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Abstract

Shape constraints (such as non-negativity, monotonicity, convexity) play a central
role in a large number of applications, as they usually improve performance for
small sample size and help interpretability. However enforcing these shape require-
ments in a hard fashion is an extremely challenging problem. Classically, this task
is tackled (i) in a soft way (without out-of-sample guarantees), (ii) by specialized
transformation of the variables on a case-by-case basis, or (iii) by using highly
restricted function classes, such as polynomials or polynomial splines. In this paper,
we prove that hard affine shape constraints on function derivatives can be encoded
in kernel machines which represent one of the most flexible and powerful tools in
machine learning and statistics. Particularly, we present a tightened second-order
cone constrained reformulation, that can be readily implemented in convex solvers.
We prove performance guarantees on the solution, and demonstrate the efficiency
of the approach in joint quantile regression with applications to economics and to
the analysis of aircraft trajectories, among others.

1 Introduction

Shape constraints (such as non-negativity, monotonicity, convexity) are omnipresent in data science
with numerous successful applications in statistics, economics, biology, finance, game theory, rein-
forcement learning and control problems. For example, in biology, monotone regression techniques
have been applied to identify genome interactions (Luss et al., 2012), and in dose-response studies
(Hu et al., 2005). Economic theory dictates that utility functions are increasing and concave (Matzkin,
1991), demand functions of normal goods are downward sloping (Lewbel, 2010; Blundell et al.,
2012), production functions are concave (Varian, 1984) or S-shaped (Yagi et al., 2020). Moreover
cyclic monotonicity has recently turned out to be beneficial in panel multinomial choice problems
(Shi et al., 2018), and most link functions used in a single index model are monotone (Li and Racine,
2007; Chen and Samworth, 2016; Balabdaoui et al., 2019). Meanwhile, supermodularity is a common
assumption in supply chain models, stochastic multi-period inventory problems, pricing models and
game theory (Topkis, 1998; Simchi-Levi et al., 2014). In finance, European and American call option
prices are convex and monotone in the underlying stock price and increasing in volatility (Aït-Sahalia
and Duarte, 2003). In statistics, the conditional quantile function is increasing w.r.t. the quantile level.
In reinforcement learning and in stochastic optimization the value functions are regularly supposed
to be convex (Keshavarz et al., 2011; Shapiro et al., 2014). More examples can be found in recent
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surveys on shape-constrained regression (Johnson and Jiang, 2018; Guntuboyina and Sen, 2018;
Chetverikov et al., 2018).

Leveraging prior knowledge expressed in terms of shape structures has several practical benefits:
the resulting techniques allow for estimation with smaller sample size and the imposed shape
constraints help interpretability. Despite the numerous practical advantages, the construction of
shape-constrained estimators can be quite challenging. Existing techniques typically impose the
shape constraints (i) in a ’soft’ fashion as a regularizer or at finite many points (Delecroix et al., 1996;
Blundell et al., 2012; Aybat and Wang, 2014; Wu et al., 2015; Takeuchi et al., 2006; Sangnier et al.,
2016; Chen and Samworth, 2016; Agrell, 2019; Mazumder et al., 2019; Koppel et al., 2019; Han
et al., 2019; Yagi et al., 2020), (ii) through constraint-specific transformations of the variables such as
quadratic reparameterization (Flaxman et al., 2017), positive semi-definite quadratic forms (Bagnell
and Farahmand, 2015), or integrated exponential functions (Wu and Sickles, 2018), or (iii) they make
use of highly restricted functions classes such as classical polynomials (Hall, 2018) or polynomial
splines (Turlach, 2005; Papp and Alizadeh, 2014; Pya and Wood, 2015; Wu and Sickles, 2018; Meyer,
2018; Koppel et al., 2019). Both the polynomial and spline-based shape-constrained techniques rely
heavily on the underlying algebraic structure of these bases, without direct extension to more general
function families.

From a statistical viewpoint, the main focus has been on the design of estimators with uniform
guarantees (Horowitz and Lee, 2017; Freyberger and Reeves, 2018). Several existing methods have
been analyzed from this perspective and were shown to be (uniformly) consistent, on a case-by-case
basis and when handling specific shape constraints (Wu et al., 2015; Chen and Samworth, 2016;
Han and Wellner, 2016; Mazumder et al., 2019; Koppel et al., 2019; Han et al., 2019; Yagi et al.,
2020). While these asymptotic results are of significant theoretical interest, applying shape priors is
generally beneficial in the small sample regime. In this paper we propose a flexible optimization
framework allowing multiple shape constraints to be jointly handled in a hard fashion. In addition,
to address the bottlenecks of restricted shape priors and function families, we consider general affine
constraints on derivatives, and use reproducing kernel Hilbert spaces (RKHS) as hypothesis space.

RKHSs (also called abstract splines; Aronszajn, 1950; Wahba, 1990; Berlinet and Thomas-Agnan,
2004; Wang, 2011) increase significantly the richness and modelling power of classical polynomial
splines. Indeed, the resulting function family can be rich enough for instance (i) to encode probability
distributions without loss of information (Fukumizu et al., 2008; Sriperumbudur et al., 2010), (ii)
to characterize statistical independence of random variables (Bach and Jordan, 2002; Szabó and
Sriperumbudur, 2018), or (iii) to approximate various function classes arbitrarily well (Steinwart,
2001; Micchelli et al., 2006; Carmeli et al., 2010; Sriperumbudur et al., 2011; Simon-Gabriel and
Schölkopf, 2018), including the space of bounded continuous functions. An excellent overview on
kernels and RKHSs is given by Hofmann et al. (2008); Steinwart and Christmann (2008); Saitoh and
Sawano (2016).

In this paper we incorporate into this flexible RKHS function class the possibility to impose hard
linear shape requirements on derivatives, i.e. constraints of the form

0 ≤ b+Df(x) ∀x ∈ K (1)

for a bias b ∈ R, given a differential operator D =
∑
j γj∂

rj where ∂rf(x) = ∂
∑d

j=1 rj f(x)

∂
r1
x1
···∂rd

xd

and a

compact set K ⊂ Rd. The fundamental technical challenge is to guarantee the pointwise inequality
(1) at all points of the (typically non-finite) set K. We show that one can tighten the infinite number
of affine constraints (1) into a finite number of second-order cone constraints

η‖f‖ ≤ b+Df(xm) ∀m ∈ {1, . . . ,M} (2)

for a suitable choice of η > 0 and {xm}m=1...M ⊆ K.

