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Abstract

We study portfolio selection in a complete continuous-time market where the prefer-

ence is dictated by the rank-dependent utility. As such a model is inherently time incon-

sistent due to the underlying probability weighting, we study the investment behavior of

sophisticated consistent planners who seek (subgame perfect) intra-personal equilibrium

strategies. We provide sufficient conditions under which an equilibrium strategy is a

replicating portfolio of a final wealth. We derive this final wealth profile explicitly, which

turns out to be in the same form as in the classical Merton model with the market price of

risk process properly scaled by a deterministic function in time. We present this scaling

function explicitly through the solution to a highly nonlinear and singular ordinary differ-

ential equation, whose existence of solutions is established. Finally, we give a necessary

and sufficient condition for the scaling function to be smaller than 1 corresponding to an

effective reduction in risk premium due to probability weighting.

∗Univ Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France; Email: ying.hu@univ-rennes1.fr. Par-

tially supported by Lebesgue Center of Mathematics “Investissementsd’avenir”program-ANR-11-LABX-0020-

01, by ANR CAESARS (Grant No. 15-CE05-0024) and by ANR MFG (GrantNo. 16-CE40-0015-01).
†Mathematical Institute and Oxford–Nie Financial Big Data Lab, University of Oxford, Oxford OX2 6GG,

UK; Email: jinh@maths.ox.ac.uk. The research of this author was partially supported by research grants from

Oxford–Nie Financial Big Data Lab and Oxford–Man Institute of Quantitative Finance.
‡Department of IEOR, Columbia University, New York, NY 10027, USA; Email: xz2574@columbia.edu.

The research of this author was supported through start-up grants at both University of Oxford and Columbia

University, and research funds from Oxford–Nie Financial Big Data Lab, Oxford-Man Institute of Quantitative

Finance, and Nie Center for Intelligent Asset Management.

1



Keywords: Rank-dependent utility, probability weighting, portfolio selection, con-

tinuous time, time inconsistency, intra-personal equilibrium strategy, market price of risk

1 Introduction

The classical expected utility theory (EUT) is unable to explain many puzzling phenomena

and paradoxes, such as, just to name a few, the Allais paradox, the co-existence of risk-

averse and risk-seeking behavior of a same individual, and the disposition effect in financial

investment. Rank-dependent utility theory (RDUT), first proposed by Quiggin (1982), has

been developed to address some of these puzzles and has thus far been widely considered as

one of the most prominent alternative theories on preferences and choices. In addition to

a concave outcome utility function as in EUT, RDUT features a probability weighting (or

distortion) function whose slopes give uneven weights on random outcomes when calculating

the mean. The presence of probability weighting is supported by a large amount of experimental

and empirical studies, many of which find that such a weighting function typically displays an

“inverse S-shape” (namely, it is first concave and then convex in its domain); see, e.g. Tversky

and Kahneman (1992), Wu and Gonzalez (1996) and Tanaka et al (2010). This particular

shape captures individuals’ tendency to exaggerate the tiny probabilities of both improbable

large gains (such as winning a lottery) and improbable large losses (such as encountering a

plane crash). In particular, Tversky and Kahneman (1992) propose a specific parametric class

of inverse S-shaped weighting functions, which will be used as a baseline example to test the

assumptions in our paper.

In this paper we study a continuous-time financial portfolio selection model in which

an agent pursues the highest rank-dependent utility (RDU) value. In contrast to classical

continuous-time portfolio models such as Merton’s (Merton 1969), a dynamic RDU model is

intrinsically time inconsistent; namely, any “optimal” strategy for today will generally not be

optimal for tomorrow. As a result, there is no notion of a dynamically optimal strategy for a

time-inconsistent model because any such a strategy, once devised for this moment, will have to

be abandoned immediately (and indeed infinitesimally) at the next moment. The time incon-

sistency of the RDU model emanates from the probability weighting which weights the random

outcomes unevenly according to their probabilities of occurrence. Consider as an example a
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10-period binomial lattice model with equal probabilities of moving up and down at any given

state. Standing at t = 0 the probability of reaching the top most state (TMS) at t = 10 is

extremely small (2−10). If the agent has an inverse S-shaped probability weighting then she

will greatly inflate this probability. As time goes by and the agent moves along the lattice

the probabilities of this same event – eventually reaching the TMS – keep changing, and so do

the degrees of probability weighting. Indeed, once at t = 9 the probability of finally reaching

the TMS is either 1/2 or 0 – which any reasonably intelligent individual is able to tell – and

hence there is no probability weighting at all. We hereby see an inconsistency in the strength

of probability weighting over time which is the key reason behind the time inconsistency of an

RDU model.

