order neurons for learning the temporal organization
within memory sequences and for predicting the next ones;
the sensitivity of Rank-Order or gated neurons to the items’
order within a sequence will serve for finding structure within
signals. We named this gated version of the INFERNO
network, INFERNO GATE and we have showed that it is
possible to retrieve long range sequences through iterative
optimization for long time scale. More detailed explanations
about these two models are presented in extented papers [28],
[29].

B. Neural model for the cortico-striatal system and the
fronto-basal system

In our comprehension of the free-energy optimization
strategy proposed by Friston [30], [31], [23], it is similar
to a reinforcement learning process without the need of
value-functions to minimize online error prediction. To us, it
conveys the learning problem into the ones of optimal control
and predictive coding. We can apprehend the cortico-striatal
system and the fronto-basal system as two learning systems
that attempt to perform an optimal control and resolve error
prediction among their dynamics. In Fig. 2| we display the
first network, INFERNO, with the Primary Auditory Cortex
(PAC) system and the Superior Temporal Gyrus (STG) layer
modeled with SNNs to encode incoming inputs, the Striatum
layer that categorizes the state of the STG dynamics and
the Globus Pallidus that attempt to control back the input
dynamics of the PAC and STG with a reentrant loop. The
error prediction is evaluated and minimized over time by
supervision of the STR units (critic) and by noise generation
and stochastic search done on the GP output layer (actor).

This paper is organised as follows. Two experimental
setups for sound sequences are presented in section re-
spectively for a limited learning database (only one speaker,
3 minutes length) and for a larger database (several speakers
of different genders, 30 minutes length). The results of these
two experiments are developped and discussed in section

III. METHODS

The neural architecture INFERNO [26] consists of two
coupled learning systems arranged. The first network corre-
sponds to one recurrent neural network of spiking neurons
(SNNs) and the second network consists on one associative
map. The SNN implements a forward model of the incoming
signals whereas the associative map implements an inverse
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(CX-BG) [26], [28]. The Primary Auditory Cortex (PAC) receives and categorizes the audio vectors as a first stage, the Superior Temporal Gyrus (STG)
integrates over time its output that are categorized at the end by the Striatum (STR) in the basal ganglia. The Globus Pallidus (GP) searches and retrieves
the audio vectors that best matches the STG dynamics recognized by the striatal units. The iterative optimization process is done by minimizing noise with
a temporal difference reinforcement signal. In b), framework of the Inferno Gate architecture for structure learning based on iterative optimization through
prefrontal-basal ganglia loop (PFC-BG) [29]. The Broca area (BA45) receives sequences, the lateral Prefrontal Cortex (IPFC) learns and detects temporal
patterns in sequence, the dorsal Prefrontal Cortex (dIPFC) categorizes and represents sequences as a distribution of temporal primitives. The Orbito-Frontal
Cortex (OFC) searches and retrieves the sequences that best match the BA45 sequences recognized by the IPFC units. The iterative optimization process
is done by minimizing noise with a temporal difference reinforcement signal in ACC.

model aimed at retrieving and controlling those signals. The
inverse-forward controller can be modeled with the function
Yout = f(I) for the SNN and with the function I = g(Yout)
for the associative map, in which I is the input vector and
Y,ut are the output dynamics.

In order to minimize error, the second network generates
intrinsic noise I,,,;se to control the dynamics of the first one
following a RL mechanism. The activity of the SNN Y,
is compared to one desired goal vector Y. to compute the

error E between Y. and Y,,; and the current input is kept
for the next step I(t + 1) = I(¢t) + Lnoise, if and only if it
diminishes the gradient AE. Over time, I converges to I,y
its optimum value, and Y,,; converges to Yy.,s the desired
vector. This scheme is in line with actor-critic algorithms
and predictive coding. Its organization is similar to novel
architectures combining two or more competitive neural
networks such as auto-encoders or the generative adversarial
networks.



We showed in [26] that this variational process is similar
to a stochastic descent gradient algorithm performed itera-
tively and can solve the temporal credit assignment problem
for delays above dizains of iterations. For instance, the
convergence to the desired goal after a certain delay can
be viewed as the retrieval of a memory sequence for such
duration. Furthermore, the free-energy minimization is gen-
erative in the sense that it can retrieve novel solutions I for
the same output Y. This can be viewed as a synchronization
process toward attractor memories [32].

IV. RESULTS
A. Experiment 1 — self-supervised vocal babbling

In this experiment, we make to learn the Primary Auditory
Cortex (PAC), STG and Striatum layers in an unsupervised
manner so that the three structures self-organize to sparse
distributions using Hebb law for the PAC and the Striatum
whereas the STL learns the temporal dependencies across
time using the STDP learning mechanism; the direction of
the information flow is PAC—STG—STR.

