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POINCARÉ SERIES AND LINKING OF LEGENDRIAN

KNOTS

NGUYEN VIET DANG AND GABRIEL RIVIÈRE

Abstract. On a negatively curved surface, we show that the Poincaré
series counting geodesic arcs orthogonal to some pair of closed geodesic
curves has a meromorphic continuation to the whole complex plane.
When both curves are homologically trivial, we prove that the Poincaré
series has an explicit rational value at 0 interpreting it in terms of linking
number of Legendrian knots. In particular, for any pair of points on
the surface, the lengths of all geodesic arcs connecting the two points
determine its genus, and, for any pair of homologically trivial closed
geodesics, the lengths of all geodesic arcs orthogonal to both geodesics
determine the linking number of the two geodesics.

1. Introduction

Let (X, g) be a smooth (C∞), oriented, connected, closed Riemannian
surface and which has negative curvature. Given a nontrivial homotopy
class c ∈ π1(X), one can find a unique oriented geodesic c (parametrized by
arc length) in the conjugacy class of c [57, §3.8]. Similarly, any point c ∈ X
will be understood in the following as a closed geodesic representing the
trivial homotopy class in π1(X). When the closed geodesic c is embedded,
we say that the geodesic is simple (including the case of a point).

A classical problem in Riemannian geometry consists in studying the
lengths of the geodesic arcs joining two closed geodesics c1 and c2 which
are primitive1 in X. More precisely, for T > 0, we denote by NT (c1, c2) ∈
[0,+∞] the number of geodesics γ of length 0 < `(γ) 6 T (parametrized by
arc length) that join c1 to c2 and that are directly orthogonal to c1 and c2.
In that framework and when c1, c2 are points, Margulis proved, using purely
dynamical methods [61, 62], the existence of Ac1,c2 > 0 such that

(1) NT (c1, c2) ∼ Ac1,c2eThtop , as T → +∞,
where htop > 0 is the topological entropy of the geodesic flow. See also [22,
51, 52] for earlier results of Delsarte and Huber in constant negative cur-
vature using the spectral decomposition of the Laplace-Beltrami operator.
This asymptotic formula was further generalized by Pollicott in the frame-
work of Axiom A dynamical systems [73]. Parkkonen and Paulin showed

1It means that either the homotopy class ci is trivial in π1(X), or the equation cp = ci
has no solution for every p > 1. We will implicitely suppose this all along the article. The
general case would follow from this case anyway.
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that (1) remains true when c1 and c2 are any elements in π1(X) and when
X is not necessarily compact [66]. For smooth compact Riemannian man-
ifolds without any assumption on their curvature and when c1 and c2 are
points, Mañé proved [60] that

lim
T→+∞

1

T
log

∫
X×X

NT (c1, c2)dvolg(c1)dvolg(c2) = htop,

where volg is the Riemannian volume induced by g – see also [67, 10, 70, 69].
In this work, we shall focus on the case of negatively curved surfaces

as in the works of Margulis. Recall that his strategy consisted in relating
the study of these asymptotics with the mixing properties of the measure
maximizing the Kolmogorov-Sinai entropy, the so-called Bowen-Margulis
measure. We refer to the review of Parkkonen and Paulin for more details
on these questions and for some recent developments [65]. In particular,
estimates on the size of the remainder in (1) can be derived [66, Th. 27]
from quantitative estimates on the rate of mixing of the Bowen-Margulis
measure [75, 63, 23, 38, 41]. Such quantitative estimates can be obtained
for instance from the spectral analysis of transfer operators on appropriate
Banach spaces of currents [23, 38, 41] which is also referred to as the study
of Pollicott-Ruelle resonances. In the hyperbolic case, estimates on the size
of the remainder were previously obtained using the spectral decomposition
of the Laplacian [72, 46, 83, 39].

Instead of searching for improvements on the size of the remainder in (1),
the aim of this work is to study more specifically the zeta renormalization
of NT (c1, c2):

∀s ∈ C, NT (c1, c2, s) :=
∑

γ∈Pc1,c2 :0<`(γ)6T

e−s`(γ),

where Pc1,c2 denotes the set of geodesic arcs γ joining c1 and c2 and directly
orthogonal2 to c1 and c2. Note that NT (c1, c2, 0) = NT (c1, c2).

1.1. Meromorphic continuation. Thanks to (1), we can define, in the
region Re(s) > htop, the generalized Poincaré series3

(2) N∞(c1, c2, s) := lim
T→+∞

NT (c1, c2, s) =
∑

γ∈Pc1,c2 :`(γ)>0

e−s`(γ).

This defines a holomorphic function in the region Re(s) > htop and we will
first prove the following result:

Theorem 1.1. Let (X, g) be a smooth (C∞), closed, oriented, connected,
Riemannian surface which has negative curvature. Then, for every closed

2In other words, γ′(0) ⊥ Tγ(0)c1, γ′(`) ⊥ Tγ(`)c2 and γ′(0) ∧ c′1(γ(0)), γ′(`) ∧ c′2(γ(`))

have direct orientations.
3This is just the Laplace transform of the measure

∑
γ∈Pc1,c2

:`(γ)>0 δ0(t− `(γ)).
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geodesics (c1, c2) (including the case of points), the holomorphic function

s ∈ {w : Re(w) > htop} 7→ N∞(c1, c2, s) ∈ C

has a meromorphic continuation to C.

Our proof will use the spectral properties of transfer operators for uni-
formly hyperbolic flows developed by many authors over the last fifteen
years [11, 12, 86, 33, 87, 38, 25, 27, 32, 26, 43, 53]. More precisely, we will
interpret this Poincaré series in terms of a certain spectral resolvent applied
to the conormal cycle of c1 and c2. Then, we will derive this theorem from
the meromorphic continuation of this spectral resolvent. Our proof allows to
encompass the case of much more general Anosov flows and Poincaré series
(see Appendix B) but we limit ourselves to this simplified version for the
introduction. As a byproduct of this argument, we will verify that the poles
of this meromorphic continuation are included in the set of Pollicott-Ruelle
resonances for currents of degree 1. This spectral approach is in some sense
close in spirit to what is done when proving the meromorphic continuation of
dynamical zeta functions [2]. For instance, Giulietti-Liverani-Pollicott [38]
and Dyatlov-Zworski [27] showed by spectral methods the meromorphic con-
tinuation of the Ruelle zeta function

(3) ζRuelle(s) =
∏
γ∈P

(
1− e−s`(γ)

)−1
,

where P denotes the set of primitive closed geodesics. See also [76, 78, 35] for
earlier results of Ruelle, Rugh and Fried in the analytic case, [2] for a detailed
account of Baladi in the case of Axiom A diffeomorphisms or [32, 40] for the
semiclassical zeta function of Faure–Tsujii. For all these other zeta functions,
the meromorphic continuation was also established by spectral methods and
their zeroes and poles were related to the Pollicott-Ruelle resonances on
anisotropic spaces of currents as it is the case here.

While there are many results on Ruelle zeta functions, there are not so
many works on the meromorphic continuation of Poincaré series. The only
results we are aware of concern hyperbolic manifolds where one can connect
Poincaré series to a certain spectral resolvent of the Laplacian – see for
instance [51, Satz A], [52, Satz 2] or [44, Lemme 3.1]. Yet, such a correspon-
dence is not available for general negatively curved manifolds and one has
to work directly with the dynamical problem as we shall do here. The only
dynamical proof of a meromorphic continuation of Poincaré series we are
aware of is due to Paternain [69, p. 138] in the case where (X, g) is hyper-
bolic. Under these assumptions, he proved by purely geometrical arguments
that

(4) lim
T→+∞

∫
X×X

NT (c1, c2, s)dvolg(c1)dvolg(c2) =
4π2χ(X)

1− s2
,
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where c1, c2 are points and χ(X) is the Euler characteristic of X. He ob-
tained this formula by interpreting this integrated Poincaré series via a con-
venient coarea formula – see also [60, 70] for earlier related results. In some
sense, our proof of the meromorphic continuation will use similar ideas but
with the addition of the spectral analysis of Anosov flows to compensate the
absence of simplifications due to constant curvature and to the integration
over X ×X. Note that as a corollary of this result, of Theorem 1.1 and of
Proposition 6.10 below, we recover the Euler characteristic of an hyperbolic
surface as a special value of Poincaré series:

(5)

∫
X×X

N∞(c1, c2, 0)dvolg(c1)dvolg(c2) = 4π2χ(X).

We will now show how to generalize this formula via our spectral approach.

1.2. Value at 0. In a series of recent works, it was observed by Dyatlov-
Zworski [28] and the authors [19, 20, 21] that among Pollicott-Ruelle reso-
nances, the one at 0 plays a special role as its resonant states encode the
De Rham cohomology of the manifold where the dynamics takes place. See
also [47, 58, 13] for related results of Hadfield, Küster-Weich and Cekić-
Paternain. In the case of geodesic flows on Riemannian surfaces, the reso-
nant states were in some sense computed explicitly by Dyatlov and Zworski [28,
§3]. As a consequence, they proved

sχ(X)ζRuelle(s)|s=0 6= 0,

and thus they generalized earlier results due to Fried in the case of constant
curvature [34].

The behaviour at 0 of Poincaré series will be of slightly different nature
as we will consider situations where there will be no pole or zero at s = 0
even if there is a Pollicott-Ruelle resonance at 0. Despite this and working
out on the ideas introduced in [19, 20, 21, 28], we will verify that the value
at 0 still has a topological meaning and that it is a rational number. To
that aim, we set

ε(c) = 1 if c is trivial in π1(X), and ε(c) = −1 otherwise,

and the main result of this article reads:

Theorem 1.2. Let (X, g) be a smooth (C∞), closed, oriented, connected,
Riemannian surface which has negative curvature. Given a pair c1 and c2

of two simple closed geodesics in X which are trivial in homology and such
that

• either c1 and c2 are distinct nontrivial homotopy classes,
• or at least one ci is a point and c1 ∩ c2 = ∅.

Then one has

χ(X)N∞(c1, c2, 0) ∈ Z.
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Moreover, if X(ci) denotes the compact surface4 whose oriented boundary is
given by ci, then one has
(6)

N∞(c1, c2, 0) = ε(c1)

(
χ(X(c1))χ(X(c2))

χ(X)
− χ(X(c1) ∩X(c2)) +

1

2
χ(c1 ∩ c2)

)
.

Note that as c1 and c2 are homologically trivial, they intersect an even
number of times and the contribution 1

2χ(c1 ∩ c2) yields an integer5.
When c1 and c2 are distinct points, we get

N∞(c1, c2, 0) =
1

χ(X)
.

In fact, as we shall explain it in Remark 3.7 and as it was pointed to us
by one of the referee, this last formula remains true in the case of Anosov
surfaces without focal points. If we only make the Anosov assumption, then
the value at 0 may differ from an integer depending on the choice of points.
Thus, as a corollary of this result, the Euler characteristic of a negatively
curved surface (X, g) can be recovered by the set of lengths of the geodesic
arcs joining two points of X. Still in the case of points, we also observe that
we recover Paternain’s formula (5) without integrating over X and that it
can be extended to variable curvature as follows:∫

X×X
N∞(c1, c2, 0)dvolg(c1)dvolg(c2) =

volg(X)2

χ(X)
.

For the sake of illustration, we can also write down the formula when c1 is
not reduced to a point but c2 (with c2 ∩ c1 = ∅) is:

N∞(c1, c2, 0) = −χ(X(c1))

χ(X)
+ |X(c1) ∩ c2|.

More generally, this Theorem shows that the value at 0 of Poincaré series
is rational under homological assumptions on the homotopy classes we con-
sider. As we shall see, the integer χ(X)N∞(c1, c2, 0) has a clear geometric
interpretation if we lift the problem to the unit cotangent bundle. It will
correspond to the linking of two Legendrian knots given by the unit conor-
mal bundles of the geodesic representatives c1 and c2. See §6 for details.
In particular, the reason why we need c1, c2 to be homologically trivial is
that their conormal bundles should also be homologically trivial so that they
have a well–defined linking number in S∗X. The two Theorems above could
be extended to Anosov surfaces and to more general simple closed curves on
X (not necessarily geodesics) but this requires to make a certain transver-
sality assumption that will be described in (17). Note however that, in this

4When ci is a point, we take the convention that X(ci) = ci. When ci is not a point,
X \ ci has two connected components (as ci is homologically trivial and embedded) and
X(ci) is the closure of the component whose oriented boundary is ci.

5When c1 corresponds to c2 with its reverse orientation, one has X(c2) = X(c1)c and
X(c1) ∩X(c2) = c1 ∩ c2 = c1 has 0 Euler characteristic.
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generalized case, the set {γ ∈ Pc1,c2 : 0 < `(γ) ≤ T} may not be finite and
one needs to consider Poincaré series starting with geodesics arcs having a
large enough length. In particular, the value at 0 may differ by an element
in Z depending on this choice of minimal length. In the case of geodesics,
this assumption is satisfied in the case of Anosov surfaces verifying in some
sense a “strong” nonfocal point property.

Let us also mention that the reduction to simple geodesics is only required
for simplicity of exposition but the case of general closed geodesics can be
handled similarly once we have defined properly what we mean for X(ci) in
that case. See Section 7 for more details.

The main reason for restricting ourselves to dimension 2 is due to our
spectral interpretation of Poincaré series. In particular, their value at 0
is related to the properties of the eigenspace associated with the Pollicott-
Ruelle resonance at 0. As already alluded to, a rather precise description
of that eigenspace was recently given by Dyatlov and Zworski in dimen-
sion 2 [28] and we will crucially use this result (together with some ideas
from [20]) in order to identify the value at 0.

1.3. Perspectives and related results. In higher dimensions, very few
things are known on the eigenspace at 0 [58, 18, 14] but any progress in
that direction should in principle give some insights on the behaviour at
0 of Poincaré series in higher dimensions following the lines of our proof.
For instance, one could try to implement the recent results from [14] valid
for nearly hyperbolic 3-manifolds. Recall from [69, Prop. 3.2] that, for a
hyperbolic manifold (X, g) of dimension n0 > 2 and for trivial homotopy
classes, Paternain’s formula (4) becomes

lim
T→+∞

∫
X×X

NT (c1, c2, s)dvolg(c1)dvolg(c2)

=
4π

n0
2 volg(X)

2n0Γ
(
n0
2

) n0−1∑
k=0

(−1)k
(
n0 − 1
k

)
s+ 2k + 1− n0

.

In particular, there is a pole at 0 in odd dimensions. Coming back to
dimension 2, the results of Hadfield [47] for geodesic flows on surfaces with
boundary should allow to find a formula similar to the one from Theorem 1.2
in that case. Yet, this would be much beyond the scope of the present article.
Thus, we shall not discuss this here and this was in fact recently achieved
in [15] using the methods of the present article combined with [26, 47].

Studying the meromorphic continuation of Poincaré series and their spe-
cial value at 0 is reminiscent from classical questions in number theory. The
most famous example is given by the Riemann zeta function which equals
−1

2 at 0. More generally, for totally real fields, the Siegel-Klingen Theo-
rem [84, 56] shows that the corresponding zeta function takes a rational
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value at 0 (in fact at each nonpositive integer). Bergeron, Charollois, Gar-
cia and Venkatesh show that this special value at 0 can be interpreted as
a linking number between periodic orbits of the suspension of hyperbolic
toral automorphisms of the 2-torus [5]. As the geodesic flow on negatively
curved surfaces, these are examples of Anosov flows in dimension 3. Coming
back to geodesic flows on surfaces, we also mention the works of Ghys. He
showed that, on the unit tangent bundle6 PSL(2,R)/PSL(2,Z) of the mod-
ular surface, the linking number of a closed geodesic with the trefoil knot
can be identified with the value of the Rademacher function on the given
geodesic [36, § 3.3]. The Rademacher function is an integer valued function
defined on the set of closed orbits of the geodesic flow. More recently, Duke,
Imamoḡlu and Tóth showed how to express the linking number of two given
(homologically trivial) geodesics of the modular surface as the special value
of a certain Dirichlet series [24, Th. 4].

Hence, once reinterpreted in terms of linking between Legendrian knots
(see §6), Theorem 1.2 can be viewed as another occurrence of these interac-
tions between knots and dynamics but in a context where no arithmetical
tool is available. In the main part of our work, our knots will be Legendrian,
thus “orthogonal” to the closed orbits of the geodesic flow. Yet, in Theo-
rem C.1, we will verify that for two homologically trivial closed geodesics
curves c1, c2 in X, the number N∞(c1, c2, 0) actually computes the linking
number of the two geodesics γ1, γ2 lifting c1, c2 in S∗X, yielding a direct
connection with the linking numbers appearing in the above works.

Organization of the article. In Section 2, we prove a simple geometric
lemma that is instrumental in our argument. In Section 3, we review a few
standard facts on Riemannian geometry and dynamical systems that are
used throughout the article and we also apply the Lemma of Section 2 in
the case of geodesic flows. Section 4 is the main analytical part where we
prove Theorem 1.1. This proof relies on the microlocal methods introduced
by Faure-Sjöstrand in [33] and subsequently developed by Dyatlov-Zworski
in [27] to study the meromorphic continuation of Ruelle zeta functions. The
results in that section could be as well obtained via the geometric approach
of Pollicott-Ruelle spectra previously developed by Liverani et al. [11, 12,
38]. Yet, the microlocal point of view and more specifically the notion of
wavefront sets is quite convenient for the study of Poincaré series and more
specifically of their value at 0. After that, in Section 5 and in view of
proving Theorem 1.2, we briefly review the recent results of Dyatlov and
Zworski on Pollicott-Ruelle resonant states at 0 for contact Anosov flows
in dimension 3. Then, we apply them to compute the residue of Poincaré
series at 0 and we show that this residue can be expressed in terms of
representatives of the De Rham cohomology. In Section 6, we show that
this residue is equal to 0 for homologically trivial geodesic curves and we
express the value at 0 as the linking between two Legendrian knots. We

6It is homeomorphic to the complement of the trefoil knot in the 3-sphere.
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conclude the proof of Theorem 1.2 by appealing to classical results from
differential topology such as the Poincaré-Hopf formula for manifolds with
boundary derived by Morse [64]. In Section 7, we introduce the notion
of constructible functions and show how it allows to extend Theorem 1.2
for geodesics that are not necessarily simple. Finally, the article contains
4 appendices. In Appendix A, we review some facts on wavefront sets of
distributions that are used in this article. In Appendix B, we explain how to
extend Theorem 1.1 to general Anosov flows while Appendix C shows how
to relate the linking number appearing in Section 6 to the linking number
of two geodesics in S∗X. The last appendix is devoted to the proof of a
technical lemma that is used in Section 7.

Conventions. All along the article, (X, g) is a smooth, closed, oriented,
connected, Riemannian surface. Recall that, by closed, one means compact
and boundaryless. We denote by M := S∗X the unit cotangent bundle
which is naturally endowed with the Sasaki metric gS [68, 77]. Recall also
that the Riemannian metric g on X induces natural isometries between TX
and T ∗X (endowed with dual metric g∗) and the one from TX to T ∗X is
denoted by [.

For 0 6 k 6 3, we denote by Ωk(M) the space of smooth differential
(complex-valued) forms of degree k on M . Equivalently, it is the space
of smooth complex-valued sections s : M → Λk(T ∗M). The topological
dual to Ω3−k(M) (with the topology induced by C∞-topology) is denoted
by D′k(M) and is called the space of currents of degree k – see [82, Ch. 5] for
an introduction to the theory of currents. In particular, we shall denote by
[Σ] the current of integration over an oriented and embedded closed curve
Σ of M . In that case, [Σ] is a current of degree 2.
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N. Bergeron, G. Carron, B. Chantraine, V. Colin, M. Golla, S. Gouëzel,
Y. Guedes Bonthonneau, C. Guillarmou, L. Guillopé, J. Marché, G. Pater-
nain, F. Paulin, S. Tapie, N. Vichery, T. Weich and J.Y. Welschinger. A
special thank to our topologist colleagues for their precious help and for
several useful discussions regarding the topological issues from Sections 6
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the exposition of the article.

