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1 Department of Statistics and O.R., Universidad de Oviedo, Oviedo, Spain
couso@uniovi.es

2 IRIT, CNRS Université Paul Sabatier, Toulouse, France
dubois@irit.fr

3 Department of Computer Science, Universität Paderborn, Paderborn, Germany
eyke@upb.de

Abstract. The term coarse data encompasses different types of incom-
plete data where the (partial) information about the outcomes of a ran-
dom experiment can be expressed in terms of subsets of the sample space.
We consider situations where the coarsening process is stochastic, and
illustrate with examples how ignoring this process may produce mislead-
ing estimations.
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1 Introduction

The term “coarse data” [15] covers a number of situations treated in the lit-
erature such as rounded, heaped, censored or partially missing data. It refers
to those situations where we do not get access to the exact value of the data,
but only to some subset of the sample space that contains it. Thus, formally
speaking, the observations are not assumed to belong to the sample space, but
to its power set (see [4,8] for further discussions on set-valued data).

One key problem consists in estimating the distribution of the underlying
random variable on the basis of the available incomplete sample data. During
the last two decades, different authors have independently studied the way to
adapt maximum likelihood estimation (MLE) to this case [5,6,11,13,15,17,20].
In fact, the maximum likelihood procedure results in a consistent estimator of
the parameter under some regularity conditions [16], and therefore it is one of
the most usual approaches in a variety of machine learning problems. One may
adapt the MLE method to incomplete data by considering the collection of pos-
sible completions of data, which would lead to a set-valued likelihood function.
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Thus, maximizing the likelihood function for each of the feasible samples would
lead to a set-valued counterpart of the MLE. But this does not seem to be
the most reasonable procedure (see comments about extension principle -based
approaches in [17], for further details). Two dual alternative procedures have
been recently explored [13,14,17]. They consist in replacing the set-valued like-
lihood either by its upper [17] or its lower bound [13], and seeking for the arg
max of the corresponding real-valued mappings. They are respectively referred
to as the maximax and the maximin estimators. Some properties of both of them
have been recently studied in [14].

A third approach focusses on the observations rather than on the underly-
ing (ill-known) outcomes represented by them. The so-called “visible” likelihood
function [6,7] represents the probability of observing the actual observed (set-
valued) sample, as a function of a vector of parameters. In order to determine
such a function, we do not only need to parametrize the underlying experiment,
but also of the coarsening process. The joint distribution over the collection of
pairs constituted by the outcomes and their corresponding (incomplete) obser-
vations is univocally determined by the marginal distribution over the sample
space plus a transition probability from the sample space to its power set, repre-
senting the coarsening process. The “visible” likelihood function is nothing else
but the likelihood of the marginal distribution over the power set, expressed as
a function of the vector of parameters. Different aspects of the arg max of this
function have been recently studied in the literature [1,3,5–7,20]. This paper
surveys those advances.

2 What Has Occurred and What Do We Know About It?

2.1 Preliminaries and Notation

Let a random variable X : Ω → X represent the outcome of a certain
random experiment. For the sake of simplicity, let us assume that its range
X = {a1, . . . , am} is finite. Suppose that instead of directly observing X, one
observes a coarse version of it, Y � X. Let Y = {b1, . . . , br} denote the (finite)
set of possible observations, with bj = Aj ⊆ X , ∀ j = 1, . . . , r. Let us introduce
the following notation:

– pkj = P (X = ak, Y = bj) denotes the joint probability of getting the precise
outcome X = ak and observing bj = Aj ,

– pk. = P (X = ak) denotes the probability that the precise outcome is ak,
– p.j = P (Y = bj) denotes the probability that the generation plus the impre-

cisiation processes lead us to observe bj = Aj .
– p.j|k. = P (Y = Aj |X = ak) denotes the (conditional) probability of observing

bj = Aj if the precise outcome is ak,
– pk.|.j = P (X = ak|Y = Aj) denotes the (conditional) probability that the

value of X is ak if we have been reported that it belongs to bj = Aj .



We may represent the joint distribution of (X,Y ) by means of the matrix
(M |p): ⎛

⎝
p.1|1. . . . p.r|1. p1.

