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Abstract. Some coronagraph masks can be turned into wave front sensing masks thanks to minor modification. For instance, one only has to
divide by two the depth of the central well to convert the Roddier & Roddier coronograph into the Zernike wave front sensor (WFS). Physically,
the opposition of phase in coronagrapy becomes a quadrature phase in wave front sensing. Here, we replicate this idea to the Four Quadrant Phase
Mask (FQPM) coronagraph by introducing a sensor that we call the ıQuad WFS, generated by a mask which has the same geometrical structure as
the FQPM but with a modified differential piston. An optical and mathematical description of this new WFS is firstly provided showing its great
elegance and the central role played by the Hilbert transform in its understanding. We then compare its performance criteria with two classical wave
front sensors. We finally show the ıQuad sensor has major similarities to the Pyramid sensor making it a wonderful theoretical object to improve
our understanding of this sensor.

1 Introduction

Fourier-based Wave front sensors1 and coronagraphs both use optical Fourier filtering. Such a technique allows, thanks
to a mask placed in a focal plane, to handle the light in its spatial frequencies space (Fig. 1). In coronagraphy, these
masks are designed to reject light while in wave front sensing they are built to convert phase fluctuations into intensity
fluctuations. Some coronagraph masks may be turned into wave front sensing masks by minor modification. For

Fig 1 Schematic view (in 1D) of a Fourier filtering optical system.

instance, the Roddier & Roddier coronagraph2 and the Zernike WFS3, 4 both use a mask which has a small circular
well in its midst. For an optical system working at the wavelength λ, the depth of this well equals to λ{2 in the
coronagraph configuration while it is λ{4 for the Zernike sensor. Physically, the depth λ{2 implies a π phase shift
between the fields inside and outside the central well: they are in opposition of phase. This fact induces the destructive
interference which are required in coronagraphy. For the Zernike WFS, the phase shift equals to π{2; fields are now
in phase quadrature.

2 The four quadrants wave front sensors class

We propose here to extent this idea to another coronagraph called the Four Quadrants Phase Mask.5 Its mask has
a cartesian structure: the focal (or Fourier) plane is divided into 4-quadrants around the origin. In the coronagraph
configuration, each quadrant is π phase-shifted with its two neighbors (left insert of Fig. 2). We introduce in this paper
a class of masks which have the same geometrical structure but with a shift not equal to π; namely, their differential
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piston δ will have an arbitrary value between ´λ{2 and λ{2 (right insert of Fig. 2). The purpose of this article is to
study the mathematical properties of these new optical objects and to examine their performance criteria in a wave
front sensing context.

Fig 2 Transparency functions of the coronograph FQPM (left) and its generalization to an arbitrary differential piston δ (right).

The propagation through an optical Fourier filtering system using a four quadrants mask with an arbitrary differ-
ential piston can be described by a linear operatorW which gives the electric field in the detector plane depending on
the incident electric field

W “ e
ıπ
λ δ

„

cos

ˆ

πδ

λ

˙

I ` ı sin
ˆ

πδ

λ

˙

H


. (1)

Here I represents the identity operator1 andH the 2D Hilbert transform along x and y axis

Hrf s px, yq “ 1

π2
p.v.

ż

R2

dx1dy1
f px1, y1q

px´ x1qpy ´ y1q
, (2)

where p.v. indicates the principal value meaning. It is worth noticing that this operator is involutive and conserves the
energy, i.e., the L2-norm. We observe that the field operatorW in Eq. (1) contains two terms, the first one reproduces
the incoming field while the second one provides its 2D Hilbert transform. The differential piston δ acts as a cursor
between the two contributions. For δ “ 0 the masks are pointless since the propagator operator only contains the
identity operator. The coronagraph case δ “ λ{2 gives a pure 2D Hilbert transform. Finally, if δ “ ˘λ{4, there is a
perfect energy equipartition between the two terms.