Time inconsistency changes fundamentally the way we deal with dynamic optimization in

general. Optimization is intimately associated with decision making, and finding an optimal

solution is therefore to advise on the best decisions. Now, there is no optimal solutions under

time inconsistency: so what is the purpose of studying a time-inconsistent problem?

In his seminal paper, Strotz (1955) describes three types of agents when facing time in-

consistency. Type 1, a “spendthrift” (or a naiveté as in the more recent literature), does not

recognize the time inconsistency and at any given time seeks an optimal solution for that mo-

ment only. As a result, his strategies are always myopic and change all the times. The next

two types are aware of time inconsistency but act differently. Type 2 is a “precommitter” who

solves the optimization problem only once at time 0 and then commits to the resulting strat-

egy throughout, even though she knows that the original solution may no longer be optimal

at later times. Type 3 is a “thrift” (or a sophisticated agent) who is unable to precommit

and realizes that her future selves will disobey whatever plans she makes now. Her resolution

is to compromise and choose consistent planning in the sense that she optimizes taking the

future disobedience as a constraint. The Strotzian approach to time inconsistency is, therefore,

descriptive, namely to describe what people actually do – the different reactions and behaviors

in front of the inconsistency, as opposed to being normative, namely to tell people what to do.

It is both interesting and challenging to formulate mathematical models for each of the three

types and solve them. It is interesting because these models are very different from the classical

stochastic control based ones and different from each other, and it is challenging because the

most powerful tools for tackling dynamic optimization such as dynamic programming and
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martingale analysis are based on time consistency and hence fail for time-inconsistent problems.

Recently, there is an upsurge of research interest and effort in the fields of stochastic control and

mathematical finance/insurance in studying time-inconsistent models, mostly focusing on three

different problems: mean–variance portfolio selection, and those involving non-exponential

discounting or probability weighting. Earlier works focused on Type 2, precommitted agents

(see, e.g., Li and Ng 2000, Zhou and Li 2000, He and Zhou 2011), and later ones gradually

shifted to Type 3, consistent planners or sophisticated agents (Ekeland and Lazrak 2006, Bjork

and Murgoci 2010, Hu et al 2012, Hu et al 2017, Bjork et al 2014).

The Type 3 problem can be mathematically formulated as a game in the following way.

The sophisticated agent, anticipating the disagreement between her current and future selves,

searches for a dynamic strategy that all the future selves have no incentive to deviate from.

The resulting strategy is a (subgame perfect) intra-personal equilibrium that will be carried

through. In the continuous-time setting, Ekeland and Lazrak (2006) are the first to give

a formal definition of such an equilibrium (albeit for a deterministic Ramsey model with

non-exponential discounting), based on a first-order condition of a “spike variation” of the

equilibrium strategy.

This paper derives the consistent investment strategies of a Type 3 RDU agent in a

continuous-time market in which the asset prices are described by stochastic differential equa-

tions (SDEs). We make several contributions, both methodologically and economically. First

of all, to our best knowledge, this paper is the first to formulate and attack an RDU invest-

ment problem in the continuous-time setting. There are substantial difficulties in approaching

the problem. Most notably, in deriving an equilibrium strategy, one needs to analyze the ef-

fect of the aforementioned spike variation on the RDU objective functional. In the absence

of probability weighting, there is a well-developed approach at disposal to do this, based on

calculus of variations and sample-path dependence of SDEs on parameters.1 With probability

weighting, however, we need to study the distributional dependence of the SDE solutions on

parameters, which is actually a largely unexplored topic to our best knowledge. Starting from

scratch, we carry out a delicate analysis to solve the problem thoroughly. The final solution

requires the existence of solutions to a highly nonlinear, singular ordinary differential equation

1The same approach is used to derive the stochastic maximum principle for optimal stochastic controls; see,

e.g., Yong and Zhou (1999).
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(ODE), the validity of an inequality, and the existence of the Lagrange multiplier to a budget

constraint. We then provide sufficient conditions on the model primitives to ensure that these

three requirements are met.

