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Abstract. A multiple-agent logic, which associates subsets of agents
to logical formulas, has been recently proposed. The paper presents a
graphical counterpart of this logic, based on a multiple agent version of
possibilistic conditioning, and applies it to preference modeling. First,
preferences of agents are supposed to be all or nothing. We discuss how
one can move from the network to the logic representation and vice-
versa. The new representation enables us to focus on networks associated
to subsets of agents, and to identify inconsistent agents, or conflicting
subsets of agents. The question of optimization and dominance queries
is discussed. Finally, the paper outlines an extension where gradual pref-
erences are handled.

Keywords: Possibilistic network · Multiple agent logic · Preferences

1 Introduction

Modeling preferences has been an active research topic in Artificial intelligence 
for about twenty years. Graphical and logical formalisms have been proposed for 
describing user’s preferences compactly. Graphical representations are appealing 
for elicitation purposes, and offer a basis for local computation; see, [1] for an 
overview. Note that only a few graphical models have been proposed for mod-
eling multiple agent preferences, based on different extensions of Conditional 
Preference networks (CP-nets) [5,8], or Generalized Additive Independence net-
works (GAI-nets) [7]. Besides, a multiple agent logic [2], where formulas are 
pairs of the form (p, A) made of a proposition p and a subset of agents A, has
been advocated for handling beliefs: then (p, A) means ‘(at least) all agents in A 
believe that p is true’. But (p, A) may also have a preference reading (‘(at least) 
all agents in A want p to be true’).

The strong similarity of multiple agent logic with possibilistic logic and the 
existence of transformations between possibilistic logic and possibilistic networks 
[3] suggest to develop a graphical counterpart to multiple agent logic. When
modeling preferences, multiple agent networks can be seen as a generalization
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of individual π-Pref nets (when possibility degrees are binary valued). In the
following we investigate the interest of multiple agent networks (and of their
graded extension) for handling preferences.

This paper is organized as follows. Section 2 defines conditioning in case of
Boolean possibilities. Section 3 introduces multiple agent logic, and its graphical
counterpart in a preference perspective. Section 4 presents the main steps for
transforming one model into another. Section 5 discusses queries evaluation for
multiple agent network. Section 6 outlines an extension with priority levels of
multiple agent logic and network.

2 Conditioning and Possibilistic Networks: Boolean Case

Conditioning is a crucial notion when dealing with possibilistic networks. Here
we consider the elementary situation of a single agent and of two-valued possibil-
ity distributions. Possibilistic networks [3] are usually defined for non-dogmatic
possibility distributions, i.e., taking only positive values in (0, 1]. However, in the
two-valued case, the only non-dogmatic possibility distribution is the vacuous
one with value 1 for all states. So we must use a definition of conditioning that
makes sense for dogmatic possibility distributions. Conditioning in this case is
defined in the following way: Let Ω be the universe of discourse (set of all inter-
pretations). Then the interpretations known as possible are restricted by a subset
E �= ∅, E ⊂ Ω, and the considered possibility measure Π is such that Π(S) = 1
if E ∩ S �= ∅ and Π(S) = 0 otherwise (the possibility distribution being the
characteristic function of E). Conditioning obeys the equation:

Π(S ∩ T ) = Π(S|T ) ∧ Π(T ) (1)

where ∧ stands for Boolean conjunction. Then we define Π(·|T ) as the possibility
measure associated with the subset ET = T ∩E if T �= ∅ and ET = T if T ∩E = ∅.
ET is the result of revising E by T , the minimally specific solution of the above
equation under the success postulate ET ⊆ T . Thus:

Π(S|T ) = 1 if

{
S ∩ ET = S ∩ T ∩ E �= ∅ (Π(S ∩ T ) = Π(T ) = 1)
S ∩ ET = S ∩ T �= ∅, T ∩ E = ∅ (Π(S ∩ T ) = Π(T ) = 0)