In a wave front sensing context, we write the incident field as IP eıφ where IP is the indicator function of the
entrance pupil and φ the phase-to-be-measured. For the sake of simplicity, the flux is considered unitary. The detector
intensity Ipφq equals to the square modulus of the field in the detector plane

Ipφq “
ˇ

ˇW
“

IP eıφ
‰
ˇ

ˇ

2
(3)

“ sin

ˆ

2π

λ
δ

˙

Im
“

pIP e´ıφqHrIP eıφs
‰

` sin2

ˆ

πδ

λ

˙

|HrIP eıφs|2 ` cos2
ˆ

πδ

λ

˙

I2P . (4)

This intensity is crucial in two aspects. Firstly, it corresponds to the image that a phase reconstructor has to invert to
estimate φ. Secondly, it gives the energy distribution that a Lyot’s stop6 has to filter to make the light rejection efficient
for coronagraphy. Such a fact becomes clearer when looking at the detector intensity for a flat incoming wave front,
i.e., when φ equals to 0

Ipφ “ 0q “ cos2
ˆ

πδ

λ

˙

I2P ` sin2

ˆ

πδ

λ

˙

HrIP s2. (5)

Indeed, we observe that in the coronagraph case (left insert of Fig. 3), the energy location corresponds to the 2D Hilbert
transform of the pupil while the cosine term is null. It is not surprising since we know that the Hilbert transform of a
function has significant values where the function highly evolves, i.e., at the edge of the pupil. This is the reason why
the FQPM is effective to reject light. Note that in Adaptive Optics (AO) the term Ip0q is also considered as a reference
intensity to which a closed AO loop will try to maintain the detector intensity as close as possible. We give on the
right insert of Fig. 3 this reference intensity for the case δ “ λ{4.

1Actually it is not rigorously the identity but the reverse operator: for the sake of clarity, we have ignored that the whole Fourier filtering system
has a magnification which equals to 1.

2



Fig 3 Intensity on the detector for a circular pupil and a null incoming phase. Left: coronagraph case δ “ λ{2. Right: energy equipartition case
δ “ λ{4.

From now on, we focus on wave front sensing. We first look for the mask among the four quadrants class which op-
timizes the phase information coding. Then, we compare this optimal sensor to existing wave front sensors following
usual AO performance criteria. First and foremost, we precise that we assume the AO control to apply linear recon-
structors. In that context, finding the optimal sensor consists in maximizing the sensor sensitivity.1 Mathematically,
we therefore want to increase the φ-linear dependency of the intensity as much as possible. To do so, we decompose
the intensity Ipφq using a Taylor’s development1 around a reference phase Φr which serves as the operating point of
the sensor.

Ipφq “ Iconstant ` Ilinearpφq ` Iquadraticpφq ` ..., (6)

where Iconstant equals to IpΦrq and does not depend on the phase φ. Ilinear corresponds to the perfectly linear behavior
of the sensor around the reference phase. It equals the Fréchet derivative of the intensity around Φr in direction φ (for
more details see the appendix 1). Iquadratic is the first non-linear phase-dependency. When assuming that the sensor is
working around zero, i.e., Φr “ 0 we obtain

Ilinearpφq “ sin

ˆ

2π

λ
δ

˙

“

HrIP sIPφ´HrIPφsIP
‰

, (7)

Iquadraticpφq “ sin2
´π

λ
δ
¯

“

HrIPφs2 ´HrIP sHrIPφs
‰

. (8)

These quantities have a similar structure: scalar terms only depending on the differential piston δ and 2D terms
involving Hilbert transforms of the phase and the pupil. This pronounced decomposition is not systematic at all. The
fact that the parameter δ has no influence on the spatial structure of the response to φ is an unexpected and very
interesting characteristic of the FQPM class.

For the linear term some remarkable properties can be found. The first one is about its support. Indeed, Eq. (7)
shows that it exactly corresponds to the pupil support. In other words, there is no linear information outside the pupil.
Secondly, we observe that the scalar term is maximum when the differential piston ensures the energy equipartition
between the real and imaginary parts of the propagation operators, i.e., δ “ ˘λ{4. Physically, this piston provides, as
for the Zernike WFS, a˘π{2 shift between the different parts of the focal plane tessellation. Such a result is in perfect
agreement with the phase contrast method introduced in reference 3. Note that in the coronagraph case δ “ λ{2, the
linear term is rigorously null.

The quadratic term, as all non-linear terms, is for the AO control using linear reconstructors a perturbation which
has to be kept as small as possible. Its size largely determines the linearity (or dynamic) range of the sensor.1 Unfor-
tunately, Eq. (8) shows that this term only equals to zero for the pointless mask δ “ 0. In other words, it is impossible
by using Fourier filtering and four quadrants masks (right insert of Fig. 2) to sense the wave front without having
simultaneously a non-linear phase dependency. (Note, however, that linearity can be improved by the use of a 2 paths
optical device, for more details see appendix 2.) From this discussion, we finally understand that the differential piston
is also a cursor to adjust the sensitivity regarding to the linearity range of the WFS. Note, that these developments are
valid for the Zernike WFS as well.