The equilibrium strategy is a replicating portfolio to a terminal wealth profile we derive

explicitly, assuming that the market is complete. Curiously, the terminal wealth is of the same

form as that with the classical Merton optimal strategy under EUT, except that the market

price of risk or risk premium process needs to be multiplied by a scaling factor, the latter in turn

determined by a solution to the aforementioned nonlinear ODE. To put this in a different way,

the sophisticated RDU behaves as if she was an EUT agent, albeit in a revised market where

the risk premium is properly scaled. The scaling factor depends on the original investment

opportunity set and the agent’s probability weighting function, but not her outcome utility

function. This suggests that the additional constraint arising from the consistent planning

due to time inconsistency can be transferred to the market opportunity set. This observation

could be a key leading to identifying market equilibria where all the agents are RDU consistent

planners.

When the scaling factor is less than 1, the risk premium is reduced and the agent is more

risk averse than her EUT counterpart. In this case the probability weighting and consistent

planning make the agent to take less risky exposure. We present a necessary and sufficient

condition for this to happen.

It should be noted that, in order to derive our main results, we make several assumptions on

the model primitives. Some of them may look quite technical especially those on the weighting

function. However, we do not impose those assumptions for mathematical convenience; instead

we make sure that they are mathematically mild and economically reasonable. In particular,

all the assumptions on the weighting function are satisfied by the baseline function proposed

by Tversky and Kahneman (1992).

The rest of the paper is organized as follows. In Section 2, we state our problem and define

the intra-personal equilibrium in the same spirit as in our previous work Hu et al. (2012,2017).

In Section 3, we present sufficient conditions under which the equilibrium terminal wealth

can be explicitly derived. In Section 4, we examine these sufficient conditions closely on our

model primitives. Section 5 is devoted to a concrete example demonstrating the results of

the paper. In Section 6, we present an equivalent condition for an effectively reduced risk
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premium. Finally, Section 7 concludes. In Appendices, we state related general results on

a class of singular ODEs, and verify our assumptions on a family of time-varying Tversky–

Kahneman’s weighting functions.

2 Problem Formulation

2.1 The market

We consider a continuous-time market in a finite time horizon [0, T ], where there are a risk-

free asset and n risky assets being traded frictionlessly with price processes S0(·) and Si(·),

i = 1, · · · , n, respectively. The risk-free interest rate, without loss of generality, is set to be

r(·) ≡ 0, or equivalently, S0(t) ≡ S0(0). The dynamics of Si(·), i = 1, · · · , n, of the risky assets

follow a multi-dimensional geometric Brownian motion

dSi(t) = Si(t)

[
µi(t)dt+

n∑
j=1

σi,j(t)dWj(t)

]
, i = 1, · · · , n,

where µi(·) and σi,j(·) are all deterministic functions of time t, W (·) = (W1(·), · · · ,Wn(·))> is

an n-dimensional standard Brownian motion in a filtered probability space (Ω,F , (Ft)t∈[0,T ],P)

with Ft = σ(Ws : s ≤ t) ∨N (P). Here > denotes the matrix transpose.

Denote µ(t) = (µ1(t), · · · , µn(t))> and σ(t) = (σi,j(t))n×n. We assume that σ(·) is invertible

and that the market price of risk is θ(t) := σ(t)−1µ(t); so the market is arbitrage free and

complete.

A trading strategy is a self-financing portfolio described by an Ft-adapted process π(·) =

(π1(·), · · · , πn(·))>, where πi(t) is the dollar amount allocated to asset i at time t. Under such

a portfolio π(·), the dynamics of the corresponding wealth process X(·) evolve according to

the wealth equation

dX(t) = π(t)>µ(t)dt+ π(t)>σ(t)dW (t). (2.1)

For any t ∈ [0, T ), we say a trading strategy π(·) is admissible on [t, T ] if E
∫ T
t
|π(s)>µ(s)|ds <

+∞ and E
∫ T
t
|π(s)>σ(s)|2ds < +∞.
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2.2 Rank-dependent utility

An agent, with an initial endowment x0 at time t = 0, pursues the highest possible rank-

dependent utility (RDU) of her wealth at t = T by dynamically trading in the market. At any

given time t with the wealth state X(t) = x she takes an admissible portfolio π(·) on [t, T ]

leading to the terminal wealth X(T ). The RDU value of this terminal wealth is

J(X(T ); t, x) =

∫ +∞

0

w (t,Pt(u(X(T )) > y)) dy +

∫ 0

−∞
[w (t,Pt(u(X(T )) > y))− 1] dy,

where w(t, ·) is the probability weighting applied at time t, u(·) is the (outcome) utility function,

and Pt := P(·|Ft) denotes the conditional probability given Ft, which includes the information

X(t) = x. The agent’s original objective is to maximize J(X(T ); t, x) by choosing a proper

admissible investment strategy.

