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We consider the Navier-Stokes-Korteweg equations for a viscous compressible fluid with capillarity effect. Referring to those studies in the non-capillary case, the purpose of this paper is to investigate the dissipation effect of Korteweg tensor with the density-dependent capillarity κ( ). It is observed by the pointwise estimate that the linear third-order capillarity behaves like the heat diffusion of density fluctuation, which allows to develop the L p energy methods (independent of spectral analysis). As a result, the time-decay estimates of L q -L r type regarding this system can be established. The treatment of nonlinear capillarity depends mainly on new Besov product estimates and the elaborate use of Sobolev embeddings and interpolations. Our results can be also applied to the quantum Navier-Stokes system, since it is a special choice of capillarity κ( ) = κ/ .

Introduction

In this paper, we are interested in the dynamics of a liquid-vapor mixture in the setting of the Diffuse Interface (DI) approach (see for example [START_REF] Coquel | Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows[END_REF]), which originates from the works of Van der Waals [START_REF] Van Der Waals | Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung[END_REF] and Korteweg [30] more than one century ago. In order to select the physically relevant solutions, one adds to the classical compressible fluids equations a capillary term that penalizes high variations of the density. The formulation of the theory of capillarity with diffuse interface that we shall name the compressible Navier-Stokes-Korteweg equations were derived rigorously by Dunn and Serrin in [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF]. In the barotropic case, it reads as (1.1) ∂ t + div ( u) = 0,

∂ t ( u) + div ( u ⊗ u) -div 2µD(u) + λ div u I R d + ∇Π = div K
where Π P ( ) is the pressure function and

K div (κ( )∇ ) I R d + 1 2 (κ( )-κ ( ))|∇ | 2 I R d -κ( )∇ ⊗ ∇ .
stands for the internal Korteweg tensor. The density-dependent capillarity function κ( ) is assumed to be positive. Note that for smooth enough density and κ( ), one has (see for example [START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF])

(1.2) div K = ∇ κ( )∆ + 1 2 κ ( )|∇ | 2 .
In particular,

div K = 2κ ∇ ∆ √ √
, κ( ) = κ/ , κ ∇∆ , κ( ) = κ, for κ > 0. Indeed, the capillary becomes into Bohm potential in the first case, which corresponds to the so-called quantum Navier-Stokes fluids (see [START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF][START_REF] Jüngel | Quantum Navier-Stokes equations[END_REF] for the derivation and analysis). The density-dependent functions λ( ) and µ( ) (the bulk and shear viscosities) are supposed to be smooth enough and to satisfy µ > 0 and ν λ + 2µ > 0.

The reader may for instance refer to [START_REF] Haspot | Global strong solution for the Korteweg system with quantum pressure in dimension N ≥ 2[END_REF] where the "shallow water" assumption for the viscosity coefficients: (µ( ), λ( )) = ( , 0) was considered.

System (1.1) is supplemented with initial data

(1.3) ( , u)| t=0 = ( 0 , u 0 )
and we investigate strong solutions going to constant equilibrium (¯ , 0) with ¯ > 0, at infinity. System (1.1) reduces to the usual compressible Navier-Stokes equations if the capillarity κ ≡ 0. As we known, so far there is a huge literature on the existence and long time behavior of solutions to Navier-Stokes fluids in different settings. Here, let us pay more attention on those efforts dedicated to Navier-Stokes-Korteweg system, since people try to understand the Korteweg tensor of higher order derivatives. Since from [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF], the existence of smooth solutions to the Cauchy problem of (1.1) is known in Sobolev space from Hattori and Li's works [START_REF] Hattori | Solutions for two dimensional system for materials of Korteweg type[END_REF][START_REF] Hattori | Global solutions of a high dimensional system for Korteweg materials[END_REF]. In contrast with the local existence, global solutions are obtained only for initial data close enough to the stable equilibrium (¯ , 0) (say, P (¯ ) > 0). Inspired by the fact that (1.1) is invariant by the transformation (t, x) (l 2 t, lx), u(t, x) u(l 2 t, lx), l > 0 up to a change of the pressure term Π into l 2 Π, Danchin and Desjardins [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] investigated the global well-posedness in critical Besov spaces for initial data close enough to stable equilibria. Also, they gave a local-in-time existence result for initial densities bounded away from zero which does not require any stability assumptions on the pressure law, and thus applies to Van der Waals' law. Bresch, Desjardins and Lin [START_REF] Bresch | On some compressible fluid models: Korteweg, lubrication and shallow water systems[END_REF] analyzed the influence of the dependence of κ and µ with respect to the density, and established the global existence of weak solutions in a periodic or strip domain. Their result was improved later by Haspot in [START_REF] Haspot | Existence of global weak solution for compressible fluid models of Korteweg type[END_REF]. The local existence of strong solutions in maximal L p -regularity class was shown by Kotschote [START_REF] Kotschote | Strong solutions for a compressible fluid model of Korteweg type[END_REF], which are treated by Dore-Venni Theory, real interpolation and H ∞ calculus. Based on the global existence in energy space H s (s ≥ 3) (see [START_REF] Hattori | Solutions for two dimensional system for materials of Korteweg type[END_REF][START_REF] Hattori | Global solutions of a high dimensional system for Korteweg materials[END_REF]), Tan and Wang [START_REF] Tan | Optimal decay rates for the compressible fluid models of Korteweg type[END_REF] established various optimal L 2 and L p (p ≥ 2) decay rates of the solutions and their spatial derivatives. Later, those results are improved by Tan and his collaborators [START_REF] Tan | Global existence and optimal L 2 decay rate for the strong solutions to the compressible fluid models of Korteweg type[END_REF] and shown in Sobolev spaces H 2 (R 3 ) × H 1 (R 3 ) with less regularity. Chen and Zhao [START_REF] Chen | Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system[END_REF] studied the global existence and nonlinear stability of stationary solutions to compressible Navier-Stokes-Korteweg system with the external force of general form. The solvability of the stationary problem is inspired by the work of the second author and Tanaka [START_REF] Shibata | On the steady flow of compressible viscous fluid and its stability with respect to initial disturbance[END_REF] for the corresponding stationary Navier-Stokes equations. Some singular limits are also justified, for instance, Bian, Yao and Zhu [START_REF] Bian | vanishing capillarity limit of the compressible fluid models of Korteweg type to the Navier-Stokes equations[END_REF] performed the vanishing capillarity limit of smooth solutions to the initial value problem. The definite convergence estimates for any positive time are presented by energy methods. Li and Yong [START_REF] Li | Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations[END_REF] investigated the zero Mach number limit in the regime of smooth solutions. It was shown that smooth solutions of (1.1) converged to those for incompressible Navier-Stokes equations at some convergence rate. Another way of selecting the physical solutions, the non-local Korteweg system was introduced, where the capillary term involves the density through a convolution and only one derivative. Charve [START_REF] Charve | Local in time results for local and non-local capillary Navier-Stokes systems with large data[END_REF] studied the Korteweg compressible models (including the classical system (1.1) and the non-local system) for large initial data bounded away from zero, and with a reference pressure state ¯ which is not necessarily stable (P (¯ ) is non-positive in fact). Moreover, the convergence rate of the solutions of the nonlocal models towards the local Korteweg model was also studied. Germain and Lefloch [START_REF] Germain | Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model[END_REF] developed the finite energy method and validate the zero viscosity-capillarity limit associated with the Navier-Stokes-Korteweg system in one dimension. More precisely, the existence of finite energy solutions as well as their convergence toward entropy solutions to the Euler system. Recently, Antonelli and Spirito [START_REF] Antonelli | Global existence of weak solutions to the Navier-Stokes-Korteweg equations[END_REF] established the global existence of finite energy weak solutions for large initial data, where vacuum regions are allowed in the definition of weak solutions.

In the present paper, we aims at working on the issue of asymptotic behavior of solutions constructed by Danchin and Desjardins [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF]. More precisely, their global-in-time existence result holds true in the Besov spaces of L 2 -type for initial data close enough to stable equilibrium (see the assumption (H 1 ) below). Later, Charve, Danchin and the third author [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF] establish the global existence in more general critical L p framework. Moreover, it is shown that the solutions are globally Gevrey analytic in the critical class. As a consequence, the regularizing-decay estimates for any derivatives of solutions can be obtained in critical Besov spaces. Under an additional low-frequency assumption in the L 2 framework, Chikami and Kobayashi [START_REF] Chikami | Global well-posedness and time-decay estimates of the compressible Navie-Stokes-Korteweg system in critical Besov spaces[END_REF] constructed the globalin-time solution in the degenerate case which means the value of P (¯ ) can be equal to zero. Moreover, the time-weighted inequality for the solution was also deduced. Recently, Murata and the second author [START_REF] Murata | The global well-posedness for the compressible fluid model of Korteweg type[END_REF] addressed a totally different statement on the global existence and decay estimates to (1.1), provided that the initial data belong to Ω q,p B 3-2/p q,p × B 2(1-1/p) q,p whose regularity is independent of the spatial dimensions. The maximal L p -L q regularity to the linearized equation in R d is mainly used. See also [START_REF] Saito | On the maximal L p -L q regularity for a compressible fluid model of Korteweg type on general domains[END_REF] where the maximal L p -L q regularity for compressible fluids of Korteweg type has been established on general domains. To the best of author's knowledge, those timedecay rates are not optimal1 as the by-product of Gevrey smoothing (see [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF]). In fact, so far there is no result on the optimal decay rates of solutions to (1.1) in the L p critical framework, which is the motivation of this paper. Generally speaking, the elaborate spectral analysis may be always effective. Here, by exploring the parabolic diffusion of (1.1)-(1.2), we try to develop the elementary L p energy methods (independent of spectral analysis), which lead to desired time-decay estimates.

Reformulation and Main results

In order to state main results, let us reformulate system (1.1) first as the nonlinear perturbation form of constant state stable (¯ , 0), looking at the nonlinearities as source terms. For simplicity, one can normalize the reference density ¯ , the sound speed c √ ¯ and the total viscosity ν λ + 2μ (with λ λ(¯ ) and μ µ(¯ )) to be one. Then, introducing the density fluctuation a = -1, System (1.1) becomes (2.1)

∂ t a + div u = f, ∂ t u -Au + ∇a -κ∇∆a = g, with f = -div (au) and g = 5 j=1
g j , where

(2.2)

               g 1 = -u • ∇u, g 2 = (1 -I(a)) 2µdiv µ(a)Du + λ∇ λ(a)div u , g 3 = -I(a)Au, g 4 = J(a) • ∇a, g 5 = κ∇ κ(a)∆a + 1 2 ∇ κ(a)
• ∇a , and

(2.3) µ(a) = µ(1 + a) -μ, λ(a) = λ(1 + a) -λ, κ(a) = κ(1 + a) -κ, I(a) = a 1+a , J(a) = 1 -P (1+a) 1+a •
Note that Au µdiv 2D(u) + λ∇div u = µ∆u + (µ + λ)∇div u. Let us underline that the exact value of composite functions λ, µ, κ and P will not matter, we only need them to be smooth near zero, and vanish at zero.

For convenience of reader, we would like to recall the global-in-time existence of solutions to (1.1)-(1.3) in the L p framework. Denote by X p and X p the work space and the corresponding energy functional:

X p {(a, u)|(a, u) ∈ C b (R + ; Ḃ d 2 -1 2,1 )∩L 1 (R + ; Ḃ d 2 +1 2,1 ), a h ∈ C b (R + ; Ḃ d p p,1 )∩L 1 (R + ; Ḃ d p +2
p,1 ),

u h ∈ C b (R + ; Ḃ d p -1 p,1 ) ∩ L 1 (R + ; Ḃ d p +1
p,1 )} and (2.4) X p (t) (a, u)

L ∞ t ( Ḃ d 2 -1 2,1 )
+ (a, u)

L 1 t ( Ḃ d 2 +1 2,1 ) + a h L ∞ t ( Ḃ d p p,1 )∩L 1 t ( Ḃ d p +2 p,1 ) + u h L ∞ t ( Ḃ d p -1 p,1 )∩L 1 t ( Ḃ d p +1 p,1 )
. Some assumptions are as follows.

(H 1 ): ¯ > 0 s.t. P (¯ ) > 0;

(H 2 ): λ, µ, κ and P are real analytic 2 ;

(H 3 ):

a 0 0 -¯ ∈ Ḃ d p p,1 and u 0 ∈ Ḃ d p -1 p,1 , besides, (a 0 , u 0 ) in Ḃ d 2 -1 2,1 s.t. X p,0 (a 0 , u 0 ) Ḃ d 2 -1 2,1 + a 0 h Ḃ d p p,1 + u 0 h Ḃ d p -1 p,1
1.

2 Those functions are further assumed to be real analytic near zero in order to establish the global evolution of Gevrey regularity. 3) has a unique global-in-time solution (a, u) in the space X p . Furthermore, there exists a constant c 0 > 0 so that (a, u) belongs to the space

Y p {(a, u) ∈ X p |e √ c 0 tΛ 1 (a, u) ∈ X p }•
Indeed, Theorem 2.1 tells us that if initial data are sufficiently small in critical Besov spaces, then the solution of System (1.1) is globally in the Gevrey class of G 1 type. As by-product, the regularizing decay for high-order derivatives of solutions is available. The next step is to capture the optimal L q -L r decay rates of solutions for large times. Now, the first result is stated as follows.