The experimental setup for Experiment 1 in section
[A] consists on a small audio dataset of 2 minutes length
of a native french woman speaker repeating three times
five sentences. The audio .wav file is translated into MFCC
vectors (dimension 12) sampled at 25ms each and tested
either with a stride of 10ms and no stride. The whole
sequence represents 14.000 MFCC vectors for the case with
strides and 10.000 MFCC vectors for the case with no strides.
The number of Striatal and GP units are chosen so that they
correspond to the number of MFCC vectors, which means
14000 units (10.000 units) for each layer. We do so in order
to test the reliability of our architecture to retrieve input data
with an orthogonal representation. The compression rate is
however low (1:1).

The learning stage of the MFCC in the different layers is
as follows. While the PAC first receives at each iteration the
MFCC vectors, the STG integrates with a temporal horizon
of 20 iterations the different dynamics. Then, the third layer,
the Striatum, categorizes the current state of the STG network
in a higher dimension. In so far, the learning stage is feed-
forward from PAC—STG—STR and the categorization is
done in an unsupervised manner.

Once several passes are done over the complete au-
dio sequence, the neurons stabilize to certain represen-
tations. It is possible then to perform an active ex-
ploration stage in the other direction — which means
STR—GP—PAC—STG—STR for retrieving the corre-
sponding audio entries in GP through reinforcement learning.

This stage corresponds to a motor babbling in which the
audio inputs are generated in GP and evaluated after a delay
in STR. The prediction error in STR is used to drive the
dynamics in GP using free-energy and to control the PAC
layer and STG dynamics via an iterative optimization pro-
cess. Over time, each audio vector is reinforced for each GP-
Striatal pair whenever the GP auditory pattern makes to fire
its corresponding Striatal unit. The audio pattern converges
to an optimal MFCC vector for which the Striatal unit was

Vocal babbling
Free Energy Optimisation

Iterative FE optimization id #12481

6 8 10 12
iteration

Fig. 3. Free-energy optimization. error minimization of one Striatal unit
(top chart) using noise to retrieve GP vectors for which the Striatal units fire
maximally (middle chart). The STG unit displays different spike trains for
which a solution is found (bottom charts). The dashed lines correspond to
a reset of the GP dynamics in order to show that the minimization process
is always present and that different solutions can be retrieved dynamically.

the most active. As proposed by several neuroscientists, the
GP layer may control indirectly the Striatal layer through
the cortical dynamics [4], [33], [23]. The prediction error
may drive the amount of noise within the system and the
ratio between exploration and exploitation. This scheme
corresponds to a predictive coding mechanism, which can
solve the temporal credit assignment problem between causes
(in GP) and delayed effects (in STG).

We display in Fig. [3] one example of retrieved GP dy-
namics (middle chart) for which the prediction error in
Striatum is diminished over time (top chart) with respect
to the spatio-temporal patterns of the STG layer (bottom
chart). The dashed line corresponds to a reset performed on
the GP dynamics in order to observe dynamically the error
minimization mechanism at work. The sample corresponds
to the optimization process for one Striatal unit and for one
GP vector. During the free-energy descent gradient, the GP
vector converges to one audio pattern for which the STG
activity is the most recognized by the corresponding Striatal
unit. As showed in the graphs, the optimization process does
not necessarily converge to the same minima after the reset
done on the GP vector but can be stacked to another one.
This means that different patterns of activity in the GP layer
can influence in a similar way the activity in the STG layer.
Therefore, the categorization done in STR is not perfectly
orthogonal (sparse) and different solutions coexist to retrieve
the STG spatio-temporal dynamics.

When reconstituting the .wav file in Fig. ] from the
retrieved MFCC vectors, we can observe a gradual refining
of the audio waveform from the four periods with respect to
the ground truth displayed at the bottom chart. The sequence
is showed for 11 seconds although the global test was
performed over two minutes length of the audio database.

After four exposures of the neural architecture to the audio
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sequence, the retrieved signals are gradually converging to
the correct waveform. At period #0, the waveform is very
discrete with square-like pattern and the amplitude and the
wavelength are not respected. Gradually from period #1 to
#3, we can observe a refinement of the waveform matching
the ground truth curVeﬂ

B. Experiment 2 — structure learning and serial recall of
audio sequences

This section explains the processing done in the network
INFERNO Gate in order to learn the temporal structure
in sequences and to retrieve back original sequences from
incomplete information.

The iterative optimization process is done at the dIPFC
level for retrieving memory sequences at the OFC level
with the error rate computed at the ACC. The infor-
mation flow corresponds to dIPFC—OFC—Broca Area
(B45)—IPFC—dIPFC, see Fig. 2] b).

In order to understand better the global process, we display
in Fig. [5] the final retrieved sequence in OFC with respect
to the one represented by the dIPFC units is displayed in a),
the raster plot of the iterative search of exact sequences in
OFC and Broca Area (B45) is showed resp. b).

'We provide the link of the different .wav files at https://
promethe.u-cergy.fr/alexpitt/inferno.

The desired sequences we want to reconstruct in OFC are
presented at Fig [5] a) in the top chart. The raster plot of the
reconstructed OFC/B45 dynamics are plotted in Fig [5] b).