Both authors are supported by the Insitut Universitaire de France and
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2. A fundamental geometric lemma

We begin with a simple geometric lemma that will be at the heart of our
proof of the meromorphic continuation of Poincaré series. The reader more
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familiar with the case of the Ruelle zeta functions can view this result as an
analogue in our set-up of the Guillemin (flat) trace formulas used to relate
closed geodesics and the distributional kernel of the geodesic flow [38, 27].

Lemma 2.1. Let N1, N2 be smooth, compact, embedded and oriented sub-
manifolds (without boundary) of a manifold N and let Y be a nonsingular
vector field which generates a flow ϕtY and which is transverse to N2, i.e.

∀x ∈ N2, Y (x) /∈ TxN2.

Assume that

• dim(N1) + dim(N2) + 1 = dim(N);
• N1 ∩N2 = ∅;
• for all T > 0 such that N1 ∩ ϕTY (N2) = ∅, the submanifolds N1 and
{ϕtY (x) : t ∈ [0, T ], x ∈ N2} intersect transversally.

Let µ ∈ D′(R>0) be defined as

(7) µ(t) =
∑

06τ6T :N1∩ϕτY (N2)6=∅

 ∑
x∈N1∩ϕτY (N2)

ετ (x)

 δ(t− τ),

where ετ (x) is equal to 1 if

TxN1 ⊕ RY (x)⊕ dϕ−τY (x)ϕ
τ
Y Tϕ−τY (x)N2

has the same orientation as TxN, and to −1 otherwise. Then, we have

(8) µ(t) = (−1)dim(N1)

∫
M

[N1] ∧
(
ιY ϕ

−t∗
Y [N2]

)
,

where both sides should be understood as distributions of t and where [N1]
and [N2] are the currents of integration over N1 and N2 respectively.

Note that our assumptions on N1 and N2 ensure that the intersection of
the two submanifolds {ϕtY (x) : t ∈ [0, T ], x ∈ N2} and N1 consists of a finite
number of points.

Proof. By a partition of unity argument, we only need to work locally near
some point x ∈ N1 such that ϕ−τY (x) ∈ N2 for some τ > 0. Up to replacing
N2 by ϕτY (N2), we may also assume that τ = 0 and that we work on a
small interval of time centered around 0 rather than in R>0. Using our
transversality assumptions on N1, N2 and Y , we may assume without loss
of generality that there are local coordinates (x1, . . . , xk, xk+1, . . . , xn) near
x such that

• N1 (resp. N2) is given by the equations xk+1 = · · · = xn = 0 (resp.
x1 = . . . = xk+1 = 0);
• x is given by x1 = · · · = xn = 0;
• the vector field Y reads ∂

∂xk+1
.
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Here, one has dim(N1) = k and dim(N2) = n − (k + 1). In these local
coordinates, the currents of integration on N1, N2 read:

[N1] = δ0(xk+1, . . . , xn)dxk+1 ∧ · · · ∧ dxn,

and

[N2] = δ0(x1, . . . , xk+1)dx1 ∧ . . . ∧ dxk+1.

In this representation, N1 is oriented by (−1)(n−k)kdx1 ∧ · · · ∧ dxk and N2

by dxk+2 ∧ · · · ∧ dxn, where we assume that N is oriented7 by OrN = dx1 ∧
· · · ∧ dxn. In particular, at x = 0, the tangent space TxN1 ⊕RY (x)⊕ TxN2

is oriented by the volume form (−1)(n−k)kOrM . Let now χ1 be a smooth
function compactly supported near t = 0 and x = 0. In order to conclude,
we need to compute ∫

R×M
χ1[N1] ∧ ιY ϕ−t∗Y ([N2])|dt|.

Using the above explicit formulas, this is in fact equal to

(−1)k(n−k+1)

∫
R×M

χ1δ0(xk+1, . . . xn)δ0(x1, . . . , xk, xk+1−t)dx1∧. . .∧dxn|dt|.

This can be rewritten as∫
R×M

χ1[N1] ∧ ιY ϕ−t∗Y ([N2])|dt| = (−1)k(−1)(n−k)kχ1(0, 0)

= (−1)k+(n−k)k

∫
M×R

χ(t, x)δ0(x1, . . . , xn, t)dx1 ∧ . . . ∧ dxn|dt|,

which implies the expected result (by partition of unity). Working in these

local coordinates, one could also verify that
∫ T

0 ιY (ϕ−t∗Y [N2])|dt| is the cur-

rent of integration on the submanifold (ϕtY (N2))06t6T . In fact, with the
above conventions for local coordinates, one has, locally near x = 0 and for
some small enough t0 > 0,∫ t0

−t0
ιY (ϕ−t∗Y [N2])|dt| = (−1)kδ0(x1, . . . , xk)dx1 ∧ . . . ∧ dxk.

In other words,
∫ T

0 ιY (ϕ−t∗Y [N2])|dt| is the current of integration on the sub-

manifold (ϕtY (N2))0<t<T .
�

3. Background on Riemannian geometry

In this section, we collect some classical results on Riemannian and sym-
plectic geometry – see [6, 68, 77] for a more detailed account. Along the
way, we recall classical notations that are used all along this article.

7Recall that the integration current on any submanifold depends on some choice of
orientation of the submanifold and the ambient manifold.
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3.1. Differential geometry of surfaces with negative Gauss cur-
vature. We recall some basic geometry of surfaces with special empha-
sis on the natural frame on the unit cotangent bundle following [85, 7.2]
and [71, section 3.5]. Recall that we denoted by M the unit cotangent
bundle S∗X = {(q; p) ∈ T ∗X; |p|g∗(q) = 1} of our surface X, and that

π : M = S∗X 7→ X is a S1–bundle. The geodesic vector field V ∈ C∞(TM)
on M is the infinitesimal generator of the geodesic flow ϕt : M 7→ M . The
Liouville 1–form α ∈ C∞(T ∗M) is defined by

α(η) =
〈
d(q,p)π(η), p

〉
,∀η ∈ T(q,p)M.

Then α is a contact form meaning that α ∧ dα ∈ C∞
(
Λ3T ∗M

)
is a volume

form on M and the relation between V and α reads

ιV dα = 0, ιV α = 1(9)

where ι denotes the interior product. We shall denote by R ∈ C∞(TM) the
infinitesimal generator of the S1 action on the fibers of M which is also the
vertical vector field. Let now H be the vector field obtained from V by a
rotation of angle π

2 in the direct sense using the flow generated by R. The
triple (V,R,H) is a direct orthonormal frame for the orientation induced by
α ∧ dα. It verifies the structure equations [71, Lemma 3.5.5 p. 79]:

[V,R] = −H, [H,R] = V, [V,H] = (π∗K)R(10)

where π∗K is the pull–back of the Gaussian curvature K on X. In this
picture, the tangent bundle TM splits as the direct sum TM = H⊕ kerdπ
where H = RV ⊕ RH and kerdπ = RR is the line bundle spanned by R.
Moreover, one has kerα = RH ⊕ RR. We also note that d(q,p)π(V ) = p and

that d(q,p)π(H) = p⊥, where p⊥ is the covector that is directly orthogonal
to p for the orientation that we have fixed on X.

From the dynamical point of view, recall that since (X, g) has negative
curvature, the flow ϕt is Anosov [62, §1]. Namely, there exists a continuous
splitting:

(11) ∀x ∈M, TxM = RV (x)⊕ Eu(x)⊕ Es(x), dim(Eu) = dim(Es) = 1

where Eu(x) 6= {0} (resp. Es(x) 6= {0}) is the unstable (resp. stable)
direction. Moreover the unstable and stable directions are preserved by the
tangent map dxϕ

t and there exist some constants C > 0 and λ0 > 0 such
that, for every t > 0,

∀v ∈ Eu(x), ‖dxϕ−tv‖gS(ϕ−t(x)) 6 Ce
−λ0t‖v‖gS(x),

and

∀v ∈ Es(x), ‖dxϕtv‖gS(ϕt(x)) 6 Ce
−λ0t‖v‖gS(x).

For every x ∈M , one can define the weakly unstable (resp. stable) manifold
W u0(x) (resp. W s0(x)) which are smooth immersed submanifolds inside M
such that, for every x ∈M ,

(12) TxW
u0(x) = Eu(x)⊕ RV (x), and TxW

s0(x) = Es(x)⊕ RV (x).
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For later purpose, we also define the dual spaces E∗u(x), E∗s (x) and E∗0(x) as
the annihilators of Eu(x)⊕RV (x), Es(x)⊕RV (x) and Eu(x)⊕Es(x). We
have in some sense an explicit description of the stable and unstable bundles
in the vertical/horizontal decomposition of TM via the stable and unstable
Ricatti solutions [77, §3.1.2]. More precisely, there exist two continuous
functions r± : M → R∗± such that

Es(x) = R (H(x) + r−R(x)) , Eu(x) = R (H(x) + r+R(x)) .(13)

The above equations immediately imply that both Es/u are transverse to
the vertical bundle V and to RH inside ker α. Recall that the functions r±
are C1 in the direction of the flow and that they are solutions to the Ricatti
equations

±V r± + r2
± +K ◦ π = 0.

Remark 3.1. More generally, unstable and stable Ricatti solutions are well
defined for more general Anosov surfaces (in fact for surfaces without conju-
gate points). Our assumption on the curvature ensures that r± is nowhere
vanishing.

Ricatti solutions are naturally related to perpendicular Jacobi fields J
along geodesics, through the relation r = J ′(t)J(t)−1 when it makes sense.
Recall that, along a geodesic t ∈ R 7→ γ(t) ∈ X verifying (γ(0), γ′(0)) = x,
a Jacobi field J(t) is a solution of the equation

J ′′(t) +K(γ(t))J(t) = 0.

Moreover, one has the natural identification

∀t ∈ R, dxϕt(J(0)H(x) + J ′(0)R(x)) = J(t)H ◦ ϕt(x) + J ′(t)R ◦ ϕt(x).

In the case of r±, one has by construction that J± are nowhere vanishing [77,
Ch.3].

Finally, a surface (X, g) is said to have no focal point if, for every Jacobi
field, J(0) = 0 implies that J ′(t) > 0 for every t > 0. In particular, if
we denote by JR(t) the Jacobi field with initial condition (J(0), J ′(0)) =
(0, 1), then one has J ′R(t) 6= 0 for every t > 0. We refer to [45, §3] for the
construction of Anosov surfaces without focal points and with curvatures of
both signs.

3.2. Transversal submanifolds. We now fix two smooth embedded curves
Σ1 and Σ2 in M = S∗X that we suppose to be oriented and boundaryless.
We make the following transversality assumptions which already appeared
in the seminal work of Margulis [62, p. 49]:

(14) ∀x ∈ Σ1, TxM = TxΣ1 ⊕ TxW u0(x),

and

(15) ∀x ∈ Σ2, TxM = TxΣ2 ⊕ TxW s0(x).
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The simplest example of curve Σ verifying either (14) or (15) is just
the fiber Σ(q) := S∗qX ⊂ M . This follows from the fact that Tx(S∗qX) is
the vertical space at x which is transversal to the weakly unstable/stable
manifold at x thanks to (13).

Remark 3.2. We note that each submanifold S∗qX is oriented by the vertical
vector field R. It means that we orient it in the trigonometric sense relative
to the orientation on X.

3.2.1. Examples. Besides the fiber S∗qX (and small perturbations of it), we
can consider c : t ∈ R/`Z 7→ q(t) ∈ X, ` > 0 to be a smooth curve such that
q′(t) 6= 0 for every t ∈ R/`Z. Up to reparametrization, we can choose q′(t)
to be of norm 1 for every t ∈ R/`Z. Then, we define the (unit) conormal
bundle to c:

N∗1 (c) := {(q(t), p) ∈ S∗X : t ∈ R/`Z, p(q′(t)) = 0}.
This defines a smooth curve inside S∗X and we can verify that, for every
x ∈ Σ, TxΣ is contained inside the kernel of the canonical Liouville one form
α. Such a submanifold N∗1 (c) is called Legendrian.

Since dim X = 2, N∗1 (c) consists of two connected components. Given t ∈
R/`Z, we denote these two covectors by p⊥(t) and −p⊥(t), with p⊥ being the

covector directly orthogonal to q′(t)[, i.e. p⊥(t) := ?gq
′(t)[, where [ means

that we take the covector associated with q′(t) via the natural isometry
induced by g and where ?g is the Hodge star map with the convention that
g∗(p, ?gp) > 0. This defines a natural parametrization of each component of
N∗1 (c) as:

γ±(t) = (q(t),±(p⊥)(t)) ∈M.

There is a way to check the transversality assumption (14) in the nat-
ural moving frame (V,H,R) of TM . The velocity γ′±(t) ∈ Tγ(t)M can be
decomposed in the frame (V,H,R) as

γ′±(t) = a1(t)H(γ±(t)) + a2(t)R(γ±(t))(16)

where ai(t)i=1,2 are smooth in the variable t. Then the transversality con-
dition means that (γ′±(t), V (γ±(t)), U(γ(t))) forms a basis of Tγ(t)M where
U(x) = H(x)+r+R(x) is the unstable vector field. This condition also reads

∀t ∈ R/`Z, a1(t)r+(γ±(t))− a2(t) 6= 0.(17)

Remark 3.3. One can verify that this can be expressed more concretely as
follows

∀t ∈ R/`Z, g∗q(t)

(
∇q′(t)p⊥(t), p(t)

)
6= r+(q(t), p⊥(t)),

where ∇ is the covariant derivative induced by g.

Remark 3.4. In Theorem 1.2, besides the case of points, we will consider the
case where c(t) is a geodesic representative of a nontrivial homotopy class c ∈
π1(X). In that case, we will take Σ = Σ(c) to be the connected component
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of N∗1 (c) consisting of the covector directly orthogonal to p(t). This satisfies
the expected transversality assumption as a2 = 0 in that case and as r+ 6=
0 thanks to negative curvature. For more general Anosov surfaces, this
transversality assumption may not be satisfied for certain closed geodesics
as one may have r± = 0 at some points.

We choose to orient Σ(c) via the orientation of the geodesic, i.e. with the
vector −H.

3.2.2. Orientations in a toy model. Let us illustrate our choices of orienta-
tion in a toy model on R2×S1, oriented by dq1∧dq2∧dφ, that will be useful
for our computations in Section 6.

• Example 1. We consider the horizontal line c1 = {(q1, 0), q1 ∈
R} oriented by dq1 in R2. Recalling now that 1′[0,+∞)(q) = δ0(q),

therefore ∂[R × R+] = ∂1R+(q2) = −d1R+(q2) = −δ0(q2)dq2 = [c1].
In other words, c1 is the oriented boundary of R×R+. Then, Σ(c1) :=
{(q1, 0, π/2) : q1 ∈ R} and we oriented it using dq1. This yields the
following representation of its current of integration

[Σ(c1)] = δ0(q2)δ0

(
φ− π

2

)
dq2 ∧ dφ.

Introduce now the surface S := {(q1, q2, π/2) : q2 > 0} whose (topo-
logical) boundary is Σ(c1). This surface is naturally oriented by
dq1 ∧ dq2 and thus it can be represented as

[S] = 1q2>0(q1, q2)δ0

(
φ− π

2

)
dφ.

One finds that [Σ(c1)] is a coboundary:

d[S] = δ0(q2)δ0

(
φ− π

2

)
dq2 ∧ dφ = [Σ(c1)].

• Example 2. Consider now the point c0 = (0, 0). One has

S∗c0R
2 = {c0} × S1 := {(0, 0, φ) : 0 6 φ 6 2π}.

Our choice of orientation on this curve is to take dφ. Hence, the cur-
rent of integration on the fiber S∗c0R

2 reads [S∗c0R
2] = δ0(q1, q2)dq1 ∧

dq2. As in the above example, introduce the following submanifold
S in R2 × S1:

S :=

{
(q1, q2, φ) : (q1, q2) ∈ R2 \ {c0}, cosφ =

q1√
q2

1 + q2
2

, sinφ =
q2√
q2

1 + q2
2

}
,

whose topological boundary is S∗c0R
2. Endowing S with the orienta-

tion dq1 ∧ dq2 yields the following representation of [S] in R2 \ {0}×
(−π/2, π/2):

[S] = 1R+(q1)δ0 (q2 − q1 tan(φ)) d(q1 tanφ− q2)

= 1R+(q1)δ0 (q2 − q1 tan(φ))

(
q1dφ

1 + φ2
+ tan(φ)dq1 − dq2

)
.
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To see that this is a well defined current, one can take a smooth
test form ψ(q, φ, dq, dφ) ∈ Ω2(R2 × (−π/2, π/2)) and observe that∫
R2×(−π/2,π/2)[S] ∧ ψ is well defined. This current can be extended

into a well-defined current on R2×(−π/2, π/2). Hence, by a partition
of unity in the φ variable, [S] defines a current on R2 × S1. Finally,
in R2 × (−π/2, π/2), one has

d[S] = −δ0(q1)δ0 (q2 − q1 tanφ) dq1 ∧ dq2 = −[S∗c0R
2].

Performing the same argument in every half plane, one finds that
[S∗c0R

2] is a coboundary: d[S] = −[S∗c0R
2]. Using polar coordinates

(r, θ, φ), this manifold can also be viewed as the boundary of the
manifold R>0 × T2 oriented by rdr ∧ dθ ∧ dφ. In these coordinates,
the current of integration on the fiber S∗c0R

2, oriented by dφ, reads

[S∗c0R
2] = δ0(r)δ0(φ− θ)dr ∧ (dθ − dφ).

If we now form the surface

S := {(r, θ, θ) : r > 0, 0 6 θ 6 2π} ,

endowed with the orientation rdr ∧ dθ, then

[S] = 1R>0(r)δ0(φ− θ)(dφ− dθ).

In particular,

d[S] = δ0(r)δ0(φ− θ)dr ∧ (dφ− dθ) = −[S∗c0R
2].

3.3. First properties. Using the Anosov property and our transversality
assumptions, one can show the following:

Lemma 3.5 (Transversality for long enough times). Suppose that (14)
and (15) hold. Then, there exists some T0 > 0 such that, for every t > T0,
ϕ−t(Σ1) and Σ2 intersect transversally with respect to the flow in the sense
that, for every x ∈ ϕ−t(Σ1) ∩ Σ2,

TxM = Txϕ
−t(Σ1)⊕ TxΣ2 ⊕ RV (x).

In particular, for every fixed t > T0, the set of points lying in ϕ−t(Σ1) ∩ Σ2

is finite. Moreover, the times t > T0 for which this intersection is not empty
are discrete and do not accumulate.

In particular, our preliminary geometric lemma 2.1 applies with N1 =
ϕ−t(Σ1) and N2 = Σ2 for every t ≥ T0.

Proof. We fix v(x, t) generating Tϕt(x)Σ1. Thanks to (14), one has then

Tϕt(x)M = R(v(x, t))⊕ Eu(ϕt(x))⊕ RV (ϕt(x)).

Using the Anosov property and the fact that Σ1 is a closed embedded curve
satisfying (14), one can find some T0 such that, for t > T0 and for every
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x ∈ ϕ−t(Σ1), dϕt(x)ϕ
−t(v(x, t)) lies in a fixed (small) conical neighborhood

of Es(x). Moreover, one has

TxM = dϕt(x)ϕ
−tR(v(x, t))⊕ Eu(x)⊕ RV (x).