Theorem 2.2. Let ( , u) be the global solution of (1.1)-(1.3) addressed in Theorem 2.1. Let the real number σ 1 satisfy

(2.6) 1 - d 2 < σ 1 ≤ σ 0 with σ 0 2d p - d 2 .
There exists a positive constant c = c(p, d, λ, µ, P, κ) such that if in addition the initial data (a 0 , u 0 ) satisfy

(2.7) D p,0 (a 0 , u 0 ) Ḃ-σ 1 2,∞ ≤ c, then the solution ( , u) fulfills Λ l (a, u) L r ϑ(t) -d 2 ( 1 2 -1 r )- l+σ 1 2 
(2.8)

for t ≥ 0, p ≤ r ≤ ∞ and l ∈ R, where ϑ(t) := t if -σ 1 < l + d( 1 p -1 r ) ≤ d p + 1 and ϑ(t) := t ( √ 1 + t 2 ) if -σ 1 < l + d( 1 p -1 r ) ≤ d p -1 satisfying σ 1 σ 1 + d(1/2 -1/p).
It is well-known that the low-frequency assumption usually plays a key role in the large-time asymptotics of solutions. Here, to capture the optimal decay rates of L q -L r type, the low-frequency assumption in (H 3 ) of Theorem 2.1 is reasonably strengthened by (2.7). In fact, (2.7) is a natural generalization of the L 1 assumption (see [START_REF] Matsumura | The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids[END_REF]) due to the Sobolev embedding

L 1 → Ḃ-d/2 2,∞ (if taking σ 1 = σ 0 = d/2
and p = 2). Let us outline the proof idea of Theorem 2.2 briefly. It is shown by the energy argument in Fourier spaces that the linear third-order capillarity κ∇∆a smooths out the density fluctuation in viscous compressible flows such that the solution behaves as the heat smoothing effect in all frequencies (see Lemma 4.1), which indicates that there is no loss of regularity for the high frequencies compared with the non-capillarity case (see [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Chen | Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity[END_REF][START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF]). Indeed, the proof of Theorem 2.2 mainly lies in the time-weighted inequality (2.9)

D p (t) (D p,0 + (∇a 0 , u 0 ) h Ḃ d p -1 p,1
) for all t ≥ 0, where

(2.10) D p (t) sup σ∈[ε-σ 1 , d 2 +1] τ σ 1 +σ 2 (a, u) L ∞ t ( Ḃσ 2,1 ) + τ β (∇a, u) h L ∞ t ( Ḃ d p +1 p,1 ) + τ β (∇a, u) h L ∞ t ( Ḃ d p -1 p,1 ) for β = σ 1 + d 2 + 1 2 -ε (ε > 0 sufficiently small).
It is proceeded in two steps. The first step (bounding the low-frequency part of D p ) is devoted to refined time-weighted estimates, which follows from the fashion of [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF] for convenience and highlight the new context arising from nonlinear capillarity of higher-order derivatives only. In the second step, we establish gain of regularity and decay altogether for the high frequencies of solutions. That step strongly relies on the elementary L p energy approach, since the capillarity tensor behaves like the heat diffusion of density. The strategy is in spirt of Hoff's viscous effective flux (see [START_REF] Hoff | Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data[END_REF]) (and later introduced by Jüngel [START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF] in quantum Navier-Stokes equations, and developed by Haspot [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fuids[END_REF] in the critical framework). In the Korteweg case, the effective flux can be defined by

w v + α∇a with α satisfying α = κ 1 -α ,
where v Qu + (-∆) 

1 - d 2 < σ 1 ≤ σ 0 with σ 0 2d p - d 2 . If D p,0 (a 0 , u 0 ) Ḃ-σ 1 2,∞
is bounded, then the solution ( , u) constructed in Theorem 2.1 fulfills

Λ l (a, u) L r (1 + t) -d 2 ( 1 2 -1 r )- l+σ 1 2 
(2.11)

for t ≥ 0, p ≤ r ≤ ∞ and l ∈ R satisfying -σ 1 < l + d( 1 p -1 r ) ≤ d p -1.
In comparison with the time-weighted energy method in Theorem 2.2, the proof of Theorem 2.3 is totally different and resorts to a Lyapunov-type inequality in time for energy norms (see the following):

(2.12) d dt (a, u)

Ḃ d 2 -1 2,1 + (∇a, u) h Ḃ d p -1 p,1 + c 0 (a, u) Ḃ d 2 -1 2,1 + (∇a, u) h Ḃ d p -1 p,1 1+ 2 d/2-1+σ 1 ≤ 0.
for some constant c 0 > 0. The obstacle is how to establish the nonlinear evolution of Besov norm Ḃ-σ 1 2,∞ (restricted in the low-frequency of solutions) in the L p framework. To get round it, the non classical product estimates (Propositions 3.4-3.5) will be used in the L p framework. Due to the general regularity (1 -d 2 < σ 1 ≤ σ 0 ), bounding the nonlinear capillary term is more technical. We handle with cases d/p -d/2 < σ 1 ≤ σ 0 and 1 -d/2 < σ 1 ≤ d/p -d/2 separately, by using various embeddings and interpolations, see (5.48) and (5.52). Some comments on the statement of Theorems 2.2-2.3 are in order.

(1) Owing to the scaling invariance of Korteweg operator, our work is the first one that investigates the accurate asymptotic behavior of solutions to (1.1)-(1.3) in the L p critical framework. Precisely speaking, the dissipation effect of Korteweg tensor with the density-dependent capillarity enables us to develop the L p energy methods (independent of spectral analysis) in high frequencies, which leads to the time-decay estimates of L q -L r type. Additionally, to eliminate the technical difficulty arising from strongly nonlinear terms, e.g., -∇div (au) and κ∇ κ(a)∆a + [START_REF] Matsumura | The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids[END_REF]. Observe that (2.5) allows the case p > d in physical dimensions d = 2, 3 such that the regularity exponent of velocity becomes negative, our results thus apply to large highly oscillating initial velocities (see [START_REF] Charve | A global existence result for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Chen | Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity[END_REF] for explanation). In fact, this is one of major motivations of this paper in contrast with previous efforts in the L 2 framework (see [START_REF] Chikami | Global well-posedness and time-decay estimates of the compressible Navie-Stokes-Korteweg system in critical Besov spaces[END_REF][START_REF] Tan | Optimal decay rates for the compressible fluid models of Korteweg type[END_REF][START_REF] Tan | Global existence and optimal L 2 decay rate for the strong solutions to the compressible fluid models of Korteweg type[END_REF] and references therein). Under the regularity of (2.7), it is indeed shown by different energy methods that the smallness requirement of low frequencies can be removed in the time-decay estimates. Moreover, these results could be also applied to the quantum Naiver-Stokes system since it is a special choice of viscosity and capillarity coefficients in (1.1) (see [START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF]).

(3) It is interesting to weaken the stability assumption (H 1 ) in (1.1), which was firstly formulated in [START_REF] Matsumura | The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids[END_REF][START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] for viscous compressible fluids. In this paper, vacuum is ruled out owing to the far field ¯ > 0. In the presence of vacuum, the mathematical analysis usually becomes wild and the corresponding theory is still far away from well-known in critical settings. The reader may refer those important efforts [START_REF] Huang | Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations[END_REF][START_REF] Li | Global well-posedness and large time asymptotic behavior of classical solutions to the compressible Navier-Stokes equations with vacuum[END_REF] in Sobolev spaces with higher regularity. Another interesting line is to consider the general hyperbolic-parabolic composite systems with Korteweg-type dispersion. Some structural assumptions with respect to higher-order terms could be possibly formulated, which allows to compensate the dissipation of partially degenerate variables and then to extend the classical theory in [START_REF] Kawashima | Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics[END_REF] due to the first author.

This paper is organized as follows. In Section 3, we prove and recall some nonlinear estimates in the L p framework. Section 4 is devoted to the proof of Theorem 2.2, where the influence of capillarity tensor is investigated and the time-weighted energy method will be developed for (1.1)-(1.3). In Section 5, we perform the pure energy method (with interpolation) to prove Theorem 2.3, which indicates the smallness requirement of low frequencies of initial data is not necessary. In the last section (Section 6), we briefly review Littlewood-Paley decomposition and Besov spaces in order to make the paper as self-contained as possible.

Preliminary

Throughout the paper, C > 0 stands for a harmless "constant". For brevity, we sometime write u v instead of u ≤ Cv. The notation u ≈ v means that u v and v u. Also, we agree that (u, v) X u X + v X for some Banach space X. For reader's convenience, let us review nonlinear tools in the L p framework, which will be employed in subsequent analysis. Those definitions and properties of Littlewood-Paley decomposition and Besov spaces are left to the Appendix. First of all, some exponent relations with respect to Sobolev embeddings need to be noted.

• 2 ≤ p < 2d : 1 -d p < d p , 1 -σ 0 < d 2 , σ 0 ≤ d p ; • 2 ≤ p ≤ d * : -σ 1 < d 2 -1 ≤ d p ≤ d 2 ; • p ≤ d : 1 -d p ≤ d p -1, d 2 -d p + 1 ≤ d 2 ; • p > d : d p -1 < 1 -d p , d 2 -1 < 1 -σ 0 .
In order to deal with the nonlinear capillary, we establish the following time-weighted product inequality by virtue of Bony's decomposition.

Proposition 3.1. Let 1 ≤ p, r 1 , r 2 ≤ ∞. Assume that 1/r 1/r 1 + 1/r 2 ≤ 1. If s > m > 0, then it holds that (3.1) t α F G L θ T ( Ḃs-m p,r ) t α 1 F L θ 1 T ( Ḃ-m ∞,r 1 ) t α 2 G L θ 2 T ( Ḃs p,r 2 ) + t α 1 G L θ 1 T ( Ḃ-m ∞,r 1 ) t α 2 F L θ 2 T ( Ḃs p,r 2 )
for any T > 0, where

1/θ = 1/θ 1 + 1/θ 2 and α = α 1 + α 2 with α 1 , α 2 ≥ 0. In particular, if F = G, then (3.1) reduces to t α |F | 2 L θ T ( Ḃs-m p,r ) t α 1 F L θ 1 T ( Ḃ-m ∞,r 1 ) t α 2 F L θ 2 T ( Ḃs p,r 2 ) . (3.2) 
Proof. It follows from Bony's decomposition that

t α F G = T t α 1 F (t α 2 G) + T t α 1 G (t α 2 F ) + R(t α 1 F, t α 2 G).
According to that result of continuity for the paraproduct (see Chap. 2 of [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]), it is not difficult to get

T t α 1 F (t α 2 G) L θ T ( Ḃs-m p,r ) t α 1 F L θ 1 T ( Ḃ-m ∞,r 1 ) t α 2 G L θ 2 T ( Ḃs p,r 2 ) , T t α 1 G (t α 2 F ) L θ T ( Ḃs-m p,r ) t α 1 G L θ 1 T ( Ḃ-m ∞,r 1 ) t α 2 F L θ 2 T ( Ḃs p,r 2 ) , provided m > 0. Additionally, if s -m > 0 then the continuity for remainder implies that R(t α 1 F, t α 2 G) L θ T ( Ḃs-m p,r ) t α 1 F L θ 1 T ( Ḃ-m ∞,r 1 ) t α 2 G L θ 2 T ( Ḃs p,r 2 )
. Hence, the desired result is followed.

In particular, if α = α 1 = α 2 = 0, one can get the product estimate of usual form immediately.

Corollary 3.1. Let 1 ≤ p ≤ ∞. Assume that 1/r 1/r 1 + 1/r 2 ≤ 1. If s > m > 0, then it holds that F G Ḃs-m p,r F Ḃ-m ∞,r 1 G Ḃs p,r 2 + G Ḃ-m ∞,r 1 F Ḃs p,r 2 . (3.3) Moreover, if F = G then |F | 2 Ḃs-m p,r F Ḃ-m ∞,r 1 F Ḃs p,r 2 . (3.4)
Likewise, we would like to mention that Corollary 3.1 also holds true in the framework of Chemin-Lerner's spaces, whereas the time exponent fulfills Hölder inequality only. In addition, there are classical product estimates available playing a fundamental role in bounding bilinear terms.

Proposition 3.2. Let 1 ≤ p, r ≤ ∞. Then F G Ḃs p,r F L ∞ G Ḃs p,r + G L ∞ F Ḃs p,r , if s > 0; F G Ḃs 1 +s 2 -d p p,1 F Ḃs 1 p,1 G Ḃs 2 p,1 , if s 1 , s 2 ≤ d p and s 1 + s 2 > d max 0, 2 p -1 ; F G Ḃs 1 +s 2 -d p p,∞ F Ḃs 1 p,1 G Ḃs 2 p,∞ , if s 1 ≤ d p , s 2 < d p and s 1 +s 2 ≥ d max 0, 2 p -1 .
In order to match different Lebesgue indices at low frequencies and high frequencies, non classical product estimates need to be further developed in the L p framework (see [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF]). Precisely, Proposition 3.3. Let the real numbers s 1 , s 2 , p 1 and p 2 be such that

s 1 + s 2 > 0, s 1 ≤ d p 1 , s 2 ≤ d p 2 , s 1 ≥ s 2 , 1 p 1 + 1 p 2 ≤ 1.
Then it holds that

F G Ḃs 2 q,1 F Ḃs 1 p 1 ,1 G Ḃs 2 p 2 ,1 with 1 q = 1 p 1 + 1 p 2 - s 1 d •
Additionally, for exponents s > 0 and 1 ≤ p 1 , p 2 , q ≤ ∞ satisfying

d p 1 + d p 2 -d ≤ s ≤ min d p 1 , d p 2 and 1 q = 1 p 1 + 1 p 2 - s d , one has F G Ḃ-s q,∞ F Ḃs p 1 ,1 G Ḃ-s p 2 ,∞ .
Together with the regularity requirement in the main results, the following inequalities in time-weighted energy methods will be employed.