Here we allow the weighting function w to depend explicitly on time t. This is not just for

mathematical generality; the time variation of probability weighting is supported empirically

(Dierkes 2013, Cui et al 2020) and argued for on a psychology ground (Cui et al 2020).

2.3 Equilibrium strategies

As discussed in Introduction, probability weighting in general causes time-inconsistency. This

means an optimal strategy with respect to J(X(T ); 0, X(0)) is not necessarily still optimal with

respect to J(X(T ); t,X(t)) for a future time t > 0, where X(·) is the “optimal” wealth process

projected at t = 0 for the objective J(X(T ); 0, X(0)). In this paper, we study the behaviors

of a sophisticated agent who is aware of the time-inconsistency but lacks commitment, and

who instead seeks a consistent investment among all the different selves t ∈ [0, T ] by finding

intra-personal equilibrium strategies.

Precisely, given an admissible trading strategy π(·) with the corresponding wealth process

X(·) starting from X(0) = x0, a time t ∈ [0, T ) and a small number ε ∈ (0, T − t), we

define a slightly perturbed strategy which adds $k on top of π(·) over the small time interval

[t, t + ε) while keeping π(·) unchanged outside of this interval. Here k is an Ft-measurable

random vector. This technique is called a spike variation. It follows from the wealth equation

(2.1) that the perturbed terminal wealth is X(T ) + k>∆(t, ε), where ∆(t, ε) =
∫ t+ε
t

µ(s)ds +∫ t+ε
t

σ(s)dW (s).
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Definition 2.1 An admissible strategy π(·) with the wealth process X(·) starting from X(0) =

x0 is called an equilibrium strategy, if for any t ∈ [0, T ) and any Ft-measurable random vector

k, one has

lim sup
ε↓0

J(X(T ) + k>∆(t, ε); t,X(t))− J(X(T ); t,X(t))

ε
≤ 0. (2.2)

This definition follows most existing works on time-inconsistent optimal controls in continuous

time; see e.g. Ekeland and Lazrak (2006), Bjork and Murgoci (2010), and Hu et al (2012, 2017).

Theoretically, an equilibrium strategy is an “infinitesimally” sub-game perfect equilibrium

among all the selves t ∈ [0, T ).2

The objectives of this paper are to find conditions under which there exists an equilibrium

strategy, to derive the terminal wealth under such a strategy, and to draw economic implica-

tions and interpretations of the results. Since the market is complete, once the desired terminal

wealth profile is identified its replicating portfolio is then the corresponding equilibrium strat-

egy for consistent investment.

2.4 Assumptions

In this subsection we collect all the assumptions needed on the market parameters as well as

on the preference functions.3 These assumptions are henceforth in force, without necessarily

being mentioned again in all the subsequent statements of results.

Assumption 2.2 The functions µ(·), σ(·) and θ(·) are all right continuous and uniformly

bounded, and θ(t) 6= 0 ∀t ∈ [0, T ].

2Definition 2.1 is also in line with the original Strotz’s vision of intrapersonal equilibrium (Strotz 1955),

adjusted for the continuous-time setting. More specifically, a Strotzian equilibrium strategy stipulates that for

any given self t, all the future selves will commit to the strategy, because any deviation from the strategy will

make the deviating self t worse off. In a continuous-time setting, however, any fixed t alone has no influence

on the terminal wealth because it has a measure of zero. Therefore, one considers instead a small “alliance” of

self t: the interval [t, t+ ε). Definition 2.1 posits that a “deviation-in-alliance” from equilibrium fares worse in

a first-order sense.
3Throughout this paper, by an “increasing” function we mean a “non-decreasing” function, namely f is

increasing if f(x) ≥ f(y) whenever x > y. We say f is “strictly increasing” if f(x) > f(y) whenever x > y.

Similar conventions are used for “decreasing” and “strictly decreasing” functions.
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Assumption 2.3 (i) w(·, ·) : [0, T ] × [0, 1] 7→ [0, 1] is measurable. Moreover, for each t ∈

[0, T ], w(t, ·) : [0, 1] 7→ [0, 1] is strictly increasing, C2, and w(t, 0) = 0, w(t, 1) = 1

∀t ∈ [0, T ].

(ii) u(·) : R 7→ R is strictly increasing, strictly concave, C3, and u(−∞) = −∞, u′(−∞) =

+∞, u′(+∞) = 0.