Our contributions can be summarized as follows.

1. We show that hard shape requirements can be embedded in kernel machines by taking a second-
order cone (SOC) tightening of constraint (1), which can be readily tackled by convex solvers.
Our formulation builds upon the reproducing property for kernel derivatives and on coverings of
compact sets.

2. We prove error bounds on the distance between the solutions of the strengthened and original
problems.
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3. We achieve state-of-the-art performance in joint quantile regression (JQR) in RKHSs. We also
combine JQR with other shape constraints in economics and in the analysis of aircraft trajectories.

The paper is structured as follows. Section 2 is about problem formulation. Our main result is
presented in Section 3. Numerical illustrations are given in Section 4. Proofs and additional examples
are provided in the supplement.

2 Problem formulation

In this section we formulate our problem after introducing some notations, which the reader may skip
at first, and return to if necessary.

Notations: Let N := {0, 1, . . . }, N∗ := {1, 2, . . . } and R+ denote the set of natural numbers,
positive integers and non-negative real numbers, respectively. We use the shorthand [n] := {1, . . . , n}.
The p-norm of a vector v ∈ Rp is ‖v‖p = (

∑
j∈[d] |vj |p)

1
p (1 ≤ p < ∞); ‖v‖∞ = maxj∈[d] |vj |.

The j-th canonical basis vector is ej ; 0d ∈ Rd is the zero vector. Let B‖·‖(c, r) = {x ∈ Rd :

‖x− c‖ ≤ r} be the closed ball in Rd with center c and radius r in norm ‖·‖. Given a norm ‖·‖
and radius δ > 0, a δ-net of a compact set K ⊂ Rd consists of a set of points {xm}m∈[M ] such
that K ⊆ ∪m∈[M ]B‖·‖(xm, δ), in other words

{
B‖·‖(xm, δ)

}
m∈[M ]

forms a covering of K. The

identity matrix is I. For a matrix M ∈ Rd1×d2 , M> ∈ Rd2×d1 denotes its transpose, its operator
norm is ‖M‖ = supx∈Rd2 :‖x‖2=1 ‖Mx‖2. The inverse of a non-singular matrix M ∈ Rd×d is
M−1 ∈ Rd×d. The concatenation of matrices M1 ∈ Rd1×d, . . . ,MN ∈ RdN×d is denoted by
M = [M1; . . . ;MN ] ∈ R(

∑
n∈[N] dn)×d. Let X be an open subset of Rd with a real-valued kernel

k : X × X → R, and associated reproducing kernel Hilbert space (RKHS) Fk. The Hilbert space
Fk is characterized by f(x) = 〈f, k(x, ·)〉k (∀x ∈ X,∀f ∈ Fk) and k(x, ·) ∈ Fk (∀x ∈ X) where
〈·, ·〉k stands for the inner product in Fk, and k(x, ·) denotes the function y ∈ X 7→ k(x,y) ∈ R.
The first property is called the reproducing property, the second one describes a generating family of
Fk. The norm on Fk is written as ‖·‖k. For a multi-index r ∈ Nd let the r-th order partial derivative

of a function f be denoted by ∂rf(x) = ∂|r|f(x)

∂
r1
x1
···∂rd

xd

where |r| =
∑
j∈[d] rj is the length of r. When

d = 1 the f (n) = ∂nf notation is applied; specifically f ′′ and f ′ are used in case of n = 2 and n = 1.
Given s ∈ N, let Cs(X) be the set of real-valued functions on X with continuous derivatives up to
order s (i.e., ∂rf ∈ C(X) := C0(X) when |r| ≤ s). Let I ∈ N∗. Given (Ai)i∈[I] sets let

∏
i∈[I]Ai

denote their Cartesian product; we write AI in case of A = A1 = . . . = AI .

Our goal is to solve hard shape-constrained kernel machines of the form(
f̄ , b̄
)

= arg min
f=(fq)q∈[Q] ∈ (Fk)Q,b=(bp)p∈[P ] ∈B, (f ,b)∈C

L(f , b), (P)

where we are given an objective function L and a constraint set C (detailed below), a closed convex
constraint set B ⊆ RP on the biases, an order s ∈ N, an open set X ⊆ Rd with a kernel k ∈ Cs(X×X)
and associated RKHS Fk, and samples S = {(xn, yn)}n∈[N ] ⊂ X × R. The objective function in
(P) is specified by the triplet (S,L,Ω):

L(f , b) = L

(
b,
(
xn, yn, (fq(xn))q∈[Q]

)
n∈[N ]

)
+ Ω

(
(‖fq‖k)q∈[Q]

)
,

with loss function L : RP ×
(
X× R× RQ

)N → R and regularizer Ω : (R+)Q → R. Notice
that the objective L depends on the samples S which are assumed to be fixed, hence our proposed
optimization framework focuses on the empirical risk. The bias b ∈ RP can be both constraint (such
as f(x) ≥ b1, f ′(x) ≥ b2) and variable-related (fq + bq, see (4)-(5) later). The restriction of L to
B is assumed to be strictly convex in b, and Ω is supposed to be strictly increasing in each of its
arguments to ensure the uniqueness of minimizers of (P).

The I ∈ N∗ hard shape requirements in (P) take the form1

C = {(f ,b) | (b0 −Ub)i ≤ Di(Wf − f0)i(x),∀x ∈ Ki,∀i ∈ [I]} , (C)

1In constraint (C), Wf is meant as a formal matrix-vector product: (Wf)i =
∑

q∈[Q]Wi,qfq .
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i.e., (C) encodes affine constraints of at most s-order derivatives (Di =
∑
j∈[ni,j ]

γi,j∂
ri,j , |ri,j | ≤ s,

γi,j ∈ R). Possible shifts are expressed by the terms b0 = (b0,i)i∈[I] ∈ RI , f0 = (f0,i)i∈[I] ∈ (Fk)
I .

The matrices U ∈ RI×P and W ∈ RI×Q capture the potential interactions within the bias variables
(bp)p∈[P ] and functions (fq)q∈[Q], respectively. The compact sets Ki ⊂ X (i ∈ [I]) define the domain
where the constraints are imposed.