Corollary 3.2. Let 1 -d 2 < σ 1 ≤ σ 0 and p satisfy (2.5). It holds that F G Ḃ-σ 1 2,∞ F Ḃ d p p,1 G Ḃ-σ 1 2,1 , (3.5) F G Ḃ d p -d 2 -σ 1 2,∞ F Ḃ d p -d 2 -σ 1 p,1 G Ḃ d p 2,1 . (3.6)
In addition, it follows from [START_REF] Shi | A sharp time-weighted inequality for the compressible Naiver-Stokes-Poisson system in the critical L p framework[END_REF] that

(3.7) F G Ḃ-σ 0 2,∞ F Ḃ d p -1 p,1 G Ḃ1-d p p,1 for 2 ≤ p ≤ d.
On the other hand, the third estimate in Proposition 3.2 can be also extended to the non classical form (see [START_REF] Xin | Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions[END_REF]). Proposition 3.4. Let the real numbers s 1 , s 2 , p 1 and p 2 be such that

s 1 + s 2 ≥ 0, s 1 ≤ d p 1 , s 2 < min d p 1 , d p 2 and 1 p 1 + 1 p 2 ≤ 1.
Then it holds that

F G Ḃs 1 +s 2 -d p 1 p 2 ,∞ F Ḃs 1 p 1 ,1 G Ḃs 2 p 2 ,∞ . (3.8)
As direct consequence, we will use the following product estimates in the pure energy argument with interpolation.

Corollary 3.3. Let 1 -d 2 < σ 1 ≤ σ 0 and p satisfy (2.5). It holds that F G Ḃ-σ 1 2,∞ F Ḃ d p p,1 G Ḃ-σ 1 2,∞ , (3.9) F G Ḃ d p -d 2 -σ 1 2,∞ F Ḃ d p -1 p,1 G Ḃ d p -d 2 -σ 1 +1 2,∞ . (3.10)
However, only resorting to Propositions 3.3 and 3.4 is not enough to establish the desired decay estimates in particular in case of the oscillation case p > d, some non standard product estimates are also needed (see [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF]). Proposition 3.5. Let j 0 ∈ Z, and denote z Ṡj 0 z, z h z -z and, for any

s ∈ R, z Ḃs 2,∞ sup j≤j 0 2 js ∆j z L 2 .
There exists a universal integer N 0 such that for any 2 ≤ p ≤ 4 and s > 0, we have System (2.1) also involves compositions of functions (through I(a), k(a), λ(a) and µ(a)) and they are bounded according to the following conclusion (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF]). Proposition 3.6. Let F : R → R be smooth with F (0) = 0. For all 1 ≤ p, r ≤ ∞ and s > 0, it holds that F (u) ∈ Ḃs p,r ∩ L ∞ for u ∈ Ḃs p,r ∩ L ∞ , and

F G h Ḃ-σ 0 2,∞ ≤ C( F Ḃs p,1 + Ṡj 0 +N 0 F L p * ) G h Ḃ-s p,∞ (3.11) 
F h G Ḃ-σ 0 2,∞ ≤ C( F h Ḃs p,1 + Ṡj 0 +N 0 F h L p * ) G Ḃ-s p,∞ (3.12 
F (u) Ḃs p,r ≤ C u Ḃs p,r
with C depending only on u L ∞ , F (and higher derivatives), s, p and d.

In the case s > -min d p , d p then u ∈ Ḃs p,r ∩ Ḃ d p p,1 implies that F (u) ∈ Ḃs p,r ∩ Ḃ d p p,1 , and 
F (u) Ḃs p,r ≤ C(1 + u Ḃ d p p,1 ) u Ḃs p,r
.

Finally, we end this section with the endpoint maximal regularity property of the heat equation, which is adapted to the case of complex diffusion coefficient. The proof is similar to the case of real coefficient. The reader is referred to [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF] for details.

Proposition 3.7. Let T > 0, s ∈ R and 1 ≤ ρ 2 , p, r ≤ ∞. Let u satisfy (3.13) ∂ t u -ν∆u = f, u| t=0 = u 0 (x),
where ν ∈ C is a complex number with Re ν > 0. Then, there exists a constant C depending only on d and such that for all ρ 1 ∈ [ρ 2 , ∞], one has

(3.14) (Re ν) 1 ρ 1 u L ρ 1 T ( Ḃs+ 2 ρ 1 p,r ) ≤ C u 0 Ḃs p,r + (Re ν) 1 ρ 2 -1 f L ρ 2 T ( Ḃs-2+ 2 ρ 2 p,r ) •

The time-weighted energy method

In this section, we shall prove Theorem 2.2 by using the time-weighted energy method. In what follows, we use repeatedly some basic inequalities, for instance, we have (4.1)

t 0 t -τ -s 1 τ -θ τ θ-s 2 dτ t -s 1 if 0 ≤ θ < 1, for 0 ≤ s 1 ≤ s 2 with s 2 > 1. For any (t, ξ) ∈ R + × R d , it holds that (4.2) e -c|ξ| 2 t (t|ξ| 2 ) k ≤ e -c|ξ| 2 t ,
for c > c > 0 and k > 0. Let us keep in mind that the global solution (a, u) given by Theorem 2.1 satisfies

(4.3) a L ∞ t ( Ḃ d p p,1 )
≤ c 1 for all t ≥ 0.

The following pointwise estimate has been shown in [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF] by Charve, Danchin and the third author.

Lemma 4.1. There exist two positive constants c 0 and C depending only on (κ, µ) and κ, respectively, such that the following inequality holds:

(4.4) |( a, |ξ| a, u)(t, ξ)| ≤ C e -c 0 |ξ| 2 t |( a, |ξ| a, u)(0, ξ)| + t 0 e -c 0 |ξ| 2 (t-τ ) |( f , |ξ| f , g)(τ, ξ)| dτ for all ξ ∈ R d and t ≥ 0.
Indeed, the proof of Lemma 4.1 depends on the energy argument in Fourier spaces developed by the first author (see for instance [START_REF] Kawashima | Global existence and stability of solutions for discrete velocity models of the Boltzmann equation[END_REF]). From Lemma 4.1, we see that the linear Korteweg tensor of density fluctuation behaves like the same heat diffusion as that of velocity, which is the essential difference in comparison with compressible Navier-Stokes fluids. 4.1. First step: Bounds for the low frequencies in (2.10). Apply ∆k to the perturbation system (2.1)-(2.2) and repeat the procedure leading to Lemma 4.1. For any k 0 ∈ Z (which is to be fixed at high frequencies), one can get

(4.5) |( a k , u k )| e -c 0 2 2k t |( a 0k , u 0k )| + t 0 e -c 0 2 2k (t-τ ) |( f k , g k )|dτ.
for t ≥ 0 and k ≤ k 0 , where we set z k = ∆k z for any z ∈ S (R d ). Employing L 2 -norm on both sides of (4.5) with respect to the Fourier variable ξ ∈ R d , and then using Parseval's equality and Minkowski's inequality indicates that

(4.6) (a k , u k ) L 2 e -c 0 2 2k t (a 0k , u 0k ) L 2 + t 0 e -c 0 2 2k (t-τ ) (f k , g k )(τ ) L 2 dτ.
Hence, by multiplying by t σ 1 +σ 2

2 kσ (σ 1 + σ > 0) and summing up on k ≤ k 0 , we arrive at

(4.7) t σ 1 +σ 2 (a, u) Ḃσ 2,1 t σ 1 +σ 2 k≤k 0 e -c 0 2 2k t 2 kσ (a 0k , u 0k ) L 2 + t σ 1 +σ 2 t 0 k≤k 0 e -c 0 2 2k (t-τ ) 2 kσ (f k , g k )(τ ) L 2 dτ J 1 + J 2 .
Let us take a look at the first term in the right-side of (4.7). Note the fact that t ≈ 1 + t, we have

(4.8) J 1 ≤ k≤k 0 2 kσ (a 0k , u 0k ) L 2 + k≤k 0 t σ 1 +σ 2 2 kσ e -c 0 2 2k t (a 0k , u 0k ) L 2 ≤ (a 0 , u 0 ) Ḃ-σ 1 2,∞ k≤k 0 2 k(σ+σ 1 ) + k≤k 0 t σ 1 +σ 2 2 k(σ 1 +σ) e -c 0 2 2k t D p,0 ,
for σ 1 + σ > 0, where we used the series inequalities (σ > 0):

k≤k 0 2 kσ ≤ C σ , sup t≥0 k∈Z t σ 2 2 kσ e -c 0 2 2k t ≤ C σ
for some positive constant C σ . Similarly, we arrive at (4.9) 

J 2 ≤ t σ 1 +σ 2 t 0 t -τ -σ 1 +σ 2 (f, g)(τ ) Ḃ-σ 1 2,∞
t 0 t -τ -σ 1 +σ 2 (f, g) (τ ) Ḃ-σ 1 2,∞ dτ t -σ 1 +σ 2 (1 + X p (t))(D 2 p (t) + X 2 p (t)),
where X p (t) and D p (t) have been defined by (2.4) and (2.10), respectively.

Proof. The proof follows from the fashing in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF][START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF] and we focus on the new context arising from capillary. To do this, it is convenient to decompose f and g in terms of low-frequency and high-frequency:

f = f + f h with f -a div u -u • ∇a , f h -a div u h -u • ∇a h and g = g + g h with g -u • ∇u + g 2 (a, u ) -I (a) Au + J(a)∇a + g 5 (a, a ), g h -u • ∇u h + g 2 (a, u h ) -I (a) Au h + J(a)∇a h + g 5 (a, a h ),
where

g 2 (a, v) = (1 -I(a)) 2µdiv µ(a)Dv + λ∇ λ(a)div v , g 5 (a, b) = κ∇ κ(a)∆b + 1 2 ∇ κ(a) • ∇b g 51 (a, b) + g 52 (a, b).
Based on the priori efforts, we just need check the capillary term g 5 satisfying (4.10). First of all, let us bound g 5 with a . Due to

β σ 1 + d 2 + 1 2 -ε ≥ σ 1 2 + d 4 for small enough ε > 0, a(τ ) Ḃ d p p,1 a (τ ) Ḃ d 2 2,1 + a h (τ ) Ḃ d p p,1 τ -σ 1 2 -d 4 D p (τ ) (4.11)
and also that, owing to

-σ 1 < 2 -σ 1 < d 2 + 1, ∆a (τ ) Ḃ-σ 1 2,1 a Ḃ2-σ 1 2,1 τ -1 D p (τ ) (4.12)
for all τ ≥ 0. Observe that d p -d 2 -σ 1 < d p -1 and β > 1 for small enough ε > 0, we have by embedding, (4. [START_REF] Chikami | Global well-posedness and time-decay estimates of the compressible Navie-Stokes-Korteweg system in critical Besov spaces[END_REF] ∇a(τ )

Ḃ d p -d 2 -σ 1 p,1 ∇a (τ ) Ḃ-σ 1 2,1 + ∇a h (τ ) Ḃ d p -1 p,1 τ -1 2 D p (τ )
and thanks to -

σ 1 < d 2 -1 < d 2 ≤ d p + 1 ≤ d 2 + 1, (4.14) ∇a (τ ) Ḃ d p 2,1 τ - σ 1 2 -d 2p -1 2 D p (τ ).
It follows from Corollary 3.1 and Proposition 3.6 and (4.11)-(4.12) that

t 0 t -τ -σ 1 +σ 2 g 51 (a, a ) Ḃ-σ 1 2,∞ dτ t 0 t -τ -σ 1 +σ 2 κ(a)∆a Ḃ-σ 1 2,∞ dτ t 0 t -τ -σ 1 +σ 2 a Ḃ d p p,1 ∆a Ḃ-σ 1 2,∞ dτ D 2 p (t) t 0 t -τ -σ 1 +σ 2 τ -σ 1 2 -d 4 -1 dτ. As σ 1 2 + d 4 +1 > 1 and σ 1 2 + d 4 + 1 2 ≥ σ 1 +σ 2 for σ 1 satisfying (2.6) and σ ≤ d 2 +1, inequality (4.1) implies that t 0 t -τ -σ 1 +σ 2 g 51 (a, a ) Ḃ-σ 1 2,∞ dτ t -σ 1 +σ 2 D 2 p (t).
On the other hand, we bound the term g 52 (a, a ) at a different way. Observe that