. . . . . . . . . . . .
p.1|m. . . . p.r|m. pm.,

⎞
⎠

where (p1., . . . , pm.)T characterizes the distribution of the underlying generating
process, while M = (p.j|k.)k=1,...,m;j = 1, . . . , r represents the coarsening process.
M is the so-called mixing matrix [25]. We can alternatively characterise it by
means of (M ′|p′): ⎛

⎝
p1.|.1 . . . pm.|.1 p.1

. . . . . . . . . . . .
p1.|.r . . . pm.|.r p.r

⎞
⎠

where the vector (p.1, . . . , p.r)T characterises the probability distribution of the
observation process, and M ′ = (pk.|.j)k=1,...,m;j=1,...,r represents the conditional
probability of X (precise outcome) given Y (observation).

Now, let us assume that the above joint distribution (or equivalently, each
of the matrices (M |p) and (M ′|p′)) is characterized by means of a (vector of)
parameter(s) θ ∈ Θ. We naturally assume that the dimension of θ is less than or
equal to the number of elements in both matrices, i.e., it is less than or equal to
min{m×(r+1), r(m+1)}. We also assume that X cannot be written as a function
of Y , because such a situation would involve a trivial coarsening process, were
Y is just some kind of “encoding” of X. Similarly, we can assume without much
loss of generality that X and Y are not independent. Otherwise, the restriction
X ∈ Y would imply that Y is constant, and its image includes all the possible
outcomes for X. Furthermore, the parameter is said to be separable [6] wrt (M |p)
if it can be “separated” into two (maybe multidimensional) components θ1 ∈ Θ1,
θ2 ∈ Θ2 such that Θ = Θ1 × Θ2, where pθ

.j|k. and pθ
k. can be respectively written

as functions of θ1 and θ2. This definition corresponds to an earlier notion of
“distinctness” of the parameters [15]. Alternatively, θ is said to be separable wrt
(M ′|p′) if it can be “separated” into two (maybe multidimensional) components
θ3 ∈ Θ3, θ4 ∈ Θ4 such that Θ = Θ3 × Θ4 and pθ

k.|.j and pθ
.j can be respectively

written as functions of θ3 and θ4. One may think that the notion of “separability”
implies some kind of “independence” between X (outcome) and Y (imprecise
observation), but this is not the case, as we illustrate below.

We will provide three examples illustrating three different situations: In the
first case, Y can be expressed as a function of X, and therefore it determines a
partition on X , but their joint distribution depend on a single one-dimensional
parameter. In the second case, Y can also be written as a function of X, but the
parameters are separable. In the third case, Y is not a function of X, and in fact,
it represents a “coarsening at random process” [15] and the joint distribution of
(X,Y ) depends on a one-dimensional parameter.

Example 1 (Taken from [7]). Let us consider the following example by Dempster
et al. in [10] under the light of our analysis. It is based on a former example



by Rao. There is a sample of 197 animals distributed into four categories, so
that the observed data consist of:

n.1 = 125, n.2 = 18, n.3 = 20, n.4 = 34.

Suppose that the first category is in fact a mixture of two sub-categories, but
we do not have information about the number of individuals observed from each
of them. On the other hand, a genetic model for the population specifies the
following restrictions about the five categories: p11 = 0.5, p12 = p.4, p.2 = p.3.
If we use the notation: p12 = 0.25π = p.4 and p.2 = 0.25(1 − π) = p.3, the
corresponding matrix (M ′|p′) is given as

⎛
⎜⎜⎝

0.5
0.5+0.25π

0.25π
0.5+0.25π 0 0 0 0.5 + 0.25π

0 0 1 0 0 0.25(1 − π)
0 0 0 1 0 0.25(1 − π)
0 0 0 0 1 0.25π

⎞
⎟⎟⎠

and only depends on a single parameter.

Example 2. Let X be the random variable that represents the score shown on
the top face of a die. Let (p1, . . . , p6) characterize the probability distribution
over the set of possible outcomes. Let us suppose that we are just told whether
X takes an even or an odd value. We identify the possible observations (values
of Y ) respectively with b1 = {1, 3, 5} and b2 = {2, 4, 6}. This example is formally
equivalent to the case of grouping data, where Y can be expressed as a function of
X. In other words, the coarsening process is a deterministic procedure where all
the values in the mixing matrix M are either 0 or 1. Thus, the distribution of Y
only depends on θ1 = p1+p2+p3. Let us now consider the matrix M ′ = (m′

ij)i,j

where the two-dimensional variable (X,Y ) can take six different values, and its
joint distribution can be expressed in terms of (p1, . . . , p5). It can be also written
as a function of θ1 = p1 + p3 + p5 (determining the marginal distribution of Y )
and the four-dimensional vector θ2 = (p1

θ1
, p3

θ1
, p2
1−θ1

, p4
1−θ1

) (that characterizes the
disambiguation process). Thus, the joint distribution is separable wrt M ′ and p′.