= 0 otherwise (Π(S ∩ T ) = 0, Π(T ) = 1)

A Boolean possibility distribution can be decomposed into a combination of
conditional possibility distributions. This can be done by applying repeatedly
the definition of conditioning. Indeed, taking an arbitrarily order of variables in
set V = {X1, . . . , Xn}: π(X1, . . . , Xn) = π(X1|X2, . . . , Xn) ∧ · · · ∧ π(Xn). This
decomposition can be simplified when assuming some independence between
variables. Graphically, it can be represented by a possibilistic network where
each node represents a variable, edges represent the dependencies and conditional
distributions define the associated tables.

Example 1. Consider 3 Boolean variables X,Y,Z and π defined by the two inter-
pretations of x∧y. The possibilistic network associated to the ordering (X,Y,Z)



Table 1. Joint possibility distribution

XYZ π(Z | Y ) π(Y | X) π(X) π(XY Z)

¬x¬y¬z 1 1 0 0

¬x¬yz 1 1 0 0

¬xy¬z 1 1 0 0

¬xyz 1 1 0 0

x¬y¬z 1 0 1 0

x¬yz 1 0 1 0

xy¬z 1 1 1 1

xyz 1 1 1 1

Table 2. Joint possibility distribution

XYZ π(Z | Y ) π(Y | X) π(X) π(XY Z)

¬x¬y¬z 1 0 0 0

¬x¬yz 0 0 0 0

¬xy¬z 1 1 0 0

¬xyz 1 1 0 0

x¬y¬z 1 0 1 0

x¬yz 0 0 1 0

xy¬z 1 1 1 1

xyz 1 1 1 1

corresponding to this possibility distribution is given by columns 2, 3, 4 of
Table 1. The original knowledge xy can be recovered from the joint distribu-
tion of Table 1 in the last column using the chain rule. In this network, Z is
independent from X and Y .

Consider the same ordering of variables with the conditional tables given
in Table 2. This illustrates the two first cases above in the definition of Π(S |
T ). Note that here Y does not depend on X. The two networks have different
tables but correspond to the same possibility distribution. The first network has
conditional distributions less specific than the second one. So having fixed the
ordering of variables, not only the conditional tables are not unique, but even
the network topology is not unique.

3 Multiple Agent Representations

Multiple agent logic has been discussed in details in [2]. Formulas in this logic
are pairs of the form (p,A), made of a proposition p and a subset of agents A.
In this section, we explain the use of this logic for modeling preferences and
present its graphical counterpart. All will denote the set of all the agents and
capital letters, e.g., A, B, Ai, · · · denote subsets of All. Let p, q, pi, · · · denote
propositional formulas of a finite language.

3.1 Multiple Agent Logic

A possibilistic logic formula [6] of the form (p, α) is understood as N(p) ≥ α
(N is a necessity degree), where the higher α, the more imperative p. Multiple
agent logic shares formal similarity with possibilistic logic in terms of inference
rules, axioms, possibilistic measures and possibility distribution [2]. However, a
multiple agent formula (p,A) is understood at the semantic level as a constraint
of the form N(p) ⊇ A where N is a set-valued mapping that returns the set
of agents for whom satisfying p is imperative. Therefore, the formula (p,A)
means that at least all the agents in A find p imperative. Set-valued possibility
measure and necessity measure are related via duality. Indeed, Π(p) = N(¬p),
which corresponds to the maximal set of agents for whom the falsity of p is
not imperative, which could be expressed as “the truth of p is acceptable”.
Π(p)∩Π(¬p) represents the set of agents that are indifferent to the truth value



of p, and N(p) ∩ N(¬p) represents a set of inconsistent agents, which may be
empty or not. It can be checked that the set of agents who think that the truth
of p is imperative is a subset of the set of agents who think that its falsity is
not imperative, namely, N(p) ⊆ Π(p) provided there is no inconsistent agent.
The semantics of such a logic is defined by a so-called ma-distribution from a
universe of discourse Ω to subsets of agents, formally, π : Ω → 2All. Subsets
are partially ordered, which contrasts with a possibilistic logic distribution that
maps to a totally ordered scale. A multiple agent formula (pi, Ai) leads to the
following semantic representation by the ma-distribution