σ 1 ≤ σ 1 + d 2 -d p (p ≥ 2), we get, from (3.6) t 0 t -τ -σ 1 +σ 2 g 52 (a, a ) Ḃ-σ 1 2,∞ dτ t 0 t -τ -σ 1 +σ 2 ∇ κ(a) • ∇a Ḃ-σ 1 2,∞ dτ t 0 t -τ -σ 1 +σ 2 ∇ κ(a) • ∇a Ḃ d p -d 2 -σ 1 2,∞ dτ (1 + X p (t)) t 0 t -τ -σ 1 +σ 2 ∇a Ḃ d p -d 2 -σ 1 p,1 ∇a Ḃ d p 2,1 dτ, where d p -d 2 -σ 1 + 1 ≥ 1 -d p > -d p implies that d p -d 2 -σ 1 +
1 satisfies the regularity requirement in Proposition 3.6. Furthermore, by using (4.13)-(4.14), we obtain

t 0 t -τ -σ 1 +σ 2 g 52 (a, a ) Ḃ-σ 1 2,∞ dτ (1 + X p (t))D 2 p (t) t 0 t -τ -σ 1 +σ 2 τ - σ 1 2 -d 2p -1 dτ t -σ 1 +σ 2 (1 + X p (t))D 2 p (t), where the fact that σ 1 2 + d 2p + 1 ≥ σ 1 2 + d 4 + 1 2 > 1 and σ 1 2 + d 2p + 1 ≥ σ 1 +σ 2 for p ≤ d * and σ ≤ d
2 + 1 has been used. Next, we turn to bound g 5 with a h , which will be proceeded differently depending on whether 2 ≤ p ≤ d (non oscillation) or p > d (oscillation). Let us first handle with the easier case 2 ≤ p ≤ d and 1 -d 2 < σ 1 ≤ σ 0 . In that case, we need the following product estimate

(4.15) F G h Ḃ-σ 1 2,∞ F G h Ḃ-σ 0 2,∞ F Ḃ d p -1 p,1 G h Ḃ d p -1 p,1
, which is the direct consequence of (3.7) because of 1 -d p ≤ d p -1. Regarding the integral with g 51 (a, a h ), we consider cases t ≤ 2 and t ≥ 2 separately. The case t ≤ 2 implies that t ≈ 1 and t -τ ≈ 1 for 0 ≤ τ ≤ t ≤ 2. Owing to (4.15), we have if t ≤ 2,

t 0 t-τ -σ 1 +σ 2 g 51 (a, a h ) Ḃ-σ 1 2,∞ dτ t 0 κ(a)∆a h Ḃ-σ 0 2,∞ dτ t 0 a Ḃ d p -1 p,1 ∆a h Ḃ d p -1 p,1 dτ. Note that β ≥ σ 1 2 + d 4 + m-1
2 (m = 0, 1) for small enough ε > 0, we have (4. [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF])

∇ m a Ḃ d p -1 p,1 ∇ m a Ḃ d 2 -1 2,1 + ∇ m a h Ḃ d p -1 p,1 τ -σ 1 2 -d 4 -m-1 2 D p (τ ),
which implies that

t 0 t -τ -σ 1 +σ 2 g 51 (a, a h ) Ḃ-σ 1 2,∞ dτ a L ∞ t ( Ḃ d p -1 p,1 ) t 0 ∆a h Ḃ d p -1 p,1 dτ D p (t)X p (t).
On the other hand, we have if t ≥ 2,

t 0 t -τ -σ 1 +σ 2 g 51 (a, a h ) Ḃ-σ 1 2,∞ dτ t 0 t -τ -σ 1 +σ 2 a Ḃ d p -1 p,1 ∆a h Ḃ d p -1 p,1 dτ = 1 0 + t 1 (• • •)dτ K 1 + K 2 .
It follows from the definitions of X p and D p that

K 1 t -σ 1 +σ 2 sup 0≤τ ≤1 a Ḃ d p -1 p,1 1 0 ∆a h Ḃ d p -1 p,1 dτ t -σ 1 +σ 2 D p (1)X p (1).
Bounding K 2 , we use the fact τ ≈ τ for τ ≥ 1, so ∆a h

Ḃ d p -1 p,1
τ -β D p (τ ). Consequently, we obtain

K 2 D 2 p (t) t 1 t -τ -σ 1 +σ 2 τ -σ 1 2 -d 4 + 1 2 -β dτ t -σ 1 +σ 2 D 2 p (t), since the relations σ 1 > 1 -d 2 and β > 1 lead to σ 1 2 + d 4 -1 2 + β > 1 and σ 1 2 + d 4 -1 2 + β ≥ σ 1 +σ 2 for σ ≤ d 2 + 1.
Let us look at the term with g 52 (a, a h ). We observe that, owing to (4.15)-(4.16) and Proposition 3.6

t 0 t -τ -σ 1 +σ 2 g 52 (a, a h ) Ḃ-σ 1 2,∞ dτ t 0 t -τ -σ 1 +σ 2 ∇ κ(a) Ḃ d p -1 p,1 ∇a h Ḃ d p -1 p,1 dτ D 2 p (t) t 0 t -τ -σ 1 +σ 2 τ -σ 1 2 -d 4 -β dτ t -σ 1 +σ 2 D 2 p (t).
Finally, let us deal with the term g 5 (a, a h ) in case of p > d and 1

-d 2 < σ 1 ≤ σ 0 . Taking s = 1 -d p (s > 0) in Proposition 3.5 yields (4.17) F G h Ḃ-σ 1 2,∞ F G h Ḃ-σ 0 2,∞ F Ḃ1-d p p,1 + Ṡj 0 +N 0 F L p * G h Ḃ d p -1 p,1 with 1 p * 1 2 -1 p . We claim that (4.18) a(τ ) Ḃ1-d p p,1 τ -σ 1 +1-σ 0 2 D p (τ ) for all τ ≥ 0.
Indeed, according to the definition of D p and embedding, we have

a (τ ) Ḃ1-d p p,1 a (τ ) Ḃ1-σ 0 2,1 τ -σ 1 +1-σ 0 2 D p (τ ),
where we used the relation p > d which indicates that -σ

1 < d 2 -1 < 1 -σ 0 < d 2 + 1. As 1 -d p < d p , it holds that a h (τ ) Ḃ1-d p p,1 a h (τ ) Ḃ d p p,1 τ -β D p (τ ), so (4.18) is fulfilled due to the fact that σ 1 +1-σ 0 2 < σ 1 2 + d 4 + 1 2 ≤ β for small enough ε > 0.
It follows from (4.17) that

t 0 t -τ -σ 1 +σ 2 g 51 (a, a h ) Ḃ-σ 1 2,∞ dτ t 0 t -τ -σ 1 +σ 2 κ(a)∆a h Ḃ-σ 0 2,∞ dτ t 0 t -τ -σ 1 +σ 2 κ(a) Ḃ1-d p p,1 + Ṡj 0 +N 0 κ(a) L p * ∆a h Ḃ d p -1 p,1 dτ.
We see that, using the composition inequality in Lebesgue spaces and the embedding

Ḃ d p 2,1 → Ḃσ 0 p,1 → L p * , κ(a) L p * a L p * a Ḃ d p 2,1 + a h Ḃσ 0 p,1 a Ḃ d p 2,1 + a h Ḃ d p p,1
.

Hence, if t ≥ 2 t 0 t -τ -σ 1 +σ 2 g 51 (a, a h ) Ḃ-σ 1 2,∞ dτ t 0 t -τ -σ 1 +σ 2 a Ḃ1-d p p,1 + a Ḃ d p 2,1 + a h Ḃ d p p,1 ∆a h Ḃ d p -1 p,1 dτ = 1 0 + t 1 (• • •)dτ K 1 + K 2 .
It just follows from (4.18) and the definitions of D p and X p that

K 1 t -σ 1 +σ 2 D p (1)X p (1) + X 2 p (1 
) and also that

K 2 D 2 p (t) t 1 t -τ -σ 1 +σ 2 τ -σ 1 +1-σ 0 2 + τ - σ 1 2 -d 2p + τ -β τ -β dτ. Keeping in mind β > 1 > d p and β ≥ σ 1 2 + d 4 for small enough ε > 0, it is shown that σ 1 + σ 2 ≤ σ 1 2 + 1 2 + d 4 < σ 1 + 1 -σ 0 2 + β, σ 1 + σ 2 ≤ σ 1 2 + d 2p + 1 < σ 1 2 + d 2p + β ≤ 2β,
and

σ 1 + 1 -σ 0 2 + β > 1, σ 1 2 + d 2p + β > 1 2 - d 4 + d 2p + β ≥ β > 1, since p ≤ d * implies that d/p ≥ d/2 -1.
Therefore, we deduce that

K 2 t -σ 1 +σ 2 D 2 p (t). For the trivial case t ≤ 2, it is not difficult to get t 0 t -τ -σ 1 +σ 2 g 51 (a, a h ) Ḃ-σ 1 2,∞ dτ t 0 a Ḃ1-d p p,1 + a Ḃ d p 2,1 + a h Ḃ d p p,1 ∆a h Ḃ d p -1 p,1 dτ D p (t)X p (t) + X 2 p (t). Applying (3.12) with s = 1 -d p (s > 0) yields (4.19) ∇ κ(a) • ∇a h Ḃ-σ 0 2,∞ ∇a h Ḃ1-d p p,1 + j 0 +N 0 -1 j=j 0 ∆j ∇a h L p * ∇ κ(a) Ḃ d p -1 p,1 .
As p * ≥ p, we get from Bernstein's inequality that for j 0 ≤ j < j 0 + N 0 ,

∆j ∇a h L p * ∆j ∇a h L p .
Hence, using Proposition 3.6, the fact that σ 1 ≤ σ 0 and that 0 < 1 -d p < d p , we have

(4.20) g 52 (a, a h ) Ḃ-σ 1 2,∞ g 52 (a, u h ) Ḃ-σ 0 2,∞ a Ḃ d p p,1 ∇a h Ḃ1-d p p,1 a Ḃ d p p,1 ∇a h Ḃ d p p,1 . Therefore, if t ≥ 2, t 0 t -τ -σ 1 +σ 2 g 52 (a, a h ) Ḃ-σ 1 2,∞ dτ t 0 t -τ -σ 1 +σ 2 a Ḃ d p p,1 ∇a h Ḃ d p p,1 dτ = 1 0 + t 1 (• • • )dτ K 1 + K 2 .
For K 1 , it is clear that

K 1 t -σ 1 +σ 2 X 2 p (1)
and that, owing to the definition of D p (t) and (4.1), (4.11),

K 2 sup 1≤τ ≤t τ σ 1 2 + d 4 a Ḃ d p p,1 sup 1≤τ ≤t τ β ∇a h Ḃ d p p,1 × t 1 t -τ -σ 1 +σ 2 τ -σ 1 2 -d 4 -β dτ t -σ 1 +σ 2 D 2 p (t).
Finally, if t ≤ 2, it is easy to show that

t 0 t -τ -σ 1 +σ 2 g 52 (a, a h ) Ḃ-σ 1 2,∞ dτ t 0 a Ḃ d p p,1 ∇a h Ḃ d p p,1 dτ X 2 p (t).
Therefore, by combining all above estimates, one can finish the proof of Lemma 4.2.

Consequently, together with (4.8)-(4.9), it follows from (4.7) that (4.21)

t σ 1 +σ 2 (a, u) Ḃσ 2,1 D p,0 + (1 + X p (t))(D 2 p (t) + X 2 p (t)
) for all t ≥ 0, provided that -σ 1 < σ ≤ d 2 + 1. 4.2. Second step: Bounds for the high frequencies in (2.10). In the L p framework, it should be pointed out that the pointwise estimate (4.4) is not sufficient to give the time-weighted estimates at high frequencies. In usual compressible Navier-Stokes fluids, the introduction of suitable effective velocity (see [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fuids[END_REF]) not only allows to uncouple the velocity equation from the mass equation, but also to get around the technical obstacle that there is a loss of one derivative of density. In the Korteweg case here, the capillarity tensor behaves like the heat diffusion of density fluctuation, which enables us to develop the energy method in the similar spirt of Haspot's approach and establish gains of regularity and decay altogether for the high frequencies of solutions to (1.1)-(1.3). Lemma 4.3. Let 1 -d 2 < σ 1 ≤ σ 0 and p satisfy (2.5). Then it holds that for all t ≥ 0,

(4.22) t β (∇a, u) h L ∞ T ( Ḃ d p +1 p,1 ) + t β (∇a, u) h L ∞ T ( Ḃ d p -1 p,1 ) (∇a 0 , u 0 ) h Ḃ d p -1 p,1 + X 2 p (T ) + X p (T )(1 + X p (T ))D p (T ) + (1 + X p (T ))D 2 p (T )
with β = σ 1 + d 2 + 1 2 -ε for sufficiently small ε > 0, where X p and D p are defined by (2.4) and (2.10), respectively.