Remarks:

• Differential operators: As X ⊆ Rd is open and k ∈ Cs(X × X), any differential operator Di of
order at most s is well defined (Saitoh and Sawano, 2016, Theorems 2.5 and 2.6, page 76) as a
mapping from Fk to C(X). Since the coefficients {γi,j}j∈[ni,j ] of Di-s belong to the whole R, (C)
can cover inequality constraints in both directions.

• Bias constraint B: Choosing B = {0P } leads to constant l.h.s. b0 in (C). The other extreme is
B = RP in which case no hard constraint is imposed on the bias variable b.

• Compactness of Ki-s: The compactness assumption on the sets Ki is exploited in the construction
of our strengthened optimization problem (Section 3). This requirement also ensures not imposing
restrictions ”too far” from the observation points, which could be impossible to satisfy. Indeed, let us
consider for instance a c0-kernel k on R, i.e. that k(x, ·) ∈ C0(R) for all x and lim|y|→∞ k(x, y) = 0
for all x ∈ R (as for the Gaussian kernel). In this case lim|y|→∞ f(y) = 0 also holds for all f ∈ Fk.
Hence a constraint of the form “for all t ∈ R+, f(t) ≥ ε > 0“ can not be satisfied for f ∈ Fk.

• Assumption on X: If s = 0 (in other words only function evaluations are present in the shape
constraints), then X can be any topological space.

We give various examples for the considered problem family (P). We start with an example where
Q = 1.

Kernel ridge regression (KRR) with monotonicity constraint: In this case the objective function and
constraint are

L(f, b) :=
1

N

∑
n∈[N ]

|yn − f(xn)|2 + λf‖f‖2k, s.t. f ′(x) ≥ 0, ∀x ∈ [xl, xu] (3)

with λf > 0. In other words in (P) we have Q = 1, d = 1, s = 1, P = I = 1, K1 = [xl, xu],
Ω(z) = λfz

2, D1 = ∂1, U = W = 1, f1,0 = 0, b1,0 = 0, and b ∈ B = {0} is a dummy variable.

Joint quantile regression (JQR; e.g. Sangnier et al., 2016): Given 0 < τ1 < . . . < τQ < 1 levels
the goal is to estimate jointly the (τ1, . . . , τQ)-quantiles of the conditional distribution P(Y |X = x)
where Y is real-valued. In this case the objective function is

L (f ,b) =
1

N

∑
q∈[Q]

∑
n∈[N ]

lτq (yn − [fq(xn) + bq]) + λb‖b‖22 + λf
∑
q∈[Q]

‖fq‖2k, (4)

where λb > 0, λf > 0,2 and the pinball loss is defined as lτ (e) = max(τe, (τ −1)e) with τ ∈ (0, 1).
In JQR, the estimated τq-quantile functions {fq + bq}q∈[Q] are not independent; the joint shape
constraint they should satisfy is the monotonically increasing property w.r.t. the quantile level τ . It
is natural to impose this non-crossing requirement on the smallest rectangle containing the points
{xn}n∈[N ], i.e. K =

∏
r∈[d]

[
min{(xn)r}n∈[N ],max{(xn)r}n∈[N ]

]
. The corresponding shape

constraint is
fq+1(x) + bq+1 ≥ fq(x) + bq, ∀q ∈ [Q− 1], ∀x ∈ K. (5)

One gets (4)-(5) from (P) by choosing P = Q, I = Q − 1, s = 0, b0 = 0, f0 = 0, B = RP ,

Ki = K (∀i ∈ [I]), Ω(z) = λf
∑
q∈[Q](zq)

2, and U = W =


−1 1 0 0
0 −1 1 0
...

. . . . . . . . .
0 0 −1 1

 ∈ R(Q−1)×Q.

Further examples: There are various other widely-used shape constraints beyond non-negativity
(for which s = 0), monotonicity (s = 1) or convexity (s = 2) which can be taken into account
in (C). For instance one can consider n-monotonicity (s = n), (n − 1)-alternating monotonicity,

2Sangnier et al. (2016) considered the same loss but a soft non-crossing inducing regularizer inspired by
matrix-valued kernels, and also set λb = 0.
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monotonicity w.r.t. unordered weak majorization (s = 1) or w.r.t. product ordering (s = 1), or
supermodularity (s = 2). For details on how these shape constraints can be written as (C), see the
supplement (Section C).

3 Results

In this section, we first present our strengthened SOC-constrained problem, followed by a representer
theorem and explicit bounds on the distance to the solution of (P).

In order to introduce our proposed tightening, let us first consider the discretization of the I constraints
using Mi points {x̃i,m}m∈[Mi]

⊆ Ki. This would lead to the following relaxation of (P)

vdisc = min
f ∈ (Fk)Q, b∈B

L(f , b) s.t. (b0 −Ub)i ≤ min
m∈[Mi]

Di(Wf − f0)i (x̃i,m) ∀i ∈ [I]. (6)

Our proposed SOC-constrained tightening can be thought of as adding extra, appropriately chosen,
ηi-buffers to the l.h.s. of the constraints:

(fη,bη) = arg min
f ∈ (Fk)

Q, b∈B⊂Rp

L(f , b) (Pη)

s.t.

(b0 −Ub)i + ηi‖(Wf − f0)i‖k ≤ min
m∈[Mi]

Di(Wf − f0)i (x̃i,m)∀i ∈ [I]. (Cη)

The SOC constraint (Cη) is determined by a fixed η = (ηi)i∈[I] ∈ RI+ coefficient vector and by the
points {x̃i,m}.3 For each i ∈ [I], the points {x̃i,m}m∈[Mi]

are chosen to form a δi-net of the compact
set Ki for some δi > 0 and a pre-specified norm ‖·‖X.4 Given {x̃i,m}m∈[Mi]

, the coefficients
ηi ∈ R+ are then defined as

ηi = sup
m∈ [Mi],u∈B‖·‖X (0,1)

‖Di,xk(x̃i,m, ·)−Di,xk(x̃i,m + δiu, ·)‖k, (8)

where Di,xk(x0, ·) is a shorthand for y 7→ Di(x 7→ k(x,y))(x0). Problem (Pη) has I scalar SOC
constraints (Cη) over infinite-dimensional variables. Let v̄ = L

(
f̄ , b̄
)

be the minimal value of (P)
and vη = L (fη,bη) be that of (Pη). Notice that, when formally setting η = 0, (Pη) corresponds to
(6).