π(pi,Ai)(ω) =

{
All if ω |= pi

Ai (= All \ Ai) otherwise.
(2)

This expression indicates that agents not in Ai are indifferent to pi, but agents
in Ai find ¬pi unacceptable. More generally an ma-distribution should be inter-
preted as follows: π(ω) is the set of all agents that do not find ω unacceptable.

A ma-logic base Γ = {(pi, Ai)|i = 1,m} is associated to an ma-distribution,
s.t. πΓ(ω) is the intersection of sets of agents Ai that find the interpretation ω,
for which all formulas pi are false, acceptable.

πΓ (ω) =

{
All if ∀(pi, Ai) ∈ Γ, ω |= pi⋂{Ai : (pi, Ai) ∈ Γ, ω |= ¬pi} otherwise.

(3)

Two types of normalization exist for π: (i) The ma-normalization where ∃ ω ∈ Ω
s.t. π(ω) = All. Thus, all agents are altogether consistent and have at least
one common not unacceptable interpretation. This normalization entails the
following one. (ii) the i-normalization where

⋃{π(ω), ω ∈ Ω} = All. This means
that each agent is consistent individually by having at least one interpretation
that is not rejected. Yet, there may exist some contradictions between subgroups
of agents, for instance Γ = {(p,A), (¬p,A)}.

Example 2. Let us consider preferences of subsets of agents about drinks and their
accompaniments. We consider that the agent population is described by two char-
acteristics namely, being aWoman (W ) or aMan (M) and beingYoung (Y ) orOld
(O). The variables are Drink = {Tea(t), Coffee(¬t)}, Sugar = {Yes(s), No(¬s)}.
If we consider the ma-base: Γ = {(¬t, M), (t, M ∩ Y ), (¬s, O), (s, Y )}, we can check
that the ma-normalization is not verified. This is because N(¬t) ⊇ M and N(t) ⊇
M ∩ Y , hence N(t) ∩ N(¬t) ⊇ M ∩ Y ∩ M = M ∩ O. The old men demand tea
and not tea.

3.2 Graphical Representation of Multiple Agent Preferences

Possibilistic networks are the graphical counterpart of possibilistic logic and one
may go from one format to another while preserving semantics [3]. Likewise,
given the close similarity between possibilistic and multiple agent logic, we pro-
pose a graphical reading of the latter. First, we introduce the multiple agent
conditioning rule:

Π(p ∧ q) = Π(p|q) ∩ Π(q) (4)
This means that the set of all agents for whom the truth of p∧q is not unaccept-
able is equal to the intersection between the set of all agents for whom the truth



of q is not unacceptable and the set of all agents for whom the truth of p is not
unacceptable when q is true. It generalizes the conditioning of Boolean possibili-
ties to multiple agents. As in standard possibilistic networks, the decomposition
of a possibility distribution consists in expressing a joint possibility distribution
as a combination of conditional possibility distributions, a process that in the
two-valued possibility case, does not yield a unique result, even when fixing the
ordering of the variables, as shown above. Let E be a subset of All × Ω repre-
senting an ma-distribution π, and let E(a) the set of interpretations that agent
a ∈ All does not reject. The result of conditioning E by a set of interpretations
B will be again defined as the minimally specific revision of E(a) by B that
agrees with the definition of conditioning (4), for each agent a ∈ All, namely
EB(a) = E(a)∩B if this intersection is not empty and B otherwise. Notice that
the result differs from E ∩ (All × B) even if this set is not empty. If B contains
the set of models [q] of q, then the characteristic function of EB is denoted by
Π(· | q). The solution of Eq. (4) is then:

Π(p|q) =
{

All if Π(p ∧ q) = Π(q)

Π(p ∧ q) otherwise.
(5)

Let V = {X1, . . . , Xn} be a set of variables, each variable Xi has a value
domain D(Xi). xi denotes any value of Xi. In coherence with Eq. (4), we can
use the chain rule:

π(X1, ...,Xn) = π(X1|X2, ...,Xn) ∩ .. ∩ π(Xn−1|Xn) (6)

to decompose a joint ma-distribution into a conjunction of conditional possibility
distributions. Now, we introduce a new graphical model for representing multiple
agent preferences, called ma-net for short. This model shares similar graphical
component and independence relations as possibilistic networks [3]. Formally,

Definition 1 (ma-net). A multiple agent network G over a set of variables
V consists of two components: (i) Graphical component composed of a directed
acyclic graph (DAG). (ii) Numerical component associating to each node Xi

a conditional multiple agent distribution for each the context ui of its parents
Pa(Xi).

Example 3. Let us use the same variables and sets of agents as in Example 2, plus
variable Cake = {Yes(c), No(¬c)}. The network Drink → Cake ← Sugar and
the following conditional distributions: π(t) = W , π(¬t) = M ∩ Y , π(s) = Y ,
π(¬s) = O, π(c | ts) = M ∩Y,π(c | t¬s) = O,π(c | ¬ts) = M ∩Y,π(c | ¬t¬s) =
W,π(¬c | ts) = M∩O,π(¬c | t¬s) = W,π(¬c | ¬ts) = W,π(¬c | ¬t¬s) = M∩O
represent conditional preferences of agents. Using the chain rule, we have the
following ma-distribution: π(tsc) = ∅, π(ts¬c) = W ∩ Y ∩ O = ∅, π(t¬sc) = W ∩ O,

π(t¬s¬c) = W ∩ O, π(¬tsc) = M ∩ Y , π(¬ts¬c) = M ∩ Y ∩ W = ∅, π(¬t¬sc) =

M ∩Y ∩O∩W = ∅, π(¬t¬s¬c) = M ∩Y ∩O∩M ∩O = ∅. In ma-logic, we can encode
it by the following base: {(t¬s)∨(¬tsc), All), (¬t∨s,M∪Y ), (t∨¬s∨¬c,W ∪O)}.

Let us reconstruct the ma-conditional distributions π(Cake|Drink, Sugar)
and the marginals π(Drink),π(Sugar) using the conditioning rule:



π(tsc) = π(ts¬c) = π(ts) = ∅ so π(c|ts) = π(¬c|ts) = All.

π(t¬sc) = π(t¬s¬c) = π(t¬s) = W ∩ O so π(c|t¬s) = π(¬c|t¬s) = All.

π(¬tsc) = π(¬ts) = M ∩ Y so π(c|¬ts) = All.

But π(¬ts¬c) = ∅, π(¬ts) = M ∩ Y so π(¬c|¬ts) = ∅.
π(¬t¬sc) = π(¬t¬s¬c) = π(¬t¬s) = ∅ so π(c|¬t¬s) = π(¬c|¬t¬s) = All.

It can be checked that π(s) = M ∩ Y , π(¬s) = W ∩ O, π(t) = W ∩ O, π(¬t) =
M ∩ Y . We can easily check that even if this network has different conditional
tables it again yields the same ma-distribution.

4 Bridging Logical and Graphical Multiple Agent
Representations

Transformations between possibilistic graphical and logical representations [3]
can be adapted to multiple agent representations.