Hence, we have shown that the family (V (x), (dϕt(x)ϕ
−t(v(x, t)))) gen-

erates a vector space of dimension 2 lying in a conical neighborhood of
Es(x)⊕RV (x) that does not intersect TxΣ2 thanks to (15). This concludes
the first part of the lemma

Now, we fix t1 < t2 both greater than T0 and we consider the two subman-
ifolds Σ2 and (ϕ−t(Σ1))t1<t<t2 of M . They intersect transversally thanks to
the first part of the lemma. Hence, as they are respectively of dimension
1 and 2, one finds that the intersection between these two submanifolds
consists in a finite number of points which concludes the proof. �

Recall that, in Theorems 1.1 and 1.2, we are primarly interested with
the case where Σ(c) is the direct conormal to an oriented closed geodesic
(including the case where c is reduced to a point). See remarks 3.2 and 3.4
for definitions of Σ(c). In that case, we can be slightly more precise about
transversality:

Lemma 3.6 (Immediate transversality). Suppose that M = S∗X where
(X, g) is a Riemannian surface and V is the geodesic vector field. Let c1

and c2 be two closed geodesics (including the case of points). Then, the
transversality conditions (15), (14) and the conclusion of Lemma 3.5 hold
for Σ(c1) and Σ(c2) with

• either T0 = 0 if Σ(c1) ∩ Σ(c2) = ∅,
• or any T0 > 0 otherwise.

The point of taking T0 = 0 here is that the set of geodesic arcs Pc1,c2
directly orthogonal to c1 and c2 verifies ]{γ ∈ Pc1,c2 : 0 < `(γ) ≤ T} < ∞
for every T > 0. For more general curves c1 and c2 that only satisfy (17),
this may not be the case. Our main results would remain valid but we would
start our Poincaré series from a certain T0 given by Lemma 3.5. Moreover,
the value at 0 (when it makes sense) computed in Theorem 1.2 will depend
on this choice of T0 up to an integer term.

Proof. We already said that, in the case of geodesic curves, the transversality
conditions (14) and (15) hold true for both Legendrians Σ(c1) and Σ(c2).
Hence it remains to explain why we can choose T0 = 0 when Σ(c1)∩Σ(c2) = ∅
or any T0 > 0 otherwise.

To that aim, we need to compute the differential of the geodesic flow
acting on a vector field W which is either H (when c1 is not a point) or R

(when c1 is a point) and to show that, for every t > 0, (W̃ , dϕ−t(W )) forms

a moving frame of the plane bundle ker(α) ⊂ TM with W̃ = R (resp. H) if
c2 is (resp. not) a point. This calculation can be easily handled using the
formalism of Jacobi fields [77, p.18] that was briefly recalled at the end of
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§3.1. We start with the case where W = H. One has

dxϕ
−t(H) = JH(−t)H(ϕ−t(x)) + J ′H(−t)R(ϕ−t(x)),

where JH(t) solves the Jacobi equation J ′′(t) + K ◦ π(ϕt(x))J(t) = 0 with
initial conditions J(0) = 1 and J ′(0) = 0. In particular, as K < 0 every-
where on X, one finds that J ′H(−t) < 0 and JH(−t) ≥ 1 for every t > 0.
Hence, dxϕ

−t(H) has nontrivial components along H and R. It implies that
(H, dϕ−tH) and (H, dϕ−tR) are basis of ker(α) for every t > 0 as expected.

In the case where W = R, one has

dxϕ
−t(R) = JR(−t)H(ϕ−t(x)) + J ′R(−t)R(ϕ−t(x)),

where JR(t) solves the Jacobi equation J ′′(t) + K ◦ π(ϕt(x))J(t) = 0 with
initial conditions J(0) = 0 and J ′(0) = 1. We can then conclude similarly.
In fact, one can also pick T0 = 0 when c1 is trivial and c2 is not (even if c1

lies on c2). �

Remark 3.7. For surfaces with an Anosov geodesic flow (but not necessarily
negatively curved), there is no conjugate points so that JR(t) 6= 0 as soon
as t 6= 0. If we make the extra assumption that (X, g) has no focal points
(see §3.1), then one has J ′R(−t) 6= 0 for every t > 0 so that the conclusion
of the lemma remains true in the case where c1 and c2 are points. In partic-
ular, in the case of two points, our main Theorem remains valid for Anosov
surfaces without focal points.

3.4. Applying Lemma 2.1. We are now in position to apply our prelimi-
nary lemma to the geodesic vector field on M . More precisely, we introduce
a weighted version of Poincaré series in such a way that the sum runs over
a finite number of elements:

Proposition 3.8. Let c1, c2 be two closed geodesics (including the case of
points) and denote by Σ1 = Σ(c1) and Σ2 = Σ(c2) their corresponding Leg-
endrian lifts.

Then, for every T0 > 0 satisfying

ϕ−T0(Σ1) ∩ ϕT0(Σ2) = ∅,

one can find some t0 > 0 such that, for every χ ∈ C∞c ((2T0 − t0,+∞)), and
for every τ > 0:

Iτ (χ) := −
∫
M
ϕT0∗([Σ1])(x, dx)∧

(∫
R
χ(t− 2T0)ϕ−(t+T0+τ)∗ιV [Σ2](x, dx)|dt|

)
is well defined and it is equal to

ε(c2)
∑

t>2T0−t0:ϕ−T0 (Σ1)∩ϕt+τ+T0 (Σ2)6=∅

 ∑
x∈ϕ−T0 (Σ1)∩ϕt+τ+T0 (Σ2)

χ(t− 2T0)

 ,

where

ε(c2) := 1, if c2 is trivial,
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and

ε(c2) := −1, otherwise.

Proof of Proposition 3.8. Thanks to Lemma 3.6, we are in position to apply
the geometric lemma 2.1 with N1 = Σ1, N2 = Σ2, N = M and Y = V . The
conclusion of this Lemma exactly tells us the expected equality up to the
computation of the orientation parameter ετ (x). To compute this parameter,
we proceed as in the proof of Lemma 3.6 when we computed the image of
H and R under the differential of the geodesic flow. More precisely, the
orientation on

TxΣ(c1)⊕ RV (x)⊕ dϕ−t(x)ϕ
t
(
Tϕ−t(x)Σ(c2)

)
induced by the orientation on each subspace is given by

W̃ (x) ∧ V (x) ∧
(
dϕ−t(x)ϕ

t(W (ϕ−t(x)))
)
,

where W = R (resp. −H) if c2 is (resp. not) reduced to a point and the same

for W̃ . This is proportional to the polyvector V ∧H ∧R with a coefficient in
front that can be expressed in terms of JR(t), J ′R(t), JH(t) and J ′H(t) with
the conventions of the proof of Lemma 3.6. The same sign discussion as the
one discussed there allows to conclude on the value of ετ (x).

�

3.5. A priori bounds on the growth of intersection points. We would
now like to replace the smooth compactly supported function χ in Proposi-
tion 3.8 by e−st1R+(t). This is where we will extensively use the theory of
Pollicott-Ruelle resonnances in the next paragraph. Before doing that, we
need some a priori estimate on the growth of points in Pc1,c2 .

According to Lemma 3.6, one knows that

P̃c1,c2 :=
{
t > 0 : ϕ−t(Σ(c1)) ∩ Σ(c2) 6= ∅

}
defines a discrete subset of R∗+ with no accumulation points. Moreover, for
every t > 0, we can define

(18) mc1,c2(t) :=
∣∣{x ∈ ϕ−t(Σ(c1)) ∩ Σ(c2)

}∣∣ < +∞,

which is thus equal to 0 outside a discrete subset of (0,+∞). We begin with
the following a priori upper bound on these quantities:

Lemma 3.9. Let c1 and c2 be two closed geodesics. Then, for every h >
htop, one can find some constant Ch > 0 such that, for every T > 0,∑

t∈[T,T+1)

mc1,c2(t) 6 Che
hT .

The proof of this Lemma could be extracted from Margulis’ arguments
in [62, §7]. Yet, for the sake of completeness, we give a short proof of it.
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Proof. We fix some h > htop. For every x ∈ M and for every ε, T > 0, we
define the Bowen ball centered at x:

B(x, ε, T ) := {y ∈M : ∀0 6 t 6 T, dgS (ϕt(x), ϕt(y)) < ε},
where dgS is the distance induced by the Riemannian metric. From the
definition of the topological entropy, one can find some ε0 > 0 such that, for
every 0 < ε < ε0, one can find some constant Cε > 0 so that

∀T > 0, inf

{
|F | : F ⊂M and

⋃
x∈F

B(x, ε, T ) = M

}
6 Cεe

hT .

Fix now some T > 0 and some 0 < ε < ε0. We let F ⊂ M so that the
infimum is attained in the previous inequality. We decompose Σ(c2) as
follows

Σ(c2) =
⋃
x∈F

Σ2(x, ε, T ),

where
Σ2(x, ε, T ) := Σ(c2) ∩B(x, ε, T ).

We fix some conic neighborhood Cu of Eu \ 0 so that it does not intersect
TΣ(c1). From the Anosov assumption and from the transversality assump-
tion (15), we know that there exists some T1 > 0 such that for every t > T1,
dϕt(TΣ(c2)) ⊂ Cu. Observe that for ε small enough, for every small piece

of curve Σ̃ so that T (Σ̃) is contained in Cu and Σ̃ is contained in a ball of

radius ε, then Σ̃ intersects Σ(c1) at most at one point thanks to (14). Still
thanks to our transversality assumptions, one can verify that there exists
some integer p0 (depending only on the cone and on Σ(c1)) so that, for every

Σ̃ such that T (Σ̃) is contained in Cu

(19) Σ̃ ∩ Σ(c1) 6= ∅ =⇒ ∀0 < t 6 p−1
0 , ϕt(Σ̃) ∩ Σ(c1) = ∅.

In particular, if Σ2(x, ε, T ) ∩ ϕ−t(Σ(c1)) 6= ∅ for some t > T1, then∣∣∣(Σ2(x, ε, T ) ∩ ϕ−t(Σ(c1))
)
T6t<T+1

∣∣∣ 6 p0.

As the cardinal of F is 6 CεehT , we finally find that, for every T > T1,∑
t∈[T,T+1)

mc1,c2(t) 6 Cεp0e
hT ,

which concludes the proof of the Lemma. �

4. Proof of Theorem 1.1

Let c1 and c2 be two closed geodesics (including the case of points) and
denote by Σ1 := Σ(c1) and Σ2 := Σ(c2) their Legendrian lifts as in Section 3.
See Remarks 3.2 and 3.4. With the convention of the previous section, we
set, for T0 ≥ 0,

ζΣ1,Σ2(z) := ε(c2)
∑

t>0:ϕ−T0 (Σ1)∩ϕt(Σ2) 6=∅

]
{
x ∈ ϕ−T0(Σ1) ∩ ϕt(Σ2)

}
e−zt.



20 NGUYEN VIET DANG AND GABRIEL RIVIÈRE

If T0 ≥ 0 is chosen small enough, then the relation with the function from
the introduction is N∞(c2, c1, z) = ε(c2)ezT0ζΣ1,Σ2(z). More precisely, if
Σ1 ∩ Σ2 = ∅, we can take T0 = 0. Otherwise, we take T0 > 0 some small
enough to ensure that ϕ−T0(Σ1) ∩ Σ2 is empty. Recall that this sum is
holomorphic for Re(z) > htop thanks to Lemma 3.9.

We are now ready to prove Theorem 1.1 and the only missing ingredi-
ent is the input given by the theory of Pollicott-Ruelle resonances that we
will briefly review. More precisely, we will rely on the microlocal methods
that were initiated in [31, 33, 27]. Yet, it is plausible that a similar result
could be derived using the geometric methods from [11, 38] or the coherent
states approach of [87, 32]. We also note that Chaubet recently adapted
our argument to surfaces with boundary and that he provided a proof of
this meromorphic extension relying only on wavefront sets arguments [15]
without introducing the formalism of anisotropic Sobolev spaces as we are
doing here.

Remark 4.1. As we shall see in our proof, the poles of this meromorphic
function are included in the set of Pollicott-Ruelle resonances for currents of
degree 2 [11, 12, 33, 38, 27]. Recall from [38, Prop. 4.9] that the real parts
of the resonances are in that case 6 htop. Moreover, as the geodesic flow
on a negatively curved surface is topologically mixing, then htop is a simple
eigenvalue and it is the only resonance on the axis htop + iR. Using the
inverse Laplace transform, this would allow to recover Margulis’ asymptotic
formula (1) in that framework.

Remark 4.2. As was pointed to us by Guedes-Bonthonneau, Theorem 1.1 can
be thought of as an analogue in the context of Pollicott-Ruelle resonances
of the Kuznetsov trace formulas for the Laplace-Beltrami operator [90]. In
that context, Zelditch considered the spectral projector of the Laplacian on
the eigenvalues 6 λ and he integrated the kernel of the operator against
singular distributions carried by smooth submanifolds. Here, we will do the
exact same thing with the resolvent of our operator. Yet, compared with
that reference, we need to restrict ourselves to certain families of submani-
folds verifying our transversality assumptions (14) and (15), to ensure that
they satisfy the appropriate wavefront set conditions so that they can be
integrated against the Schwartz kernel of our resolvent.

4.1. Anisotropic Sobolev spaces. Let us denote by LV = dιV + ιV d the
Lie derivative along the geodesic vector field V . For every 0 6 k 6 3, the
map

Rk(z) := (LV + z)−1 =

∫ +∞

0
e−tze−t(LV )|dt| : Ωk(M)→ D′k(M)

is well defined and holomorphic in some region Re(z) > C0 for some C0 > 0
depending on M and V . Here |dt| is understood as the Lebesgue measure
on R in order to distinguish with currents of integration. It follows from the
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works of Butterley-Liverani [11, 12], Faure-Sjöstrand [33], Giulietti-Liverani-
Pollicott [38] and Dyatlov-Zworski [27] that this resolvent admits a mero-
morphic extension to the whole complex plane. The poles are the so-called
Pollicott-Ruelle resonances and the residues are given by spectral projec-
tors. Such a property was obtained by defining appropriate Banach spaces
with anisotropic regularity properties and we briefly describe in this para-
graph the anisotropic Sobolev spaces introduced by Faure–Sjöstrand [33] via
microlocal methods – see also [31] for an earlier construction of Faure-Roy-
Sjöstrand in the case of diffeomorphisms and [27] for the extension to the
case of currents by Dyatlov-Zworski as we need here.

4.1.1. Anisotropic Sobolev spaces. Let 0 6 k 6 n. Recall that we have a
scalar product on Ωk(M) by setting, for every (ψ1, ψ2) ∈ Ωk(M),

〈ψ1, ψ2〉L2 :=

∫
M
〈ψ1, ψ2〉g∗dvolg,

where g∗ is the metric induced by g on k-forms. We set L2(M,Λk(T ∗M))
(or L2(M) if there is no ambiguity) to be the completion of the (complex-
valued) k-forms Ωk(M) for this scalar product. Recall that the set of De
Rham currents of degree k (the topological dual to Ωn−k(M)) is denoted by
D′k(M). It was shown in [11, 12, 33, 38, 27] that LV has a discrete spectrum
when acting on convenient Banach spaces of currents of degree k.

Let us recall the definition of these spaces in the microlocal framework
of Faure and Sjöstrand. Following these authors, we can define anisotropic
Sobolev spaces HmN0,N1

k of degree k currents, N1 � N0 > 0 large enough,
which satisfy the continuous inclusion properties

Ωk(M) ⊂ HmN0,N1
k ⊂ D′,k(M),

where elements in HmN0,N1
k are microlocally of Sobolev regularity 6 −N0

in some conical neighborhood of E∗u, of Sobolev regularity > N1
8 outside

some larger neighborhood of E∗u and of positive Sobolev regularity > N1

in some small conical neighborhood of E∗s . We refer to [18, §3] for a more
detailed exposition with conventions similar to ours. In fact, a key point
for our analysis is that the currents of interest for our analysis belongs to
these anisotropic spaces or to its dual. See (21) and (22) below for precise
statements.

Remark 4.3. When proving Theorem 1.1, we will need the following a priori
estimate: there exists C0 > 0 such that, for every t > 0,

(20)
∥∥ϕ−t∗∥∥HmN0,N1

k →H
mN0,N1
k

6 etC0 .

Using classical results from semigroup theory on Banach spaces [30, Cor. 3.6,
p. 76], such a bound can be obtained from the fact that

−LV : D(LV ) ⊂ HmN0,N1
k (M)→ HmN0,N1

k (M)
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is closed, densely defined and verifies the resolvent estimate: for every
Re(z) > C0, one has∥∥(LV + z)−1

∥∥
H
mN0,N1
k →H

mN0,N1
k

6
1

Re(z)− C0
.

The closedness property follows from [33, Lemma A.1] while the density
property follows from the density of Ωk(M) in our anisotropic spaces and
the resolvent estimate was proved in [33, Proof of Lemma 3.3] (adapted to
the case of currents).

In [33, Th. 1.4] (see [27, §3.2] for the case of currents), it is shown that

(LV +z) : D(LV )→ HmN0,N1
k (M) is a family of Fredholm operators of index

0 depending analytically on z in the region {Re(z) > C0 − c0N0} for some
constants C0, c0 > 0 that are independent of N0 and N1. Then, the poles
of the meromorphic extension are the eigenvalues of −LV on HmN0,N1

k (M),
the so-called Pollicott-Ruelle resonances. The residues at each pole are the
corresponding spectral projectors, and the range of each spectral projector
generates the Pollicott-Ruelle resonant states.

4.1.2. Dual spaces. The dual space (HmN0,N1
k (M))′ to HmN0,N1

k (M) is de-

noted by H−mN0,N1
3−k (M) via some slight abuse of notations. It is a Sobolev

space of currents of degree 3 − k since we use the wedge product to pair it
with elements fromHmN0,N1

k (M). Elements in the dual have positive Sobolev
regularity in a small conic neighborhood of E∗u and negative Sobolev regu-
larity outside a slightly bigger neighborhood. The duality pairing is then

given, for every (ψ1, ψ2) ∈ H−mN0,N1
3−k (M)×HmN0,N1

k (M),

〈ψ1, ψ2〉H−mN0,N1
3−k (M)×H

mN0,N1
k (M)

=

∫
M
ψ1 ∧ ψ2.