These two are very weak assumptions, representing some “minimum requirements” for the

model primitives.

Define I(x) := (u′)−1(x) , x > 0, and l(x) := − lnu′(x), x ∈ R.

Assumption 2.4 (i) There exists α > 0 such that lim supx→+∞
x−α

−I′(x)
< +∞, or equiva-

lently, lim supx→−∞
−u′′(x)
u′(x)α

< +∞.

(ii) There exist a > 0, b > 0 such that l′(x) ≤ ea|l(x)|+b, l′′(x) ≤ ea|l(x)|+b ∀x ∈ R.

(iii) u′′′(x) ≥ 0 ∀x ∈ R.

(iv) For any t ∈ [0, T ], there exist c > 0 and m ∈ (−1, 0), both possibly depending on t, such

that

w′p(t, p) ≤ c[pm + (1− p)m] ∀ p ∈ (0, 1).

Assumption 2.4-(i) and -(ii) are very mild conditions satisfied by most commonly used

utility functions defined on R (e.g. the exponential utility). Assumption 2.4-(iii) implies the

risk prudence of the agent, capturing her tendency to take precautions against future risk.

Many common utility functions are prudent.4 Assumption 2.4-(iv) is to control the level of

probability weighting on very small and very large probabilities. It is satisfied by some well-

known weighting functions, e.g. that of Tversky and Kahneman (1992); see Appendix B.

Assumption 2.5 There exist constants ν > 0, ζ > 0, such that∫ 0

−∞
u′(x)−νdx < +∞,

∫ ∞
0

u′(x)νdx < +∞,
∫ +∞

−∞
u′(x)e−ζx

2

dx < +∞.

This is also a mild assumption, which is satisfied by, say, the exponential utility function.

4Through an experiment with a large number of subjects, Noussair et al (2014) observe that the majority

of individuals’ decisions are consistent with prudence.
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2.5 A crucial function

The following real-valued function, generated from the weighting function, will play a central

role throughout this paper:

h(t, x) := E
[
w′p(t, N(ξ))exξ

]
> 0, t ∈ [0, T ], x ∈ R,

where (and henceforth) w′p(t, p) := ∂
∂p
w(t, p), ξ is a standard normal random variable with N

being its probability distribution function. Similarly, we denote by h′x(t, x) and h′′x(t, x) the

first- and second-order partial derivatives of h in x respectively, and in general h
(n)
x (t, x) the

n-th order partial derivative of h in x.

Lemma 2.6 h(t, x) < +∞ ∀(t, x) ∈ [0, T ]× R.

Proof. Fix (t, x) ∈ [0, T ]× R. It follows from Assumption 2.4-(iv) that w′p(t, p) ≤ c(pm + (1−

p)m) ∀ p ∈ (0, 1) for some c > 0 and m ∈ (−1, 0). Denote m̂ := m−1
2
∈ (−1,m), p := m̂

m
> 1,

q := p
p−1

> 1. Applying Young’s inequality amb ≤ am̂

p
+ bq

q
∀a ≥ 0, b ≥ 0, we obtain

E[(N(ξ))me±xξ] ≤ E
[

1

p
(N(ξ))m̂ +

1

q
e±xqξ

]
=

1

(m̂+ 1)p
+

1

q
e(qx)2/2.

So

h(t, x) ≤ c
(
E[N(ξ)mexξ] + E[N(−ξ)mexξ]

)
= c(E[N(ξ)mexξ] + E[N(ξ)me−xξ])

≤ 2c

[
1

(m̂+ 1)p
+

1

q
e(qx)2/2

]
< +∞.

The proof is complete. �

The following lemma collects some basic properties of h which will be useful in the sequel.

Lemma 2.7 For any t ∈ [0, T ], h(t, ·) has the following properties:

(i) h(t, 0) = 1.

(ii) h(t, x) is C∞ in x ≥ 0, with h
(n)
x (t, x) = E

[
w′p(t, N(ξ))ξnexξ

]
, x ≥ 0, ∀n ≥ 0.

(iii) h
(n)
x (t, x) is convex in x ≥ 0 for all even n ≥ 0, and increasing in x ≥ 0 for all odd n ≥ 1.

(iv) lnh(t, x) is convex in x ≥ 0.
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Proof. (i) We have

h(t, 0) = E[w′p(t, N(ξ))] =

∫ ∞
−∞

w′p(t, N(x))dN(x) =

∫ 1

0

w′p(t, p)dp = w(t, 1)− w(t, 0) = 1.