Proof. Let us begin with the linearized system (2.1):

∂ t a + div u = f, ∂ t u -Au + ∇a -κ∇∆a = g.
Denote Pu I d + (-∆) -1 ∇div u the incompressible part of u, which fulfills the heat equation It follows from [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF] that

(4.24) 1 p d dt Pu k p L p + c p µ2 2k Pu k p L p ≤ Pg k L p Pu k p-1 L p .
Let Q I d -P = -(-∆) -1 ∇div . Following from Haspot's idea in [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fuids[END_REF], we introduce the modified velocity v Qu + (-∆) -1 ∇a so that div v = div u -a, and discover that, since λ + 2μ = 1,

∂ t ∇a + ∇a + ∆v = ∇f, ∂ t v -∆v -κ∆∇a = Qg + (-∆) -1 ∇f + v -(-∆) -1 ∇a.
Following from [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF], we set

w v + α∇a with α satisfying α = κ 1 -α .
Then, we get

∂ t w -(1 -α)∆w = -α∇a + α∇f + (-∆) -1 ∇(f -div g) + v -(-∆) -1 ∇a.
Here, one can choose

α = 1 2 1 + √ 1 -4κ so that 1 -α = 1 2 1 - √ 1 -4κ ,
which indicates the real part of 1 -α is positive. Consequently, employing the maximal regularity property of heat equation with complex coefficient (see Proposition 3.7) gives that

(4.25) 1 p d dt w k p L p + c p Re(1 -α)2 2k w k p L p ≤ α∇f k + (-∆) -1 ∇(f k -div g k ) L p + v k -α∇a k -(-∆) -1 ∇a k L p w k p-1 L p .
In order to capture the heat diffusion arising from a, we need to notice the fact that

(4.26) ∇a = w -v α .
For that end, we rewrite the equation of v:

∂ t v - α -κ α ∆v = κ α ∆w + ∇(-∆) -1 (f -divg) + v -(-∆) -1 ∇a. The important observation is that α -κ α = κ 1 -α = α,
which means that the real part of α-κ α is also positive. Hence, one can use Proposition 3.7 again and get

(4.27) 1 p d dt v k p L p + c p Reα2 2k v k p L p ≤ (-∆) -1 ∇(f k -div g k ) L p + κ α ∆w k + v k -(-∆) -1 ∇a k L p v k p-1 L p .
Next, by performing the rigorous ε-procedure as in [START_REF] Danchin | Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical L p framework[END_REF], we deduce that

(4.28) d dt ( Pu k ε,L p + w k ε,L p + γ v k ε,L p ) + c p 2 2k (µ Pu k ε,L p + Re(1 -α) w k ε,L p + γReα v k ε,L p ) ≤ Pg k L p + α∇f k L p + ∇(-∆) -1 (f k -div g k ) L p + v k -α∇a k -(-∆) -1 ∇a k L p + γ κ α ∆w k + v k -(-∆) -1 ∇a k L p + N ε ,
for some constant γ > 0, where N ε (c p µ2 2k + c p Re(1 -α)2 2k + γc p Reα2 2k )ε. As (-∆) -1 is a homogeneous Fourier multiplier of degree -2, we have

(-∆) -1 ∇a k L p 2 -4k 2 2k ∇a k L p ≤ 2 -4k 0 2 2k ∇a k L p for k ≥ k 0 -1.
Choosing k 0 suitably large and γ sufficiently small, we thus see that there exists some c 0 > 0 such that for all k ≥ k 0 -1,

(4.29) d dt ( Pu k ε,L p + w k ε,L p + γ v k ε,L p ) + c 0 2 2k ( Pu k ε,L p + w k ε,L p + v k ε,L p ) Pg k L p + α∇f k L p + ∇(-∆) -1 (f k -div g k ) L p + -α∇a k -(-∆) -1 ∇a k L p + N ε .
Integrating in time and passing to the limit ε → 0, we arrive (taking smaller c 0 as the case may be) at eventually

(4.30) (∇a k , u k )(t) L p e -c 0 2 2k t (∇a k (0), u k (0)) L p + t 0 e -c 0 2 2k (t-τ ) S k (τ )dτ, with S k S 1 k + S 2 k , where S 1 k = ∇f k L p and S 2 k = g k L p , since ∇(-∆) -1 div
is a homogeneous multiplier of degree 0.

In the following, we start with bounding the second and third terms in D p simultaneously. Firstly, multiplying both sides of (4.30) by t β 2 k( d p +1) , taking the supremum on [0, T ], and summing up over k ≥ k 0 -1 yields

(4.31) t β (∇a, u) h L ∞ T ( Ḃ d p +1 p,1 ) sup k≥k 0 -1 sup 0≤t≤T (e -c 0 2 2k t 2 2k t β ) (∇a 0 , u 0 ) h Ḃ d p -1 p,1 + k≥k 0 -1 sup 0≤t≤T t β t 0 e -c 0 2 2k (t-τ ) 2 k( d p +1) S k (τ ) dτ (∇a 0 , u 0 ) h Ḃ d p -1 p,1 + k≥k 0 -1 sup 0≤t≤T t β t 0 e -c 0 2 2k (t-τ ) 2 k( d p +1) S k (τ ) dτ ,
where the inequality (4.2) has been used. In order to deal with the second nonlinear term of (4.31), actually, we need to bound the time-weighted integral (4.32) sup 0≤t≤T 2 2k t β t 0 e -c 0 2 2k (t-τ ) S k (τ )dτ.

Without loss of generality, one can assume that T ≥ 2. First of all, let us bound the supremum for 0 ≤ t ≤ 2. We write

t 0 e -c 0 2 2k (t-τ ) S k (τ )dτ = t/2 0 + t t/2 e -c 0 2 2k (t-τ ) S k (τ )dτ.
Regarding the first integral, one has sup 0≤t≤2

2 2k t β t/2 0 e -c 0 2 2k (t-τ ) S k (τ )dτ ≤ sup 0≤t≤2 2 2k t β e -c 0 2 2 2k t t/2 0 S k (τ )dτ 1 0 S k (τ )dτ.
On the other hand,

sup 0≤t≤2 2 2k t β t t/2 e -c 0 2 2k (t-τ ) S k (τ )dτ sup 0≤t≤2 sup t/2≤τ ≤t τ β S k (τ ) t t/2 2 2k e -c 0 2 2k (t-τ ) dτ sup 0≤t≤2 sup t/2≤τ ≤t τ β S k (τ ) sup 0≤t≤2 (t β S k (t)).
Next, we turn to bound the supremum for 2 ≤ t ≤ T . For that end, it is convenient to split the integral on [0, t] into integrals on [0, 1] and [1, t] The first part is also easy to handle: because e -c 0 2 2k (t-τ ) ≤ e -c 0 2 2 2k t for 2 ≤ t ≤ T and 0 ≤ τ ≤ 1, one has sup 2≤t≤T

2 2k t β 1 0 e -c 0 2 2k (t-τ ) S k (τ )dτ ≤ sup 2≤t≤T 2 2k t β e -c 0 2 2 2k t 1 0 S k (τ )dτ ≤ 1 0 S k (τ )dτ.
In order to bound the [1, t] part of the integral for 2 ≤ t ≤ T , we have

(4.33) sup 2≤t≤T 2 2k t β t 1 e -c 0 2 2k (t-τ ) S k (τ )dτ ≤ sup 2≤t≤T sup 1≤τ ≤t (τ β S k (τ ))t β t 1 e -c 0 2 2k (t-τ ) (2 2k ) γ τ -β dτ ≤ sup 2≤t≤T sup 1≤τ ≤t (τ β S k (τ ))t β t 1 (t-τ ) -η τ -β dτ ≤ sup 2≤t≤T sup 1≤τ ≤t (τ β S k (τ )) ≤ sup 1≤t≤T (t β S k (t)),
where η is chosen sufficiently large satisfying β ≤ η.

Secondly, multiplying both sides of (4.30) by t β 2 k( d p -1) , taking the supremum on [0, T ], and summing up over k ≥ k 0 -1 yields (4.34)

t β (∇a, u) h L ∞ T ( Ḃ d p -1 p,1 ) (∇a 0 , u 0 ) h Ḃ d p -1 p,1 + k≥k 0 -1 sup 0≤t≤T t β t 0 e -c 0 (t-τ ) 2 k( d p -1) S k (τ ) dτ ,
where c 0 = c 0 4 2 2k 0 . As bounding (4.32), we also deal with the time-weighted integral

(4.35) sup 0≤t≤T t β t 0 e -c 0 (t-τ ) S k (τ )dτ.
Likewise, one can assume that T ≥ 2. It is easy to see that

sup 0≤t≤2 t β t 0 e -c 0 (t-τ ) S k (τ )dτ 2 0 S k (τ )dτ.
In addition, the [0, 1] part of the integral for 2 ≤ t ≤ T is also simple:

sup 2≤t≤T t β 1 0 e -c 0 (t-τ ) S k (τ )dτ ≤ sup 2≤t≤T t β e -c 0 2 t 1 0 S k (τ )dτ ≤ 1 0 S k (τ )dτ.
By performing the same procedure leading to (4.33), we obtain

sup 2≤t≤T t β t 1 e -c 0 (t-τ ) S k (τ )dτ ≤ sup 2≤t≤T sup 1≤τ ≤t (τ β S k (τ ))t β t 1 e -c 0 (t-τ ) τ -β dτ ≤ sup 2≤t≤T sup 1≤τ ≤t (τ β S k (τ ))t β t 1 (t -τ ) -η τ -β dτ ≤ sup 1≤t≤T (t β S k (t)),
Combining those estimates for (4.32) and ( 4.35), one can write (4.36)

I k≥k 0 -1 sup 0≤t≤T t β t 0 e -c 0 (t-τ ) 2 k( d p +1) S k (τ ) dτ + k≥k 0 -1 sup 0≤t≤T t β t 0 e -c 0 (t-τ ) 2 k( d p -1) S k (τ ) dτ I 1 + I 2 + I 3 ,
where

I 1 2 0 k≥k 0 -1 2 k( d p -1) S k (τ )dτ, I 2 k≥k 0 -1 2 k( d p -1) sup 0≤t≤2 (t β S k (t))
and

I 3 k≥k 0 -1 2 k( d p -1) sup 1≤t≤T (t β S k (t)).
In what follows, we start with bounding I 1 , I 2 and I 3 in order. Note that

∇f h L 1 T ( Ḃ d p -1 p,1 )
div (au)

L 1 T ( Ḃ d p p,1 )
∇a

L 2 T ( Ḃ d p p,1 ) u L 2 T ( Ḃ d p p,1 ) + a L ∞ T ( Ḃ d p p,1 ) div u L 1 T ( Ḃ d p p,1 )
.

Furthermore, combining Propositions 3.2 and 3.6 yields

g h L 1 T ( Ḃ d p -1 p,1 ) u L ∞ T ( Ḃ d p -1 p,1 )
∇u

L 1 T ( Ḃ d p p,1 )
+ a

L ∞ T ( Ḃ d p p,1 )
∇u

L 1 T ( Ḃ d p p,1 ) + a L 2 T ( Ḃ d p p,1 )
∇a

L 2 T ( Ḃ d p -1 p,1 ) + a L ∞ T ( Ḃ d p p,1 )
∆a

L 1 T ( Ḃ d p p,1 ) + ∇a 2 L 2 T ( Ḃ d p p,1 )
.

It is clear that ∇a L 2 T ( Ḃ d p p,1 ) a L 2 T ( Ḃ d p +1 p,1 ) ≤ a L 2 T ( Ḃ d p +1 p,1 ) + a h L 2 T ( Ḃ d p +1 p,1 )
.

By employing Bernstein and interpolation inequalities (recall that p ≥ 2), we have

a L 2 T ( Ḃ d p +1 p,1 ) a L 1 T ( Ḃ d 2 +1 2,1 ) 1 2 a L ∞ T ( Ḃ d 2 -1 2,1 ) 1 2 a L 1 T ( Ḃ d 2 +1 2,1 ) + a L ∞ T ( Ḃ d 2 -1 2,1 )
X p (T ).

Likewise, we get

a h L 2 T ( Ḃ d p +1 p,1 ) a h L 1 T ( Ḃ d p +2 p,1 ) 1 2 a h L ∞ T ( Ḃ d p p,1 ) 1 2 
X p (T ).

Arguing similarly for other space-time mixed norms, we arrive at

∇f h L 1 T ( Ḃ d p -1 p,1 ) + g h L 1 T ( Ḃ d p -1 p,1 )
X 2 p (T ) (4.37) and one thus can conclude that I 1 X 2 p (2). In order to deal with I 2 and I 3 the new time-weighted product estimate in Proposition 3.1 will be used. For simplicity, one can keep in mind that T = 2 when bounding I 2 . We shall use repeatedly the following inequalities:

t β (a, u) L ∞ T ( Ḃ d p +m p,1
)

D p (T ), m = 0, 1, (4.38) and t β a L ∞ T ( Ḃ d p +2 p,1 )
D p (T ). (4.39) Indeed, it follows from the embedding, the definition of D p and tilde norms that

t β (a, u) L ∞ T ( Ḃ d p +m p,1 ) (a, u) L ∞ T ( Ḃ d 2 +m 2,1 ) t σ 1 2 + d 4 + m 2 -ε 2 (a, u) L ∞ T ( Ḃ d 2 +m-ε 2,1 ) D p (T ) and t β (a, u) h L ∞ T ( Ḃ d p +m p,1 ) D p (T ), t β a h L ∞ T ( Ḃ d p +2 p,1 )
D p (T ).

It is clear that

I 2 t β div (au) h L ∞ T ( Ḃ d p p,1 ) + t β g h L ∞ T ( Ḃ d p -1 p,1 )
. We write div (au) = adiv u + u • ∇a h + u • ∇a .

Then Proposition 3.2 and (4.38) ensure that

t β adiv u h L ∞ T ( Ḃ d p p,1 ) a L ∞ T ( Ḃ d p p,1 ) t β div u L ∞ T ( Ḃ d p p,1 )
X p (T )D p (T ).