Example 3. Suppose a coin is flipped and let X be the binary random vari-
able that takes the value 1= “heads”, and 0=“tails”. Suppose that half of the
times, we are not informed about the result (regardless what the result is). The
coarsening process is therefore characterised as follows:

P (Y = {0, 1}|X = 0) = P (Y = {0, 1}|X = 1) = 0.5,

P (Y = {0}|X = 0) = P (Y = {1}|X = 1) = 0.5.

This process agrees with the notion of coarsening at random (CAR) introduced
by Heitjan and Rubin, to be discussed later on, since the fact of being informed of
the result does not depend on the result itself. Furthermore, it satisfies a stronger
property called “superset assumption” [18], since we are informed half of the
times, on average, about the result of the coin, whatever it is. Notwithstanding,



the joint distribution of (X,Y ) can be expressed in terms of the one-dimensional
parameter p ∈ (0, 1) denoting the probability of heads. In fact, under the above
assumptions, we have:

P (X = 1, Y = {1}) = P (X = 1, Y = {0, 1}) = 0.5p,

P (X = 0, Y = {0}) = P (X = 0, Y = {0, 1}) = 0.5(1 − p).

As a conclusion, the above example satisfies the so-called property of “missing at
random” (MAR), but the joint distribution of (X,Y ) is completely characterised
by marginal distribution of Y , since both of them depend on the same -single-
parameter.

As a matter of fact, the parameter of the joint distribution can be written
as a function of the parameter of the distribution of Y when the distribution
about the instantiation process is known, given the marginal distribution of Y .
This does not seem to be related to the degree of dependence between X and
Y . In this case, the problem of identifiability of the parameter of the marginal
distribution of Y reduces to the problem of identifiability of the parameter of the
joint likelihood function, and therefore, a MLE procedure based on the “visible”
likelihood function seems a good option in order to estimate the parameter.

2.2 The Outcomes of an Experiment and Their Incomplete
Observations

According to the framework developed in the last subsection, we can easily
observe that, given some bj = Aj ∈ Y, the two events X ∈ Aj and Y = Aj do
not coincide in general. In fact, it is generally assumed that the latter implies
the former, but the equivalence does not hold in general: For, suppose that
X ∈ Aj implies Y = Aj . Therefore, for every ak ∈ Aj , we can derive that
X = ak implies X ∈ Aj and therefore Y = Aj . Thus, we can deduce that
P (Y = Aj |X = ak) = 1,∀ ak ∈ Aj . Thus, the above implication entails a
deterministic coarsening process, inducing a partition over the set of outcomes X .

Let us illustrate the difference between the events X ∈ Aj and Y = Aj and
their corresponding probabilities with an example:

Example 4 (Taken from [7]). Consider the random experiment that consists on
rolling a dice. We do not know whether the dice is fair or not. Take a sample of
N tosses of the dice and assume that the reporter has told us n1 of the times
that the result was less than or equal to 3 and the remaining n2 = N −n1 tosses,
he told us that it was greater than or equal to 3. After each toss, when the actual
result (X) is 3, the reporter needs to make a decision. Let us assume that the
conditional probability P (Y = {1, 2, 3}|X = 3) is a fixed number α ∈ [0, 1]. The
joint distribution of (X,Y ) can be written as a function of (p1, . . . , p6) and α,
since it is determined by the following matrix: (M |p) :



⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 p1
1 0 p2
α 1 − α p3
0 1 p4
0 1 p5
0 1 p6

⎞
⎟⎟⎟⎟⎟⎟⎠

corresponding to the joint probability

Y,X 1 2 3 4 5 6
y1 p1 p2 α p3 0 0 0
y2 0 0 (1 − α) p3 p4 p5 p6

We can easily make the distinction between the two events X ∈ {1, 2, 3} (the
result is less than or equal to 3) and Y = {1, 2, 3} (we are told that the result is
less than or equal to 3) and their corresponding probabilities. According to the
above notation, the probability of the first event is

P (X ∈ {1, 2, 3}) = p1 + p2 + p3,

while the probability of the latter is:

P (Y = {1, 2, 3}) =
P (X = 1, Y = {1, 2, 3}) +P (X = 2, Y = {1, 2, 3}) + P (X = 3, Y = {1, 2, 3})

= p1 + p2 + α p3.