4.1 Logical Encoding of a Multiple Agent Network

The main idea consists in considering the ma-net G as a combination of local
multiple agent logic bases. Each node Xi ∈ V is associated to a logic base ΓXi

containing formulas of the form (xi ∨ ¬ui, A) and (¬xi ∨ ¬u′
i, A

′) where ui, u
′
i

are instantiations of Pa(Xi), and π(xi|ui) = A , π(¬xi|u′
i) = A′ appear in the

tables of G and A,A′ �= All. Each (conditional) possibility is viewed as a neces-
sity formula expressing the material counterpart of the condition. Indeed, for a
single agent N(¬p | q) = 1 − Π(p | q) = 1 − Π(p ∧ q) = N(¬q ∨ ¬p) = 1 pro-
vided that Π(p|q) = 0. So, in the multiagent case we can replace π(xi|ui) by the
clause ¬xi ∨¬ui when A �= All. When considered separately, we can see that the
conditional possibilities can be recovered from the local possibility distribution
such that Π(xi) =

⋃

ω|=xi

π(ω) since from Π(xi ∧ ui) = A and Π(ui) = All we

get Π(xi|ui) = A (by solving (4)). A multiple agent network is rarely normal-
ized due to conflicting preferences (which contrasts with standard possibilistic
networks), thus each conditional possibility distribution is represented by more
than one formula. Combined together, it is clear that the resulting logic base is
inconsistent with a degree equal to the intersection of all necessity values asso-
ciated to formulas. Then, the multiple agent base associated with the ma-net G
is ΓG = ΓX1

⋃ · · · ⋃ ΓXn
, ∀Xi ∈ V . The joint possibility distribution computed

from the multiple agent network G by the chain rule is the intersection of the pos-
sibility distributions associated to each node. The possibility distribution asso-
ciated to ΓG is also an intersection of distributions associated to the formula(s)
corresponding to each node. This explains why the two representations are rep-
resented by the same ma-distribution. This is the counterpart of the fact that
the union of possibilistic logic bases corresponds to the min-based aggregation
of their distributions [4]. Thus, the ma-net of Example 3 can be rewritten as the
union of the bases ΓCake = {(t∨¬s∨ c,All)}, ΓDrink = {(¬t,M ∨Y ), (t,W ∨O)},
ΓSugar = {(¬s,W ∨ O), (s,M ∨ Y )}.



4.2 Transformation of a Multiple Agent Logic into a Graphical
Structure

This converse transformation is more complex. Indeed, the independencies repre-
sented by the network are not explicit in logic bases. The transformation consists
of two steps: (i) Constructing the network, thus detecting the dependencies, (ii)
Computing the conditional possibilities. First, the logic base should be put into
a special form, where tautologies are removed (by removing subsumed formulas)
each formula should represent a disjunction of a variable value and an instance
of all it parents. An algorithm performing this type of transformation is given
in [3]. To adapt this algorithm the following definitions are useful:

Definition 2. Let (p,A) be a formula in Γ . Then (p,A) is said to be subsumed
by Γ if Γ⊇A � p, where Γ⊇A is composed of classical formulas that appear in Γ
in association with sets of agents that include A or are equal to A.

Removing subsumed formulas does not change the possibility distribution. This
means that several syntactically different multiple agent logic bases may have
the same possibility distribution as their semantic counterpart. For instance,
(x ∨ y,A ∩ B) is subsumed by (x,B), therefore Γ = {(x ∨ y,A ∩ B), (x,B)} =
{(x,B)}.

Definition 3. Let Γ be a multiple agent logic base in a clausal form, where all
clauses involve an instance of a variable X. Let Z be the set of other variables
appearing in the clauses of Γ . A clausal completion of Γ with respect to variable
X, denoted by E(Γ ), is the set of clauses of the form (x ∨ ¬z, A) where x is an
instance of X, z is an instance of all variables in Z, and A =

⋃{Ai : (x∨pi, Ai) ∈
Γ, z |= ¬pi}, with

⋃
(∅) = ∅.

It can be proved that the two bases Γ and E(Γ ) are equivalent, i.e. correspond
to the same possibility distribution.