The operator dual to −LV is given by −L−V . Finally, let, for T ≥ 0,

ΣT
1 := ϕ−T−T0(Σ1), and Σ−T2 := ϕT (Σ2),

where T0 was fixed in the definition of the zeta function. For T > 0 large
enough, the wave front set of [ΣT

1 ] = ϕ(T+T0)∗([Σ1]) is contained in Γs ⊂
T ∗M which is a small conical neighborhood of E∗s ⊕E∗0 . See Appendix A for
a brief reminder on wavefront sets. We also note that the curve ϕ−T−T0 (Σ1)
in M has codimension 2. Therefore the corresponding current of integration
[ΣT

1 ] has negative Sobolev regularity of order < −1. More precisely, it has
microlocal Sobolev regularity < −1 in Γs. If we choose N1 large enough,

elements of H−mN0,N1
2 (M) will have Sobolev regularity of order 6 −N1

8 <

−1 (by duality with HmN0,N1
1 (M)) outside some neighborhood of E∗u that

contains Γs. Therefore, there exists T1 ≥ 0 (depending on the choice of the
anisotropic Sobolev spaces) such that,

(21) ∀T > T1, [ΣT
1 ] ∈ H−mN0,N1

2 (M) = (HmN0,N1
1 (M))′.
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4.2. Proof of Theorem 1.1. First by transversality properties of Σ1,Σ2

proved in Lemma 3.6, the set of times {t > 0,Σ1 ∩ ϕt (Σ2) 6= ∅} is isolated
without accumulation points. Hence it is sufficient to prove the analytic
continuation of

ζTΣ1,Σ2
(z) := ε(c2)

∑
t≥2T :Σ1∩ϕt(Σ2) 6=∅

∑
x∈Σ1∩ϕt(Σ2)

e−tz

= ε(c2)
∑

t≥0:ΣT1 ∩ϕt(Σ−T2 ) 6=∅

∑
x∈ΣT1 ∩ϕt(Σ−T2 )

e−tz

for any T > 0 large enough. Assume now that T > 0 is chosen in such a
way that ΣT

1 ∩Σ−T2 = ∅ and choose some δ > 0 such that, for all t ∈ [0, 2δ],

the intersection ΣT
1 ∩ ϕt

(
Σ−T2

)
remains empty. Let χ ∈ C∞(R, [0, 1]) be a

nondecreasing function which is equal to 1 on [2δ,∞) and to 0 on (−∞, δ].
In particular, writing χ(t) =

∫∞
0 χ′(t− τ)|dτ |, one has obviously

ζTΣ1,Σ2
(z) = ε(c2)

∑
t≥0:ΣT1 ∩ϕt(Σ−T2 )6=∅

∑
x∈ΣT1 ∩ϕt(Σ−T2 )

(∫ ∞
0

χ′(t− τ)|dτ |
)
e−tz.

Thanks to Lemma 3.9, we know that, for Re(z) large enough, we can inter-
twine the sum and the integral over time. Hence,

ζTΣ1,Σ2
(z) = ε(c2)

∫ ∞
0

 ∑
t≥0:ΣT1 ∩ϕt(Σ−T2 ) 6=∅

∑
x∈ΣT1 ∩ϕt(Σ−T2 )

χ′(t− τ)e−tz

 |dτ |,
or equivalently

ζTΣ1,Σ2
(z) = ε(c2)

∫ ∞
0

 ∑
t≥0:ΣT1 ∩ϕt+τ(Σ−T2 )6=∅

∑
x∈ΣT1 ∩ϕt+τ(Σ−T2 )

χ′(t)e−tz

 e−τz|dτ |,

where we used that χ′ is compactly supported in (0,∞). We recognize the
quantity from Proposition 3.8 so that

ζTΣ1,Σ2
(z) = −

∫ ∞
0

e−τz
(∫

M
[ΣT

1 ] ∧ ϕ−τ∗
(∫

R
e−tzχ′(t)ϕ−t∗ιV [Σ−T2 ]|dt|

))
|dτ |.

For a smooth compactly supported function χ1 on R, we set

Aχ1(z) :=

∫ ∞
0

χ′1(t)e−tzϕ−t∗|dt|.

Recall that the integration current on the submanifold (ϕT+t(Σ2))0<t<2δ

reads
∫ 2δ

0 ϕ−t∗ιV ([Σ−T2 ])|dt| (up to a sign) as we explained at the end of the

proof of Lemma 2.1. One can thus remark that Aχ′(z)ιV ([Σ−T2 ]) is just a
truncated (and weighted) version of this current of integration. In particular,
it is a current of order 0 (in the sense that its action on continuous form is
bounded) whose wavefront is carried by the conormal to this submanifold.
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In particular, if we fix N0, N1 large enough and if we take T > 0 large
enough to ensure that the wavefront set of (ϕT+t(Σ2))0<t<2δ lies inside8 a
small neighborhood of E∗u, then

(22) z ∈ C 7→ Aχ′(z)ιV ([Σ−T2 ]) ∈ HmN0,N1
1 (M)

defines an holomorphic function. Hence, by remark 4.3, we can rewrite for
Re(z) large enough,

(23) ζTΣ1,Σ2
(z) = −

〈
[ΣT

1 ], (LV + z)−1Aχ′(z)ιV [Σ−T2 ]
〉(
H
mN0,N1
1

)′
×H

mN0,N1
1

.

We can then conclude the meromorphic continuation of our Poincaré series
in the region {Re(z) ≥ C0 − c0N0} thanks to the meromorphic properties
of the resolvent that were recalled above. As this is valid for any N0 large
enough, this yields the expected meromorphic continuation to the whole
complex plane and ends the proof of Theorem 1.1.

Relation (23) is the main formula that allows to show the meromorphic
continuation of Poincaré series as it expresses it in terms of a resolvent.
However, in view of analyzing the value at 0, it has the drawback that the
geodesics of length ≤ 2T are missing in the sum. To handle this problem,
let us record the following useful rewriting of our initial zeta function. Using
one more time Proposition 3.8 to handle the length between 0 and 2T and
recalling that ϕ−T0(Σ1) ∩ Σ2 = ∅, we find that, up to decreasing a little bit
the value of δ from the beginning, there exists χ̃ ∈ C∞c ((−δ, 2T + δ), [0, 1])
such that χ̃(t) + χ(t− 2T ) = 1 on R+ and such that

(24) ζΣ1,Σ2(z) = −
∫
M
ϕT0∗[Σ1] ∧Aχ̃(z)ιV [Σ2]

−
∫
M

[ΣT
1 ] ∧ (LV + z)−1Aχ′(z)ιV [Σ−T2 ].

In this expression, the first term makes sense as a product between currents
on submanifolds that are transversal (in particular their wavefront sets are
disjoint) while the second term is a pairing in our anisotropic spaces.

5. Behaviour of ζΣ1,Σ2 at 0

In this section, we use the same conventions as in Section 4, i.e. we are
in the set-up of Theorem 1.1. Recall that the currents [Σ1] = [Σ(c1)] and
[Σ2] = [Σ(c2)] are elements of D′2(M). Given the fact that they are currents
of integration over a smooth closed curve, we also note that, for i = 1, 2,

(25) d[Σi] = 0.

8This follows from the hyperbolicity of the flow and from the transversality prop-
erty (14).
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5.1. Description of the spectral projector at 0. In order to describe
the behaviour of our zeta function at 0, we need to describe the spectral

projector π
(1)
0 at z = 0. This can be achieved following the recent results

of Dyatlov and Zworski [28] on the behaviour of the Ruelle zeta function at
0. In particular, this will crucially use the contact structure – see [47] for
extensions to manifolds with boundary and [13] for extensions to the volume
preserving case. For 0 6 k 6 3, we set

Ck := Ran(π
(k)
0 ) and Ck0 := Ck ∩Ker(ιV ).

According to [18, Lemma 7.1], one has

∀0 6 k 6 3, Ck = Ck0 ⊕ (α ∧ Ck−1
0 ),

with the convention that C−1
0 = {0}. In [28, Lemma 3.2], it is shown that

C0 := C1, and C2
0 := Cdα.

Still in [28, Lemma 3.4], the authors proved that

(26) C1
0 = C1 ∩Ker(d) ' H1(M,C).

In particular, the spectral projector can be written as

∀ψ ∈ Ω1(M), π
(1)
0 (ψ) =

(∫
M

S̃0 ∧ ψ
)
α+

b1(M)∑
j=1

(∫
M

S̃j ∧ ψ
)

Uj ,

with dUj = ιV (Uj) = 0 for every 1 6 j 6 b1(M) := dim H1(M,C). Note

from [33, Thm 1.7 p. 334] that Uj (resp. S̃j) belongs to D′1
E̊∗u

(M) (resp.

D′2
E̊∗s

(M)) for every 1 6 j 6 b1(M).

By Poincaré duality [20, §4.6], we can observe that (S̃0, S̃1, . . . S̃b1(M))
forms a basis for the adjoint operator to −LV which is −L−V acting on
some dual anisotropic space of 2-forms. Thanks to the fact

∫
M α ∧ dα 6= 0

and to the fact that Uj is closed, one already knows that S̃0 = βdα for some
β 6= 0. Observing now that

C2 = C2
0 ⊕

(
⊕b1(M)
j=1 C(α ∧Uj)

)
,

and applying (26) to −V instead of V , we find that there exists a family9

(Sj)j=1,...b1(M) in D′1
E̊∗s

(M) such that, for every 1 6 j 6 b1(M), ιV (Sj) = 0,

dSj = 0 and S̃j = α ∧ Sj . Hence, to summarize, one has

Lemma 5.1. For every ψ ∈ Ω1(M),

(27) π
(1)
0 (ψ) =

(∫
M dα ∧ ψ∫
M dα ∧ α

)
α+

b1(M)∑
j=1

(∫
M
α ∧ Sj ∧ ψ

)
Uj ,

where, for every 1 6 j 6 b1(M),

9It is given by the family of “dual” eigenvectors.
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(1) Uj ∈ D′1E̊∗u(M), Sj ∈ D′1E̊∗s (M),

(2) dUj = dSj = 0,
(3) ιV (Uj) = ιV (Sj) = 0.

5.2. Behaviour at 0 of the Poincaré series. We are now in position to
study the behaviour at 0 of the zeta function ζΣ1,Σ2 from Section 4. Recall
from [28, Lemma 3.5] that there is no Jordan blocks in the kernel of the
operator. In particular, according to (24), we find that

ζΣ1,Σ2(z) = −

〈
ϕ(T+T0)∗[Σ1], π

(1)
0 Aχ′(0)ιV ϕ

−T∗[Σ2]
〉

z
+ h(z),

where h is some holomorphic function near 0. Recall that one can choose
T0 = 0 as soon as Σ1 ∩ Σ2 = ∅. Note that, from the definition of Aχ′ , it

commutes with ϕ−T∗ and ιV so that

ζΣ1,Σ2(z) = −

〈
ϕT∗([Σ1]), π

(1)
0

(
ιV ϕ

−T∗Aχ′(0)([Σ2])
)〉

z
+ h(z),

where h(z) is a holomorphic function. Using now the explicit expression
given by (27), (25) and the fact that dα ∧ ιV (u) = 0 (for every 2-form u),
one finds

z(h(z)− ζΣ1,Σ2(z)) =

(∫
M
dα ∧ ιV ϕ−T∗(Aχ′(0)[Σ2])

)(∫
M
ϕ(T+T0)∗([Σ1]) ∧ α

)

+

b1(M)∑
j=1

(∫
M
α ∧ Sj ∧ ιV ϕ−T∗(Aχ′(0)[Σ2])

)(∫
M
ϕ(T+T0)∗([Σ1]) ∧Uj

)

= −
b1(M)∑
j=1

(∫
M

Sj ∧ ϕ−T∗(Aχ′(0)[Σ2])

)(∫
M
ϕ(T+T0)∗([Σ1]) ∧Uj

)

= −
b1(M)∑
j=1

(∫
M

Sj ∧Aχ′(0)[Σ2]

)(∫
M

[Σ1] ∧Uj

)

= −
b1(M)∑
j=1

(∫
M

Sj ∧ [Σ2]

)(∫
M

[Σ1] ∧Uj

)
,

where we used that
∫
R χ
′(t)dt = 1 and ϕt∗Sj = Sj to derive the last line.

To summarize, we have shown:

Proposition 5.2. There exist a holomorphic function h (in a neighborhood
of 0) and two families of linearly independent closed currents (Uj)j=1,...,b1(M)

in D′1
E̊∗u

(M) and (Sj)j=1,...,b1(M) in D′1
E̊∗s

(M) such that

∀1 6 i, j 6 b1(M),

∫
M
α ∧ Si ∧Uj = δij ,
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and, near z = 0,

ζΣ1,Σ2(z) =
1

z

b1(M)∑
j=1

(∫
M

Sj ∧ [Σ2]

)(∫
M

[Σ1] ∧Uj

)
+ h(z).

Recall that Hodge-De Rham theory shows that the ellipticity of d im-
plies that the cohomology is independent of the choice of the spaces we
are working with – see e.g. [28, Lemma 2.1]. In particular, the currents
(Uj)j=1,...,b1(M) in D′1E∗u(M) and (Sj)j=1,...,b1(M) form a basis of H1(M,C).

We would like to note that, so far, the only property that was used is the
fact that [Σ1] and [Σ2] lie in the appropriate functional spaces. We did not
even use that d[Σi] was equal to 0. We emphasize that this formula is only
valid in dimension 2 and that its extension to higher dimensions would re-
quire a good knowledge of the spectral projector at 0 in higher dimensions.
See e.g. [14] for recent progress in that direction.

As a direct Corollary of this Proposition, we find that

Corollary 5.3. If either [Σ1] or [Σ2] is exact, then ζΣ1,Σ2(z) is holomorphic
in a neighborhood of z = 0.

We note that we just needed one of the two currents [Σi] to be exact, the
other current does not even need to be closed.

6. ζΣ1,Σ2(0) and linking numbers

Our goal is now to prove Theorem 1.2. The set-up is the same as in
Section 4 except that we now suppose that the geodesic curves c1 and c2

defining Σ1 and Σ2 are homologically trivial. We begin by collecting a few
facts from topology that will be used in our proof. Then, in §6.2, we relate
the value at 0 with the linking number of Σ1 and Σ2. Finally, in §6.3, we
gather these facts to compute the value at 0 in terms of Euler characteristics.

6.1. Three topological ingredients.

6.1.1. Writing Σi as the boundary of an explicit surface. We assume that ci
is homologically trivial in X. Therefore an application of a Gysin type ar-
gument [7, Prop. 14.33] implies that the multiple χ(X)Σi of the lifted curve
Σi is homologically trivial in M . Since the value of ζΣ1,Σ2(0) will be inter-
preted in terms of linking (see §6.2) number between Σ1,Σ2, this implies
that χ(X)ζΣ1,Σ2(0) is an integer. But our goal is to compute more “con-
cretely” the linking between Σ1,Σ2. This involves constructing an explicit
de Rham primitive R2 of Σ2 and then computation the exact intersection
number of R2 with Σ1.

In the sequel, we will say that a smooth vector field Y ∈ Γ(TX) has real
hyperbolic zeroes if for every q such that Y (q) = 0, the linearization of the
vector field Y at q is a matrix with real, non vanishing eigenvalues. The
index Ind(q) of a critical point is the number of negative eigenvalues. This
hyperbolicity condition immediately implies that the set Crit(Y ) of critical
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points is isolated and finite. The main example of such vector fields is given
by the gradient vector field of a Morse function which is the case we will
mostly use in the following.

In the case where ci is reduced to a point, this reads as follows:

Lemma 6.1. Let Y be a smooth vector field on X with real hyperbolic zeroes.
Set

S :=

{(
q,

Y (q)[

‖Y (q)[‖

)
: q ∈ X \ Crit(Y )

}
.

Then the current of integration [S] on S∗(X \Crit(Y )) extends as a current
on S∗X and it satisfies the equation:

(28) d[S] = −
∑

a∈Crit(Y )

(−1)Ind(a)[S∗aX].

Before getting to the proof of the Lemma, let us quickly show how to
deduce an explicit de Rham primitive of the current of integration on a
cotangent fiber [S∗aX]. As X is path-connected, for any pair of points (a, b),
consider some smooth oriented path γab from a to b and denote by θab =
π∗([γab]) ∈ D′,1(S∗X). One can verify that [S∗aX] = [S∗bX] +dθab which just
says cotangent fibers are homotopic. By the Poincaré–Hopf Theorem, one
has

∑
a∈Crit(f)(−1)ind(a) = χ(X) 6= 0 so that

Corollary 6.2. For every a ∈ Crit(Y ):

[S∗aX] = − 1

χ(X)
d

[S] +
∑

b∈Crit(Y )

(−1)ind(b)θab

 .

Remark 6.3. Given a smooth vector field q 7→ Y (q) as in the lemma, we can
compute the tangent space to the corresponding surface S in the horizon-
tal/vertical bundles of Section 3. Given a curve x : t 7→ (q(t), p(t)) ∈ S such
that x′(0) 6= 0, we find that dq(0),p(0)Π(x′(0)) = q′(0) 6= 0. As this is valid
for any curve, this shows that the tangent space to S is transversal to the
vertical bundle.

Proof. We only need to prove this formula near a fixed critical point a of
Y . The argument is just a variation of the proof of Stokes formula except
that we do not know a priori that S is a smooth manifold with boundary.
We let κ : U → R2 be a local chart centered at a (i.e. κ(a) = 0). Using
the symplectic lift of κ, this chart lifts into a chart κ̃ : S∗U → R2 × S1. In
this chart, the boundary ∂S of S is exactly given by {0} × S1. Similarly, S
reads {(q̃, φ(q̃)) : q̃ 6= 0} where φ : R2 \ {0} → S1 is a smooth map obtained
via the local chart and the initial vector field Y . Without loss of generality,
we may assume that the image of the submanifold S in R2 is oriented by
the canonical orientation of R2. As the critical points are of real hyperbolic
type, we can always choose the local chart centered at a in such a way that,
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in the (induced) local coordinates

Y (q̃1, q̃2) = (χ1q̃1 + h1(q̃)) ∂q̃1 + (χ2q̃2 + h2(q̃)) ∂q̃2 ,

with χ1χ2 6= 0 and with h1, h2 = O(‖q̃‖2) which are smooth functions
defined near 0. As in the examples of paragraph 3.2.2, we define the sub-
manifold of R2 × S1:

S :=

{
(q̃, φ) : q̃ 6= 0, cosφ =

χ1q̃1 + h1(q̃)

‖Y (q̃)‖
, sinφ =

χ2q̃2 + h2(q̃)

‖Y (q̃)‖

}
,

which is oriented with dq̃1 ∧ dq̃2. We set

F (q̃, φ) := χ2q̃2 + h2(q̃)− tanφ (χ1q̃1 + h1(q̃)) .

Then, as in this example, one can define, in R2 × (−π/2, π/2)

[S] = − χ1

|χ1|
1R+(q̃1)δ0 (F (q̃, φ)) dF,

which extends the current of integration [S] defined on R2\{0}×(−π/2, π/2).
Then, taking a partition of unity on S1 (associated with each half plane
of R2), one can verify that [S] is well defined on R2 × S1. Finally, if we
differentiate this expression, we find

d[S] = − χ1χ2

|χ1χ2|
δ0(q̃1, q̃2)dq̃1 ∧ dq̃2.

Recalling that [S∗aX] = δ0(q̃1, q̃2)dq̃1∧dq̃2 was oriented by dφ, we obtain the
expected result. �

For general simple closed curves (with maybe several connected compo-
nents), we get a similar construction

Lemma 6.4. Let c be a simple closed curve in X which is trivial in ho-
mology. Denote by X(c) the surface whose oriented boundary is equal to
c.

Then, for any vector field Y with real hyperbolic zeroes outside of the
curve c that is pointing normally inward X(c), the surface

S :=

{(
q,

Y (q)[

‖Y (q)[‖

)
: q ∈ X(c) \ Crit(Y )

}
.

defines a current of integration [S] on S∗(X \ Crit(Y )) that extends as a
current on S∗X satyisfying the equation:

(29) d[S] = [Σ(c)]−
∑

a∈Crit(Y )∩X(c)

(−1)Ind(a)[S∗aX].

Moreover, such a vector field exists.

Again, we recover from this Lemma (and from Lemma 6.1) that [Σ(c)]
is trivial in De Rham cohomology with somehow a “concrete” expression of
a surface whose boundary is Σ(c). We emphasize that c does not need to
be a closed geodesic here, that c may have several connected components
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and that the assumption on the curvature of X is useless in that statement.
We record the following important geometric fact. By construction, the
vector field Y is normal to c and points inward X(c) as in the examples of
paragraph 3.2.2.

Remark 6.5. In the following, we always take the conventions that the sur-
faces X(c) are closed, i.e. they contain their topological boundary.