(ii) For ε 6= 0, write

h(t, x+ ε)− h(t, x)

ε
= E

[
w′p(t, N(ξ))ξ

∫ 1

0

e(x+θε)ξdθ

]
.

For x ≥ 0, we have

0 <

∫ 1

0

e(x+θε)ξdθ ≤ e(x+|ε|)ξ + e−|ε|ξ.

Fix a < 0. For any integer n ≥ 0, it follows from h(t, a) < +∞ that there exists a constant

Cn > 0 such that

|ξn| ≤ Cn(eaξ/2 + eξ).

Now, for any ε with |ε| < min(−a/2, 1), we have

|w′p(t, N(ξ))ξ

∫ 1

0

e(x+θε)ξdθ|

≤ w′p(t, N(ξ))|ξ|
(
e(x+|ε|)ξ + e−|ε|ξ

)
≤ C1w

′
p(t, N(ξ))

(
e(x+|ε|+1)ξ + e(1−|ε|)ξ + e(x+|ε|+a/2)ξ + e(a/2−|ε|)ξ)

< C1w
′
p(t, N(ξ))

(
e(x−a/2+1)ξ + e(x+1)ξ + e(1+a/2)ξ + eξ + e(x+a/2)ξ + exξ + eaξ + eaξ/2

)
,

where to deduce the last inequality we have repeatedly used the fact that ey < ey1 + ey2 for

any y2 > y1 and y ∈ [y1, y2]. From the assumption of the lemma, it follows that the last term

of the above is a random variable with a finite mean; hence Lebesgue’s dominated convergence

theorem yields

h′x(t, x) = E[w′p(t, N(ξ))ξexξ].

Similarly, we can derive the desired expressions of higher-order derivatives.

(iii) The result is straightforward by (ii).

(iv) It follows from (ii) and the Cauchy–Schwarz inequality that, for x ≥ 0,

h′x(t, x) = E
[
w′p(t, N(ξ))ξexξ

]
= E

[√
w′p(t, N(ξ))ξexξ/2 ·

√
w′p(t, N(ξ))exξ/2

]
≤

√
E
[
w′p(t, N(ξ))ξ2exξ

]
·
√

E
[
w′p(t, N(ξ))exξ

]
=

√
h′′x(t, x)

√
h(t, x).
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Thus
∂2

∂x2
lnh(t, x) =

h′′x(t, x)h(t, x)− (h′x(t, x))2

h2(t, x)
≥ 0,

establishing the desired convexity. �

3 Equilibrium Strategies

3.1 An Ansatz and an ODE

Our approach to deriving the equilibrium strategies is inspired by an Ansatz we now make. If

the agent was an expected utility maximizer, then her optimal strategy would be to dynamically

replicate the terminal wealth I(κρ(T )) where ρ(·) is the state-price density process defined as

ρ(t) := exp

(
−1

2

∫ t

0

|θ(s)|2ds−
∫ t

0

θ(s)>dW (s)

)
, (3.1)

and κ is the Lagrange multiplier for the budget constraint. We conjecture that in the current

RDU setting the terminal wealth from an equilibrium strategy is still of the form I(κρ̄(T ))

with a revised state-price density process determined by multiplying the market price of risk

function θ(·) by a scaling function λ(·):

ρ̄(t) = exp

(
−1

2

∫ t

0

|λ(s)θ(s)|2ds−
∫ t

0

λ(s)θ(s)>dW (s)

)
. (3.2)

Since now we have conjectured a specific form of the desired terminal wealth profile X(T ),

we will be able to calculate its RDU value along with that of a slightly perturbed wealth

process in the spirit of Definition 2.1. Then, the equilibrium condition (2.2) will lead to an

equation that can be used to identify λ(·) as well as to other conditions.

It turns out that the equation to derive λ(·) is an ODE, explicitly expressed in the following

form:  Λ′(t) = −|θ(t)|2
(

h(t,
√

Λ(t))

h′x(t,
√

Λ(t))

)2

Λ(t), t ∈ [0, T ),

Λ(T ) = 0.

(3.3)

This is a highly nonlinear ODE that is singular at T . The existence of its positive solutions

will be established in Subsection 4.2.