3 An optimum configuration

In what follows, we will focus on the mask with δ “ λ{4 which provides the energy equipartition. We call the
associated WFS the ıQuad WFS. The notation Quad refers to the cartesian tessellation of the focal plane whereas the
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ı emphasizes the transformation of the coronagraph FQPM transparency function (with its 1 and -1 coefficients; left
insert of Fig. 2) into the ıQuad WFS’s one (coefficients of the right insert of Fig. 2 equal to 1 and ı if δ “ λ{4).

Let us now compare the ıQuad WFS to two Fourier-based wave front sensors used in Adaptive Optics, namely the
Zernike WFS4 and the 4-sided non-modulated Pyramid WFS.7 We precise that we assume the angle of the pyramidal
prism to be large enough in order to completely separate the pupil images.

The first performance criterion is related to the number of the detector pixels required to code phase information.
This aspect can be tackled in two ways. The first one is based on geometrical optics and considers that relevant phase
information lies only inside pupil images. In that case, Zernike and ıQuad wave front sensors need 4 times less pixels
than the Pyramid WFS to reach the same amount of information which is a huge gain in terms of data to process.
Note that this factor 4 is decreasing toward 1 when using a flattened Pyramid WFS,8 i.e., a pyramid mask with a small
apex angle which induces an overlap of the pupil images. The second approach is based on the study of the linear
intensity. Indeed, this quantity is the main contributor for the numerical phase reconstructor to estimate the phase.
As a consequence, in order to perform ultimate AO correction we want to make optimal use of sensor pixels being in
the linear intensity support. We observe thanks to Eq. (7) that the intensity support itself exactly corresponds to the
geometrical pupil image for the ıQuad WFS. Such a fact is also true for the Zernike WFS. In contrast, it appears that
there is linear information outside the 4 pupil images for the Pyramid WFS. In other words, the whole detector has to
be taken into account for this sensor. Thus, the Pyramid WFS requires even more than 4 times the number of pixels
needed to sense the wave front with a Zernike or ıQuad WFS making the latter sensors efficient in terms of detector
size.

We are now interested in the chromatic behavior of the ıQuad. As for the coronagraph FQPM, the ıQuad can be
optimized for a specific wavelength only, meaning that the maximum of sensitivity will be obtained when the source’s
wavelength equals to the mask’s optimization wavelength. Nevertheless, we observe thanks to Eq. (7) that the spatial
structure of the response does not depend on the wavelength. This one has only an impact on a global scalar level.
Physically, it comes from the fact that the four quadrants masks have, with their cartesian tessellation, a scale invariant
geometry. It is not true for the Zernike WFS which has, due to the finite size of its central well, a spatial structure of its
response changing with the wavelength. This remarkable property implies, for instance, that a calibration matrix built
at a certain wavelength may be used to sense the phase with another source (or even with a polychromatic one). It will
be only a matter of scalar gain. It is worth noticing that the ıQuad WFS shares this property with the non-modulated
Pyramid WFS.

We now study two fundamental performance criteria, namely sensitivity and linearity range and compare those for
the different sensor types. The criteria are computed following the method of reference 1 and represented with respect
to the Zernike polynomials in Fig. 4 and to the sine and cosine basis (i.e., the spatial frequencies) in Fig. 5

Sine and cosine basis:
!

φcos~k : ~r Ñ cos
´

2π~k.~r
¯

and φsin~k : ~r Ñ sin
´

2π~k.~r
¯

with ~k P R2
)

. (9)
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Fig 4 Sensitivity (left) and linearity range (right) with respect to the 25 first Zernike radial orders (which corresponds to around 300 Zernike
polynomials). 4 Pyramid. ` ıQuad. ˝ Zernike.

In terms of linearity range (blue curves), the three wave front sensors are almost equivalent for the high frequencies.
Main differences concern low frequencies, whereby the ıQuad lies between the Pyramid and the Zernike performance
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Fig 5 Sensitivity with respect to the phase spatial frequencies ~k “(kx, ky) for the ıQuad (left), Zernike (middle) and Pyramid (right) wave front
sensors.

curves. Regarding the sensitivity (red curves), the ıQuad surpasses the non-modulated Pyramid WFS by a factor of
approximately 2 on the whole frequency range. It has similar performance as the Zernike WFS: the ıQuad is slightly
better for the high spatial frequencies whereas the Zernike is a bit more sensitive for the low frequencies. The largest
sensitivity difference concerns the second radial order which contains the focus and the two astigmatisms aberrations.
Such a reduced sensitivity is due to the fact that the ıQuad sensor has difficulty to code the vertical astigmatism Z2