Proof. Take f̃ to be a smooth function which is constant on c and whose
gradient vector field is positively colinear to c′(t)⊥. This implies that ∇gf̃
has no critical points in some neighborhood of c. By density of Morse
functions in the C∞-topology, we can find arbitrarily close to f̃ a smooth
Morse function f . In particular, its gradient vector field has now finitely
many critical points which are all of real-hyperbolic type and which are
away from c. The gradient vector field∇gf may not be normal to c anymore.
Take some C∞ cut–off function such that χ = 1 near c and such that χ is
supported in some small tubular neighborhood of c. Then h = χf̃+(1−χ)f

is arbitrarily C1 close to both f and f̃ . The function h is C1 close to f̃ hence
we can choose f and χ in such a way that h has no critical points in the
support of χ. So all the critical points of h are in the region where χ = 0
which is the region where h = f . Hence h is a Morse function. Arguing
as in the proof of Lemma 6.1 (see also §3.2.2), we find that Y = ∇gh has
the expected properties. Finally, the proof of Lemma 6.1 did not explicitely
used the fact that the vector field was a gradient one and the boundary
formula remains true for any vector field verifying the assumption of the
Lemma. �

As a consequence of the reminder of the appendix on the wavefront set
of the current of integration on a submanifold, we record a complementary
Lemma concerning the wave front sets of the primitives produced by both
Lemmas 6.1 and 6.4:

Lemma 6.6. In Lemmas 6.1 and 6.4, the resulting current of integration
[S] has wavefront set contained in N∗(S) ∩ ∩a∈Crit(Y )T

∗(S∗aX) \ 0.

6.1.2. Poincaré-Hopf formula for surfaces with boundary. A second key in-
gredient in our proof is the Poincaré-Hopf formula as it was derived by Morse
in the case of manifolds with boundary [64, Th. A0]. For simplicity, we only
state the formula for surfaces:

Theorem 6.7 (Poincaré-Hopf formula for surfaces with boundary). Let c
be a simple closed and nontrivial curve in X (possibly with several con-
nected components) which is homologically trivial. Denote by X(c) the sur-
face whose oriented boundary is equal to c.

Let Y be a smooth vector field on X with real hyperbolic zeroes and such
that Y meets the outgoing normal to c at finitely many points. Denote by Ỹ
the vector field induced10 by Y on c and suppose that the zeroes Critout(Ỹ )

10It is obtained by projecting Y on the tangent space to c.



POINCARÉ SERIES AND LINKING OF LEGENDRIAN KNOTS 31

of Ỹ where Y is outgoing are also of hyperbolic type. Then, one has

χ(X(c)) :=
∑

a∈Crit(Y )∩X(c)

(−1)ind(a) −
∑

a∈Critout(Ỹ )

(−1)ind(a).

Here, we say that Ỹ has hyperbolic zeroes if these are nondegenerate.
At some point, we will also need a 1-dimensional version of this result [64,
Th. 1]. This reads:

Lemma 6.8. Let Ỹ be a vector field on the interval [0, 1] all of whose zeroes
are of real hyperbolic type and that is pointing inward [0, 1] at 0 and 1. Then,
one has

−1 =
∑

a∈Crit(Ỹ )

(−1)ind(a).

6.1.3. Hodge-De Rham Theorem. Our final ingredient is the following ver-
sion of the Hodge-De Rham Theorem in the spacesD′Γ(M) from Appendix A.

Theorem 6.9. Let Γ be a closed cone, let 0 ≤ k ≤ 3 and let u be an element
in D′kΓ (M) verifying du = 0. Then the following holds

• there exists ω ∈ Ωk(M) and v ∈ D′k−1
Γ (M) such that u = ω + dv,

• if u = dv for some v ∈ D′k−1(M), then there exists ω ∈ D′k−1
Γ (M)

such that u = dω.

Proof. A proof of the first point can be found in [28, §2.2]. The proof of
the second point is also a consequence of this result. In fact, it tells us that
u = ω+ dW for some ω ∈ Ωk(M) and some W ∈ D′k−1

Γ (M). Now, from the
classical De Rham Theorem [82, p.355] on D′(M), one knows that ω = dw1

for some w1 ∈ Ωk(M). �

6.2. The value at 0 as a linking number. Using the conventions of §4
and recalling that we denote by [Σi] the current of integration over Σi =
Σ(ci), one has

Proposition 6.10. Suppose that c1 and c2 are closed geodesics and that
[Σ1] and [Σ2] are exact. Then, for every T0 > 0 small enough,

ζΣ1,Σ2(0) = −
∫
M
ϕT0∗[Σ1] ∧R2,

where [Σ2] = dR2 and R2 ∈ D′1N∗(Σ2)(M). Moreover, T0 can be chosen equal

to 0 if Σ1 ∩ Σ2 = ∅.

Note that

L(c1, c2) :=

∫
M
ϕT0∗[Σ1] ∧R2

can be understood as the linking number between the two Legendrian knots
ϕ−T0(Σ1) and Σ2 and that this choice is independent of the choice of R2 as
soon as [Σ1] is also exact. The exact value of this quantity will be computed
below in terms of Euler characteristics. We also remark that we do not
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require the curves (c1, c2) to be simple in the above Proposition, they can
self–intersect. We do not even really need [Σ1] or [Σ2] to be Legendrian and
the only needed properties are the Margulis transversality assumptions (14)
and (15) in view of making sense of the various pairings. In fact, as we
shall see below, for any pair of (homologically trivial) knots Σ1 and Σ2 ver-
ifying these transversality assumptions, the value at 0 of the corresponding
Poincaré series is, up to some natural correction term, a linking number
(thus a rational number). Recall from Lemma 3.5 that, for general knots,
one may have to consider geodesic trajectories of large enough length (i.e.
T0 > 0 large enough). Thus, the linking number and the value at 0 may
differ by an integer depending the choice of T0 we pick in the definition of
the Poincaré series.

Proof. To prove this formula, we will start from the integral formula given
by (24):

ζΣ1,Σ2(z) = −
∫
M
ϕT0∗[Σ1]∧Aχ̃(z)ιV [Σ2]−

∫
M

[ΣT
1 ]∧ιV (LV +z)−1Aχ′(z)[Σ

−T
2 ],

We now decompose [Σ2] using the spectral projector at 0 which, by duality
with (27), can be written as

π
(2)
0 ([Σ2]) =

(∫
M α ∧ [Σ2]∫
M α ∧ dα

)
dα+

b1(M)∑
j=1

(∫
M

Sj ∧ [Σ2]

)
α ∧Uj .

In particular, using that [Σ2] is exact and Legendrian, the limit as z → 0

makes sense due to the fact that π
(2)
0 (Aχ′(z)[Σ

−T
2 ]) = 0 (as π0 commutes

with the pullback by the flow). Hence, the formula for the value at 0 can be
expanded as

ζΣ1,Σ2(0) = −
∫
M
ϕT0∗[Σ1] ∧Aχ̃(0)ιV [Σ2]

−
∫
M
ϕT0∗[Σ1] ∧ ϕ−T∗ιV L−1

V Aχ′(0)ϕ−T∗[Σ2].

Thus the natural candidate would be to take

R̃2 := Aχ̃(0)ιV [Σ2] + ϕ−T∗ιV L−1
V Aχ′(0)ϕ−T∗[Σ2].

As d[Σ2] = 0 and as d commutes with ϕ−T∗ and the operators Aψ for all ψ,
one has in fact

dR̃2 = Aχ̃(0)LV [Σ2] + ϕ−2T∗Aχ′(0)[Σ2].

From the definition of Aχ̃, one has

dR̃2 = [Σ2] +Aχ̃′(0)[Σ2] +Aχ′(.−2T )(0)[Σ2] = [Σ2],

where we used that χ̃(t) + χ(t − 2T ) = 1 on R+. By taking N1 arbitrarily
large in the definition of the anisotropic Sobolev space, one can ensure that
the term ϕ−T∗ιV L−1

V Aχ′(0)ϕ−T∗[Σ2] has arbitrarily large Sobolev regular-
ity outside a small neighborhood of E∗u. See [18] for an explicit description
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of the relation between the Sobolev exponents and the size of the conical
neighborhoods in the definition of the anisotropic Sobolev space. By con-
struction, the term Aχ̃(0)ιV [Σ2] belongs to D′1Γ (M) where the cone Γ does
not intersect N∗(ϕ−T0(Σ1)). Hence, up to enlarging the cone Γ to include

the small conical neighborhood of E∗u, R̃2 belongs to the space D′1Γ (M). Un-
fortunately, this current does not have the expected wavefront set properties.
Yet this problem can be handled as follows. By Theorem 6.9 and as [Σ2]
is exact, there exists R2 ∈ D′1N∗(Σ2)(M) such that [Σ2] = dR2. Moreover,

as d(R2 − R̃2) = 0, one can find some smooth closed one-form ω and some

θ ∈ D′0Γ∪N∗(Σ2)(M) such that R2 = R̃2 + ω + dθ. By Stokes formula, by the

fact that [Σ1] is exact, and by noting that Γ ∪ N∗(Σ2) does not intersect
N∗(ϕ−T0(Σ1)), we get the expected result. �

Remark 6.11. In our analysis, the exactness of [Σ1] was only necessary in

the final step in view of replacing R̃2 by the current R2 with appropriate
wavefront properties. We did not even use the closedness of [Σ1] before this
step.

Remark 6.12. As it was indicated to us by one of the referee, the above
argument did not really need the fact that the curve Σ2 is Legendrian if we
make the appropriate correction for the value at s = 0. Indeed, without the
Legendrian assumption, one can write

[Σ2] =

( ∫
Σ2
α∫

M α ∧ dα

)
dα+ (Id− π(2)

0 )([Σ2]).

In particular, using that ιV dα = 0, one has∫
M
ϕT0∗[Σ1] ∧Aχ̃(z)ιV dα

+

∫
M
ϕ−T∗[Σ1] ∧ ιV (LV + z)−1Aχ′(z)ϕ

−T∗dα = 0.

Hence, we can replace [Σ2] by (Id−π(2)
0 )([Σ2]) in the above argument and the

exact same proof works except that dR̃2 will now be equal to (Id−π(2)
0 )([Σ2])

or equivalently

d

(
R̃2 +

( ∫
Σ2
α∫

M α ∧ dα

)
α

)
= [Σ2].

Hence, arguing as before, we can pick R2 such that dR2 = [Σ2], R2 ∈
D′1N∗(Σ2)(M) and

(30) ζΣ1,Σ2(0) = −
∫
M
ϕT0∗([Σ1]) ∧R2 +

∫
Σ1
α
∫

Σ2
α∫

M α ∧ dα
.

This gives the value at 0 for general curves in M = SX.
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6.3. Proof of Theorem 1.2. We are now ready to prove our Theorem on
the value at 0 which amounts to compute the value of L(c1, c2). In particular,
we now suppose that c1 and c2 are homologically trivial and simple. The
proof proceeds in three stages of increasing generality: 1) (c1, c2) are points,
2) c1 is a curve and c2 a point, 3) (c1, c2) are curves.

We insist on the structure of our arguments: we always rely on the simpler
case to deduce a more general case. Also c1 and c2 are not needed to be
geodesic curves. The only thing that matters in the argument below is that
they intersect transversally in X.

Remark 6.13. Thanks to Remarks 6.3 and 6.6 and to Proposition 6.10, we
will consider in this proof currents T1 and T2 having disjoint wavefront sets.
In particular, according to Appendix A.2, they will have well defined wedge
product and we can write d(T1∧T2) = dT1∧T2−T1∧dT2 in view of applying
Stokes formula. Thus all the manipulations we will do will be valid thanks
to these observations even if we do not repeat them at every stages of the
proof.

6.3.1. Proof of Theorem 1.2: the case of points. In the case where c1 and
c2 are points, the proof of Theorem 1.2 follows from the combination of
Proposition 6.10 with

Lemma 6.14. Suppose that c1 and c2 are points. Then one has

χ(X)L(c1, c2) = −1 if c1 6= c2,

and
χ(X)L(c1, c2) = χ(X)− 1 otherwise.

Remark 6.15. Chantraine explained to us that the linking between S∗c1X
and S∗c2X was equal to the inverse of the Euler characteristic and the Morse
theoretic proof given in this paragraph was shown to us by Welschinger.

Proof. The geodesic curve ci is reduced to a point qi ∈ X for i = 1, 2.
Hence, one has Σ(ci) = S∗qiX. Recall from Lemma 6.1 that [Σ(ci)] is exact
in that case and that thanks to Proposition 6.10, [Σ(ci)] = dRi for some
Ri ∈ D′1N∗(Σ(ci))

(S∗X). We shall write Ri = Rqi all along this proof in

order to emphasize the dependence on the point qi ∈ X. We now fix some
0 6 T0 < T1 such that S∗q2X ∩ ϕ

−T0(S∗q1X) = ∅, and we want to compute

L(q1, q2) =

∫
S∗X

ϕT0∗([S∗q1X]) ∧Rq2 .

We begin with the case where q1 6= q2 for which one can take T0 = 0 in
the previous integral. We take f to be a smooth Morse function which has
no critical point at q1. We denote its set of critical points by Crit(f), and
we define

S :=

{(
q,

dqf

‖dqf‖

)
: q /∈ Crit(f)

}
,

which is oriented by the orientation on X.
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By lemma 6.1, one finds that

d[S] = −
∑

a∈Crit(f)

(−1)ind(a)[S∗aX] = −
∑

a∈Crit(f)

(−1)ind(a)dRa.

As the intersection of S∗q1X and S is reduced to one point and taking into
account the orientation of S and [S∗q1X] (see also Remark 6.3), we find that

1 =

∫
S∗X

[S∗q1X] ∧ [S] = −
∑

a∈Crit(f)

(−1)ind(a)

∫
S∗X

Rq1 ∧ [S∗aX]

= −
∑

a∈Crit(f)

(−1)ind(a)L(q1, a).

Now, if we fix a ∈ Crit(f) and if we modify the Morse function f inside a
small neighborhood of a, we can observe that the map q 7→ L(q1, q) is locally
constant on X \ {q1} which is connected. Hence, L(q1, a) is independent of
the choice of a. Thanks to the Poincaré–Hopf formula, this yields

−1 =
∑

a∈Crit(f)

(−1)ind(a)L(q1, a) = χ(X)L(q1, q2),

which concludes the proof when q1 6= q2.
Suppose now that q1 = q2. In that case, we fix f which has a local

minimum at q1 and no other critical points inside the disk bounded by
Π(ϕ−T0(S∗q1X)). We also suppose that f is constant on Π(ϕ−T0(S∗q1X)), say

f(q) = dg(q, q1)2. Then, we define

S :=

{(
q,

df(q)

‖df(q)‖

)
: q /∈ Crit(f)

}
which does not intersect ϕ−T0(S∗q1X). Reproducing the above arguments,
this yields

0 =

∫
S∗X

ϕT0∗([S∗q1X])∧ [S] = −
∑

a∈Crit(f)

(−1)ind(a)

∫
S∗X

ϕT0∗(Rq1)∧ [S∗aX]

= −
∑

a∈Crit(f)

(−1)ind(a)L(q1, a).

Thanks to the case where q1 6= q2 and to the case of equality in Morse
inequalities, we finally obtain

0 = −L(q1, q1) +
1

χ(X)

∑
a∈Crit(f)\q1

(−1)ind(a) = −L(q1, q1) + 1− 1

χ(X)
,

which concludes the proof.
�
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6.3.2. Proof of Theorem 1.2: c1 is a curve, c2 a point. Using this first case,
we will now be able to deal with the case where c1 is a simple (non trivial)
closed geodesic which is homologically trivial and where c2 is reduced to a
point q2. For the sake of simplicity, we suppose that c1 ∩ c2 = ∅ so that we
can take T0 = 0 in the definition of L(c1, c2).

We let Y be the vector field given by Lemma 6.4 and take S to be the
surface defined in that Lemma. One has

d[S] = [Σ(c1)]−
∑

a∈Crit(Y )∩X(c1)

(−1)ind(a)[S∗aX].

If q2 belongs to X(c1), one finds that

1 =

∫
S∗X

[S] ∧ [S∗q2X] =

∫
S∗X

[Σ(c1)] ∧Rq2

−
∑

a∈Crit(Y )∩X(c1)

(−1)ind(a)

∫
S∗X

[S∗aX] ∧Rq2 .

From Lemma 6.14, we get∫
S∗X

[Σ(c1)] ∧Rq2 = 1− 1

χ(X)

∑
a∈Crit(Y )∩X(c1)

(−1)ind(a).

From Theorem 6.7, we find that, for q2 ∈ X(c1)

L(c1, c2) =

∫
S∗X

[Σ(c1)] ∧Rq2 = 1− χ(X(c1))

χ(X)
.

If q2 /∈ X(c1),
∫
S∗X [S] ∧ [S∗q2X] = 0 and the same argument gives

L(c1, c2) =

∫
S∗X

[Σ(c1)] ∧Rq2 = −χ(X(c1))

χ(X)
.

6.3.3. Proof of Theorem 1.2: both c1, c2 are curves. We are now left with
the case where both c1 and c2 are nontrivial simple closed geodesics which
are homologically trivial. In that case, the difficulty comes from the fact
that c1 and c2 may intersect each other and this is where we will use the full
strength of the Poincaré-Hopf formula given in Theorem 6.7. For simplicity,
we also suppose that11 ]c1 ∩ c2 < ∞ so that the intersection points are
transverse by the geodesic equation and so that we can one more time take
T0 = 0 in the definition of L(c1, c2). For simplicity, we set X1 := X(c1) and
X2 := X(c2) in this paragraph.

Remark 6.16. At the end of this paragraph, we will briefly explain how to
adapt the argument when c1 = c−1

2 so that c1 and c2 are twice the same
curve but with different orientations.

11One may have ]c1 ∩ c2 =∞ is c1 is equal to c2 oriented in the converse sense. Recall
that we supposed c1 and c2 to be distinct.
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We let Y be the vector field given by Lemma 6.4 with c = c1.
The goal of the next Lemma will be to deform the vector field Y from

Lemma 6.4 in such a way that the resulting surface introduced in Lemma 6.4,

(31) S :=

{(
q,

Y (q)[

‖Y (q)[‖

)
: q ∈ X(c1) \ Crit(Y )

}
,

intersects Σ2 nicely:

Lemma 6.17. One can smoothly deform Y in the interior of X1 so that

(1) the new vector field has the same number of critical points in X1

which are still of real hyperbolic type with preserved index, but they
do not lie in X1 ∩ c2,

(2) the surface S associated with the resulting vector field intersects
S∗X1∩Σ2 at finitely many points and the intersection is transversal
at these points,

(3) the vector field Ỹ induced on c2 ∩ X1 (as in Theorem 6.7) has hy-
perbolic zeroes (both for inward and outward zeroes),

(4) the boundary formula (29)

d[S] = Σ1 −
∑

a∈Crit(Y )∩X1

(−1)Ind(a)[S∗aX],

remains true with this new vector field,
(5) one has

(32)

∫
S∗X

[S] ∧ [Σ2] = −
∑

a∈Critout(Ỹ )∩(X1∩c2)

(−1)Ind(a) − 1

2
χ(c1 ∩ c2),

where Critout(Ỹ ) denotes the zeroes of Ỹ such that Y points outside
X2 at these points.

Proof. Let us modify the initial vector field Y from Lemma 6.4 into a new
vector field so that the hyperbolic zeroes become disjoint of c2 but their index
is preserved. We only need to discuss the critical points that potentially
belong to c2. For any such point a, one can associate b(a) ∈ X1 \ c2. We
make the assumption that for every critical points a 6= a′ lying on c2, we
choose b(a) 6= b(a′).