The scaling function λ(·) in determining (3.2) is then given by

λ(t) :=
√
−Λ′(t)/|θ(t)|2 > 0, t ∈ [0, T ), (3.4)

where Λ(·) is a positive solution of (3.3).
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3.2 Terminal wealth of an equilibrium strategy

The following result gives a complete solution to our problem by presenting the explicit terminal

wealth profile of an equilibrium strategy.

Theorem 3.1 Assume that equation (3.3) admits a solution Λ(·) ∈ C[0, T ] ∩ C1[0, T ) with

Λ(t) > 0 ∀t ∈ [0, T ), and that the following inequality holds for any c ∈ R:∫ +∞

−∞
w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′

(
c− g(x)√

Λ(t)

)(
g′′(x) +

c− g(x)

Λ(t)
g′(x)2

)
du(x) ≥ 0, a.e.t ∈ [0, T ).

(3.5)

Moreover, assume there is κ > 0 such that the following holds

E [ρ(T )I(κρ̄(T ))] = x0 (3.6)

where x0 > 0 is the initial endowment of the agent at t = 0. Then the portfolio replicating the

terminal wealth

X(T ) := I (κρ̄(T )) (3.7)

where ρ̄(T ) is determined through (3.2) – (3.4), is an equilibrium strategy.

Proof. Denote

Es,t :=

∫ t

s

λ(v)θ(v)>dW (v) ∀0 ≤ s ≤ t ≤ T, f(x) := I(κe−
1
2

Λ(0)e−x) =: g−1(x), v(x) := u−1(x), x ∈ R.

It is easy to see that, for any s ∈ [0, T ) and conditional on Fs, Es,t is normal, i.e., Es,T |Fs ∼

N(0,Λ(s)), and (3.7) can be rewritten as X(T ) = f(E0,T ).

Let π(·) be the replicating strategy of X(T ), which exists by the market completeness.

Moreover, the budget constraint (3.6) ensures that π(·) is an admissible portfolio starting from

the initial wealth x0. The goal is to prove that π(·) is an equilibrium strategy.

Fix t ∈ [0, T ). Consider the perturbed strategy described in Subsection 2.3 with the

perturbed final wealth X(T ) + k>∆(t, ε), where ε ∈ (0, T − t). To compute the RDU value of

this perturbed strategy, we first calculate, for any y ∈ R:

Pt
(
u(X(T ) + k>∆(t, ε)) > y

)
= Pt

(
X(T ) > v(y)− k>∆(t, ε)

)
= Pt

(
Et+ε,T > g(v(y)− k>∆(t, ε))− E0,t+ε

)
= Et

[
Pt+ε

(
Et+ε,T > g(v(y)− k>∆(t, ε)

)
− E0,t+ε)

]
= Et

[
N

(
E0,t+ε − g(v(y)− k>∆(t, ε))√

Λ(t+ ε)

)]
,

13



where Pt = P(·|Ft) and Et = E[·|Ft].

Denote m(s, y) = v(y)− k>∆(t, s) and Y (s, y) = E0,t+s−g(m(s,y))√
Λ(t+s)

, s ∈ [0, ε), y ∈ R. Applying

Itô’s formula and noting that Λ′(t+ s) = −λ(t+ s)2|θ(t+ s)|2, we derive5

dY (s) =

[
Y (s)

2Λ(t+ s)
λ(t+ s)2|θ(t+ s)|2 +

g′(m(s))k>µ(t+ s)√
Λ(t+ s)

− g′′(m(s))|k>σ(t+ s)|2

2
√

Λ(t+ s)

]
ds

+
λ(t+ s)θ(t+ s)> + g′(m(s))k>σ(t+ s)√

Λ(t+ s)
dW (t+ s), s ∈ [0, ε).

Applying Itô’s formula again yields

dN(Y (s)) = N ′(Y (s))dY (s) +
1

2Λ(t+ s)
N ′′(Y (s))|λ(t+ s)θ(t+ s)> + g′(m(s))k>σ(t+ s)|2ds

= N ′(Y (s))dY (s)− 1

2Λ(t+ s)
N ′(Y (s))Y (s)|λ(t+ s)θ(t+ s)> + g′(m(s))k>σ(t+ s)|2ds

= A(s)ds+B(s)dW (t+ s), s ∈ [0, ε),

where

A(s) := N ′(Y (s))√
Λ(t+s)

[
g′(m(s))k>µ(t+ s)− g′′(m(s))

2
|σ(t+ s)>k|2

−Y (s)g′(m(s))2

2
√

Λ(t+s)
|σ(t+ s)>k|2 − Y (s)g′(m(s))√

Λ(t+s)
k>σ(t+ s)λ(t+ s)θ(t+ s)

]
= N ′(Y (s))√

Λ(t+s)

[
−1

2

(
g′′(m(s)) + g′(m(s))2 Y (s)√

Λ(t+s)

)
|σ(t+ s)>k|2

+g′(m(s))

(
1− Y (s)λ(t+s)√

Λ(t+s)

)
θ(t+ s)>σ(t+ s)>k

]
,

B(s) := N ′(Y (s))√
Λ(t+s)

[
λ(t+ s)θ(t+ s)> + g′(m(s))k>σ(t+ s)

]
.