It follows from Proposition 3.1 (taking

m = 1, s = d p + 1, r 1 = ∞, r = r 2 = 1) that t β u•∇a h h L ∞ T ( Ḃ d p p,1 ) u L ∞ T ( Ḃ-1 ∞,∞ ) t β ∇a h L ∞ T ( Ḃ d p +1 p,1 ) + ∇a h L ∞ T ( Ḃ-1 ∞,∞ ) t β u L ∞ T ( Ḃ d p +1 p,1 ) X p (T )D p (T ),
where we used the embedding

Ḃ d p -1 p,1 → Ḃ-1 ∞,∞
and the definition of X p . In addition, employing Proposition 3.2 and (4.38) again that

t β u • ∇a h L ∞ T ( Ḃ d p p,1 ) t β u L ∞ T ( Ḃ d p p,1 )
∇a

L ∞ T ( Ḃ d p p,1 ) D 2 p (T ).
Next, let us pay attention to I 2 corresponding to the nonlinear term g. Consequently, it follows from (4.38) that

t β g 1 h L ∞ T ( Ḃ d p -1 p,1 ) u L ∞ T ( Ḃ d p -1 p,1 ) t β ∇u L ∞ T ( Ḃ d p p,1 )
X p (T )D p (T ),

t β g 2 h L ∞ T ( Ḃ d p -1 p,1 ) (1 + a L ∞ T ( Ḃ d p p,1 )
) a

L ∞ T ( Ḃ d p p,1 ) t β ∇u L ∞ T ( Ḃ d p p,1 )
(1 + X p (T ))X p (T )D p (T ),

t β g 3 h L ∞ T ( Ḃ d p -1 p,1 )
a

L ∞ T ( Ḃ d p p,1 ) t β Au L ∞ T ( Ḃ d p -1 p,1 )
X p (T )D p (T ), and

t β g 4 h L ∞ T ( Ḃ d p -1 p,1 )
a

L ∞ T ( Ḃ d p p,1 ) t β ∇a L ∞ T ( Ḃ d p -1 p,1 )
X p (T )D p (T ).

In addition, the estimate with respect to g 5 is a little bit elaborate. We write g 5 g 51 + g 52 , where g 51 = κ∇( κ(a)∆a) and g 52 = 1 2 κ∇(∇ κ(a) • ∇a). Hence by (4.39), one has

t β g 51 h L ∞ T ( Ḃ d p -1 p,1 )
κ(a)

L ∞ T ( Ḃ d p p,1 ) t β ∆a L ∞ T ( Ḃ d p p,1 )
X p (T )D p (T ).

By applying Proposition 3.1 to the second term g 52 , we arrive at

t β g 52 h L ∞ T ( Ḃ d p -1 p,1 ) t β ∇ κ(a) • ∇a L ∞ T ( Ḃ d p p,1 ) = t β ( κ (1) + κ (a) -κ (1))|∇a| 2 L ∞ T ( Ḃ d p p,1 ) (1+ a L ∞ T ( Ḃ d p p,1 ) ) t β |∇a| 2 L ∞ T ( Ḃ d p p,1 ) (1+ a L ∞ T ( Ḃ d p p,1 ) ) ∇a L ∞ T ( Ḃ-1 ∞,∞ ) t β ∇a L ∞ T ( Ḃ d p +1 p,1 ) (1 + X p (T ))X p (T )D p (T ), where Ḃ d p -1 p,1 → Ḃ-1
∞,∞ was used again. Therefore, by combing above inequalities, we end up with I 2 (1 + X p (2))X p (2)D p (2). Bounding I 2 mainly use the fact T = 2 at low frequencies and the definition of D p . In that case, the exact value of β is not matter, which will be fixed in subsequent estimates of I 3 .

Regarding the term adiv u, we decompose it as follows adiv u = adiv u h + a h div u + a div u .

Product laws in Proposition 3.2 adapted to tilde spaces indicates that

t β adiv u h h L ∞ T ( Ḃ d p p,1 ) a L ∞ T ( Ḃ d p p,1 ) t β div u h L ∞ T ( Ḃ d p p,1 ) X p (T )D p (T ), (4.40) t β a h div u h L ∞ T ( Ḃ d p p,1 ) t β a h L ∞ T ( Ḃ d p p,1 ) div u L ∞ T ( Ḃ d p p,1 ) ≤ t β a h L ∞ T ( Ḃ d p p,1 ) t σ 1 2 + d 4 + 1 2 -ε 2 div u L ∞ T ( Ḃ d p p,1 ) D 2 p (T )
and (4.41)

t β a div u h L ∞ T ( Ḃ d p p,1 ) t σ 1 2 + d 4 -ε 2 a L ∞ T ( Ḃ d p p,1 ) t σ 1 2 + d 4 + 1 2 -ε 2 div u L ∞ T ( Ḃ d p p,1 ) D 2 p (T ).
On the other hand, we write

u • ∇a = u • ∇a h + u h • ∇a + u • ∇a . Note that u L ∞ T ( Ḃ d p p,1 ) ≤ u L ∞ T ( Ḃ d p p,1 ) + u h L ∞ T ( Ḃ d p p,1 ) ≤ t σ 1 2 + d 4 -ε 2 u L ∞ T ( Ḃ d p p,1 ) + t β u h L ∞ T ( Ḃ d p p,1 )
≤ D p (T ), and we thus have

t β u • ∇a h h L ∞ T ( Ḃ d p p,1 ) u L ∞ T ( Ḃ d p p,1 ) t β ∇a h L ∞ T ( Ḃ d p p,1 ) D 2 p (T ).
Similar procedure leading to (4.40)-(4.41) gives that

t β u h • ∇a h L ∞ T ( Ḃ d p p,1 ) t β u h L ∞ T ( Ḃ d p p,1 )
∇a

L ∞ T ( Ḃ d p p,1 ) D 2 p (T )
and

t β u • ∇a h L ∞ T ( Ḃ d p p,1 ) | t σ 1 2 + d 4 -ε 2 u L ∞ T ( Ḃ d p p,1 ) t σ 1 2 + d 4 + 1 2 -ε 2 ∇a L ∞ T ( Ḃ d p p,1 ) D 2 p (T ).
In what follows, let us check those nonlinear terms in g. As a matter of fact, all terms except g 5 has been treated in [START_REF] Xu | A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations[END_REF], which are bounded by D 2 p (T ) + X p (T )D p (T ). According to the prior decomposition, one has

t β g 51 h L ∞ T ( Ḃ d p -1 p,1 ) t β κ(a)∆a L ∞ T ( Ḃ d p p ,1 ) 
, where

t β κ(a)∆a h L ∞ T ( Ḃ d p p,1 ) a L ∞ T ( Ḃ d p p,1 ) t β ∆a h L ∞ T ( Ḃ d p p,1 )
X p (T )D p (T ) and

t β κ(a)∆a L ∞ T ( Ḃ d p p,1 ) t σ 1 2 + d 4 -ε 2 a L ∞ T ( Ḃ d p p,1 ) t σ 1 2 + d 4 + 1 2 -ε 2 ∆a L ∞ T ( Ḃ d p -1 p,1 ) D 2 p (T ).
Regarding the nonlinear term g 52 , one can employing Proposition 3.1 implies that

t β g 52 h L ∞ T ( Ḃ d p -1 p,1 ) t β ∇ κ(a)∇a L ∞ T ( Ḃ d p p,1 ) (1 + a L ∞ T ( Ḃ d p -1 p,1 )
)

t σ 1 2 + d 4 -ε 2 ∇a L ∞ T ( Ḃ d p -1 p,1 ) t σ 1 2 + d 4 + 1 2 -ε 2 ∇a L ∞ T ( Ḃ d p +1 p,1 ) (1 + X p (T ))D 2 p (T ). Consequently, one can deduce that I 3 X p (T )D p (T ) + D 2 p (T ) + X p (T )D 2 p (T )
. Putting all inequalities together, it follows from (4.31), (4.34) and (4.36) that

(4.42) t β (∇a, u) h L ∞ T ( Ḃ d p +1 p,1 ) + t β (∇a, u) h L ∞ T ( Ḃ d p -1 p,1 ) (∇a 0 , u 0 ) h Ḃ d p -1 p,1 + X 2 p (T ) + X p (T )D p (T ) + X 2 p (T )D p (T ) + D 2 p (T ) + X p (T )D 2 p (T ), which is (4.22) exactly.
Finally, adding up (4.21) and (4.22) yields for all T ≥ 0,

D p (T ) D p,0 + (∇a 0 , u 0 ) h Ḃ d p -1 p,1 + (1 + X p (T ))X p (T ) 2 + X p (T )(1 + X p (T ))D p (T ) + (1 + X p (T ))D 2 p (T ).
The global existence result (see Theorem 2.1) ensures that X p (t) X p,0 1 and as (a 0 , u 0 )

Ḃ d 2 -1 2,1 D p,0 1 1 - d 2 < σ 1 ≤ σ 0 ,
one can conclude that (2.9) is satisfied for all time if D p,0 and E p,0 are small enough.

Proof of Theorem 2.2. It follows from the embedding Ḃσ+d(

1 2 -1 p ) 2,1 → Ḃσ p,1 (p ≥ 2) that sup t∈[0,T ] t σ 1 +σ 2 Λ σ (a, u) Ḃ0 p,1 t σ 1 +σ 2 (a, u) L ∞ T ( Ḃσ+d( 1 2 -1 p ) 2,1 ) + t σ 1 +σ 2 (a, u) h L ∞ T ( Ḃσ p,1 ) . Note that -σ 1 < σ ≤ d p +1 which implies that -σ 1 < σ+d( 1 2 -1 p ) ≤ d p +1+ d 2 -d p = 1+ d 2 , it follows from (2.9) that t σ 1 +σ 2 (a, u) L ∞ T ( Ḃσ+d( 1 2 -1 p ) 2,1 ) D p,0 + (∇a 0 , u 0 ) h Ḃ d p -1 p,1 ,
In addition, we see that

σ 1 2 + d 2 + 1 2 -ε > d 2 ( 1 2 - 1 p ) + σ 2
for σ 1 > 1 -d 2 and σ ≤ d p + 1 provided ε > 0 is small enough, which leads to

t σ 1 +σ 2 (a, u) h L ∞ T ( Ḃσ p,1 ) t β (a, u) h L ∞ T ( Ḃ d p +1 p,1 ) D p,0 + (∇a 0 , u 0 ) h Ḃ d p -1 p,1
.

Consequently, we arrive at

Λ σ (a, u) Ḃ0 p,1 (D p,0 + (∇a 0 , u 0 ) h Ḃ d p -1 p,1 )t -σ 1 +σ 2 for -σ 1 < σ ≤ d p + 1. As -σ 1 < l + d( 1 p -1 r ) ≤ d p + 1 and p ≤ r ≤ ∞, it follows from Sobolev embeddings once again that (4.43) Λ l (a, u) L r Λ l (a, u) Ḃ0 r,1 Λ l (a, u) Ḃd( 1 p -1 r ) p,1 t - σ 1 +l+d( 1 p -1 r ) 2 = t -d 2 ( 1 2 -1 r )- l+σ 1 
2 .

Similarly, one can prove

(4.44) Λ l (a, u) L r t -d 2 ( 1 2 -1 r )- l+σ 1 2 for p ≤ r ≤ ∞ and -σ 1 < l+d( 1 p -1 r ) ≤ d p -1.
The details are left to the interested reader.

The energy method with interpolation

In this section, we shall employ the different energy method and remove the smallness requirement of (2.7).

Proof of Theorem 2.3. As in (4.24), one can derive the L p estimate for the incompressible part of velocity u:

d dt Pu Ḃ d p -1 p,1 + Pu Ḃ d p +1 p,1 g Ḃ d p -1 p,1 (5.1) 
for 1 ≤ p ≤ ∞ and t ≥ 0, where z S k 0 z. On the other hand, for studying the coupling between a and Qu, it is convenient to set V Λ -1 div u. Keeping in mind that, bounding V or Qu is equivalent, since one can go from V to Qu or Qu to V by means of zero-order homogeneous Fourier multipliers. Consequently, the new variable (a, V) satisfies the coupling 2 × 2 system:

(5.2) ∂ t a + ΛV = f, ∂ t V -∆V -Λa -κΛ 3 a = G 2 , G 2 Λ -1 div g.
Set z k ∆k z. Apply the operator ∆k S k 0 to (5.2). By using the standard L 2 energy argument, we arrive at the following two inequalities:

(5.3) 1 2 d dt a k 2 L 2 + (ΛV k |a k ) = (f k |a k ) and (5.4) 1 2 
d dt V k 2 L 2 + ΛV k 2 L 2 -(Λa k |V k ) -κ(Λ 3 a k |V k ) = (G 2k |V k ), which lead to (5.5) 1 2 d dt (a k , V k ) 2 L 2 + ΛV k 2 L 2 -κRe(Λ 3 a k |V k ) = Re(f k |a k ) + Re(G 2k |V k ),
where Re(a|b) means the real part of inner product (a|b). In addition, it follows from the first equation in (5.2) that (5.6) 1 2

d dt Λa k 2 L 2 + (ΛV k |Λ 2 a k ) = (f k |Λ 2 a k ).
Next, we turn to track the dissipation arising from the density. Multiply the second equation in (5.2) by -Λa k and perform the L 2 inner product to get

(5.7) - d dt (V k |Λa k ) + Λa k 2 L 2 + κ Λ 2 a k 2 L 2 = ΛV k 2 L 2 -(G 2k |Λa k ) -(V k |Λf k ).
Perform the routine procedure ((5.5)+κRe(5.6)+δ(5.7)), where δ > 0 to be chosen. Consequently, we obtain

(5.8) 1 2 d dt L 2 k (t) + ΛV k 2 L 2 + δ Λa k 2 L 2 + κδ Λ 2 a k 2 L 2 = δ ΛV k 2 L 2 + Re(f k |a k ) + Re(G 2k |V k ) + κRe(f k |Λ 2 a k ) -δ(G 2k |Λa k ) -δ(V k |Λf k ), where L 2 k (a k , V k ) 2 L 2 + κ Λa k 2 L 2 -2δ(V k |Λa k ). Choosing δ is small enough such that L 2 k ≈ (a k , Λa k , V k ) 2 L 2 .
Furthermore, it follows from Cauchy-Schwarz inequality that (5.9)

d dt L k + c 1 2 2k L k (f k , Λf k , G 2k ) L 2
for some constant c 1 > 0. The low-frequency cut-off (k ≤ k 0 ) further implies that

L k ≈ (a k , V k ) L 2 .
Hence, multiplying both sides of (5.9) by 2 k(d/2-1) and summing up on k ∈ Z gives (5.10) d dt (a, V)

Ḃ d 2 -1 2,1 + c 1 (a, V) Ḃ d 2 +1 2,1 (f, g) Ḃ d 2 -1 2,1
.