To every pair of points (a, b(a)), we associate a smooth curve (with no
selfintersection points) γa ⊂ X1 joining a to b(a) and such that γa and
γa′ do not intersect each other if a 6= a′ and never intersect the boundary
c1. One can then find tubular neighborhoods Oa of these curves which are
diffeomorphic to R × (0, 1), which lie inside the interior of X1 and which
do not intersect each other. On each of these neighborhoods, one can build
a diffeomorphism κa which sends a to b(a) which is equal to the identity
near the boundary of Oa. Gluing these “local” diffeomorphisms together by
taking the identity outside the Oa yields a global diffeomorphism κ : X 7→ X.
Taking the pullback of the initial vector field Y under κ, we find a new vector
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field with the same number of hyperbolic zeroes in X1 and the index of each
zero is preserved by the diffeomorphism κ. The boundary formula (29)
is still satisfied since the diffeomorphism κ is the identity near c1 so our
modification does not affect the validity of equation 29. For simplicity, we
still denote by Y the modified vector field.

In view of verifying (2) and (3), we first note that, as c1 and c2 intersect
transversally, the surface S associated with Y does not intersect Σ2 above
points in c1∩c2 (recall that S consists of vectors pointing normally inside X1

above points in c1. Hence, the intersection between S and S∗X1∩Σ2 occurs
necessarily away from S∗X|c1 . By a small perturbation12 of the vector field
Y near c2 (and in the interior of X1), we can ensure that the number of
intersection points in S ∩ Σ2 is finite as stated in point (2). We can in
fact also ensure that there are only finitely many points where the resulting
vector field points normally either inside or outside X2.

In view of verifying the transversality assumption and the hyperbolicity
property, we fix a point x0 = (q0, p0) where the new surface S intersects Σ2 or
where S is pointing normally outside X2. Let (U0 ⊂ X,κ0) be a small chart
near q0. We can choose local coordinates (q̃1, q̃2) such that X2 is given in this
local chart by the local coordinates of § 3.2.2, i.e. X2 := {(q̃1, q̃2) : q̃2 > 0}.
In this local chart, we know that Y (0, 0) is proportional to ∂q̃2 . Hence
locally, up to multiplying the vector field by a positive constant near 0, it
reads Y (q̃) = ±∂q̃2 + f1(q̃)∂q̃1 + f2(q̃)∂q̃2 with f1(0) = f2(0) = 0. The + case
corresponds to vectors pointing inside X2 (thus intersection points with Σ2)
while the − case corresponds to outward pointing vectors. If we consider
the case of inward pointing vectors, recall using the conventions of § 3.2.2
that we can write locally

Σ2 := {(q̃1, q̃2, φ) : q̃2 = 0, φ = π/2}
while one has locally

S =

(q̃1, q̃2, φ) : φ = φ(q̃) := arccos

 f1(q̃)√
f1(q̃)2 + (1 + f2(q̃))2

 .

In particular, the conormal to Σ2 is proportional to dq̃2 ∧ dφ while the one
to S is given by dφ−∂q̃1φ(q̃)dq̃1−∂q̃2φ(q̃)dq̃2. Hence, the intersection would
be transversal if ∂q̃1φ(0) 6= 0. If we perturb the vector field in such a way
that ∂q̃1f1(0) 6= 0 and ∂q̃2f2(0) 6= 0, then we get a transversal intersection at
0. Note that this may result in adding locally extra zeroes to the vector field
Ỹ along the curve c2 ∩ X1 (if the tangency is of higher order) but we can
choose them in such a way that all the intersections with Σ2 are transverse
and generate hyperbolic zeroes on c2∩X1. This procedure works as well for
zeroes of Ỹ corresponding to points where Y points normally outside X2.

By partition of unity, we can use this procedure to make the intersection
S ∩ Σ2 transversal at every intersection point. This concludes the proof

12This amounts to perturb the vector field on a finite number of compact intervals.
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of point (2) and we note that in the process, we also ensured that point
(3) is satisfied. Note also that all along this construction, we can make
perturbations that are away from the critical points of Y so that point (1)
is still satisfied. As we did not modify the vector field Y near the boundary
of S, the equation (29) is also satisfied.

Hence, we are left with the proof of point (5). We start by working locally
near an intersection point and use the above expressions for Σ2 and S to
write down locally

[Σ2] = δ0(q̃2)δ0

(
φ− π

2

)
dq̃2 ∧ dφ,

and

[S] = δ0(φ− φ(q̃))(dφ− ∂q̃1φ(q̃)dq̃1 − ∂q̃2φ(q̃)dq̃2).

Hence, the intersection∫
S∗U0

[S] ∧ [Σ2]

= −
∫
R2×S1

δ0(q̃2)δ0

(
φ− π

2

)
δ0(φ− φ(q̃1))∂q̃1φ(q̃)dq̃1dq̃2dφ

= − ∂q̃1φ(0)

|∂q̃1φ(0)|
.

Hence, it is equal to 1 if ∂q̃1f1(0) > 0 and to −1 otherwise. We can now
turn things globally and compute∫

M
[S] ∧ [Σ2]

which is an alternate sum of +1 and −1 thanks to the above discussion.
Each of these contributions correspond to a point of the curve c2∩X1 where
the new vector field Y points normally inside X2 (here we are using the fact
that c2 is nontrivial). Recall that the vector field Y induces a vector field

Ỹ tangent to the curve c2 ∩ X1 and each contribution to the integral will
come from the points where the induced vector field Ỹ vanishes and where
the vector field Y is pointing inside X2. When the point is attracting (resp.
repulsing), it will give a contribution −1 (resp. 1) to the integral thanks to
the local calculation above. Hence, one finds

(33)

∫
S∗X

[S] ∧ [Σ2] =
∑

a∈Critin(Ỹ )∩(X1∩c2)

(−1)ind(a),

where Critin(Ỹ ) is the set of critical points of Ỹ where Y points inside X2.
We will now apply the Poincaré-Hopf formula of Lemma 6.8 to the compact
one-dimensional submanifold X1 ∩ c2 (this is diffeomorphic to a finite union
of compact intervals). The boundary c1 ∩ c2 may be non empty and Y is
pointing inward on c1 ∩ c2 since the initial vector field Y coincides with the
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inward normal of X1 on c1 and the intersection c1 ∩ c2 is transverse. Hence,
according to Lemma 6.8, one has

(34)
∑

a∈Crit(Ỹ )∩(X1∩c2)

(−1)ind(a) = −1

2
χ (c1 ∩ c2) .

Note that the right-hand side is an integer. Indeed, c1 and c2 are both ho-
mologically trivial by assumption. In particular, as the curves are transverse
to each other,

∫
X [c1] ∧ [c2] = 0 and the two curves intersect each other an

even number of times. Equation (34) applied to (33) yields∫
S∗X

[S] ∧ [Σ2] = −
∑

a∈Critout(Ỹ )∩(X1∩c2)

(−1)ind(a) − 1

2
χ (c1 ∩ c2) .

�

With the vector field Y given by Lemma 6.17 at hand and the resulting
surface S defined in Lemma 6.4, we can now compute L(c1, c2) when c1

and c2 are nontrivial simple geodesics and thus conclude the proof of Theo-
rem 1.2. Recalling that [Σ2] = dR2 from Proposition 6.10, one can rewrite
the term

∫
S∗X [S] ∧ [Σ2] on the left-hand side of (32) as∫

S∗X
[S] ∧ [Σ2] =

∫
S∗X

d[S] ∧R2 by Stokes,

=

∫
S∗X

[Σ1] ∧R2︸ ︷︷ ︸
L(c1,c2)

−
∑

a∈Crit(Y )∩X1

(−1)ind(a)

∫
S∗X

[S∗aX] ∧R2,

where we used equation (29) given by item (4) from Lemma 6.17, to write
down the second equality. Hence by equation (32), one has

L(c1, c2) = −1

2
χ (c1 ∩ c2)−

∑
a∈Critout(Ỹ )∩(X1∩c2)

(−1)ind(a)

+
∑

a∈Crit(Y )∩X1

(−1)ind(a)

∫
S∗X

[S∗aX] ∧R2.

Equivalently, this can be rewritten using Stokes formula as

L(c1, c2) = −1

2
χ (c1 ∩ c2)−

∑
a∈Critout(Ỹ )∩(X1∩c2)

(−1)ind(a)

+
∑

a∈Crit(Y )∩X1

(−1)ind(a)

∫
S∗X

[Σ2] ∧Ra.

We can now replace each term
∫
S∗X [Σ2] ∧Ra on the right hand side by the

value we found for the linking number where one geodesic is reduced to a



POINCARÉ SERIES AND LINKING OF LEGENDRIAN KNOTS 41

point. This yields

L(c1, c2) = −1

2
χ (c1 ∩ c2)− χ(X2)

χ(X)

∑
a∈Crit(Y )∩X1

(−1)ind(a)

−
∑

a∈Critout(Ỹ )∩(X1∩c2)

(−1)ind(a) +
∑

a∈Crit(Y )∩X1∩X2

(−1)ind(a).

The second term
∑

a∈Crit(Y )∩X1
(−1)ind(a) on the righthand side can be sim-

plified using Poincaré-Hopf formula for surfaces with boundary (using that
Y points inside X1):

L(c1, c2) = −1

2
χ (c1 ∩ c2)− χ(X2)χ(X1)

χ(X)

−
∑

a∈Critout(Ỹ )∩(X1∩c2)

(−1)ind(a) +
∑

a∈Crit(Y )∩X1∩X2

(−1)ind(a).

We would now like to use Theorem 6.7 one more time to simplify the last two
sums as Y is pointing normally inside X1 ∩X2 on c1. The only problem is
that X1∩X2 does not have a smooth boundary in general: there are corners
at the points in c1 ∩ c2. This can be solved by smoothing these corners
as illustrated in Figure 1. As c1 and c2 intersect transversally, Y will not

Figure 1. Smoothing corners.

point normally outward the resulting surfaces so that we can apply Poincaré-
Hopf Theorem. The resulting manifold has the same Euler characteristic as
X1 ∩X2 and we can conclude using Theorem 6.7 with the smoothed version
of X1 ∩X2. This leads to the expected formula:

L(c1, c2) = χ(X1 ∩X2)− 1

2
χ (c1 ∩ c2)− χ(X2)χ(X1)

χ(X)
.

Remark 6.18. The case where c1 and c2 are two simple homologically trivial
curves with the same support but not the same orientation, i.e. X2 =
X \X1. In that case, the full strength of Lemma 6.17 is not necessary as S
do not intersect Σ2 so that we can directly write

∫
S∗X [S] ∧ [Σ2] and derive

the result in that case using Stokes formula.
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7. The case of non simple geodesics

We note that up to Proposition 6.10 the fact that c1 and c2 are simple
curves is not used. The relevance of this assumption only appeared at the
end of Section 6 where we needed to work with the surfaces X(ci) whose
oriented boundary is given by ci. We will now discuss the case where c1

and c2 are not anymore simple geodesic curves but still homologically trivial
and we will explain how to compute L(c1, c2) in that case using the formal-
ism of constructible functions appearing in symplectic topology. The main
statement towards this is Theorem 7.7 below.

Using the conventions of Proposition 6.10, we want to compute, for T0 +
T ′0 > 0 small enough and for two homologically trivial closed geodesics c1

and c2,

L(c1, c2) =

∫
M
ϕ(T0+T ′0)∗([Σ(c1)]) ∧R2,

where [Σ(c2)] = dR2. Equivalently, one has

L(c1, c2) =

∫
M
ϕT0∗([Σ(c1)]) ∧R−T

′
0

2 ,

where ϕ−T
′
0∗([Σ(c2)]) = dR

−T ′0
2 . In the following, we shall write things a

little bit more compactly by setting [ΣT0
1 ] = ϕT0∗([Σ(c1)]) which is the cur-

rent of integration over the smooth submanifold ϕ−T0(Σ(c1)). Similarly,

[Σ
−T ′0
2 ] = dR

−T ′0
2 will denote the current of integration over the submanifold

ϕT
′
0(Σ(c2)). In both cases, we denote by c̃i, the projection (via the canonical

projection) on X of these two curves of S∗X.

7.1. First properties of the perturbed curves c̃1 and c̃2. The first
difficulty is that the new curves may have complicated intersections and
selfintersections. This is solved by the following statement:

Proposition 7.1. There exist T0 > 0 and T ′0 > 0 small enough (with T ′0
depending on T0), such that the following properties hold:

• for i = 1, 2, one can find some smooth map c̃i : R/`iZ → X (with
`i > 0) representing the projected curve c̃i and such that c̃′i(t) 6= 0
for every t ∈ R/`iZ;
• for i = 1, 2, for every t ∈ [0, `i),

(35) ]{s ∈ [0, `i) : s 6= t and c̃i(t) = c̃i(s)} 6 1.

In other words, the selfintersections of each curve c̃i is made of dou-
ble points13;
• if q0 = c̃1(t) = c̃2(s) for some (t, s) ∈ [0, `1) × [0, `2), then q0 is

neither a double point of c̃1, nor of c̃2.

13This will be referred as a simple selfintersection point.
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Finally, if c2 (resp. c1) is trivial in π1(X), T ′0 (resp. T0) can be taken equal
to 0 and14 T0 > 0 (resp. T ′0 > 0) such that c̃1 ∩ c2 = ∅ (resp. c̃2 ∩ c1 = ∅).

Proof. Let us explain how to find T0 and T ′0 with the above properties. The
first point is clear and one only needs to discuss the two other items. We
start by acting on c1 (i.e. we will fix the range of T0). We would like to
remove all the selfintersections of the curve c1 that correspond to points with
multiplicity > 2. We note that any such point q0 of the curve c1 is isolated in
the sense that one can find some r > 0 such that B(q0, r) contains no other
selfintersection point of c1. By picking T0 > 0 small enough and by applying
the flow ϕt to the curves Σ(c1) and Σ(c2), we can argue by contradiction to
show that any point q0 of multiplicity > 2 can be transformed in a family of
double points. By compactness, this allows to find some T̃0 > 0 such that,
for any 0 < T0, T

′
0 6 T̃0, the second property holds for c̃1 and c̃2.

We now fix some T0 > 0 so that the curve c̃1(t) has only simple selfinter-
section points. Taking T ′0 > 0 small enough, we saw that the curve c̃2 has
also only simple selfintersection points that correspond to the perturbation
of selfintersection points of the initial curve c2. Then, one can verify that,
by eventually taking T ′0 > 0 slightly smaller in a way that depends on c̃1

(thus on T0), none of these new self intersection points belong to the curve
c̃1 and c̃2 does not intersect the selfintersection points of c̃1. We note that,
when c2 is a trivial homotopy class, one can in fact take T ′0 = 0 (but not
T0 = 0 in general) as we can choose T0 > 0 such that c2 /∈ c̃1. �

7.2. Decomposing the curve c̃i into elementary pieces. Our goal in
this paragraph is to provide some algorithm which allows to decompose each
curve c̃1, c̃2 as a union of simple, closed, piecewise smooth curves in view
of applying the results of Section 6 to these elementary curves. We shall
verify afterwards that this decomposition leads to a decomposition of the

Legendrian curves ΣT0
1 ,Σ

−T ′0
2 (lifting c̃1, c̃2) to S∗X into a sum of conormals.

Let i ∈ {1, 2}. Our algorithm is based on the construction of a nice func-
tion fi : X 7→ Z which takes constant value in each connected component
of X \ c̃i. Even if the next definition may slightly differ from what can be
found in the literature [16, p. 5], such a function is often referred to as a
constructible function:

Definition 7.2. Let i ∈ {1, 2} and suppose that ci is homologically trivial.
Write

X \ c̃i =
⊔
j∈J

Ωj ,

where each Ωj is an open connected subset of X and where c̃i is the curve
from Proposition 7.1. We say that fi : X \ c̃i → Z+ is a constructible
function associated with c̃i if

• f−1
i (0) = Ωj0 for some j0 ∈ J ;

14When c1 and c2 are distinct points, we can take T0 = T ′0 = 0 but we already treated
this case in Lemma 6.14.
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• there exists x0 ∈ Ωj0 such that, for every j ∈ J , for every y ∈ Ωj ,

fi(y) =

∫
X

[c̃i] ∧ [γ],

where γ is any smooth path going from x0 to y which is transverse
to c̃i.

From the definition, the existence of such a constructible function is al-
most immediate when ci is homologically trivial. Just start by fixing some
open connected component Ωj1 of X \ c̃i and some point x1 in Ωj1 . Then,

given some j ∈ J and some y ∈ Ωj , we define f̃i(y) =
∫
X [c̃i] ∧ [γ], where

γ is any smooth path going from x1 to y which is transverse to c̃i and the
result does not depend on the choice of γ by the triviality of c̃i in homology.
The procedure we follow is illustrated in figure 2 and, up to adding some
constant, we can ensure that the function is nonnegative as expected.

Figure 2. Values of a constructible function.

Now let us define an algorithm which extracts surfaces from the con-
structible function fi. These surfaces are going to bound the decomposition
of the curve c̃i we are looking for. We also note that fi is defined on X \ c̃i
for the moment. In particular, the sets Ui,j := {fi > j} are open in X and
they have piecewise smooth boundaries. The following construction comes
from Euler integration and motion sensing as in [3, 16]. Observe first that
on X \ c̃i, we have the identity:

fi =

∞∑
j=0

j1{fi=j} =

∞∑
j=1

1{fi>j}

where both sums are finite since fi takes finitely many values. If we set
Xi,j = Ui,j , we may extend fi to the whole manifold X by the formula

fi =
∞∑
j=1

1Xi,j .
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Each Xi,j is a smooth manifold with piecewise smooth boundary c̃i,j :=
∂Xi,j . Note that the singularities of the boundary only occur at the selfin-
tersection points of the curve c̃i. We have the following chains of inclusions

Xi,sup(fi) ⊂ · · · ⊂ Xi,0 = X.

Note that each c̃i,j is not necessarily connected since our surfaces Xi,j may
have several boundary components. We shall need the following important
observation:

Lemma 7.3. Let i ∈ {1, 2}. Let q be some element in c̃i. If q is not a
selfintersection point of c̃i, then q ∈ c̃i,j for exactly one index j. Moreover,
in a neighborhood of such a point, one has d[Xi,j ] = −[c̃i,j ] in the sense of
De Rham currents.

Otherwise, there exists j > 0 such that q ∈ c̃i,j ∩ c̃i,j+1 and q /∈ c̃i,j′ if
j′ /∈ {j, j + 1}.

Proof. We begin with the case where q is not a selfintersection point. Con-
sider some small open neighborhood Ω of q (diffeomorphic to some open
ball). The intersection Ω ∩ c̃i is just some open connected interval contain-
ing q and having no self–intersection point. Let us consider the restriction
of fi on Ω. The open subset Ω\ c̃i is divided into two connected components

Ω \ c̃i = Ω̃j−1 ∪ Ω̃j where fi|Ω̃j−1
= j − 1, f |Ω̃j = j and j > 1. We note that

fi takes different values since we can choose to cross c̃i exactly one time to
go from one component Ω̃j−1 to the other component Ω̃j . By construction
of the surfaces Xi,0, . . . , Xi,sup(f), one has

Ω̃j−1 ⊂ Xi,j−1 ⊂ . . . ⊂ Xi,0, Ω̃j−1 ∩Xi,j = ∅.