The notions of subsumption and clausal completion are instrumental in the
procedure (similar to the one in [3]) for finding the dependence graph from the
multiple agent logic base. More precisely, for each Xi in V we execute these
steps:

– Determination of the local base for Xi: Let (xi ∨ p,A) be a clause of Γ s.t.
xi is an instance of Xi, and p is only built from Xi+1, . . . Xn. If (xi ∨ p,A)
is subsumed, then remove it from Γ . If Γ � (p,A), then replace (xi ∨ p,A)
by (p,A). Let Ki be the set of clauses (xi ∨ p, ) in Γ s.t. p is only built from
Xi+1, . . . , Xn

– The parents of the variable Xi are Pa(Xi) = {Xj : ∃c ∈ Ki s.t. c contains an
instance of Xj}

– Compute the clausal completion of Ki: Replace in Γ , Ki by its clausal com-
pletion E(Ki)

– Remove incoherent data: For each (xi ∨ p,A) of Γ (where p is built from
Xi+1, . . . , Xn s.t. Γ � (p,A) replace (xi ∨ p,A) by (p,A).



– Produce Γi: Let Γi be the set of clauses (xi ∨ p,A) in Γ s.t. p is only built
from Xi+1, . . . , Xn.

At the end of the procedure, each node Xi of the constructed graph
is associated to a local multiple agent base ΓXi

= {(xi ∨ ui)|xi ∈
D(Xi) and ui an instatiation of Pa(Xi)} containing only an instantiation of the
node and its parents. These local bases are useful to compute the conditional
possibilities such that:

πA(xi|ui) =

{
A if (¬xi ∨ ¬ui, A) ∈ Γ
All otherwise.

(7)

For instance if Γ = {(x∨y,A), (x∨ t, B)}, this base is equivalent to {(x∨y ∨
t, A∪B), (x∨¬y∨t, B), (x∨y∨¬t, A)}, so, π(¬x|¬y¬t) = A∩B, π(¬x|¬yt) = A,
π(¬x|y¬t) = B, π(¬x|yt) = All.

5 Specializing Representations and Queries

Before handling queries, we discuss two types of specializations, performed equiv-
alently on ma-nets and ma-logic bases, w.r.t. a subset of agents.

5.1 Sections and Restrictions of Networks and Logic Bases

In some cases, one may need to display preferences that are only related to a
subset of agents. Two possible operations are conceivable.

First, one may extract the network with common preferences expressed by
a subset of agents A, i.e. preferences approved by each element in A. This is
called a section. The obtained network has the same structure (with possible
deletion of nodes or edges) as the original ma-net and its conditional possibilities
are computed such that: π∀

A(xi|ui) = A if A ⊆ π(xi|ui) and π∀
A(xi|ui) = ∅

otherwise. Its logical counterpart ΓA is a propositional logic base where only
formulas weighted by Ai, such that A ⊆ Ai, are retained. This network can be
represented by a Boolean one, the same for each agent in A. If the section ΓA

is inconsistent, then, all the interpretations have a possibility degree equal to 0.
Second, one may restrain the set of agents to (subsets of) A, that is, forget about
preferences of agents out of A. This is called a restriction. The corresponding
network can be constructed as: π↓

A(xi|ui) = π(xi|ui) ∩ A. Its logical reading
corresponds to a multiple agent logic base containing multiple agent formulas of
the form (¬xi ∨ ¬ui, Ai ∩ A) s.t. Ai ∩ A �= ∅.

Example 4. In Example 2, the logic base corresponding to the common pref-
erences of the subset W ∪ O is ΓW∪O = {t}. However, the restriction of the
multiple-agent base to subset W∪O corresponds to Γ ↓

W∪O = {(¬t,M∩O), (t,W∪
O), (¬s,O), (s,W ∩ Y )}.