2

(left insert of Fig. 6). Quantitatively, the ıQuad’s sensitivity with respect to this mode is almost 30 lower than the
Zernike’s sensitivity. The physical reason of this very low sensitivity is a matter of symmetry. Indeed, when looking at

Fig 6 Left: structure of the badly-seen mode computed thanks to a singular value decomposition. Right: 2D Fourier transform of this mode.

the Fourier transform of the badly-seen mode (right insert of Fig. 6), we observe that its structure is turned through 45
degrees with respect to the ıQuad mask geometry. This implies destructive interference which annihilates the linear
response of the sensor to this mode. When looking at the 2D sensitivity with respect to the spatial frequencies (left
insert of Fig. 5), we observe that Z2

2 is not the only mode which is incorrectly seen by the ıQuad WFS. The black
cross indicates that phases which only contain pure x or y frequencies (in other words, frequencies which lie on the
edge of the cartesian tessellation) are badly seen by the sensor.

Such a geometrical consideration implies that a Fourier-based WFS using a turned through 45 degrees ıQuad mask
is able to correctly measure the previous unseen frequencies. However, it cannot properly see the diagonals spatial
frequencies. Hence, a 2-paths optical system using simultaneously two ıQuad sensors with two different mask’s
orientations has no badly-seen spatial frequencies (see Fig. 7).

The last part of this paper is dedicated to a curious mathematical property of the ıQuad WFS. Its linear intensity
turns out to be very close to the slopes maps9 of the Pyramid WFS. Slopes maps result from a numerical processing
performed on the detector intensity of the Pyramid WFS. They consist in two combinations of the 4 pupil images and
allow to compress the Pyramid WFS signal in two pupil images only but also to understand them in terms of phase
derivatives along x and y-axis. Assuming a reflective Pyramid working in its linearity domain, the slopes maps are
approximated by

Sx
`

φ
˘

px, yq “
IP px, yq

π

ż

P

φpx, yq ´ φpx1, yq

x´ x1
dx1, (10)
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Fig 7 Left: Optical configuration of the 2-paths ıQuad WFS. Right: Sensitivity with respect to the phase spatial frequencies.

Sy
`

φ
˘

px, yq “
IP px, yq

π

ż

P

φpx, yq ´ φpx, y1q

y ´ y1
dy1. (11)

We can describe these quantities as integrated difference quotient along x and y directions. That is why slopes maps
are close to the derivatives of the wave front. Nevertheless, they are not rigorously phase derivatives since the 1D
Hilbert transform along x (resp. y) plays the most significant role in the Sx (resp. Sy) expression. We now compare
Eqs. (10) and (11) to the linear intensity of the ıQuad WFS (7). The latter becomes, if we develop it with respect to
spatial coordinates,

Ilinear
`

φ
˘

px, yq “
IP px, yq
π2

ż

P

φpx, yq ´ φpx1, y1q

px´ x1qpy ´ y1q
dx1dy1. (12)

Thus, it appears that the ıQuad signal is a condensed version of the two Pyramid slopes maps. Indeed, this sensor
optically computes in one pupil image only, the x and y Hilbert transforms of the phase. Physically, this unexpected
parallel between the ıQuad and the Pyramid WFS is essentially related to the fact that they both use a cartesian
tessellation of the focal plane. No matter how the phase information is shaped – by doing optical interference with the
differential piston of the ıQuad or by splitting the spatial frequencies with prisms to then numerically processing them
with the Pyramid WFS – the involved mathematical operators depend on the way we subdivide the focal plane.

The great similarity between the ıQuad and Pyramid WFS slopes maps signals is profitable in many ways. Firstly,
there already exist a lot of model-based reconstruction algorithms10 dedicated to the Pyramid WFS which can be
extended to build effective reconstructors for the ıQuad WFS. Moreover, this numerical implementation will be facil-
itated by the fact that the linear intensity operator of the ıQuad (12) turns out to be self-adjoint (for more details, see
appendix 1); this is a very convenient property for some iterative mathematical algorithms as, e.g., the linear Landwe-
ber iteration.10 Finally, this sensor, which is mathematically much more intelligible than the real Pyramid WFS (it does
not require any assumption on the pyramid angle for instance) can be seen as a theoretical extension of the Pyramid
WFS.