On the other hand, Ω̃j ⊂ Xi,j ⊂ · · · ⊂ Xi,0. This implies that Ω ∩ c̃i is

a subset of a smooth part of c̃i,j . Moreover, Ω ∩ Xi,j = Ω̃j and one has
d[Xi,j ] = −[c̃i,j ] near this point where the boundary of Xi,j is smooth. To
see this, it is sufficient to check the formula in the following toy model (which
is equivalent to ours in a local chart (q̃1, q̃2)):

Ω̃j := {(q̃1, q̃2) : q̃2 > 0} and Ω̃j−1 := {(q̃1, q̃2) : q̃2 < 0},

where c̃i,j := {(q̃1, 0)} is oriented by dq̃1, i.e. [c̃i,j ] = −δ0(q̃2)dq̃2. In fact,
taking [γ] = δ0(q̃1)dq̃1 (which is oriented by dq̃2), one finds that the value in
the upper half-plane is larger than the value in the lower half plane. Hence,
by a direct calculation, one finds that d[Xi,j ] = d1R+(q̃2) = δ0(q̃2)dq̃2 =
−[c̃i,j ].

Suppose now that q is a selfintersection point of the curve c̃i. In that case,
the function fi takes exactly three values on the four connected components
of Ω \ c̃i. By construction of the function fi, these three values are given by
j − 1 (one time), j (two times) and j + 1 (one time) for some j > 1:
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and one can verify that q ∈ c̃i,j ∩ c̃i,j+1. �

By construction, we obtain the expected decomposition of the curve c̃i:

Proposition 7.4. Let i ∈ {1, 2}. We have the following decomposition of
the current [c̃i]:

[c̃i] =

∞∑
j=1

[c̃i,j ]

where each c̃i,j = ∂Xi,j is a finite union of closed, simple and piecewise

smooth curves with Xi,j := {fi > j}. Moreover, for every 1 6 j 6 Ni :=
sup fi, one has

d1Xi,j = d[Xi,j ] = −[c̃i,j ],

in the sense of De Rham currents.

Note that using the dual operator ∂T = −(−1)deg(T )dT on D′, this would
read equivalently ∂[Xi,j ] = [c̃i,j ]. As a consequence , the orientation induced
by Xi,j on its boundary c̃i,j is the same as the orientation induced by c̃i and
each c̃i,j is cohomologically trivial. Hence, c̃i is in this sense the (oriented)
boundary of the system of surfaces Xi = (Xi,1, . . . , Xi,Ni). More precisely,
in the sense of De Rham currents, one has

(36) [c̃i] = −
Ni∑
j=1

d[Xi,j ] = −dfi.

Proof. The first part is a direct consequence of our construction and of
Lemma 7.3. For the second part, it is a consequence of Stokes’ Theorem for
manifolds with corners [59, Th. 16.25]. �

7.3. Euler characteristics.

7.3.1. Classical definition of the Euler characteristic. Let us recall the def-
inition of the Euler characteristic of a CW-complex [48, App. A]. Let X
be a space which can be written as a disjoint union of open cells, i.e.
X =

⊔
j∈J Xj , each cell being homeomorphic to some RdimXj . Then, the

Euler characteristic of X is given by [16, p. 3]

χ(X) =
∑
j∈J

(−1)dimXj ,

which extends the classical formula for polyhedra. In particular, any con-
tinuous closed curve (without selfintersection points) on our closed surface
X has Euler characteristic equal to 0. Similarly, any closed domain X1 ⊂ X
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with piecewise smooth boundary ∂X1 can be triangulated and it can be
decomposed as above. As we are in dimension 2, one has
(37)
χ(X1) = χ(X1\∂X1)+χ(∂X1) = χ(X1\∂X1) and χ(X\X1)+χ(X1) = χ(X).

7.3.2. Euler characteristics of surfaces and constructible functions. As we
have just seen, it is equivalent to think of the constructible functions fi asso-
ciated with c̃i with i ∈ {1, 2} as the system of surfaces Xi = (Xi,1, . . . , Xi,Ni),
Xi,j = {fi > j}. Note that this system of surfaces with piecewise smooth
boundary generates an abstract CW-complex that we denote by X(c̃i) and
whose “(oriented) boundary” is given by c̃i. This was already expressed more
precisely in terms of De Rham currents by equality (36). In the case where
the initial curve has no selfintersection points, one has X(c̃i) = X(ci) := Xi,1

which is a surface with smooth boundary. For more general geodesic curves
ci, our main formula on the value at 0 of Poincaré series can be extended
if we introduce these curves c̃i and if we define the appropriate notion of
Euler characteristic for the system of surfaces Xi = (Xi,1, . . . , Xi,Ni) (or
equivalently for the CW-complex X(c̃i)).

Thus we would like to assign a natural notion of Euler characteristic
to the constructible function fi or equivalently to the system of surfaces
Xi = (Xi,1, . . . , Xi,Ni). Our definition follows the presentation of Euler
integration due to Viro [89] and Schapira [79, 80, 81]:

Definition 7.5. [Euler characteristic of constructible functions] We define
the Euler characteristic of fi as

(38) χ(fi) :=

Ni∑
j=0

jχ ({fi = j}) =

Ni∑
j=1

χ ({fi > j}) =

Ni∑
j=1

χ(Xi,j).

Note that the advantage of the second formulation for χ(fi) is that the
excursion sets {fi > j} are compact whereas {fi = j} is only relatively
compact [3, Prop. 4.1].

Remark 7.6. We can relate this definition with the classical one for CW-
complex as follows: χ(fi) = χ(X(c̃i)).

We emphasize that the Euler integral is in fact defined for much more
general bounded and constructible functions, f : X → Z whose level sets
are tame sets [16, §4]. In that context, one can define

χ(f) :=

∫
X
fdχ =

+∞∑
j=−∞

jχ(f = j).
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For instance, we can define the Euler characteristic χ(f1f2) of the product
f1f2 as:

(39) χ(f1f2) =

∫
X
f1f2dχ =

∑
16j16N1

∑
16j26N2

∫
X

1X1,j1
1X2,j2

dχ

=
∑

16j16N1

∑
16j26N2

χ(X1,j1 ∩X2,j2),

or the Euler characteristic of 1c̃1∩c̃2 as

χ (1c̃1∩c̃2) =
∑

16j16N1

∑
16j26N2

χ(∂X1,j1 ∩ ∂X2,j2).

7.3.3. Statement of the main result. Before going further, we are now ready
to state a microlocal statement expressing L(c1, c2) in terms of Euler char-
acteristics of constructible functions. Combined with Proposition 6.10, this
yields an extension of Theorem 1.2 to any pair of homologically trivial geo-
desic curves:

Theorem 7.7. Suppose that c1 and c2 are closed geodesics which are homo-
logically trivial and let c̃1 and c̃2 be the two (small) homotopic deformations
given by Proposition 7.1.

Then there exists a pair (f1, f2) of constructible functions associated with
(c̃1, c̃2) such that

(40)
∞∑
j=1

[N∗1 ({fi > j})] = [Σ(c̃i)],

where the equality holds in the sense of De Rham currents. Moreover, the
linking of the Legendrians is given by the formula

(41) L(c1, c2) = −χ(f1)χ(f2)

χ(X)
+ χ(f1f2)− 1

2
χ (1c̃1∩c̃2) .

We note that, in the case where one of the ci is a point then our perturbed
curves are chosen so that c̃1∩ c̃2 = ∅. In the terminology of symplectic topol-
ogy (see §7.8 below), we say that the constructible function fi is quantizing
the Legendrian knot Σ(c̃i), where Σ(c̃1) (resp. Σ(c̃2)) is the Legendrian knot

ΣT0
1 (resp. Σ

−T ′0
2 ) with the conventions of paragraph 3.2.1. The rest of this

Section is devoted to the proof of this Theorem

7.4. Lifting everything to S∗X. We would now like to turn the decompo-
sition of the curve c̃i into a proper decomposition of Σ(c̃i). It is convenient
to introduce the (unit) conormal bundle of Xi,j – see [1, Def. 2.4.1 p. 442] for
the case of more general polyhedra. Recall that, for every vector v ∈ TxX,
we defined in Section 3 the covector v[ ∈ T ∗xX as the image of v by the
isomorphism induced by the metric g on X. In order to define the unit
conormal bundle above Xi,j , we have three kind of points to distinguish:
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• The points in the interior of Xi,j . Above such points, the (unit)
conormal bundle is obviously empty.
• The regular points of c̃i,j . Here, we take the same convention as for

Σ(c̃i), i.e. the points in the unit conormal bundle above some regular
point c̃i,j(t0) are given by the point(

c̃i,j(t0), (c̃′i,j(t0)[)⊥
)
,

where c̃i,j(t) is parametrized by arc length.
• The singular points of c̃i,j . Again, we take an arc-length (away from

the singularities) parametrization t 7→ c̃i,j(t) of the curve c̃i,j . Above
such a point c̃i,j(t0), the derivative c̃′i,j(t0) is not well defined. Yet,
we have the existence of the two following limits:

c̃′i,j(t0+) = lim
τ→0,τ>0

c̃′i,j(t0 + τ) and c̃′i,j(t0−) = lim
τ→0,τ>0

c̃′i,j(t0 − τ).

Then, the conormal bundle above such a point is defined as the con-
nected set of unit covectors lying in S∗c̃i,j(t0)X and in the cone of

cotangent vectors between (c̃′i,j(t0−)[)⊥ and (c̃′i,j(t0+)[)⊥ intersect-
ing the covectors pointing inward Xi,j . Here, a covector p is pointing
inward Xi,j if, for any curve γ passing through c̃i,j(t0) and cotangent
to p at t = 0, one has γ(t) ∈ Xi,j for every t > 0 small enough. See
figure 3.

Figure 3. Adding covectors at the singular points.

The union of all these covectors will be referred to as the (unit) conormal
bundle to Xi,j and we will denote it by N∗1 (Xi,j). This defines a closed,
piecewise smooth and embedded curve in S∗X. Even if the curve ci,j is only
piecewise C1, we emphasize that the resulting curve N∗1 (Xi,j) in S∗X is C1

(but not C2 a priori). This can for instance be verified from the formulas
in local coordinates given in Appendix D. The orientation of the curve
N∗1 (Xi,j) is naturally induced from the orientation of c̃i. In particular, we
can define the integration current [N∗1 (Xi,j)] along this curve and one has
d[N∗1 (Xi,j)] = 0. We can also note that we still have a Legendrian curve, i.e.
[N∗1 (Xi,j)] ∧ α = 0, where α is the Liouville one-form.

Remark 7.8. We remark that, in this construction, we implicitely supposed
that c̃i was not reduced to a point (i.e. T0, T

′
0 6= 0 if ci is trivial in π1(X)).
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In the case of a point, the conormal bundle of a point and its orientation
were already defined in §3.2.

Finally, we observe that as soon as one curve c̃i,j has singular points,

the union ∪Nij=1N
∗
1 (Xi,j) is larger than the set Σ(c̃i) (as it contains more

cotangent vectors above each selfintersection point of c̃i). Yet, in terms of
currents, we can verify that the following holds:

Lemma 7.9. With the above conventions, one has, in the sense of De Rham
currents,

(42) [ΣT0
1 ] =

N1∑
j=1

[Σ1,j ] and [Σ
−T ′0
2 ] =

N2∑
j=1

[Σ2,j ]

where [Σi,j ] = [N∗1Xi,j ].

Note that the currents Σi,j depend implicitely on T0 and T ′0 but we
dropped this dependence to simplify notations. As a corollary of this re-
sult, we will be able to compute the linking between Σ1 and Σ2 in terms of
the linking numbers between each elementary piece Σ1,j and Σ2,j′ which are
simple closed curves which is a case already treated. See next paragraph for
more details.

Proof. We only show [ΣT0
1 ] =

∑N1
j=1[Σ1,j ]. The other case is similar. Re-

call first that [ΣT0
1 ] and ([N∗1 (X1,j)])16j6N1 are currents of integration over

piecewise smooth, simple, closed curves in S∗X. For every 1 6 j 6 N1, the
oriented curve N∗1 (X1,j) coincides with ΣT0

1 away from the singularities of
c̃1,j . In particular, thanks to Lemma 7.3, the expected equality holds away
from these singularities. Hence, we only need to understand what happens
in a neighborhood of such a singularity q. Thanks to Lemma 7.3, the point
q belongs to exactly two curves c̃1,j and c̃1,j+1 for some j > 1. Then, we
explicitely see in Figure 4 that above the singular point q, the contributions
of N∗1 (X1,j) and N∗1 (X1,j+1) compensate each other, which concludes.

�

7.5. Consequence of the decomposition for the linking numbers.
Let us summarize the situation so far and fix some notations for the sequel.
We started from our two geodesics c1 and c2 and we applied the geodesic
flow to their Legendrian lifts Σ(c1) and Σ(c2). This gives rise to two curves
c̃1 and c̃2 that are homotopic to c1 and c2 and to a new pair of Legendrian

knots ΣT0
1 and Σ

−T ′0
2 . Then, we decomposed the curves c̃1 and c̃2 as a union

of embedded, closed curves which are only piecewise smooth. In terms of
De Rham currents, it reads

∀i ∈ {1, 2}, [c̃i] =

Ni∑
j=1

[c̃i,j ],
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Figure 4. Contributions of [N∗1 (X1,j)] and [N∗1 (X1,j+1)] at
the singular points.

where each c̃i,j is the oriented boundary of some surface Xi,j with piecewise
smooth boundary. In terms of currents, we have [c̃i,j ] = −d[Xi,j ] = ∂[Xi,j ].
Then, we defined the (unit) conormal bundle N∗1 (Xi,j) to each surface Xi,j .
This conormal bundle is in fact a Legendrian knot in S∗X (again piecewise
smooth) and we denote it by Σi,j . This yields the following decompositions
of our initial Legendrian knots:

(43) [ΣT0
1 ] =

N1∑
j=1

[Σ1,j ] and [Σ
−T ′0
2 ] =

N2∑
j=1

[Σ2,j ].

We can rewrite the quantity we are interested in as

L(c1, c2) =

N1∑
j=1

∫
S∗X

[Σ1,j ] ∧R
−T ′0
2 .

Hence, it remains to evaluate the “linking number” associated with every
elementary piece Σ1,j to conclude the proof of Theorem 7.7.

7.6. Smoothing each elementary piece. In view of proving Theorem 7.7,
we will use the analysis of §6 to reduce our problem to simple curves using
the bilinearity of the linking number. However, when we removed the self-
intersections of our initial (smooth) curves c̃1 and c̃2, we introduced some
families of embedded curves that are only piecewise smooth. We would now
like to regularize these new curves without affecting the linking number we
want to compute.

First, by construction of Σi,j = N∗1 (Xi,j) (see § 7.4), we have

N1⋃
j=1

supp([Σ1,j ]) ⊂ ΣT0
1 ∪

 ⋃
a∈Cross(c̃1)

S∗aX
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and
N2⋃
j=1

supp([Σ2,j ]) ⊂ Σ
−T ′0
2 ∪

 ⋃
a∈Cross(c̃2)

S∗aX


since we added some subset of the cotangent fibers over the selfintersection
points Cross(c̃i) of c̃i. Still, by construction of Σi,j = N∗1 (Xi,j) (see § 7.4),
the following holds:

Lemma 7.10. If c̃i,j has k singular points, then Σi,j is itself a piecewise
smooth curve with exactly 2k singular points which are isolated. Over each
singular point a of c̃i,j, there are exactly two singular points of Σi,j.

We denote by Sing(Σi,j) this finite subset of singular points. In terms of
wavefront sets, this allows to give the simple upper bound:

∀j,WF ([Σ1,j ]) ⊂

⊂ N∗ΣT0
1 ∪

 ⋃
a∈Cross(c̃1)

N∗(S∗aX)

 ∪ ⋃
j′,b∈Sing(Σ1,j′ )

T ∗b (S∗X) \ 0,

and the same for the part concerning Σ2 = Σ
−T ′0
2 . In order to smooth the

curves c̃i,j near their singularities, we fix some conic neighborhood Γi of

N∗Σi ∪

 ⋃
a∈Cross(c̃i)

N∗(S∗aX)

 ∪ ⋃
j,b∈Sing(Σi,j)

T ∗b (S∗X) \ 0.

We begin by observing that

Lemma 7.11. There exists Γ1,Γ2 some closed conic subsets of T ∗(S∗X)\0
s.t. Γi is a conic neighborhood of

N∗Σi ∪

 ⋃
a∈Cross(c̃i)

N∗(S∗aX)

 ∪ ⋃
j,b∈Sing(Σi,j)

T ∗b (S∗X) \ 0

and

(44) Γ1 ∩ Γ2 = ∅.

Proof. Thanks to the hypothesis following (35), the selfintersection points
of c̃1 do not meet c̃2 and conversely the selfintersection points of c̃2 do not
meet c̃1. Moreover the intersection of both curves are transverse. It means
that the following intersection is disjointΣ1 ∪

 ⋃
a∈Cross(c̃1)

S∗aX

 ∩
Σ2 ∪

 ⋃
a∈Cross(c̃2)

S∗aX

 = ∅.

Thus the union of supports ∪N1
j=1supp([Σ1,j ]), ∪N2

j=1supp([Σ2,j ]) are disjoint.

Since the projection on S∗X of the wave front set of a current in D′(S∗X)
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is contained in the support of the current, this implies that one can choose
Γ1,Γ2 with the expected properties. �

We now turn to the smoothing of our curves:

Lemma 7.12. One can construct a family of smooth curves (c̃mi,j)m>1,i∈{1,2},16j6Ni
on X with the following properties:

• for every t, ‖(c̃mi,j)′(t)‖ = 1,

• [c̃mi,j ] converges weakly to [c̃i,j ] in D′1(X),

• [c̃mi,j ] = [c̃i,j ] outside of some neighborhood (depending on m) of the
singularities of c̃i,j;
• one can attach above each point c̃mi,j(t) of the curve, its normalized

conormal vector ((c̃mi,j)
′(t)[)⊥ so that the closed curve

t 7→ (c̃mi,j(t), ((c̃
m
i,j)
′(t)[)⊥)

is smooth and if we denote by Σi,j,m the image of this curve in S∗X,
then one has [Σi,j,m] = [Σi,j ] away from the singularities and, as
m→ +∞,

[Σi,j,m]→ [Σi,j ],

in D′2Γi(S
∗X).

We refer to the Appendix A.1 for a reminder on the topology of D′Γi(S
∗X).

For the sake of exposition, we postpone the proof of this technical statement
to Appendix D. We underline that this Lemma shows that our piecewise
Legendrian knots can be approximated by C∞ Legendrian knots while keep-
ing the same wavefront properties on the knots. Among other things, it will
ensure that the product is well defined and that we can pass to the limit by
sequential continuity of the product of currents with disjoint wavefront sets.
See Appendix A.

By construction, we also remark that for every m large enough, the curve
c̃mi,j bounds a compact surface Xm

i,j with smooth boundary which has the

same topology as Xi,j . In particular, for m large enough, for i ∈ {1, 2} and
for 1 6 j 6 Ni

(45) χ(Xi,j) = χ(Xm
i,j).

Similarly, recall that the singularities of ∂X1,j and ∂X2,j′ are away from
each other by construction of c̃1 and c̃2. Thus, one finds that for m,m′ large
enough, for 1 6 j 6 N1 and for 1 6 j′ 6 N2,
(46)

χ(X1,j∩X2,j′) = χ(Xm
1,j∩Xm′

2,j′) and χ(∂X1,j∩∂X2,j′) = χ(∂Xm
1,j∩∂Xm′

2,j′).