By adding up (5.10) to (5.1) together, and then using the orthogonal property of Leray decomposition, we deduce that

(5.11) d dt (a, u) Ḃ d 2 -1 2,1 + c 1 (a, u) Ḃ d 2 +1 2,1 (f, g) Ḃ d 2 -1 2,1
.

At the high-frequency part, one can perform L p energy approach in Section 2 and get the following inequality (k ≥ k 0 -1):

(5.12)

d dt Pu k L p + w k L p + γ v k L p + c 2 2 2k ( Pu k L p + w k L p + v k L p ) 2 k f k L p + g k L p + ∇a k + (-∆) -1 ∇a k L p ,
for some constant c 2 > 0. It follows from the definitions of effective velocities v and w that (Pu k , w k , v k ) L p ≈ (∇a k , u k ) L p . Furthermore, we arrive (taking smaller c 2 as the case may be) at

(5.13) d dt (∇a k , u k ) L p + c 2 2 2k (∇a k , u k ) L p 2 k f k L p + g k L p .
Hence, by multiplying both sides of (5.13) by 2 

Ḃ d 2 -1 2,1 + (∇a, u) h Ḃ d p -1 p,1 + c 3 (a, u) Ḃ d 2 +1 2,1 + (∇a, u) h Ḃ d p +1 p,1 (f, g) Ḃ d 2 -1 2,1 + f h Ḃ d p p,1 + g h Ḃ d p -1 p,1
.

Recalling f div (au) = adiv u + u • ∇a. We decompose adiv u = adiv u h + adiv u , so it is shown that (5.16) adiv u h h

Ḃ d p p,1 a Ḃ d p p,1 div u h Ḃ d p p,1 X p (t) u h Ḃ d p +1 p,1 and 
(5.17) adiv u h

Ḃ d p p,1 a Ḃ d p p,1 div u Ḃ d p p,1 X p (t) u Ḃ d 2 +1 2,1
, where we used the fact that a 

Ḃ d p p,1
u h Ḃ-1 ∞,∞ ∇a h Ḃ d p +1 p,1 + ∇a h Ḃ-1 ∞,∞ u h Ḃ d p +1 p,1 u h Ḃ d p -1 p,1 ∇a h Ḃ d p +1 p,1 + a h Ḃ d p p,1 u h Ḃ d p +1 p,1 X p (t) (∇a, u) h Ḃ d p +1 p,1
.

Bounding the second and third terms are both easy. See the following:

(5. 

Ḃ d p -1 p,1 ∇ κ(a) • ∇a h Ḃ d p p,1 (1 + a 
Ḃ d p p,1 ) ∇a Ḃ-1 ∞,∞ ∇a Ḃ d p +1 p,1 (1 + X p (t))X p (t) a Ḃ d 2 +1 2,1 + a h Ḃ d p +2 p,1
.

Therefore, we can conclude that (5.23)

g h Ḃ d p -1 p,1
(1 + X p (t))X p (t) (a, u)

Ḃ d 2 +1 2,1 + (∇a, u) h Ḃ d p +1 p,1
.

On the other hand, bounding (f, g)

Ḃ d 2 -1 2,1
is a little bit complicated. Likewise, it suffices to deal with the capillary term for brevity. It follows from [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF] that (5.24) 

g 51 Ḃ d 2 -1 2,1 (1 + a Ḃ d p p,1
) a

Ḃ d p p,1 ∩ Ḃ d p -1 p,1 a Ḃ d p +2 p,1 ∩ Ḃ d p +1 p,1 ) (1 + X p (t))X p (t) a Ḃ d 2 +1 2,1 + a h Ḃ d p +2 p,1 and 
(5.25)

g 52 Ḃ d 2 -1 2,1 (1 + a Ḃ d p p,1
) a

Ḃ d p p,1 ∇a Ḃ d p p,1 + a 2 Ḃ d p +1 p,1
.

Note that the interpolation inequality a 2

Ḃ d p +1 p,1 a Ḃ d p p,1 a Ḃ d p +2 p,1
, we further arrive at (5.26)

g 52 Ḃ d 2 -1 2,1 (1 + X p (t))X p (t) a Ḃ d 2 +1 2,1 + a h Ḃ d p +2 p,1
.

Consequently, combining those estimates in [START_REF] Xin | Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions[END_REF], we are led to (f, g)

Ḃ d 2 -1 2,1 (1 + X p (t))X p (t) (a, u) Ḃ d 2 +1 2,1 + (∇a, u) h Ḃ d p +1 p,1 . (5.27)
Inserting (5.16)-(5.20),(5.23) and (5.27) into (5.15), and using the fact that X p (t) X p,0 1 for all t ≥ 0 guaranteed by the global-in-time existence in [START_REF] Charve | Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity[END_REF], we deduce that (5.28) d dt (a, u)

Ḃ d 2 -1 2,1 + (∇a, u) h Ḃ d p -1 p,1 + c 3 (a, u) Ḃ d 2 +1 2,1 + (∇a, u) h Ḃ d p +1 p,1 ≤ 0.
In what follows, we employ the real interpolation in Appendix to get the desired time-decay estimates. Indeed, owing -σ

1 < d 2 -1 ≤ d p < d 2 + 1, it follows that (a, u) Ḃ d 2 -1 2,1 (a, u) Ḃ-σ 1 2,∞ θ 0 (a, u) Ḃ d 2 +1 2,∞ 1-θ 0 , (5.29)
where

θ 0 = 2 d/2+1+σ 1 ∈ (0, 1). Now, we claim that (a, u)(t, •) Ḃ-σ 1 2,∞ ≤ C 0 (5.30)
for all t ≥ 0, where C 0 > 0 depends on the norm (a 0 , u 0 ) Ḃ-σ 1 2,∞ . The proof is left to next section for clarity. Having (5.30), one can get (a, u)

Ḃ d 2 +1 2,1 ≥ c 0 (a, u) Ḃ d 2 -1 2,1 1 1-θ 0 , where c 0 = C -1 1-θ 0 C - θ 0 1-θ 0 0 . In addition, it follows from the fact (∇a, u)| h Ḃ d p -1 p,1 ≤ X p (t) X p,0
1 for all t ≥ 0, that

a h Ḃ d p +2 p,1 ≥ a h Ḃ d p p,1 ≥ a h Ḃ d p p,1 1 
1-θ 0 , u h Ḃ d p +1 p,1 ≥ u h Ḃ d p -1 p,1 ≥ u h Ḃ d p -1 p,1 1 
1-θ 0 .

Consequently, there exists a constant c 3 > 0 such that the following Lyapunov-type inequality holds

(5.31) d dt (a, u)

Ḃ d 2 -1 2,1 + (∇a, u) h Ḃ d p -1 p,1 + c 3 (a, u) Ḃ d 2 -1 2,1 + (∇a, u) h Ḃ d p -1 p,1 1+ 2 d/2-1+σ 1 ≤ 0. Solving (5.31) directly gives (5.32) (a, u) (t) Ḃ d 2 -1 2,1 + (∇a, u)(t) h Ḃ d p -1 p,1 ≤ X - 2 d/2-1+σ 1 p,0 + 2 c 0 t d/2 -1 + σ 1 - d/2-1+σ 1 2 (1 + t) -d/2-1+σ 1 2
for all t ≥ 0. Furthermore, according to the embedding Ḃ

d 2 -1 2,1 → Ḃ d p -1 p,1 (p ≥ 2), we arrive at (5.33) (a, u)(t) Ḃ d p -1 p,1 (a, u) (t) Ḃ d 2 -1 2,1 + (∇a, u)(t) h Ḃ d p -1 p,1 (1 + t) -d/2-1+σ 1 2 . In addition, if σ ∈ (-σ 1 , d p -1) with σ 1 = σ 1 + d( 1 2 -1 p )
, then employing the real interpolation in Appendix once again implies that (5.34) (a, u) Ḃσ p,1 (a, u)

Ḃσ+d( 1 2 -1 p ) 2,1 (a, u) Ḃ-σ 1 2,∞ θ 1 (a, u) Ḃ d 2 -1 2,∞ 1-θ 1 , where θ 1 = d p -1 -σ d 2 -1 + σ 1 ∈ (0, 1). Noticing the fact that (a, u)(t) Ḃ-σ 1 2,∞ ≤ C 0
for all t ≥ 0, with aid of (5.33)-(5.34), we deduce that (a, u) Ḃσ p,1

(1 + t) -d/2-1+σ 1 2 1-θ 1 = (1 + t) -d 2 ( 1 2 -1 p )- σ+σ 1 2 
(5.35) for all t ≥ 0, which leads to

(5.36) (a, u)(t) Ḃσ p,1 (a, u)(t) Ḃσ p,1 + (a, u)(t) h Ḃσ p,1 (1 + t) -d 2 ( 1 2 -1 p )- σ+σ 1 2
for σ ∈ (-σ 1 , d p -1). Lastly, performing the same embedding as in (4.43), we complete the proof of Theorem 2.3 immediately. 

(5.37) (a, u)(t) Ḃ-σ 1 2,∞ 2 (a 0 , u 0 ) Ḃ-σ 1 2,∞ 2 + t 0 N 1 p (τ ) + N 2 p (τ ) (a, u)(τ ) Ḃ-σ 1 2,∞ 2 dτ + t 0 N 3 p (τ ) (a, u)(τ ) Ḃ-σ 1 2,∞ dτ, where N 1 p (t) (a, u) Ḃ d 2 +1 2,1 + a h Ḃ d p +2 p,1 + u h Ḃ d p +1 p,1 , N 2 p (t) a 2 Ḃ d p p,1 , N 3 p (t) (a, u) Ḃ d 2 -1 2,1 + a h Ḃ d p p,1 + u h Ḃ d p -1 p,1 a h Ḃ d p +2 p,1 + u h Ḃ d p +1 p,1 . 
Proof. It follows from (5.2) that

(5.38) 1 2 d dt (a k , V k ) 2 L 2 + ΛV k 2 L 2 -κ(Λ 3 a k |V k ) = (f k |a k ) + (G 2k |V k ).

and

(5.39) 1 2

d dt Λa k 2 L 2 + (ΛV k |Λ 2 a k ) = (f k |Λ 2 a k ).
Multiplying (5.39) by the constant κ, adding (5.38) together and then using Cauchy-Schwarz inequality implies that

(5.40) 1 2 d dt (a k , √ κΛa k , V k ) 2 L 2 + ΛV k 2 L 2 ≤ (f k , √ κΛf k , G 2k ) L 2 (a k , √ κΛa k , V k ) L 2 .
By performing a routine procedure, one can arrive at

(5.41) (a, u)(t) Ḃ-σ 1 2,∞ 2 (a 0 , u 0 ) Ḃ-σ 1 2,∞ 2 + t 0 (f, g) Ḃ-σ 1 2,∞ (a, u)(τ ) Ḃ-σ 1 2,∞
dτ.

Here, we mainly focus on the nonlinear norm

g 5 Ḃ-σ 1 2,∞
. As in Section 2, we decompose g 5 in terms of low-frequency and high-frequency parts. We handle with g 5 with a first. Precisely,

(5.42)

g 51 (a, a ) Ḃ-σ 1 2,∞ κ(a)∆a Ḃ-σ 1 2,∞
.

Keeping in mind that the smooth function κ satisfying κ(0) = 0, we may write

κ(a) = κ (0)a + k(a)a = κ (0)a + κ (0)a h + k(a)a
for some smooth function k vanishing at 0. Applying Corollary 3.3 indicates that

(5.43) κ (0)a ∆a Ḃ-σ 1 2,∞ ∆a Ḃ d p p,1 a Ḃ-σ 1 2,∞ a Ḃ d 2 +1 2,1 a Ḃ-σ 1 2,∞ , (5.44 
) κ (0)a h ∆a Ḃ-σ 1 2,∞ a h Ḃ d p p,1 ∆a Ḃ-σ 1 2,∞ a h Ḃ d p +2 p,1 a Ḃ-σ 1 2,∞ and 
(5.45) k(a)a∆a Ḃ-σ 1 2,∞ k(a)a Ḃ d p p,1 ∆a Ḃ-σ 1 2,∞ a 2 Ḃ d p p,1 a Ḃ-σ 1 2,∞
.