3 The Optimization Problem: What Should We
Maximise?

Let us consider a sequence Z = ((X1, Y1), . . . , (XN , YN )) of N iid copies of Z =
(X,Y ). We will use the nomenclature z = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N

to represent a specific sample of the vector (X,Y ). Thus, y = (y1, . . . , yN ) will
denote the observed sample (an observation of the vector Y = (Y1, . . . , YN )),
and x = (x1, . . . , xN ) will denote an arbitrary artificial sample from X for the
unobservable (latent) variable X, that we shall vary in X N . We can describe any
sample z in frequentist terms assuming exchangeability:

– nkj =
∑N

i=1 1{(ak,bj)}(xi, yi) is the number of repetitions of (ak, bj) in the
sample z;

–
∑m

k=1 nkj = n.j be the number of observations of bj = Aj in y;
–

∑r
j=1 nkj = nk. be the number of appearances of aj in x.

Clearly,
∑m

k=1 nk. =
∑r

j=1 n.j = N . Let the reader notice that, once a specific
sample y = (y1, . . . , yN ) ∈ YN has been observed, the number of nkj repetitions
of each pair (ak, bj) ∈ X × Y in the sample, can be expressed as a function of
x = (x1, . . . , xN ).



3.1 Different Generalizations of the Notion of the Likelihood
Function

We may consider the following two generalizations of the likelihood function (and
their respective logarithms), depending on whether our sequence of observations
y = (y1, . . . , yN ) is interpreted either as a singleton in YN or as a non-trivial
subset of X N :

– p(y; θ) =
∏N

i=1 p(yi; θ) denotes the probability of observing y ∈ YN , assum-
ing that the value of the parameter is θ. It can be alternatively expressed
as p(y; θ) =

∏r
j=1(p

θ
.j)

n.j , where n.j denotes the number of repetitions of
bj = Aj in the sample of size N (the number of times that the reporter says
that the outcome of the experiment belongs to Aj .) The logarithm of this
likelihood function will be denoted by

Ly(θ) = log p(y; θ) =
N∑

i=1

log p(yi; θ) =
r∑

j=1

n.j log pθ
.j .

We call p(y; θ) the visible likelihood function [7], because we can compute it
based on the available data only, that is the observed sample y. It is also
sometimes called the marginal likelihood of the observed data in the EM liter-
ature, not to be confused with the marginal likelihood in a Bayesian context
(see [2], for instance).

– Alternatively,

λ(y; θ) =
r∏

j=1

P (X ∈ Aj ; θ)n.j ,

called the “face likelihood” in [9,20] does not refer to the observation process,
and replaces the probability of reporting Aj as the result of an observation (i.e.
P (Y = Aj)) by the probability that the precise outcome falls inside the set
Aj , P (X ∈ Aj). As we have previously noticed, the occurrence of event “X ∈
Aj” is a consequence of, but does not necessarily coincide with the outcome
“Y = Aj”. In our context, p(y; θ) represents the probability of occurrence of
the result “(Y1, . . . , YN ) = y”, given the hypothesis θ. Therefore given two
arbitrary different samples y �= y′ the respective events (Y1, . . . , YN ) = y and
“(Y1, . . . , YN ) = y′” are mutually exclusive. In contrast, λ(y; θ) denotes the
probability of occurrence of the event (X1, . . . , XN ) ∈ y1× . . .×yN . Events of
this form may overlap, in the sense that, given two different samples y �= y′,
the corresponding events (X1, . . . , XN ) ∈ y1 × . . . × yN and (X1, . . . , XN ) ∈
y′
1 × . . . × y′

N are not necessarily mutually exclusive. Therefore λ(y; θ) can
not be regarded as a likelihood in the sense of Edwards [12]. This criterion
has been generalized to uncertain data and exploited in the Evidential EM
algorithm of Denœux [11]. This extension of EM has been successfully used
in some applications (see [23,24] and references therein).