The exploration search is performed after the learning
stage. Over time, a sequence in OFC is explored iteratively
using noise so that the dIPFC activity is maximal activity
level and that ACC reaches a minimal value.

We display in Fig[5|a) in red, the retrieved OFC sequence
in the top chart and the serial order for which the two
different dIPFC neurons are the most sensitive to in the
bottom chart.

In the top chart, we can observe that the reconstructed
OFC sequences in red follow a similar pattern to the ones in
blue although the identity of the neurons is not completely
preserved. Nonetheless, we can see that the ordinal infor-
mation in the bottom chart is matched, which means that
the proposed sequence in the top chart follows the temporal
pattern encoded in the IPFC and in the dIPFC layers.

Hence, despite the indices in the sequence have been lost
in the encoding process, the system is capable to retrieve
the memory sequences from incomplete information (due to
compressive rank) with small error.

In order to analyze the accuracy of the Inferno Gate
network, we plot in Fig [6] the euclidean error normalized
between [0, 1] made by the network during recall with respect
to the number of items given as input vector, resp. b). The
exploration stage was limited to 10.000 iterations for each
experiment and we plot the retrieved sequences for 20 items
given out of 50 items to retrieve, resp. in Fig. [6]b). The grey
areas indicate the part of sequence given to the system to
restitute the missing part.

In Fig. [6] a), the error rate computed from goal sequence
encoded in IPFC/dIPFC and retrieved sequences in the OFC
layer with respect to the amount of items given from 0 to
80% of the sequence given at the B45 level. The more the
number of units to search are few, the more accurate is the
recall. If we provide 40% of the items of the sequence we
want to retrieve, the error on the neurons id is particularly
small and almost error free if 80% of the neurons are
given. In b), serial recall in OFC layer from incomplete
information. Retrieved goal sequence when 40%, information
are furnished to the system. In the top charts, the generated
sequences in OFC layer with identity fo the STR neurons are
displayed in red with the goal sequences to retrieve in blue.
The more information is given to the system, the easier is the
explorative search to retrieve the missing units identity. In the
bottom chart, although the rank order in the temporal patterns
of the units in IPFC is respected, this does not warranty that
the units identity is retrieved correctly in the OFC sequences.

V. DISCUSSION

We have presented the neural architecture INFERNO
based on free-energy minimization using recurrent spiking
neural networks for modeling the CX-BG loop [26]. This
neural architecture is used for learning temporal sequences
and for retrieving vocal 'motor’ primitives by evaluating
sensory feedback [28], although in our case, we did not
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a), the temporal pattern retrieved in IPFC/dIPFC layers and the temporal
pattern of the goal sequence in blue are displayed in the bottom chart. In
c), the OFC layer achieves to retrieve with some uncertainty a temporal
sequence but the global structure of the sequence and the rank orders are
mostly respected.

model the vocal articulatory system for sound generation but
regenerated the sound primitives instead. We will model this
part in further works.

The INFERNO network has two features, namely gen-
eralization and robustness to temporal delays. On the one
hand, the number of units in the Striatum layer imposes a
dimensionality reduction depending on the number of sound
primitives to be learned (eg the number of MFCC vectors).
On the other hand, the temporal chains in the CX layer
permits to solve the temporal credit assignment problem and
to link causes and effects thanks to STDP.

In the first experiments we have designed the network with
the same number of STR units as MFCCs to retrieve (14.000
units) in order to have an orthogonal representation with few
overlapping. The exploration of the audio primitives in a
self-organized manner is similar to a vocal babbling, testing
different sounds till convergence to the correct ones.

In second part, we have presented a novel neural archi-
tecture for modeling the fronto-striatal (PFC-BG) loop and
learning temporal sequences. This network, named Inferno
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Fig. 6. Performance analysis of the Inferno gate architecture for retrieving
sequences with respect to the amount of information given.

Gate [29], extends our original neural architecture Inferno
presented earlier. Here, we have showed its effectiveness in
the more challenging tasks of speech recognition and produc-
tion based on structure learning. Although the two networks
are similar in their functional organization, the encoding type
is different. The first network uses the STDP mechanism
for learning temporal correlations between spiking events
whereas the second one uses a gating mechanism for binding
the item’s rank and their position within a sequence.

By discriminating content (which sound) and contextual
information (when to play it in the sequence), we have
showed that the two networks are capable to robustly learn
the temporal structure within sequences and to retrieve the
items identity in the correct order. In the first experiment,
we did not compare the results of the network Inferno with
standard RNN methods such as LSTM, as with 5% error
reconstruction it performed advantageously. We will do the
comparison in future research. In the second experiment, we
compare the performances of the LSTM network with In-
ferno Gate in [29] and showed that our network outperforms
the LSTM. The rationale is that by strictly separating the
structure to learn and items to locate, the problem becomes
easier even with a high number of items and with longer



sequences.

In future researches, we envision to extend our framework
to social and developmental robotics with speech generation
and with visual and motor integration [34], [35], [36].
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