4 Conclusion

In this paper, we introduced a new class of Fourier-based wave front sensors derived from the FQPM coronagraph.
Their filtering mask uses a cartesian tessellation of the focal plane with a unique parameter: the differential piston
between quadrants. This degree of freedom allowed to find an optimal WFS regarding to the sensitivity performance,
that we called the ıQuad WFS. Its differential piston ensures that the fields of each neighbor quadrant are in quadrature
of phase. This result proves that the shift from the coronagraph FQPM to the ıQuad WFS rigorously mimics the shift
from the Roddier & Roddier coronagraph to the Zernike WFS. We then studied the performance criterion of the ıQuad
and observed that this sensor was

• efficient in terms of the number of pixels required to sense the wave front,

• less chromatic than the Zernike WFS and

• competitive in terms of sensitivity and linearity range.

Despite the badly-seen frequencies of the ıQuad, we saw that a two optical paths solution using two ıQuad masks
with different orientations could solve this problem. In conclusion, rather than being a practical sensor, the single
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path ıQuad may be viewed like a theoretical object which has an elegant mathematical formulation and also builds a
bridge between the Pyramid (because of the unexpected similarity between ıQuad output and the slopes maps) and the
Zernike wave front sensors (since the ıQuad is based on the phase contrast method).
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Appendices

Appendix 1: Gâteaux derivatives of the ıQuad WFS

In this appendix, we prove that the Gâteaux derivative of the ıQuad intensity around any reference phase Φr equals to

`

IpΦrq
1
˘

φpx, yq “
IP px, yq
π2

ż

P

dx1dy1
rφpx, yq ´ φpx1, y1qs cosrΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q

´
1

2

ż

P

ż

P

dx1dy1dx2dy2
rφpx1, y1q ´ φpx2, y2qs sinrΦrpx

1, y1q ´ Φrpx
2, y2qs

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q
(13)

and show that it allows to get the linear intensity Ilinear given in Eq. (7).
Proof. We first expand the detector intensity (4) regarding to the spatial coordinates

I
`

φ
˘

px, yq “
IP px, yq
π2

ż

P

dx1dy1
sinrφpx, yq ´ φpx1, y1qs

px´ x1qpy ´ y1q
`

I2P px, yq `
ż

P

ż

P

dx1dy1dx2dy2
cosrφpx1, y1q ´ φpx2, y2qs

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q
,

in which it was assumed that δ “ λ{4. We may observe that this formula corresponds to a decomposition into an odd
and an even part regarding to the phase: Ipφq “ Ioddpφq ` Ievenpφq with

Iodd
`

φ
˘

px, yq :“
IP px, yq
π2

ż

P

dx1dy1
sinrφpx, yq ´ φpx1, y1qs

px´ x1qpy ´ y1q

Ieven
`

φ
˘

px, yq :“
1

2

ˆ

I2P px, yq `
ż

P

ż

P

dx1dy1dx2dy2
cosrφpx1, y1q ´ φpx2, y2qs

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q

˙

.

Utilizing similar to reference 11 Taylor’s theorem with the Lagrange form of the remainder for the representation
of sine and cosine the Gâteaux derivatives of these odd and even intensities around the reference phase Φr are per
definition computed as