The above functions p and λ do coincide if and only if the coarsening process
is deterministic, and therefore, the collection of sets {A1, . . . , Ar} forms a par-
tition of X . In fact, P (Y = Aj) ≤ P (X ∈ Aj) for every j = 1, . . . , r and the



equalities hold when the coarsening is deterministic. Otherwise, if there exists a
pair (k, j) with ak ∈ Aj and P (Y = Aj |X = ak) < 1 then we easily derive that
P (Y = Aj) is strictly smaller than P (X ∈ Aj) and therefore, we deduce that
p(y, θ) is strictly less than λ(y, θ). But we may ask ourselves whether the maxi-
mization of each of those functions leads or not to the same pair of maximizers,
even in those cases where they do not coincide. The next example illustrates a
situation where both methods lead to completely different estimators.

Example 5. Consider again the situation described in Example 4. Furthermore,
suppose that the reporter provides us with the following additional information:
when the result is X = 3, he will flip a coin. If it lands heads, he will tells us that
the result is less than or equal to 3. Otherwise, he will tell us that it is greater
than or equal to 3. Mathematically, α = P (Y = {1, 2, 3}|X = 3) = 0.5. Under
these conditions, the visible likelihood is

p(y, θ) = (p1 + p2 + 0.5 p3)300 + (0.5 p3 + p4 + p5 + p6)700.

It attains its maximum value for every (p̂1, . . . , p̂6) satisfying the restrictions:
p̂1 + p̂2 + 0.5 p̂3 = 0.3 and 0.5 p̂3 + p̂4 + p̂5 + p̂6 = 0.7 (The set of solutions is not
a singleton). Alternatively, the face likelihood function is calculated as follows:

λ(y, θ) = (p1 + p2 + p3)300 + (p3 + p4 + p5 + p6)700.

It attains the maximum value for (p̂1, . . . , p̂6) = (0, 0, 1, 0, 0, 0). In other words,
according to this maximization procedure, the experiment is assumed to be deter-
ministic.

Both optimization procedures lead to completely different solutions. In fact,
according to the first set of solutions, p3 is upper bounded by 0.6, while in the
second case it is assumed to be equal to 1. Furthermore, according to the Weak
Law of Large Numbers, the relative frequencies n.1

N and n.2
N respectively converge

in probability to p.1 and p.2 that, according to the information, respectively
coincide with p1+p2+0.5 p3 and 0.5 p3+p4+p5+p6. Thus, the first procedure (the
one based on the visible likelihood) satisfies the following consistency property:

lim
n→∞ p̂1 + p̂2 + 0.5 p̂3 = p1 + p2 + 0.5 p3

and
lim

n→∞ 0.5 p̂3 + p̂4 + p̂5 + p̂6 = 0.5 p3 + p4 + p5 + p6.

In contrast, the estimation based on the face likelihood does not satisfy the above
consistency property unless the underlying probability satisfies the following
equality:

p1 + p2 + 0.5 p3 = 0.5 p3 + p4 + p5 + p6 = 0.5.

The differences between the visible and the face likelihood functions have
been studied in practice in relation with incomplete ranked data in [1,3]. In
fact, incomplete rankings are viewed there as coarse observations of ranked
data. Let X = S3 denote the collection of rankings (permutations) over a set



U = {a1, a2, a3} of 3 items. We denote by π : {1, 2, 3} ⇒ {1, 2, 3} a complete
ranking (a generic element of S3), where π(k) denotes the position of the kth

item ak in the ranking. An incomplete ranking τ can be associated with the
collection of complete rankings that are in agreement with it denoted E(τ). An
important special case is an incomplete ranking τ in the form of a pairwise
comparison ai 
 aj , which is associated with the set of extensions

E(τ) = E(ai 
 aj) = {π ∈ SK : π(i) < π(j)}.

For every pair (i, j), let ni denote the number of times that the incomplete
ranking τi is observed in a sample of size N . Let us furthermore assume that the
marginal distribution of X on S3 belongs to a family of distributions parame-
trized by some vector of parameters θ, while the coarsening process is determined
by some λ. The face likelihood based on the above sample is calculated as follow:

λ(y; θ) =
3∏

i=1

∏
j �=i

Pθ(X ∈ E(τi))ni ,

while the visible likelihood function is calculated as

p(y; θ) =
3∏

i=1

∏
j �=i

P(θ,λ)(Y = τi)ni .