In our main result below (i) shows that (Cη) is indeed a tightening of (C), (ii) provides a representer
theorem which allows to solve numerically (Pη), and (iii) gives bounds on the difference between the
solution of (Pη) and that of (P) as a function of (vη − vdisc) and η respectively.
Theorem (Tightened task, representer theorem, bounds). Let fη = (fη,q)q∈[Q]. Then,

(i) Tightening: any (f , b) satisfying (Cη) also satisfies (C), hence vdisc ≤ v̄ ≤ vη .

(ii) Representer theorem: For all q ∈ [Q], there exist real coefficients ãi,0,q, ãi,m,q, an,q ∈ R such

that fη,q =
∑
i∈[I]

[
ãi,0,qf0,i +

∑
m∈[Mi]

ãi,m,qDi,xk (x̃i,m, ·)
]

+
∑
n∈[N ] an,qk(xn, ·).

(iii) Performance guarantee: if L is (µfq , µb)-strongly convex w.r.t. (fq,b) for any q ∈ [Q], then

‖fη,q − f̄q‖k ≤

√
2(vη − vdisc)

µfq
, ‖bη − b̄‖2 ≤

√
2(vη − vdisc)

µb
. (9)

If in addition U is of full row-rank (i.e. surjective), B = RP , and L(f̄ , ·) is Lb−Lipschitz continuous

on B‖·‖2
(
b̄, cf‖η‖∞

)
where cf =

√
I
∥∥∥(U>U)−1 U>∥∥∥maxi∈[I]

∥∥(Wf̄ − f0)i
∥∥
k
, then

‖fη,q − f̄q‖k ≤

√
2Lbcf‖η‖∞

µfq
, ‖bη − b̄‖2 ≤

√
2Lbcf‖η‖∞

µb
. (10)

3Constraint (Cη) is the precise meaning of the preliminary intuition given in (2).
4The existence of finite δi-nets (Mi <∞) stems from the compactness of Ki-s. The flexibility in the choice

of the norm ‖·‖X allows for instance using cubes by taking the ‖·‖1 or the ‖·‖∞-norm on Rd when covering the
Ki-s.
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Proof (idea): The SOC-based reformulation relies on rewriting the constraint (C) as the inclusion
of the sets ΦDi(Ki) in the closed halfspaces H+

φi,βi
:= {g ∈ Fk | 〈φi, g〉k ≥ βi} for ∀i ∈ [I]

where ΦDi
(x) := Di,xk(x, ·) ∈ Fk, ΦDi

(X) := {ΦDi
(x) |x ∈ X}, φi := (Wf − f0)i and

βi := (b0 −Ub)i. The tightening is obtained by guaranteeing these inclusions with an ηi-net of
ΦDi

(Ki) containing the δi-net of Ki when pushed to Fk. The bounds stem from classical inequalities
for strongly convex objective functions. The proof details of (i)-(iii) are available in the supplement
(Section A).

Remarks:

The representer theorem allows one to express (Pη) as a finite-dimensional SOC-constrained
problem:

min
A∈RN×Q, b∈B,

Ã∈RN×Q, Ã0 ∈RI×Q

L(f , b) s.t. (b0 −Ub)i + ηi

∥∥∥G1/2gi

∥∥∥
2
≤ min
m∈[Mi]

(GDi
gi)I+N+m ∀i ∈ [I], ∀q ∈ [Q],

where ẽi ∈ RI and ei ∈ RI+N+M are the canonical basis vectors, gi :=
[
Ã0;A; Ã

]
W>ẽi − ei

and the coefficients of the components of f were collected to Ã0 = [ãi,0,q]i∈[I], q∈[Q] ∈
RI×Q, A = [an,q]n∈[N ], q∈[Q] ∈ RN×Q, Ã = [ãi,q]i∈[I], q∈[Q] ∈ RM×Q with
M =

∑
i∈[I]Mi and ãi,q = [ãi,m,q]m∈[Mi]

∈ RMi (i ∈ [I], q ∈ [Q]). In this
finite-dimensional optimization task, G ∈ R(I+N+M)×(I+N+M) is the Gram matrix of
({f0,i}i∈I , {k(xn, ·)}n∈[N ], {Di,xk(x̃i,m, ·)}m∈[Mi],i∈I), GDi ∈ R(I+N+M)×(I+N+M) is the
Gram matrix of the differentials Di of these functions, G1/2 is the matrix square root of the positive
semi-definite G.

The bounds5 (9)-(10) show that smaller η gives tighter guarantee on the recovery of f̄ and b̄.
Since

∣∣∂rfη,q(x)− ∂rf̄q(x)
∣∣ ≤ √∂r,rk(x,x)

∥∥fη,q − f̄q∥∥k by the reproducing property and the
Cauchy-Schwarz inequality, the bounds on ‖fη − f̄‖k can be propagated to pointwise bounds on
the derivatives (for |r| ≤ s). We emphasize again that in our optimization problem (Pη) the samples
S = {(xn, yn)}n∈[N ] are assumed to be fixed; in other words the bounds (9) and (10) are meant
conditioned on S.

The parametersM , δ and η are strongly intertwined, their interplay reveals an accuracy-computation
tradeoff. Consider a shift-invariant kernel (k(x,y) = k0(x − y), ∀x,y), then (8) simplifies to
ηi := supu∈B‖·‖X (0,1)

√
|2Di,xDi,yk0(0)− 2Di,xDi,yk0 (δiu)|, where Di,y is defined similarly to

Di,x.6 This expression of ηi implies that whenever Di,xDi,yk0 is Lδ-Lipschitz7 on B‖·‖X(0, δi),
then ηi ≤

√
2Lδ
√
δi. By the previous point, a smaller η ensures a better recovery which can be

guaranteed by smaller δi-s, which themselves correspond to a larger number of centers (Mi-s) in
the δi-nets of the Ki-s. Hence, one can control the computational complexity by the total number
M of points in the nets. Indeed, most SOCP solvers rely on primal-dual interior point methods
which have (in the worst-case) cubic complexity O

(
(P +N +M)3

)
per iterations (Alizadeh and

Goldfarb, 2003). Controlling M allows one to tackle hard shape-constrained problems in moderate
dimensions (d); for details see Section 4. In practice, to reduce the number of coefficients in fη,q,
it is beneficial to recycle the points {xn}n∈[N ] among the Mi virtual centers, whenever the points
belong to a constraint set Ki. This simple trick was possible in all our numerical examples and kept
the computational expense quite benign. Supplement (Section B) presents an example of the actual
computational complexity observed.