On the other hand, the nonlinear term g 52 (a, a ) can be estimated as

(5.46) g 52 (a, a ) Ḃ-σ 1 2,∞ ∇ κ(a) • ∇a Ḃ-σ 1 2,∞ a Ḃ d p +1 p,1 ∇a Ḃ-σ 1 2,∞ a Ḃ d 2 +1 2,1 + a h Ḃ d p +2 p,1 a Ḃ-σ 1 2,∞ . 
Regarding those terms of f and g with a h or u h , as in Section 2, we divide these calculations into cases 2 ≤ p ≤ d and p > d. In first case of 2 ≤ p ≤ d, one can employ Corollary 3.2 (see (3.7)) again and get 

(5.47) g 51 (a, a ) Ḃ-σ 1 2,∞ κ(a)∆a h Ḃ-σ 1 2,∞ κ(a) Ḃ d p -1 p,1 ∆a h Ḃ d p -1 p,1 a Ḃ d p -1 p,1 a h Ḃ d p +1 p,1 a Ḃ d 2 -1 2,1 + a h Ḃ d p p,1 a h Ḃ d p +2 p,1
) Ḃ-σ 1 2,∞ ∇ κ(a) • ∇a h Ḃ-σ 0 2,∞ ∇ κ(a) • ∇a h L p/2 ∇ κ(a) L p ∇a h L p . The embeddings Ḃ d 2 -d p 2,1 → L p and Ḃ0 p,1 → L p yield ∇ κ(a) L p ∇a L p ∇a Ḃ d 2 -d p 2,1 + ∇a h Ḃ d p -1 p,1 . (5.49) Owing to -σ 1 < d 2 -d p ≤ d 2 -
1, the real interpolation and Young's inequality imply that ∇a

Ḃ d 2 -d p 2,1 ∇a 1-θ 2 Ḃ-σ 1 2,∞ ∇a θ 2 Ḃ d 2 -1 2,∞ a Ḃ-σ 1 2,∞ + a Ḃ d 2 -1 2,1 , (5.50) 
where

θ 2 = σ 1 + d 2 -d p σ 1 + d 2 -1 ∈ (0, 1].
Inserting (5.49)-( 5.50) into (5.48) leads to 

g 52 (a, a h ) Ḃ-σ 1 2,∞ a Ḃ d 2 -1 2,1 + a h Ḃ d p p,1 a h Ḃ d p +2 p,1 + a h Ḃ d p +2 p,1 a Ḃ-σ 1 2,∞ . (5.51) Case 2: 1 -d 2 < σ 1 ≤ d p -d 2 . It follows from embedding L 2 → Ḃ0 2,∞ and Hölder in- equality that (5.52) g 52 (a, a h ) Ḃ-σ 1 2,∞ ∇ κ(a) • ∇a h Ḃ0 2,∞ ∇ κ(a) • ∇a h L 2 ∇ κ(a) L d ∇a h L d *
Ḃ d p -1 p,1 a Ḃ d p p,1 a Ḃ d 2 -1 2,1 + a h Ḃ d p p,1 and ∇a h L d * ∇a h Ḃ0 d * ,1 ∇a h Ḃ d d * d * ,1 a h Ḃ d p +1 p,1 (p ≤ d * ),
where we used the relation d d * = d 2 -1 ≥ 0. Furthermore, we have

g 52 (a, a h ) Ḃ-σ 1 2,∞ a Ḃ d 2 -1 2,1 + a h Ḃ d p p,1 a h Ḃ d p +2 p,1 . 
(5.53) Now, we consider the oscillation case p > d. The inequality (3.11) in Proposition 3.5 is employed once again:

(5.54) F G h Ḃ-σ 1 2,∞ ( F Ḃ1-d p p,1 + F L p * ) G h Ḃ d p -1 p,1 with 1 p * 1 2 -1
p . Taking F = κ(a) and G = ∆a in (5.54) and using Proposition 3.6 lead to (5.55) .

g 51 (a, a h ) Ḃ-σ 1 2,∞ κ(a)∆a h Ḃ-σ 1 2,∞ ( a Ḃ1-d p p,1 + κ(a) L p * ) ∆a h Ḃ d p -1 p,1
Finally, by combining those estimates for other nonlinear terms (see [START_REF] Xin | Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions[END_REF]), one can conclude that (5.37). Hence, the proof of Lemma 5.1 is finished. By Young's inequality, we arrive at readily Clearly, Claim (5.30) is just the direct consequence of Gronwall's inequality, provided the integral .

Consequently, one has t 0 N 2 p (τ )dτ X 2 p ≤ CX p,0 .

Therefore, Claim (5.30) follows.

Appendix: Littlewood-Paley Decomposition and Besov Spaces

In the last section, we would like to recall the Littlewood-Paley decomposition, Besov spaces and classical properties. The reader is also referred to Chap. 2 and Chap. 3 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF].

Let us begin with the homogeneous Littlewood-Paley decomposition. For that end, one need a smooth radial function χ(ξ) with Supp χ ⊂ B 0, 4 3 and χ ≡ 1 on B 0, 3 4 . Set ϕ(ξ) = χ(ξ/2) -χ(ξ). Then ϕ is compactly supported in the annulus {ξ ∈ R d , 3 4 ≤ |ξ| ≤ 8 3 } and fulfills (2 jσ ∆j f L p ) r (Z) .

The following classical properties (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]) has been used repeatedly in this paper. • Scaling invariance: For any σ ∈ R and (p, r) ∈ [1, ∞] 2 , there exists a constant C = C(σ, p, r, d) such that for all λ > 0 and f ∈ Ḃσ p,r , we have In particular, the gradient operator maps Ḃσ p,r to Ḃσ-1 p,r . In addition, we also recall the classical Bernstein inequality:

C -1 λ σ-d p f Ḃσ
(6.2) D k f L b ≤ C 1+k λ k+d( 1 a -1 b ) f L a
that holds for all function f such that Supp Ff ⊂ ξ ∈ R d : |ξ| ≤ Rλ for some R > 0 and λ > 0, if k ∈ N and 1 ≤ a ≤ b ≤ ∞. An obvious consequence of (6.2) is that

D k f Ḃs p,r
≈ f Ḃs+k p,r for all k ∈ N. On the other hand, when localizing PDE's by means of Littlewood-Paley decomposition, one ends up with bounds for each dyadic block in spaces of type L ρ T (X) L ρ ([0, T ] ; X) for some Banach space X (e.g., X = L p ). To get a Besov type information, we then have to perform a summation on r (Z), which motivates the following definition that initiated by J.-Y. Chemin and N. Lerner [START_REF] Chemin | Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes[END_REF] (see also [START_REF] Chemin | Théorèmes d'unicité pour le systèm de Navier-Stokes tridimensionnel[END_REF] for the particular case of Sobolev spaces). Restricting the above norms (6.1) and (6.3) to the low or high frequencies parts of distributions will be fundamental in our method. For instance, let us fix some integer k 0 (the value of which will follow from the proof of the high-frequency estimates) and put 3f Ḃσ 

) with σ 0 2d p -d 2 and 1 p * 1 2 - 1 p

 111 , and C depending only on j 0 , d and s.

(4. 23 )

 23 ∂ t Pu -µ∆Pu = Pg.

5. 1 .Lemma 5 . 1 .

 151 The regularity evolution of negative Besov norm. What left is to prove Claim (5.30), which indicates the regularity evolution of low frequencies. Clearly, this fact plays the key role in deriving the Lyapunov-type inequality in time for energy norms (see(5.29)-(5.31)). Let 1 -d 2 < σ 1 ≤ σ 0 and p satisfy (2.5). It holds that

with 1 / 1 p, 1 →

 111 d + 1/d * = 1/2. By virtue of Proposition 3.6 and Ḃ d p -L d , we obtain ∇ κ(a) L d ∇ κ(a)

k∈Z ϕ( 2 Definition 6 . 1 .

 261 -k •) = 1 in R d \ {0}• Define the dyadic blocks ( ∆k ) k∈Z by ∆k = ϕ(2 -k D) (that is, ∆k f := ϕ(2 -k ξ) f (ξ) for any tempered distribution f ∈ S (R d )). If so, one has the (formal) homogeneous decomposition with respect to f , which reads asf = k∈Z ∆k f.The equality holds true in the set S of tempered distributions whenever f belongs toS 0 f ∈ S , | lim k→-∞ Ṡk f L ∞ = 0 ,where Ṡk stands for the low frequency cut-off defined by Ṡk = χ(2 -k D). For σ ∈ R and 1 ≤ p, r ≤ ∞, the homogeneous Besov spaces Ḃσ p

.• 1 ,r 1 → 1 r 2 ; ( 2 ) 1 •

 111221 Completeness: Ḃσ p,r is a Banach space whenever σ < d p or σ ≤ d p and r = 1.• Embedding: (1) For any p ∈ [1, ∞], Ḃ0 p,1 → L p → Ḃ0 p,∞ ; (2) If σ ∈ R, 1 ≤ p 1 ≤ p 2 ≤ ∞ and 1 ≤ r 1 ≤ r 2 ≤ ∞, then Ḃσ p Ḃσis continuously embedded in the set of bounded continuous functions (going to 0 at infinity if p < ∞). • Interpolation: Let 1 ≤ p, r, r 1 , r 2 ≤ ∞. (1) If u ∈ Ḃs p,r 1 ∩ Ḃ s p,r 2 and s = s, then u ∈ Ḃθs+(If u ∈ Ḃs p,∞ ∩ Ḃ s p,∞ and s < s, then u ∈ Ḃθs+(Action of Fourier multipliers: If F is a smooth homogeneous of degree m function on R d \{0} then F (D) : Ḃσ p,r → Ḃσ-m p,r .

Definition 6 . 2 .

 62 For T > 0, σ ∈ R, 1 ≤ r, θ ≤ ∞, the homogeneous Chemin-Lerner space L θ T ( Ḃσ p,r ) is defined byL θ T ( Ḃσ p,r ) f ∈ L θ 0, T ; S 0 : f L θ T ( Ḃσ p,r ) < +∞ , where ∆j f L θ T (L p ) ) r (Z). For notational simplicity, index T is omitted if T = +∞. We agree with the notationC b (R + ; Ḃσ p,r ) f ∈ C(R + ; Ḃσ p,r ) s.t f L ∞ ( Ḃσ p,r ) < +∞ . The Chemin-Lerner space L θ T ( Ḃσ p,r) may be linked with the standard spaces L θ T ( Ḃσ p,r ) by means of Minkowski's inequality:f L θ T (B σ p,r ) ≤ f L θ T (B σ p,r ) if r ≥ θ; f L θ T (B σ p,r ) ≥ f L θ T (B σ p,r ) if r ≤ θ.

2

 2 kσ ∆k f L ∞ T (L p ) .

  ≤ X p (t) for t ≥ 0. Regarding the term u • ∇a, one can write u • ∇a = u h • ∇a h + u • ∇a h + u • ∇a . Apply Corollary 3.1 to the first term

	gives that
	(5.18) u h • ∇a h h Ḃ d p p,1

  ≤ σ 0 . It follows from Hölder inequality that (5.48) g 52 (a, a h

	Case 1: d p -d 2 < σ 1
	.
	Bounding g 52 (a, a ) is a little bit careful, which depends on cases d p -d 2 < σ 1 ≤ σ 0 and
	1 -d 2 < σ 1 ≤ d p -d 2 separately.

.

  Thanks to the embedding Ḃ1-σ 0 → L p * and Ḃσ 0 p,1 → L p * indicate that κ(a) L p * a L p * a By performing the same procedure leading to (4.19)-(4.20), we deduce that (5.57) g 52 (a, a h ) Ḃ-σ 1

				2,1	→	Ḃ1-d p p,1 and some exponent relations d 2 -1 < 1 -
	σ 0 (p > d), 1 -d p < d p , yields						
		a	Ḃ1-d p p,1	a Ḃ1-σ 0 2,1	+ a h	Ḃ d p p,1		a	Ḃ d 2 -1 2,1	+ a h Ḃ d p p,1	.
	In addition,	p Ḃ d 2,1 Ḃ d p 2,1	+ a h	Ḃσ 0 p,1	a	Ḃ d 2 -1 2,1	+ a h Ḃ d p p,1	,
	where d 2 -1 ≤ d p and σ 0 ≤ d p have been used.		
	Furthermore, we see that						
	(5.56)		g 51 (a, a h ) Ḃ-σ 1 2,∞	a	Ḃ d 2 -1 2,1	+ a h Ḃ d p p,1	a h Ḃ d p,1 p +2	.
			2,∞	g 52 (a, u h ) Ḃ-σ 0 2,∞	a	Ḃ d p p,1	∇a h	p Ḃ1-d p,1
										a	Ḃ d 2 -1 2,1	+ a h Ḃ d p p,1	a h Ḃ d p +2 p,1

  Indeed, it follows from the definition of X p in (2.4) that

					t									
						N 1 p (τ ) + N 2 p (τ ) + N 3 p (τ ) dτ		
					0									
	is bounded. t											
				N 1 p (τ ) + N 3 p (τ ) dτ ≤ X p + X 2 p ≤ CX p,0 ,	
			0											
	since X p,0	1. In addition,										
		a 2 L 2 t (	Ḃ d p p,1 )	a	L ∞ t (	Ḃ d p -1 p,1 )	a	L 1 t (	Ḃ d p +1 p,1 )	a	L ∞ t (	Ḃ d 2 -1 2,1 )	a	L 1 t (	Ḃ d 2 +1 2,1 )
	and													
				a h 2 L 2 t (	Ḃ d p p,1 )		a h L ∞ t (	Ḃ d p p,1 )	a h L 1 t (	Ḃ d p +2 p,1 )	

which is the same as that of heat kernel under the usual L 1 assumption.

Note that for technical reasons, we need a small overlap between low and high frequencies.
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