`

IoddpΦrq
1
˘

φ px, yq “ lim
tÑ0

pIodd pΦr ` tφqq px, yq ´ pIodd pΦrqq px, yq

t

“ lim
tÑ0

IP px, yq
π2

ż

P

dx1dy1 sin
“

Φrpx, yq ` tφpx, yq ´ Φrpx
1, y1
q ´ tφpx1, y1

q
‰

´ sin
“

Φrpx, yq ´ Φrpx
1, y1
q
‰

tpx´ x1qpy ´ y1q

“ lim
tÑ0

IP px, yq
π2

ż

P

dx1dy1 sin1
“

Φrpx, yq ´ Φrpx
1, y1
q
‰ “

tφpx, yq ´ tφpx1, y1
q
‰

`O
`

t2φ2
˘

tpx´ x1qpy ´ y1q

“
IP px, yq
π2

ż

P

dx1dy1

“

φpx, yq ´ φpx1, y1
q
‰

cos
“

Φrpx, yq ´ Φrpx
1, y1
q
‰

px´ x1qpy ´ y1q
,
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`

IevenpΦrq
1
˘

φ px, yq “ lim
tÑ0

pIeven pΦr ` tφqq px, yq ´ pIeven pΦrqq px, yq

t

“ lim
tÑ0

1

2

˜

I2P px, yq `
ż

P

ż

P

dx1dy1dx2dy2 cos
“

Φrpx
1, y1
q ` tφpx1, y1

q ´ Φrpx
2, y2

q ´ tφpx2, y2
q
‰

tπ4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q

¸

´
1

2

˜

I2P px, yq `
ż

P

ż

P

dx1dy1dx2dy2 cos
“

Φrpx
1, y1
q ´ Φrpx

2, y2
q
‰

tπ4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q

¸

“ lim
tÑ0

1

2

ż

P

ż

P

dx1dy1dx2dy2 cos1
“

Φrpx
1, y1
q ´ Φrpx

2, y2
q
‰ “

tφpx1, y1
q ´ tφpx2, y2

q
‰

`O
`

t2φ2
˘

tπ4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q

“ ´
1

2

ż

P

ż

P

dx1dy1dx2dy2

“

φpx1, y1
q ´ φpx2, y2

q
‰

sin
“

Φrpx
1, y1
q ´ Φrpx

2, y2
q
‰

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q
.

The claim follows with I “ Iodd ` Ieven.
Similar to reference 11 one can show that the Gâteaux derivative of the ıQuad sensor equals the Fréchet derivative.

Note that assuming Φr is the null phase in Eq. (13) allows then to get the ıQuad linear intensity (12).

We are now interested in the adjoint of the Fréchet derivative which is a pivotal quantity in many iterative
algorithms used to reconstruct the phase.10 The L2

`

R2
˘

-adjoint operator pIpΦrq1q
˚

: L2

`

R2
˘

Ñ L2

`

R2
˘

of the
ıQuad sensor Fréchet derivative in Φr is represented by

`

IpΦrq
1
˘˚
φ px, yq “

IP px, yq
π2

ż

P

dx1dy1
rφpx, yq ´ φpx1, y1qs cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q

´

ż

P

ż

P

dx1dy1dx2dy2
φpx1, y1q sin rΦrpx, yq ´ Φrpx

2, y2qs

π4px´ x1qpy ´ y1qpx1 ´ x2qpy1 ´ y2q
.

(14)

Proof. For the evaluation of the adjoints, we divide the Fréchet derivative into four parts by

IpΦrq
1 “ IoddpΦrq

1 ` IevenpΦrq
1,

I 1oddpΦrq “ Iodd,1pΦrq ´ Iodd,2pΦrq,

I 1evenpΦrq “ Ieven,1pΦrq ´ Ieven,2pΦrq

with

pIodd,1pΦrqqφ px, yq :“
IP px, yq
π2

ż

P

dx1dy1
φpx, yq cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q
,

pIodd,2pΦrqqφ px, yq :“
IP px, yq
π2

ż

P

dx1dy1
φpx1, y1q cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q
,

pIeven,1pΦrqqφ px, yq :“ ´
1

2

ż

P

ż

P

dx1dy1dx2dy2
φpx1, y1q sin rΦrpx

1, y1q ´ Φrpx
2, y2qs

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q
,

pIeven,2pΦrqqφ px, yq :“ ´
1

2

ż

P

ż

P

dx1dy1dx2dy2
φpx2, y2q sin rΦrpx

1, y1q ´ Φrpx
2, y2qs

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q
.

For φ, ψ P L2

`

R2
˘

with support on the telescope pupil P we consider

xpIodd,1pΦrqqφ, ψyL2pR2q “ xpIodd,1pΦrqqφ, ψyL2pP q

“

ż

P

dxdy
„

IP px, yq
π2

ż

P

dx1dy1
φpx, yq cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q



ψ px, yq

“

ż

P

dxdy φ px, yq
1

π2

ż

P

dx1dy1
ψpx, yq cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q

“ xφ, pIodd,1pΦrqq
˚
ψyL2pP q

“ xφ, pIodd,1pΦrqq
˚
ψyL2pR2q,

which results in

`

pIodd,1pΦrqq
˚
ψ
˘

px, yq “
IP px, yq
π2

ż

P

dx1dy1
ψpx, yq cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q
,
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i.e., Iodd,1 is self-adjoint. Moreover,

xpIodd,2pΦrqqφ, ψyL2pR2q “ xpIodd,2pΦrqqφ, ψyL2pP q

“

ż

P

dxdy
„

IP px, yq
π2

ż

P

dx1dy1
φpx1, y1q cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q



ψ px, yq

“

ż

P

dx1dy1 φ
`

x1, y1
˘ 1

π2

ż

P

dxdy
ψpx, yq cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q

“

ż

P

dxdy φ px, yq
1

π2

ż

P

dx1dy1
ψpx1, y1q cos rΦrpx, yq ´ Φrpx

1, y1qs

px1 ´ xqpy1 ´ yq

“ xφ, pIodd,2pΦrqq
˚
ψyL2pP q

“ xφ, pIodd,2pΦrqq
˚
ψyL2pR2q

with (as cosine is even)