While in this work we focused on the optimization problem (P) which contains solely infinite-
dimensional SOC constraints (Cη), the proved (Cη)⇒ (C) implication can be of independent interest
to tackle problems where other types of constraints are present.8 For simplicity we formulated our

5Notice that (9) is a computable bound, while (10) is not, as the latter depends on properties of the unknown
solution of (P).

6Similar computation can be carried out for higher order derivatives. For more general kernels, estimating
ηi-s can be also done by sampling uniformly u in the unit ball.

7For instance any Cs+1 kernel satisfies this local Lipschitz requirement.
8For example having a unit integral is a natural additional requirement beyond non-negativity in density

estimation, and writes as a linear equality constraint over the coefficients of fη,q .
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Table 1: Joint quantile regression on 9 UCI datasets. Compared techniques: Primal-Dual Coordinate
Descent (PDCD, Sangnier et al., 2016) and the presented SOC technique. Rows: benchmarks. 2nd
column: dimension (d). 3rd column: sample number (N ). 4-5th columns: mean ± std of 100×value
of the pinball loss for PDCD and SOC; smaller is better.

Dataset d N PDCD SOC

engel 1 235 48 ± 8 53 ± 9
GAGurine 1 314 61 ± 7 65 ± 6
geyser 1 299 105 ± 7 108 ± 3
mcycle 1 133 66 ± 9 62 ± 5
ftcollinssnow 1 93 154 ± 16 148 ± 13
CobarOre 2 38 159 ± 24 151 ± 17
topo 2 52 69 ± 18 62 ± 14
caution 2 100 88 ± 17 98 ± 22
ufc 3 372 81 ± 4 87 ± 6

result with uniform coverings (δi, ηi, i ∈ [I]). However, we prove it for more general non-uniform
coverings (δi,m, ηi,m, i ∈ [I], m ∈ [Mi]; see Section A). This can beneficial for sets with complex
geometry (e.g. star-shaped) or when recyling of the samples was used to obtain coverings (as the
samples in S have no reason to be equally spaced); we provide an example (in economics) using a
non-uniform covering in Section 4.

In practice, since the convergence speed of SOCP solvers depends highly on the condition number
of G1/2, it is worth replacing G1/2 with (G + εtolI)

1/2, setting a tolerance εtol ' 10−4. As
G+ εtolI < G (in the sense of positive semi-definite matrices), this regularization strengthens further
the SOC constraint. Moreover, SOCP modeling frameworks (e.g. CVXPY or CVXGEN) suggest
to replace quadratic penalties (see (4)) with the equivalent

√∑
q∈[Q] ‖fq‖2k ≤ λ̃f and ‖b‖2 ≤ λ̃b

forms. This stems from their reliance on internal primal-dual interior point techniques.

4 Numerical experiments

In this section we demonstrate the efficiency of the presented SOC technique to solve hard shape-
constrained problems.9 We focus on the task of joint quantile regression (JQR) where the conditional
quantiles are encoded by the pinball loss (4) and the shape requirement to fulfill is the non-crossing
property (5). Supplement (Section B) provides an additional illustration in kernel ridge regression
(KRR, (3)) on the importance of enforcing hard shape constraints in case of increasing noise level.

• Experiment-1: We compare the performance of the proposed SOC technique on 9 UCI benchmark
datasets with a state-of-the-art JQR solver relying on soft shape constraints.

• Experiment-2: We augment the non-crossing constraint of JQR with monotonicity and concavity.
Our two examples here belong to economics and to the analysis of aircraft trajectories.

In our experiments we used a Gaussian kernel with bandwidth σ, ridge regularization parameter λf
and λb (or upper bounds λ̃f on

√∑
q∈[Q] ‖fq‖2k and λ̃b on ‖b‖2). We learned jointly five quantile

functions (τq ∈ {0.1, 0.3, 0.5, 0.7, 0.9}). We used CVXGEN (Mattingley and Boyd, 2012) to solve
(Pη); the experiments took from seconds to a few minutes to run on an i7-CPU 16GB-RAM laptop.

In our first set of experiments we compared the efficiency of the proposed SOC approach with
the PDCD technique (Sangnier et al., 2016) which minimizes the same loss (4) but with a soft
non-crossing encouraging regularizer. We considered 9 UCI benchmarks. Our datasets were selected
with d ∈ {1, 2, 3}; to our best knowledge none of the available JQR solvers is able to guarantee in a
hard fashion the non-crossing property of the learned quantiles out of samples even in this case. Each
dataset was split into training (70%) and test (30%) sets; the split and the experiment were repeated
twenty times. For each split, we optimized the hyperparameters (σ, λ̃f , λ̃b) of SOC, searching over a

9The code replicating our numerical experiments is available at https://github.com/PCAubin/
Hard-Shape-Constraints-for-Kernels.
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Figure 1: Joint quantile regression on the engel dataset using the SOC technique. Solid lines:
estimated conditional quantile functions with τq ∈ {0.1, 0.3, 0.5, 0.7, 0.9} from bottom (dark green)
to top (blue). Left plot: with non-crossing and increasing constraints. Right plot: with non-crossing,
increasing and concavity constraints.

grid to minimize the pinball loss through a 5-fold cross validation on the training set. Particularly,
the kernel bandwith σ was searched over the square root of the deciles of the squared pairwise
distance between the points {xn}n∈[N ]. The upper bound λ̃f on

√∑
q∈[Q] ‖fq‖2k was scanned in

the log-scale interval [−1, 2]. The upper bound λ̃b on ‖b‖2 was kept fixed: λ̃b = 10 maxn∈[N ] |yn|.
We then learned a model on the whole training set and evaluated it on the test set. The covering
of K =

∏
r∈[d]

[
min{(xn)r}n∈[N ],max{(xn)r}n∈[N ]

]
was carried out with ‖ · ‖2-balls of radius

δ chosen such that the number M of added points was less than 100. This allowed for a rough
covering while keeping the computation time for each run to be less than one minute. Our results are
summarized in Table 1. The table shows that while the proposed SOC method guarantees the shape
constraint in a hard fashion, its performance is on par with the state-of-the-art soft JQR solver.