5.2 Optimization, Dominance and Other Queries

Optimal configurations for group A of agents in an ma-net exist if the set of
preferences of group of agents A is consistent, precisely, if for each node and
depending on the parents instantiation, the set of agents represented by the
conditional possibility is a superset of A. Finding an optimal configuration is
straightforward and linear wrt the number of variables. Starting from the root
nodes, we choose each time the value(s) xi s.t. A ⊆ π(xi). Then, depending on
the parents instantiation, each time we again choose a value with a conditional
possibility that includes or equals A. In case π(xi) is not a superset of A for some
i, then the algorithm stops and the set of agents A have inconsistent preferences.
Note that under the ma-normalization, one is always sure to have at least one
preferred configuration no matter the set A. In the Boolean setting, dominance
queries just amount to testing if each of the two interpretations is accepted
or rejected. Another possible query, is to search for the maximal set of agents
that prefer a given interpretation. The answer can be obtained by sweeping
through the ma-net starting from the roots with the set of agents initialized to
All, performing, at each node, the intersection of the current evaluation with
the ma-possibility corresponding to the value of the node variable for the given
interpretation.

6 Extension to Graded Possibilistic Networks. A Brief
Outline

Multi-agent possibilistic logic. We can extend multi-agent possibilistic logic
to graded preferences of agents using fuzzy set-valued counterparts of the notions
of possibility distribution, possibility measure, and necessity measure. Formulas
in ma-π logic are of the form (p, α/A) (where α is a necessity measure and A is
a subset of agents) expressing that, for at least all agents in A, it is imperative
to satisfy p with a minimal priority degree α. Asserting (p, α/A) means that
A is the maximal set of agents that tolerate the falsity of p with level at most
1 − α, while the agents in A are indifferent to the truth or falsity of p, finding
both tolerable at level 1. By duality, Π(p) is the fuzzy set of agents who do
not require the truth of ¬p imperatively. Each possibilistic ma-logic base Γ is
associated to an ma-π distribution πΓ .

πΓ (ω) =

{
1/All if ∀(pi, αi/Ai) ∈ Γ, ω |= pi⋂{(1 − αi)/Ai ∪ 1/Ai | (pi, αi/Ai) ∈ Γ, ω |= ¬pi} otherwise.

(8)

where πΓ (ω) = α/A means that at most all the agents in A find ω acceptable
with a maximal satisfaction degree equal to α. The ma-normalization and the
i-normalization defined above are still valid. Precisely, ma-normalization is still
related to the consistency of the propositional logic base and means that ∃ ω ∈
Ω, π(ω) = 1/All, where 1/All is clearly the same as All. Moreover, the i-
normalization is still defined by Π(Ω) =

⋃
ω∈Ω π(ω) = All, and means that all

the agents are individually consistent.



Example 5. Let us consider a multiple agent possibilistic logic corre-
sponding to the preferences over the variable Drink ∈ {t,¬t}: Γ =

{(¬t, 0.9/W ), (t, 0.3/M ∩ Y )}. The possibility distribution corresponding to this
base is:
π(t) = ((0.1/W ) ∪ (1/W ))∩(1/All) = (0.1/W ) ∪ (1/W ),

π(¬t) = (1/All) ∩ ((0.7/M ∩ Y ) ∪ (1/M ∩ Y )) = 0.7/M ∩ Y ) ∪ (1/M ∩ Y ).
π(t) indicates that women find a cup of tea fully acceptable and men find it
tolerable at best to a very low level 0.1. The preference base for women is
ΓW = {(t, 0.3)}.

Multi-agent possibilistic networks. Based on the same conditioning (Eq. (4))
and the same chain rule (Eq. (6)), where intersection is extended to fuzzy sets,
we can define multi-agent possibilistic networks (ma-π nets for short) an exten-
sion of the above-defined graphical counterpart of ma-logic, that have the same
structure as ma-nets.