7.7. Proof of Theorem 7.7. We now come back to our computation of
the linking number L(c1, c2).
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Using the above regularization together with the continuity property of
the wedge product on D′Γ(M) – see Appendix A.2, we obtain

(47) L(c1, c2) =

N1∑
j=1

N2∑
j′=1

lim
m→+∞

lim
m′→+∞

∫
S∗X

[Σ1,j,m] ∧R2,j′,m′ ,

where [Σ2,j′,m′ ] = dR2,j′,m′ with R2,j′,m′ ∈ D′1Γ2
(M). Hence, we are left with

the computation of

L
(
c̃m1,j , c̃

m′
2,j′

)
:=

∫
S∗X

[Σ1,j,m] ∧R2,j′,m′ ,

for every (j, j′) and for every m,m′ > 1 large enough. Now, the curves c̃m1,j
and c̃m

′
2,j′ are simple, smooth and homologically trivial. Hence, we can apply

the results of §6 together with (45) and (46) to derive that

L
(
c̃m1,j , c̃

m′
2,j′

)
= −

χ (X1,j)χ
(
X2,j′

)
χ(X)

χ
(
X1,j ∩X2,j′

)
− 1

2
χ
(
∂X1,j ∩ ∂X2,j′

)
,

Summing over j and j′, one finds by definition that

L(c1, c2) = −χ(f1)χ(f2)

χ(X)
+ χ(f1f2)− 1

2
χ (1c̃1∩c̃2) .

7.8. Relation with microlocal index formulas. Our derivation of the
topological content of N∞(c1, c2, 0) relied crucially on the Poincaré-Hopf
index formula as it was derived by Morse in [64]. In the present section,
we used this formula from a point of view which is inspired by microlo-
cal geometry. In fact, the microlocal index theorems of Brylinski–Dubson–
Kashiwara [9] and Kashiwara [54], later revisited by Kashiwara–Schapira [55,
p. 384] and Grinberg–McPherson [42], can be understood as generalizations
of the Poincaré–Hopf index formula. As the comparison is relevant here, we
briefly explain their content following the presentation of [42] to which we
refer for more details.

First, given a real algebraic manifold X and a stratification S of X, one
says that a function f : X 7→ Z is constructible if it is constant on each
stratum and the notion of Euler characteristic generalizes to constructible
functions [89, 79, 80, 81], f 7→ χ(f) :=

∫
X fdχ, Now, given any stratum S

of S, one can define its conormal bundle which is a Lagrangian submanifold
ΛS ⊂ T ∗X. Then, the Lagrangian cycle Ch(f) of f is defined by assigning to
each Lagrangian submanifold ΛS its multiplicity which roughly speaking is
the value of f on S – see [42, p. 277] for details. Then, for every pair f1, f2 of
constructible functions on X which satisfy some appropriate transversality
conditions, the microlocal index formula reads [42, p. 269]:

(48) χ(f1f2)︸ ︷︷ ︸
Euler integral

= [Ch(f1)] ∩ [Ch(f2)]︸ ︷︷ ︸
Lagrangian intersection
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where [Ch(f1)] ∩ [Ch(f2)] is the intersection of the two corresponding La-
grangian cycles. Hence, the microlocal index formula gives an interpretation
of Lagrangian intersections as the Euler characteristic of some product of
constructible functions.

As we saw when proving Theorem 7.7, we derived a formula in the spirit
of the above microlocal index formula. Instead of computing the intersection
of Lagrangian cycles, we rather considered the linking of Legendrian cycles
but we also expressed it in terms of constructible functions. More precisely,
for every pair of Legendrian cycles Σ1,Σ2 which are small deformations
by Hamiltonian isotopies of the unit conormal bundle of our homologically
trivial geodesics c1 and c2, we associated a pair (f1, f2) of constructible
functions quantizing the two knots Σ1,Σ2. In that respect, Theorem 7.7
can be viewed as a microlocal index formula:

χ(f1)χ(f2)

χ(X)
− χ(f1f2) +

1

2
χ(1c1∩c2)︸ ︷︷ ︸

Euler integral

= ±Lk (Σ1,Σ2)︸ ︷︷ ︸
Legendrian linking

= lim
s→0

∑
γ∈Pc1,c2 :`(γ)>0

e−`(γ)s

︸ ︷︷ ︸
Poincaré series at zero

.

In the framework of symplectic topology, the Poincaré series is understood as
a sum over the Reeb chords of the geodesic flow joining the two Legendrian
curves Σ1 and Σ2. Hence, this index formula, which seems to be new15,
gives an interpretation of some linking of two Legendrian curves in terms of
Euler integrals but also as a zeta regularized sum over the Reeb chords from
Σ1 to Σ2. While the first equality is obtained by purely topological means,
the second one is a consequence of our spectral approach to the problem. In
fact, we conjecture that the first equality in this index-type formula should
generalize to more general Legendrian knots and also to higher dimensional
Legendrian boundaries for the appropriate notion of linking between higher
dimensional objects. The generalization of the second equality is more subtle
and it is related to the structure of Pollicott-Ruelle resonant states at 0 as
we already discussed in the introduction.

Appendix A. A brief reminder on the wavefront set of a
distribution

In this appendix, we briefly recall the notion of the wavefront set of a
distribution and collect some classical properties that were used all along
this article. The presentation is close to [27, 8, 21] to which we refer for
more informations and references.

The space D′kΓ (M) denotes the currents of degree 0 6 k 6 n = dim(M)
whose wavefront set is contained in a fixed closed conic set Γ ⊂ T ∗M \ 0,

15However see [88, Th.4] and [74, Eq. (10)] for related results of Turaev regarding the
first equality on S∗S2.
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with 0 denoting the zero section. Recall first that an element in D′kΓ (M) is
a current u of degree k such that, for every N > 1, for every open set U , for
every closed cone C such that (supp χ× C) ∩ Γ = ∅, one has

‖u‖N,C,χ,α,U := ‖(1 + ‖ξ‖)NF(uαχ)(ξ)‖L∞(C) < +∞,(49)

where χ is supported on the chart U , where u =
∑
|α|=k uαdx

α where α is

a multi–index and where F is the Fourier transform computed in the local
chart U . Given a smooth, closed, embedded, oriented submanifold Σ of
dimension n− k inside M , one can verify that the current of integration [Σ]
over Σ, defined as

∀ψ ∈ Ωn−k(M), 〈[Σ], ψ〉 =

∫
Σ
ψ,

is an element in D′kN∗(Σ)(M), where

N∗(Σ) := {(x, ξ) ∈ T ∗M \ 0 : x ∈ Σ and ∀v ∈ TxΣ, ξ(v) = 0} .

Remark A.1. For a current u of degree k, the wavefront set of u, denoted
by WF(u), is the smallest conic cone Γ such that u ∈ D′kΓ (M).

A.1. Topology on the space D′Γ(M). Let us first recall the notion of

bounded subsets in D′k(M) following [82, Ch. 3, p. 72]:

Definition A.2. A subset B of currents is bounded if, for every test form
ϕ ∈ Ωn−k(M), supt∈B |〈t, ϕ〉| < +∞.

This definition is often referred as weak boundedness and it is equivalent
to the notion of boundedness induced by the strong topology on D′k(M) [82,
Ch. 3]. We note that this is equivalent to B being bounded in some Sobolev
space Hs(M,Λk(T ∗M)) of currents by suitable application of the uniform
boundedness principle [17, § 5, Lemma 23]. We can now define the normal
topology in the space of currents essentially following [8, Sect. 3]:

Definition A.3 (Normal topology on the space of currents). For every
closed conic subset Γ ⊂ T ∗M \ 0, the topology of D′kΓ (M) is defined as
the weakest topology which makes continuous the seminorms of the strong
topology of D′k(M) and the seminorms:

‖u‖N,C,χ,α,U = ‖(1 + ‖ξ‖)NF(uαχ)(ξ)‖L∞(C)(50)

where χ is supported on some chart U , where u =
∑
|α|=k uαdx

α where α is

a multi–index, where F is the Fourier transform computed in the local chart
and C is a closed cone such that (supp χ× C)∩Γ = ∅. A subset B ⊂ D′kΓ is

called bounded in D′kΓ if it is bounded in D′k and if all seminorms ‖.‖N,C,χ,α,U
are bounded on B.

We emphasize that this definition is given purely in terms of local charts
without loss of generality. The above topology is in fact intrinsic as a conse-
quence of the continuity of the pull–back [8, Prop 5.1 p. 211] as emphasized
by Hörmander [49, p. 265] (see below for a brief reminder). Note that it is
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the same to consider currents or distributions when we define the relevant
topologies since currents are just elements of the form

∑
ui1,...,ikdx

i1 ∧ · · · ∧
dxik in local coordinates (x1, . . . , xn) where the coefficients ui1,...,ik are distri-
butions. We note that the above seminorms involve the L∞ norm while the
anisotropic spaces we deal with in this article are built from L2 norms. This
problem is handled by [21, App. B]. Let us now discuss some of the prop-
erties of the space D′kΓ (M) under standard operations: product, pullback,
pushforward.

A.2. Product of currents. Given two closed conic sets (Γ1,Γ2) which have
empty intersection, the usual wedge product of smooth forms

∧ : (ϕ1, ϕ2) ∈ Ωk(M)× Ωl(M) 7−→ ϕ1 ∧ ϕ2 ∈ Ωk+l(M)

extends uniquely as a hypocontinuous map for the normal topology [8,
Th. 6.1]

∧ : (ϕ1, ϕ2) ∈ D′kΓ1
(M)×D′lΓ2

(M) 7−→ ϕ1 ∧ ϕ2 ∈ D′k+l
s(Γ1,Γ2)(M),

with s(Γ1,Γ2) = Γ1∪Γ2∪(Γ1+Γ2). The notion of hypocontinuity is a strong
notion of continuity adapted to bilinear maps from E×F 7→ G where E,F,G
are locally convex spaces [8, p. 204-205]. It is weaker than joint continuity
but implies that the bilinear map is separately continuous in each factor
uniformly in the other factor in a bounded subset16.

A.3. Pullback of currents. Let Γ be a closed conic set and let f be a
smooth diffeomorphism on M . The usual pullback operation on smooth
forms,

f∗ : Ωk(M)→ Ωk(M)

extends uniquely as a continuous map [8, Prop. 5.1] fromD′kΓ (M) toD′kf∗Γ(M)
for the normal topology, with f∗Γ defined as

f∗Γ :=
{(
f−1(x), (df−1(x)T )−1ξ

)
∈ T ∗M \ 0 : (x, ξ) ∈ Γ

}
.

A.4. Pushforward of currents. Let Γ be a closed conic set and let f :
M → N be a smooth map between the smooth, compact, boundaryless
manifolds M and N . The usual pushforward operation on smooth forms,

f∗ : Ωk(M)→ Ωk(M)

extends uniquely as a continuous map [8, Th. 6.3] from D′kΓ (M) to D′kf∗Γ(M)
for the normal topology, with f∗Γ defined as

f∗Γ :=
{

(y, η) ∈ T ∗M \ 0 : ∃(x, ξ) ∈ Γ ∪ 0 s.t. f(x) = y and ξ = df(x)T η
}
.

16The tensor product of distributions for the strong topology is hypocontinuous but
not continuous [8, p. 205]
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Appendix B. The case of Anosov flows

The proof that we gave of Theorem 1.1 can in fact be easily adapted in
the more general context of Anosov flows and of weighted Poincaré series.
In order to state this more general result, we fix M̃ to be a smooth, closed,
Riemannian, oriented manifold of dimension ≥ 3. Recall that an Anosov
flow is a flow ϕt satisfying property (11) or more precisely its extension in
higher dimension, i.e. dim Eu and dim Es may be ≥ 1 and of different
dimensions. Note also that the Margulis transversality assumptions (14)
and (15) can also be extended to that set-up. Hence, we fix Σ1 and Σ2 to
be two submanifolds verifying these assumptions and some large T0 > 0 to
ensure that ]ϕ−T0(Σ1) ∩ ϕt+T0(Σ2) is finite for every t > 0. See Lemma 3.5
for the proof in the case of geodesic flows which in fact remains valid in
this generalized framework. Given W ∈ C∞(M̃,C), we can then define the
following zeta function

ζ̃Σ1,Σ2(z)

:=
∑

t>0:ϕ−T0 (Σ1)∩ϕt+T0 (Σ2) 6=∅

e−zt

 ∑
x∈ϕ−T0 (Σ1)∩ϕt+T0 (Σ2)

εt(x)e−
∫ 0
−tW◦ϕ

s(x)|ds|

 ,

where εt(x) = 1 if

dϕT0 (x)ϕ
−T0

(
TϕT0 (x)Σ1

)
⊕ RV (x)⊕ dϕ−T0−t(x)ϕ

T0+t
(
Tϕ−T0−t(x)Σ2

)
has the same orientation as TxM̃, and to−1 otherwise. Thanks to Lemma 3.9,
the function ζΣ1,Σ2 is well defined and holomorphic for Re(z)� 1. The ex-
tension of Theorem 1.1 to Anosov flows and to weighted Poincaré series
reads as follows:

Theorem B.1. Let W ∈ C∞(M̃,C) and let Σ1 and Σ2 verifying (14)
and (15). Then, there exists T0, C0 > 0 such that

ζ̃Σ1,Σ2 : {Re(s) ≥ C0} → C

is well defined and holomorphic. Moreover, it extends meromorphically to
C.

The proof of Theorem 1.1 applies directly to treat the case of this more
general Theorem provided that we replace LV by LV + W to handle the
exponential weights in the sum.

Appendix C. Linking of closed geodesics

When c1 and c2 are both nontrivial in π1(X), there are other natural
curves in S∗X that one may associate to ci : R/`iZ→ X:

Σgeod(ci) :=
{

(ci(t), c
′
i(t)

[) : t ∈ R/`iZ
}
.
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This is just the closed geodesic lifting ci in S∗X. It is then natural to
ask whether the linking number L(c1, c2) is related to the linking number of
Σgeod(c1) and Σgeod(c2) and this is indeed the case as we will establish. Here
for simplicity, we always suppose that c1 6= c2 so that Σ(c1) ∩ Σ(c2) = ∅.
First of all, we can define using the conventions of Section 3 the following
diffeomorphism of S∗X:

R : x = (q, p) ∈ S∗X 7→ (q, p⊥) ∈ S∗X.

This map is orientation-preserving as it is isotopic to the identity and, for
i = 1, 2, one has

[Σ(ci)] = R−1∗[Σgeod(ci)].

In particular, [Σgeod(ci)] is de Rham exact when ci is homologically trivial
as Σ(ci) is. Using the conventions of Proposition 6.10, one has

L(c1, c2) =

∫
S∗X

[Σ(c1)] ∧R2,

where [Σ(c2)] = dR2. Hence, using that R is orientation preserving and
the continuity of the wedge product of currents whose wave front sets are
transverse (see appendix A), we can deduce that

L(c1, c2) =

∫
S∗X
R∗[Σ(c1)] ∧R∗R2 =

∫
S∗X

[Σgeod(c1)] ∧R∗R2,

where [Σgeod(c2)] = d (R∗R2) (as d commutes with R∗). In other words,
for nontrivial homotopy classes, the linking number L(c1, c2) we have been
computing in this section is equal to the linking number of the geodesic
curves lifting c1 and c2. Hence, we can reformulate Proposition 6.10 as
follows:

Theorem C.1. Suppose that ci are both nontrivial homotopy classes which
are homologically trivial and distinct.

Then N∞(c1, c2, 0) = L(c1, c2) is the linking number of the two closed
geodesics Σgeod(c1) and Σgeod(c2) which lift c1 and c2 to S∗X.

In particular, this establishes a direct connection with the works of Duke–
Imamoḡlu–Tóth who expressed the linking number of two closed geodesics
on the modular surface as the special value of a certain Dirichlet series [24].
Similarly, for suspension of toral automorphisms, the linking of closed orbits
was identified with the special value of certain L-functions by Bergeron–
Charollois–Garcia–Venkatesh [5].

Appendix D. Proof of Lemma 7.12

We finally prove the technical Lemma that was needed to smooth our
piecewise smooth curves in Section 7. Up to the fact that we may have
to reparametrize the curve (and up to using a partition of unity), we note
that we only need to modify the curve c̃i,j in a small neighborhood of its
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singularities. The point is that we will round the “corners” of the bounding
surface Xi,j to make the curve c̃mi,j smooth.

Thanks to assumption (35), we note that, in a small chart (q̃1, q̃2) near
a point q0 at some corner of Xi,j , Xi,j is given by {q̃1 6 0, q̃2 > 0} or
{q̃1 6 0} ∪ {q̃2 > 0} (with the usual orientations on R2). We only discuss
the first case and the second case is treated in a similar way. In this local
chart, the boundary of Xi,j near the singular point has a local piecewise
smooth parametrization which reads

t ∈ [−1, 1] 7→ γ(t) =
(
−t1[−1,0](t), 0

)
+
(
0, t1[0,1](t)

)
∈ R2.

Observe that

γ̃m(t) :=
(

(t1[−1,−1
m

](t), 0
)

+
(

0, t1[ 1
m
,1](t)

)
+

(
1

m
cos

(
mπt

4
− π

4

)
− 1

m
,

1

m
sin

(
mπt

4
− π

4

)
+

1

m

)
1[− 1

m
, 1
m

](t)

is a C1–path, which is only piecewise C∞, and lies in some 1
m -neighborhood

of γ. Hence γ̃m bounds the domain{
q̃1 6 −

1

m
, q̃2 > 0

}
∪
{
q̃2 >

1

m
, q̃1 6 0

}
∪

{(
q̃1 +

1

m

)2

+

(
q̃2 −

1

m

)2

6
1

m2

}
which has C1 boundary. Hence, instead of the corner point {(0, 0)}, we
obtained a quarter circle. Now we fix χ ∈ C∞(R) such that

∫
R χ = 1, χ >

0, supp(χ) ⊂ [−1
2 ,

1
2 ] and we define χm(q̃1, q̃2) = 1

m2χ(mq̃1,mq̃2). We can

define the new parametrization γm = γ̃m∗χm ∈ R2 obtained by convolution.
This new curve γm converges to γ̃m in the C1-topology and the image of both
curves coincide outside some 4

m–neighborhood of the corner point (0, 0).
Define Xm

i,j to be the new surface obtained from the above smoothing
procedure at every corner point, this is a manifold with smooth boundary
which is homotopic to ∂Xi,j by construction. Proceeding like this, one can
verify that the first three properties are satisfied locally near the singular
point (and thus globally via a partition of unity).

Regarding now the last property, we are in fact taking the (oriented and
normalized) conormal to the curve t 7→ c̃mi,j(t). By construction, it has the
expected properties away from the singularities of the initial curve. Near
the singularity, one can write the above expression in local coordinates in
R2 as above and verify that the current of integration along the curve

t ∈ [−1, 1] 7−→

(
γm(t),

(γ′m(t)[)⊥

‖((γ′m(t)[)⊥‖

)
converges to the current of integration along

N∗1 ({q̃1 6 0, q̃1 > 0}) = {(t, 0; 0, 1); t ∈ (−1, 0]} ∪ {(0, t;−1, 0); t ∈ [0, 1)}

∪
{

(0, 0; cos(θ), sin(θ)); θ ∈ [
π

2
, π]
}
.
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The only discussion is near the corner point. By construction, we see that
the conormal lift of the C1-curve γ̃m which is the map

t ∈ [−1, 1] 7−→

(
γ̃m(t),

(γ̃′m(t)[)⊥

‖((γ̃′m(t)[)⊥‖

)
converges in the sense of currents to the conormal N∗1 ({q̃1 6 0, q̃2 > 0}).
Since γm is C1 close to γ̃m for m large enough, we are done.
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[40] S. Gouëzel, Spectre du flot géodésique en courbure négative [d’après F. Faure et M.
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Birkhäuser, Basel (1998), 435–458.



64 NGUYEN VIET DANG AND GABRIEL RIVIÈRE
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