In our second set of experiments, we demonstrate the efficiency of the proposed SOC estimator
on tasks with additional hard shape constraints. Our first example is drawn from economics; we
focused on JQR for the engel dataset, applying the same parameter optimization as in the first
experiment. In this benchmark, the {(xn, yn)}n∈[N ] ⊂ R2 pairs correspond to annual household
income (xn) and food expenditure (yn), preprocessed to have zero mean and unit variance. Engel’s
law postulates a monotone increasing property of y w.r.t. x, as well as concavity. We therefore
constrained the quantile functions to be non-crossing, monotonically increasing and concave. The
interval K =

[
min{xn}n∈[N ],max{xn}n∈[N ]

]
was covered with a non-uniform partition centered

at the ordered centers {x̃m∈[M ]} which included the original points {xn}n∈[N ] augmented with 15

virtual points. The radiuses were set to δi,m := x̃m+1−x̃m

2 (m ∈ [M − 1], i ∈ [I]). The estimates
with or without concavity are available in Fig. 1. It is interesting to notice that the estimated curves
can intersect outside of the interval K (see Fig. 1(a)), and that the additional concavity constraint
mitigates this intersection (see Fig. 1(b)).

In our second example with extra shape constraints, we focused on the analysis of more than 300
aircraft trajectories (Nicol, 2013) which describe the radar-measured altitude (y) of aircrafts flying
between two cities (Paris and Toulouse) as a function of time (x). These trajectories were restricted
to their takeoff phase (where the monotone increasing property should hold), giving rise to a total
number of samples N = 15657. We imposed non-crossing and monotonicity property. The resulting
SOC-based quantile function estimates describing the aircraft takeoffs are depicted in Fig. 2. The
plot illustrates how the estimated quantile functions respect the hard shape constraints and shows
where the aircraft trajectories concentrate under various level of probability, defining a corridor of
normal flight altitude values.
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Figure 2: Joint quantile regression on aircraft takeoff trajectories. Number of samples: N = 15657.
Shape constraints: non-crossing and increasing constraints. Dashed lines: trajectory samples. Solid
lines: estimated conditional quantile functions.

These experiments demonstrate the efficiency of the proposed SOC-based solution to hard shape-
constrained kernel machines.

5 Broader impact

Shape constraints play a central role in economics, social sciences, biology, finance, game theory,
reinforcement learning and control problems as they enable more data-efficient computation and help
interpretability. The proposed principled way of imposing hard shape constraints and algorithmic
solution are expected to have positive impact in the aforementioned areas. For instance, from social
perspective the studied quantile regression application can allow ensuring that safety regulations are
better met. The improved sample efficiency, however, might result in dropping production indices
and reduced privacy due to more target-specific applications.
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Supplement
We provide the proof (Section A) of our main result presented in Section 3. Section B is about
an additional numerical illustration in the context of kernel ridge regression on the importance of
hard shape constraints in case of increasing level of noise. For completeness, reformulations of
the additional shape constraint examples for (C) mentioned at the end of Section 2 are detailed in
Section C.

A Proof

For i ∈ [I], we shall below denote φi = (Wf − f0)i and βi = (b0 − Ub)i. The proofs of the
different parts are as follows.

(i) Tightening: By rewriting constraint (C) using the derivative-reproducing property of kernels
(Zhou, 2008; Saitoh and Sawano, 2016) we get

〈φi, Di,xk(x, ·)〉k = Diφi(x) ≥ βi, ∀x ∈ Ki. (11)

Let us reformulate this constraint as an inclusion of sets

ΦDi
(Ki) ⊆ H+

φi,βi
:= {g ∈ Fk | 〈φi, g〉k ≥ βi},

where ΦDi
: x 7→ Di,xk(x, ·) ∈ Fk and ΦDi

(X) := {ΦDi
(x) |x ∈ X}.

In order to get a finite geometrical description of ΦDi(Ki), we consider a finite covering of the
compact set Ki:

{x̃i,m}m∈[Mi] ⊆ Ki ⊆
⋃

m∈[Mi]

B‖·‖X (x̃i,m, δi,m) ,

which implies that
ΦDi

(Ki) ⊆
⋃

m∈[Mi]

ΦDi

(
B‖·‖X (x̃i,m, δi,m)

)
.

From the regularity of k, it follows that ΦDi
is continuous from X to Fk, and we define ηi,m > 0

(i ∈ [I], m ∈ [Mi]) as

ηi,m := sup
u∈B‖·‖X (0,1)

‖ΦDi (x̃i,m)− ΦDi (x̃i,m + δi,mu) ‖k. (12)

This means that for all m ∈ [Mi]

ΦDi

(
B‖·‖X (x̃i,m, δi,m)

)
⊆ ΦDi (x̃i,m) + Bk (0, ηi,m) ,

where Bk(0, ηi,m) := {g ∈ Fk | ‖g‖k ≤ ηi,m}. In other words, for (11) to hold, it is sufficient that

ΦDi (x̃i,m) + Bk (0, ηi,m) ⊆ H+
φi,βi

, ∀m ∈ [Mi]. (13)

By the definition of H+
φi,βi

, (13) is equivalent to

βi ≤ inf
g∈Bk

〈φi, Di,xk(x̃i,m, ·) + ηi,mg〉k = Di(φi)(x̃i,m)− ηi,m‖φi‖k, ∀m ∈ [Mi].

Taking the minimum over m ∈ [Mi], we get

‖φi‖k ≤ min
m∈[Mi]

1

ηi,m
[−βi +Di(φi) (x̃i,m)] . (14)

Hence we proved that for any (f , b) satisfying (14), (11) also holds. The SOC-based reformulation is
illustrated geometrically in Fig. 3. Constraint (C) can be reformulated as requiring that the image
ΦDi(Ki) of Ki under the Di-feature map ΦDi(x) := Di,xk(x, ·) ∈ Fk is contained in the halfspace
’above’ the affine hyperplane defined by normal vector (Wf − f0)i and bias (b0 − Ub)i. The
discretization (6) of constraint (C) at the points {x̃i,m}m∈[Mi]

only requires the images ΦDi(x̃i,m)

of the points to be above the hyperplane. Constraint (Cη) instead inflates each of those points by a
radius ηi.
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Figure 3: Illustration of the SOC constraint (Cη).