Example 6. Let us consider the ma-π tables of Table 3, associated to the network
Drink → Cake ← Sugar. We can see that the local possibility distribution
associated to node ‘Drink’ corresponds to the logic base of Example 5. It is clear
that the network is not ma-normalized and this can be verified on its associated
possibility distribution. For instance, π(t¬sc) = (1/W ∪0.1/W )∩(1/O∪0.2/Y )∩
(1/O ∪ 0.1/Y ) = (1/W ∩O)∪ (0.1/M ∪Y ). It is clear that non-sugared tea with
cake (t¬sc) is satisfactory at degree 1 only for old women (W ∩ O).

Table 3. Conditional tables of an ma-π net

From an ma-π net to an instantiated π-Pref net. In contrast with ma-nets,
ma-π nets enable us to express levels of preference. Indeed, preferences are no
longer all or nothing. Then, the network pertaining to the preferences of a set
of agents A, induced as a section of the ma-π net, corresponds to a possibilistic
preference network (π-Pref net) with instantiated weights. Its structure is similar
to the ma-π net and the local possibility distributions associated to A are defined
by: πA(xi|ui) = α, ∀A ⊆ B s.t. πΓ (xi|ui) ⊆ α/B. Note that the induced net
is not always normalized due to the possible lack of normalization of the ma-π
net. Clearly, normalization states that the preferences of the set A of agents are
consistent and at least one interpretation has a possibility degree equal to 1 for
agents in A.

Example 7. Consider the ma-π net defined in Example 6. Its restriction to the set
of agents W ∩O are possibilistic tables: π(t) = 1, π(¬t) = 0.7, π(s) = 0.6, π(¬s) = 1,



π(c|ts) = 0.3, π(c|t¬s) = 1, π(c|¬ts) = 0.2, π(c|¬t¬s) = 1, π(¬c|ts) = π(¬c|t¬s) =

π(¬c|¬ts) = 1, and π(¬c|¬t¬s) = 0.7. The resulting network is normalized. The
joint possibility distribution too. It can be computed using the standard product-
based chain rule, and t¬sc and t¬s¬c are the best interpretations (π(t¬sc) =
π(t¬s¬c) = 1).

7 Related Work

Few models exist for representing multiple agent preferences. First, multi-agent
CP-nets (mCP-nets) [8] are an extension of CP-nets in a multiple agent setting.
They are made of several partial CP-nets representing the preferences of each
agent, such that a partial CP-net is a CP-net where some variables may not be
ranked when the agent is indifferent about the values of these variables. Graph-
ically, the network is obtained by combining the partial CP-nets. We can reason
about an mCP-net by querying each partial CP-net, and then deduce the answer
using different voting concepts like Pareto optimality, lexicographic ordering,
and quantitative ranking. Second, probabilistic CP-nets (PCP-nets) [5] enable
a compact representation of a probability distribution over several CP-nets and
stand for a summary of collective preferences. A PCP-net has the same graphical
component as a CP-net. Lastly, generalized additive independence (GAI) nets
[7] are quantitative graphical models where preferences of agents are expressed
by utilities. In a multiple agent framework, each node is characterized by a util-
ity vector where each of its elements represents the utility of the node given by
an agent. An aggregation procedure is then applied to these utilities to find the
optimal solution.

As shown here, ma-nets represent the collective preferences of agents with a
single network, similarly to PCP-nets and GAI nets (and in contrast with mCP-
nets), which facilitates the handling of preferences. Besides, it may handle the
indifference and non consistency of some agents, and can deal with the agents
based on their profiles and not only in terms of proportions contrarily to GAI
nets and PCP-nets. The model can be extended to describe preference intensities
by adding priorities, unlike mCP-nets and PCP-nets.

8 Concluding Remark

This paper calls for several lines of research. The handling of graded prefer-
ences has been only outlined. Algorithms for different types of queries have to
be extended to this general case. We may also think of other requests such as
identifying non consistent agents directly from multiple agent (possibilistic) net-
works. Besides, the full strength of the representation power of π-Pref nets comes
from a symbolic handling of the priorities yet to be developed.
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