`

pIodd,2pΦrqq
˚
ψ
˘

px, yq “
IP px, yq
π2

ż

P

dx1dy1
ψpx1, y1q cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q
,

i.e., Iodd,2 is self-adjoint as well. Similarly, for Ieven pΦrq
1 we calculate

xpIeven,1pΦrqqφ, ψyL2pR2q “ xpIeven,1pΦrqqφ, ψyL2pP q

“ ´

ż

P

dxdy
„

1

2

ż

P

ż

P

dx1dy1dx2dy2
φpx1, y1q sin rΦrpx

1, y1q ´ Φrpx
2, y2qs

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q



ψ px, yq

“ ´

ż

P

dx1dy1φ
`

x1, y1
˘ 1

2

ż

P

ż

P

dxdydx2dy2
ψpx, yq sin rΦrpx

1, y1q ´ Φrpx
2, y2qs

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q

“ ´

ż

P

dxdy φ px, yq
1

2

ż

P

ż

P

dx1dy1dx2dy2
ψpx1, y1q sin rΦrpx, yq ´ Φrpx

2, y2qs

π4px1 ´ xqpy1 ´ yqpx1 ´ x2qpy1 ´ y2q

“ xφ, pIeven,1pΦrqq
˚
ψyL2pP q

“ xφ, pIeven,1pΦrqq
˚
ψyL2pR2q

with
`

pIeven,1pΦrqq
˚
ψ
˘

px, yq “ ´
1

2

ż

P

ż

P

dx1dy1dx2dy2
ψpx1, y1q sin rΦrpx, yq ´ Φrpx

2, y2qs

π4px´ x1qpy ´ y1qpx1 ´ x2qpy1 ´ y2q

and

xpIeven,2pΦrqqφ, ψyL2pR2q “ xpIeven,2pΦrqqφ, ψyL2pP q

“ ´

ż

P

dxdy
„

1

2

ż

P

ż

P

dx1dy1dx2dy2
φpx2, y2q sin rΦrpx

1, y1q ´ Φrpx
2, y2qs

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q



ψ px, yq

“ ´

ż

P

dx2dy2 φ
`

x2, y2
˘ 1

2

ż

P

ż

P

dx1dy1dxdy
ψpx, yq sin rΦrpx

1, y1q ´ Φrpx
2, y2qs

π4px´ x1qpy ´ y1qpx´ x2qpy ´ y2q

“ ´

ż

P

dxdy φ px, yq
1

2

ż

P

ż

P

dx1dy1dx2dy2
ψpx2, y2q sin rΦrpx

1, y1q ´ Φrpx, yqs

π4px2 ´ x1qpy2 ´ y1qpx2 ´ xqpy2 ´ yq

“ xφ, pIeven,2pΦrqq
˚
ψyL2pP q

“ xφ, pIeven,2pΦrqq
˚
ψyL2pR2q,

which results in

`

pIeven,2pΦrqq
˚
ψ
˘

px, yq “ ´
1

2

ż

P

ż

P

dx1dy1dx2dy2
ψpx2, y2q sin rΦrpx

1, y1q ´ Φrpx, yqs

π4px´ x2qpy ´ y2qpx1 ´ x2qpy1 ´ y2q

“ ´
1

2

ż

P

ż

P

dx1dy1dx2dy2
ψpx1, y1q sin rΦrpx

2, y2q ´ Φrpx, yqs

π4px´ x1qpy ´ y1qpx1 ´ x2qpy1 ´ y2q

“
1

2

ż

P

ż

P

dx1dy1dx2dy2
ψpx1, y1q sin rΦrpx, yq ´ Φrpx

2, y2qs

π4px´ x1qpy ´ y1qpx1 ´ x2qpy1 ´ y2q
.
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Hence, the adjoint of the Fréchet derivative of the ıQuad sensor is given by
`

IpΦrq
1
˘˚
φ px, yq “ pIodd,1pΦrqq

˚
φ px, yq ´ pIodd,2pΦrqq

˚
φ px, yq ` pIeven,1pΦrqq

˚
φ px, yq ´ pIeven,2pΦrqq

˚
φ px, yq

“
IP px, yq
π2

ż

P

dx1dy1
rφpx, yq ´ φpx1, y1qs cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q