(ii) Representer theorem: For any q ∈ [Q], let fη,q = vq + wq where vq belongs to10

V := span
(
{f0,i}i∈I , {k(xn, ·)}n∈[N ], {Di,xk(x̃i,m, ·)}m∈[Mi],i∈[I]

)
⊂ Fk

while wq is in the orthogonal complement of V in Fk (wq ∈ V ⊥ := {w ∈ Fk : 〈w, v〉k = 0, ∀v ∈
V }). Let v := (vq)q∈[Q] ∈ (Fk)Q. As constraint (Cη) holds for (fη, bη),

(b0 −Ubη)i + ηi‖(Wfη − f0)i‖k ≤ min
m∈[Mi]

Di(Wfη − f0)i (x̃i,m) ,∀i ∈ [I].

However (v, bη) also satisfies (Cη) since ‖(Wv − f0)i‖k ≤ ‖(Wfη − f0)i‖k and Di(Wv −
f0)i (x̃i,m) = Di(Wfη − f0)i (x̃i,m):∥∥∥∥∥ (Wfη − f0)i

∥∥∥∥∥
2

k

=

∥∥∥∥∥ ∑
q∈[Q]

Wi,q fη,q︸︷︷︸
vq+wq

−f0,i

∥∥∥∥∥
2

k

=

∥∥∥∥∥ ∑
q∈[Q]

Wi,qvq − f0,i︸ ︷︷ ︸
∈V

+
∑
q∈[Q]

Wi,qwq︸ ︷︷ ︸
∈V ⊥

∥∥∥∥∥
2

k

=

∥∥∥∥∥ ∑
q∈[Q]

Wi,qvq − f0,i

∥∥∥∥∥
2

k

+

∥∥∥∥∥ ∑
q∈[Q]

Wi,qwq

∥∥∥∥∥
2

k

≥

∥∥∥∥∥ ∑
q∈[Q]

Wi,qvq − f0,i

∥∥∥∥∥
2

k

= ‖(Wv − f0)i‖2k ,

Di(Wfη − f0)i (x̃i,m) = Di

∑
q∈[Q]

Wi,q fη,q︸︷︷︸
vq+wq

−f0,i

 (x̃i,m)

= Di(Wv − f0)i (x̃i,m) +Di

∑
q∈[Q]

Wi,qwq

 (x̃i,m)

= Di(Wv − f0)i (x̃i,m) +

〈∑
q∈[Q]

Wi,qwq, Di,xk (x̃i,m, ·)

〉
k︸ ︷︷ ︸

=0

using the derivative-reproducing property of kernels, and that
∑
q∈[Q]Wi,qwq ∈ V ⊥, while

Di,xk (x̃i,m, ·) ∈ V . The regularizer Ω is assumed to be strictly increasing in each argument
‖fη,q‖k. As ‖fη,q‖2k = ‖vq‖2k + ‖wq‖2k, and (fη,bη) minimizes L, wq = 0 necessarily; in other
words fη,q ∈ V for all q ∈ [Q].

10The linear hull of a finite set of points (vm)m∈[M ] in a vector space is denoted by span({vm}m∈[M ]) =
{
∑

m∈[M ] amvm | am ∈ R, ∀m ∈ [M ]}.
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(iii) Performance guarantee: From (i), we know that the solution (fη,bη) of (Pη) is also admissible
for (P). Discretizing the shape constraints is a relaxation of (P). Hence vdisc ≤ v̄ ≤ vη .

Let us fix any (pf ,pb) ∈ (Fk)
Q × RP belonging to the subdifferential of L(·, ·) + χC(·, ·) at

point (f̄ , b̄), where χC is the characteristic function of C, i.e. χC(u,v) = 0 if (u,v) ∈ C and
χC(u,v) = +∞ otherwise. Since

(
f̄ , b̄
)

is the optimum of (P), for any (f , b) admissible for (P),∑
q∈[Q]

〈pf,q, fq − f̄q〉k + 〈pb,b− b̄〉2 ≥ 0, (15)

where pf = (pf,q)q∈[Q]. Hence using the (µfq , µb)-strong convexity of L w.r.t. (fq,b) we get

L (fη, bη) ≥ L
(
f̄ , b̄
)

+
∑
q∈[Q]

〈
pfη,q, fη,q − f̄q

〉
k

+
〈
pb, bη − b̄

〉
2

+
∑
q∈[Q]

µfq
2
‖fη,q − f̄q‖2k

(16)

+
µb
2

∥∥bη − b̄∥∥22 .
As vη − vdisc ≥ L (fη, bη)− L

(
f̄ , b̄
)
, using the non-negativity (15) for (fη, bη), one gets from (16)

the claimed bound (9).

To prove (10), recall that
(
f̄ , b̄
)

satisfies (C) and that we assume B = RP . Let ηi =

maxm∈[Mi] ηi,m, i ∈ [I] with ηi,m defined in (12), and b̃ =
(
b̃i
)
i∈[I] ∈ RI with

b̃i := ηi
∥∥(Wf̄ − f0

)
i

∥∥
k
. (17)

As U is full-row rank, one can define its right inverse (UU+ = I) as U+ =
(
U>U

)−1
U>. Then

the pair
(
f̄ , b̄+ U+b̃

)
satisfies (Cη) since for any m ∈ [Mi]

ηi
∥∥(Wf̄ − f0

)
i

∥∥
k

= b̃i =
(
UU+b̃

)
i
≤
(
UU+b̃

)
i
+
(
Ub̄− b0

)
i
+Di

(
Wf̄ − f0)i(x̃i,m

)︸ ︷︷ ︸
≥0

=
(
U
(
b̄ + U+b̃

)
− b0

)
i
+Di

(
Wf̄ − f0)i(x̃i,m

)
.