They do not coincide in general. Let us consider, for instance, the top-2 setting,
in which always the two items on the top of the ranking are observed. The
corresponding mixing matrix denotes a one-to-one correspondence between πi

and τi, for i = 1, . . . , 6, where:

π1(1) = 1, π1(2) = 2, π1(3) = 3
π2(1) = 1, π2(2) = 3, π2(3) = 2
π3(1) = 2, π3(2) = 1, π3(3) = 3
π4(1) = 2, π4(2) = 3, π4(3) = 1
π5(1) = 3, π5(2) = 1, π5(3) = 2
π6(1) = 3, π6(2) = 2, π6(3) = 1

and

τ1 = a1 
 a2

τ2 = a1 
 a3

τ3 = a2 
 a1

τ4 = a3 
 a1

τ5 = a2 
 a3

τ6 = a3 
 a2

Thus Y takes the “value” τi if and only if X = πi, for all i = 1, . . . , 6. Let us
furthermore notice that each partial ranking τi represents a collection of three
different complete rankings:

E(τ1) = {π1, π2, π4}
E(τ2) = {π1, π2, π3}
E(τ3) = {π1, π2, π4}
E(τ4) = {π1, π2, π4}
E(τ5) = {π1, π2, π4}
E(τ6) = {π1, π2, π4}
Thus, the face and the visible likelihood functions are respectively calculated

as follows:

λ(y; θ) =
6∏

i=1

Pθ(X ∈ E(τi))ni



while

p(y, θ) =
∏ 6∏

i=1

Pθ(X = πi)ni .

They do not lead in general to the same estimations, as it is checked in [3]. In
fact, under some general assumptions about the underlying generating process,
the visible likelihood-based estimator is consistent, while the face likelihood-
based estimator is not. Some additional formal studies about the consistency of
both estimators under different assumptions about the coarsening process are
performed in [1].

3.2 Different Assumptions About the Coarsening
and the Disambiguation Processes

Different assumptions about the coarsening and the disambiguation processes
have been investigated in the literature [1,15,18,21,22]. The purpose in some
of those cases was to establish simple conditions under which the stochastic
nature of the coarsening process could be ignored when drawing inferences from
data. This subsection reviews two assumptions, one about the coarsening process
and the other one about the disambiguation process, both of them commonly
considered in the literature.

Coarsening at Random. One common assumption about the coarsening
process is the so-called “coarsening at random” assumption (CAR). It was intro-
duced by Heitjan and Rubin [15]. According to it, the underlying data do not
affect the observations. Mathematically,

P (Y = Aj |X = ak) = P (Yj = Aj |X = ak′), ∀ ak, a′
k ∈ Aj .

Two remarkable particular cases of CAR are:

– Grouping. We speak about grouped data [15] when the coarsening process
is deterministic, and therefore P (Y = Aj |X = ak) is either 1 (if ak ∈ Aj)
or 0 (otherwise). In this case, the set {A1, . . . , Ar} forms a partition of the
collection of possible outcomes X .

– Missing at random (MAR).- It particularizes the CAR assumption to the
case where data are either completely observed or missing, and therefore,
the collection of possible observations is Y = {{a1}, . . . , {am},X}. The MAR
assumption means that missingness is not affected by the underlying outcome.

The first one illustrates the partition case.

Example 6 (Taken from [19]). Let X = (X1,X2) with X = X1 × X2 = {p, n} ×
{p, n} We interpret X1, X2 as two medical tests with possible outcomes positive
or negative. Suppose that test X1 always is performed first on a patient, and that
test X2 is performed if and only if X1 comes out positive. Possible observations
that can be made then are b1 = {(n, n), (n, p)}, b2 = {(p, n)} and b3 = {(p, p)}.



These three outcomes determine a partition of X . Therefore, the matrix M is
determined by the following 0–1 conditional probabilities, and CAR is trivially
satisfied. In fact:

P (Y = b1|X = (n, n)) = P (Y = b1|X = (n, p)) = 1,

P (Y = b2|X = {(p, n)}) = 1,

P (Y = b3|X = {(p, p)}) = 1.

The following example illustrates the missing at random assumption:

Example 7 (Taken from [7]). A coin is tossed. The random variable X : Ω → X ,
where X = {h, t}, represents the result of the toss. We do not directly observe
the outcome, that is reported by someone else, who sometimes decides not to
tell us the result. The rest of the time, the information he provides about the
outcome is faithful. Let Y denote the information provided by this person about
the result. It takes the “values” {h}, {t} and {h, t}.