´
1

2

ż

P

ż

P

dx1dy1dx2dy2
φpx1, y1q sin rΦrpx, yq ´ Φrpx

2, y2qs

π4px´ x1qpy ´ y1qpx1 ´ x2qpy1 ´ y2q

´
1

2

ż

P

ż

P

dx1dy1dx2dy2
φpx1, y1q sin rΦrpx, yq ´ Φrpx

2, y2qs

π4px´ x1qpy ´ y1qpx1 ´ x2qpy1 ´ y2q

“
IP px, yq
π2

ż

P

dx1dy1
rφpx, yq ´ φpx1, y1qs cos rΦrpx, yq ´ Φrpx

1, y1qs

px´ x1qpy ´ y1q

´

ż

P

ż

P

dx1dy1dx2dy2
φpx1, y1q sin rΦrpx, yq ´ Φrpx

2, y2qs

π4px´ x1qpy ´ y1qpx1 ´ x2qpy1 ´ y2q
,

which proofs the claim.
Eq. (14) allows then to calculate the adjoint operator of the linear intensity around the null phase Φr “ 0. We

get that the adjoint operator pIlinearq
˚

: L2

`

R2
˘

Ñ L2

`

R2
˘

of the linear ıQuad sensor around the zero phase is
represented by

pIlinearq
˚
φpx, yq “

`

Ip0q1
˘˚
φpx, yq “

IP px, yq
π2

ż

P

dx1dy1
φpx, yq ´ φpx1, y1q

px´ x1qpy ´ y1q
, (15)

i.e., the operator is self-adjoint because of Ilinear “ pIlinearq
˚ as a comparison of Eq. (12) and Eq. (15) shows. This re-

markable property is unprecedented in the Fourier filtering wave front sensors world and makes the ıQuad particularly
appropriate to model-based phase reconstructors.

Appendix 2: Improving the linearity

In this second appendix, we show how it is possible to improve the linearity of the ıQuad by using a 2-paths optical
design. The idea consists in dividing the field into two fields which are Fourier filtered by two different masks: the
ıQuad mask and its conjugate, the ´ıQuad, see Fig. 8.

Fig 8 Optical system of the Odd ıQuad.

The optical propagators of the two paths are

W1 “
I ´ ıH
?

2
W2 “

I ` ıH
?

2
. (16)

The incoming field amplitude is divided by
?

2 by the beamsplitter which gives two intensities:

I1pφq “

ˇ

ˇ

ˇ

ˇ

W1

„

IP eıφ
?

2


ˇ

ˇ

ˇ

ˇ

2

I2pφq “

ˇ

ˇ

ˇ

ˇ

W2

„

IP eıφ
?

2


ˇ

ˇ

ˇ

ˇ

2

. (17)
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The WFS’s output is defined as the difference between these two intensities:

dIpφq “ I1pφq ´ I2pφq, (18)

which results in

dI
`

φ
˘

px, yq “
IP px, yq
π2

ż

P

dx1dy1
sinrφpx1, y1q ´ φpx, yqs

px´ x1qpy ´ y1q
(19)

This optical configuration allows to cancel even intensity in the ıQuad intensity. In particular, the first non-linear term
is the cubic one and not, as usually, the quadratic one. Such a fact implies an improvement of the sensor linearity (see
Fig. 9).

IpaZ3q-
Ip0q

I1paZ3q-
I2paZ3q

a “ ´1 rad (RMS) a “ `1 rad (RMS)

C
en

tr
al

pi
xe

la
m

pl
itu

de

-1.0 -0.5 0.0 0.5 1.0
Incoming phase amplitude

-2

-1

0

1

2

M
et

a-
pi

xe
l a

m
pl

itu
de

Incoming phase amplitude

Fig 9 Left pictures: Output maps for the 1-path (top) and 2-paths (bottom) iQuad when ˘1 rad RMS Focus (Z3) goes through the WFS. 1-path is
neither odd, nor even. 2-paths is odd with respect to the phase. Moreover, it is worth noticing that there is no signal outside the pupil geometric
image for the 2-paths device. Right insert: relation between the amplitude of an incoming phase and the amplitude of the central pixel of the
WFS’s output for the 1-path and the 2-paths ıQuads. The same tangent at the origin indicates an identical sensitivity (black curve). Moreover, we
observe that the 2-paths system provides a symmetrical response which is not the case of the 1-path. Such a fact implies a better linearity for the
2-paths ıQuad than the classical one.
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