Thus,
(
f̄ , b̄+ U+b̃

)
is admissible for (Pη) and as (fη, bη) is optimal for (Pη), we have

L (fη, bη)− L
(
f̄ , b̄
)
≤ L

(
f̄ , b̄+ U+b̃

)
− L

(
f̄ , b̄
) (a)

≤ Lb
∥∥U+b̃

∥∥
2
≤ Lb

∥∥U+
∥∥∥∥b̃∥∥

2

≤ Lb
∥∥U+

∥∥√I∥∥b̃∥∥∞ (b)

≤ Lb
∥∥U+

∥∥‖η‖∞√I max
i∈[I]

∥∥(Wf̄ − f0
)
i

∥∥
k

(c)
= Lbcf‖η‖∞,

where (a) stems from the local Lipschitz property of L (
∥∥U+b̃

∥∥
2
≤ cf‖η‖∞), (b) holds by (17), and

(c) follows from the definition of cf . Combined with (16), this gives the bound (10).

B Shape-constrained kernel ridge regression

In this section we illustrate in kernel ridge regression (KRR, (3)) the importance of enforcing hard
shape constraints in case of increasing noise level. We consider a synthetic dataset of N = 30 points
from the graph of a quadratic function where the values {xn}n∈[N ] ⊂ R were generated uniformly
on [−2, 2]. The corresponding y-coordinates of the graph were perturbed by additive Gaussian noise:

yn = x2n + εn (∀n ∈ [N ]), {εn}n∈[N ]
i.i.d.∼ N

(
0, ξ2

)
.

We impose a monotonically increasing shape constraint on the interval [xl, xu] = [0, 2], and study
the effect of the level of the added noise (ξ) on the desired increasing property of the estimate without
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Figure 4: (a): Illustration for kernel ridge regression. Observation: quadratic function perturbed
with additive Gaussian noise. Shape constraint: monotone increasing property on [0, 2]. Compared
techniques: regression without (KRR) and with hard shape constraint (SOC). (b): Violation of the
shape constraint for the unconstrained KRR estimator as a function of the amplitude of the added
Gaussian noise. Error measures: median of the proportion (left) and amount (right) of the violation of
the monotone increasing property on [0, 2]. Dashed lines: lower and upper quartiles. (c): Evolution
of the optimal objective values vη and vdisc when increasing the number M of discretization points of
the constraints on [0, 2]. (d): Computation time of (Pη) depending on the convex optimization solver
(SeDuMi or MOSEK) selected.
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(KRR) and with monotonic shape constraint (SOC). Here σ = 0.5 and λf = 10−4, while ξ varies in
the interval [0, 4].

Fig. 4(a) provides an illustration of the estimates in case of a fixed noise level ξ = 1. There is a good
match between the KRR and SOC estimates outside of the interval [0, 2], while the proposed SOC
technique is able to correct the KRR estimate to enforce the monotonicity requirement on [0, 2]. In
order to assess the performance of the unconstrained KRR estimator under varying level of noise, we
repeated the experiment 1000 times for each noise level ξ and computed the proportion and amount11

of violation of the monotonicity requirement. Our results are summarized in Fig. 4(b). The figure
shows that the error increases rapidly for KRR as a function of the noise level, and even for very
low level of noise the monotonicity requirement does not hold. These experiments demonstrate that
shape constraints can grossly be violated when facing noise if they are not enforced in an explicit and
hard fashion. To illustrate the tightening property of Theorem 3, i.e. that vdisc ≤ v̄ ≤ vη, Fig. 4(c)
shows the evolution of the optimal values vη and vdisc when increasing the number of discretization
points (M ) of the constraints on the constraint interval [0, 2]. Since by increasing M , we decrease η,
the value vη decreases, whereas vdisc increases as the discretization incorporates more constraints.
Larger value of M naturally increases the polynomial computation time but not necessarily at the
worst cubic expense, as shown in Fig. 4(d); the choice of the solver has also importance as it may
provide a factor of two gain.

C Examples of handled shape constraints

In order to make the paper self-contained, in this section we provide the reformulations using deriva-
tives of the additional shape constraints briefly mentioned at the end of Section 2: n-monotonicity
(s = n; Chatterjee et al., 2015), (n− 1)-alternating monotonicity (Fink, 1982), monotonicity w.r.t.
unordered weak majorization (s = 1; Marshall et al., 2011, A.7. Theorem) or w.r.t. product ordering
(s = 1), or supermodularity (s = 2; Simchi-Levi et al., 2014, Section 2).

Particularly, n-monotonicity (n ∈ N∗) writes as f (n)(x) ≥ 0 (∀x). (n−1)-alternating monotonicity12

(n ∈ N∗) is similar: for n = 1 non-negativity and non-increasing properties are required; for n ≥ 2
(−1)jf (j) has to be non-negative, non-increasing and convex for ∀j ∈ {0, . . . , n − 2}. The other
examples are

• Monotonicity w.r.t. partial ordering: These generalized notions of monotonicity (u 4 v ⇒
f(u) ≤ f(v)) rely on the partial orderings u 4 v iff

∑
j∈[i] uj ≤

∑
j∈[i] vj for all i ∈ [d]

(unordered weak majorization) and u 4 v iff ui ≤ vi (∀i ∈ [d]) (product ordering). For C1

functions mononicity w.r.t. the unordered weak majorization is equivalent to

∂e1f(x) ≥ . . . ≥ ∂edf(x) ≥ 0 (∀x).

Monotonicity w.r.t. product ordering for C1 functions can be rephrased as

∂ejf(x) ≥ 0, (∀j ∈ [d], ∀x).

• Supermodularity: Supermodularity means that f(u∨v)+f(u∧v) ≥ f(u)+f(v) for all u,v ∈
Rd, where maximum and minimum are meant coordinate-wise, i.e. u ∨ v := (max(uj , vj))j∈[d]
and u ∧ v := (min(uj , vj))j∈[d] for u,v ∈ Rd. For C2 functions this property corresponds to

∂2f(x)

∂xi∂xj
≥ 0 (∀i 6= j ∈ [d],∀x).

11These performance measures are defined as 1
2

∫ 2

0
max(0,−f ′(x))dx and

∫ 2

0
maxy∈[0,x][f(y)− f(x)]dx.

By construction both measures are zero for SOC.
12For instance, the generator of a d-variate Archimedean copula can be characterized by (d− 2)-alternating

monotonicity (Malov, 2001; McNeil and Neslehová, 2009).
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