This example corresponds to the following matrix (M |p) where akj = p.j|k.,
k = 1, 2; j = 1, 2, 3: (

1 − α 0 α p
0 1 − β β 1 − p

)

The marginal distribution of X (outcome of the experiment) is given as

– p1. = P (X = h) = p,
– p2. = P (X = t) = 1 − p.

The joint probability distribution of (X,Y ) is therefore determined by:
⎛
⎝

X\Y {h} {t} {h, t}
h (1 − α)p 0 αp
t 0 (1 − β)(1 − p) β(1 − p)

⎞
⎠

Under the MAR assumption, we have that α = β, i.e.,

P (Y = {h, t}|X = h) = P (Y = {h, t}|X = t).

When furthermore the model is separable with respect to the matrix (M |p),
the coarsening process can be ignored, in the sense that both the visible and
the face likelihood lead to the same estimator of the parameter. This has been
proved by Heitjan and Rubin (see [15,20]). Additional conditions under which
the stochastic nature of the coarsening process can be ignored in some practical
problems have been recently studied in [1,3].



Uniform Disambiguation Process. We can alternatively make assumptions
about the disambiguation process. When dealing with noisy observations, it is
not unusual to assume that all the possible outcomes compatible with an obser-
vation Y = Aj (i.e., all the elements in Aj) are equally probable, and therefore
P (X = ak|Y = Aj) = 1Aj

(ak) · 1
#Aj

, ∀ ak ∈ Aj . According to this assumption,
the probability induced by X on X corresponds to the pignistic transform [26]
of the mass function derived from the marginal distribution of Y as follows:

m(Aj) = P (Y = Aj), j = 1, . . . , r.

Contrarily to what happens with the CAR assumption, under this alternative
assumption, the face and the visible likelihood do not necessarily lead to the same
estimator.

Example 8. Consider once more the situation described in Example 4, and
assume a uniform disambiguation process. Let p denote the probability of the
event Y = {1, 2, 3}. The visible likelihood can be written as a function of p as:

p(y, p) = pn.1(1 − p)n.2 .

The marginal probability over X can be written as a function of p as follows:

P (X = 1) = P (X = 2) =
p

3
, P (X = 3) =

p

3
+

1 − p

4
,

P (X = 4) = P (X = 5) = P (X = 6) =
1 − p

4
.

Therefore, the face likelihood is different from the visible likelihood:

λ(y, p) =
(

p +
1 − p

4

)n.1 (p

3
+ (1 − p)

)n.2

.

4 Concluding Remarks

We have provided an overview of the maximization procedures based on the so-
called visible and face likelihood functions. The face likelihood depends on the
marginal distribution of X, while the visible likelihood depends on the marginal
distribution of Y . Both, the face and the visible likelihoods have their advan-
tages and their caveats. When the parameter is separable with respect to the
matrix (M |p) (distinctness in the context of Heitjan and Rubin), the first one
only depends on θ3 while the second one depends on both, θ3 and θ4. The MLE
based on the visible likelihood is therefore not unique in this case, unless the
parameter set Θ4 is a singleton. But, although the arg max of the face likelihood
may be unique in those cases, it is not a consistent estimator in general, as we
have observed. The visible likelihood involves the probability of observing the
different outcomes Y = Aj (as a function of the parameter) and the proportion
of times each of them is observed in the sample. Such a proportion converges in



probability to the (true) probability of the event, and therefore, under some reg-
ularity conditions, the arg max of the visible function is consistent. Alternatively,
the face likelihood replaces the probability of observing Y = Aj by the proba-
bility of occurrence of X ∈ Aj . The vector (q1, . . . , qr), where qi = P (X ∈ Aj)
for all j1 is not proportional in general to the vector (p.1, . . . , p.r) and therefore,
the arg max of the face likelihood is not consistent in general.

Some recent studies compare the maximization of the visible likelihood func-
tion with other strategies such as the maximax and the maximin approaches
mentioned at the beginning of this paper. In this line, the face likelihood can be
regarded as a max-average approach, in the sense that it maximizes the aver-
age of the likelihoods of all the feasible samples on X N (all the samples of the
form x = (x1, . . . , xn) satisfying the restriction xi ∈ yi, ∀ i) (see [17] for fur-
ther details.) Further theoretical and empirical studies are needed in order to
determine what is the best strategy in each practical situation.
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