(3.8)

Integrating from s = 0 to s = δ, where δ ∈ (0, ε], and then taking conditional expectations on

the above, we obtain

Et[N(Y (δ))] = N(Y (0)) +

∫ δ

0

Et[A(s)]ds, (3.9)

where we have used the fact that
∫ ·

0
B(s)dW (t+ s) is a martingale on [0, ε] for sufficiently

small ε > 0 and hence

Et
∫ δ

0

B(s)dW (t+ s) = 0, δ ∈ (0, ε]. (3.10)

5To save space, we will omit to write out the dependence of m and Y in y from this point of the proof,

except when it is important to spell out this dependence. However, the reader is urged to bear in mind this

dependence while reading the proof.
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A proof of this martingality will be delayed to Subsection 3.3. Now, we have

lim sup
ε↓0

w
(
t,Pt(u(X(T ) + k>∆(t, ε)) > y)

)
− w (t,Pt(u(X(T )) > y))

ε

= lim sup
ε↓0

w(t,Et[N(Y (ε))])− w(t, N(Y (0)))

ε

= lim sup
ε↓0

w
(
t, N(Y (0)) +

∫ ε
0
Et[A(s)]ds

)
− w(t, N(Y (0)))

ε

= w′p(t, N(Y (0))) · lim sup
ε↓0

1

ε

∫ ε

0

Et[A(s)]ds

= w′p(t, N(Y (0)))A(0).

Hence (from this point on we will write back the variable y)

lim supε↓0
J(X(T )+k>∆(t,ε);t,X(t))−J(X(T );t,X(t))

ε

= lim supε↓0
∫ +∞
−∞

w(t,Et[N(Y (ε,y))])−w(t,N(Y (0,y)))
ε dy

≤
∫ +∞
−∞ lim supε↓0

w(t,Et[N(Y (ε,y))])−w(t,N(Y (0,y)))
ε dy

=
∫ +∞
−∞ w′p(t,N(Y (0, y)))A(0, y)dy

= −|σ(t)>k|2 1

2
√

Λ(t)

∫ +∞
−∞ w′p(t,N(Y (0, y)))N ′(Y (0, y))

(
g′′(m(0, y)) + g′(m(0, y))2 Y (0,y)√

Λ(t)

)
dy

+θ(t)>σ(t)>k 1√
Λ(t)

∫ +∞
−∞ w′p(t,N(Y (0, y)))N ′(Y (0, y))g′(m(0, y))

(
1− Y (0,y)√

Λ(t)
λ(t)

)
dy.

(3.11)

In the above, the first inequality

lim supε↓0
∫ +∞
−∞

w(t,Et[N(Y (ε,y))])−w(t,N(Y (0,y)))
ε

dy

≤
∫ +∞
−∞ lim supε↓0

w(t,Et[N(Y (ε,y))])−w(t,N(Y (0,y)))
ε

dy
(3.12)

will be proved in Subsection 3.4.

By Definition 2.2, the underlying strategy is an equilibrium if the right hand side of (3.11)

is non-positive for any k ∈ Rn.6 However, the right hand side, being quadratic in σ(t)>k while

σ(t) is invertible, is non-positive for any k if and only if (noting θ(t) 6= 0)∫ +∞

−∞
w′p(t, N(Y (0, y)))N ′(Y (0, y))g′(m(0, y))

(
1− Y (0, y)√

Λ(t)
λ(t)

)
dy = 0, (3.13)

and ∫ +∞

−∞
w′p(t, N(Y (0, y)))N ′(Y (0, y))

(
g′′(m(0, y)) + g′(m(0, y))2Y (0, y)√

Λ(t)

)
dy ≥ 0. (3.14)

6Recall that t is fixed; so any Ft-measurable random vector k is almost surely deterministic conditional on

Ft.
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Recall that m(0, y) = v(y) and Y (0, y) = E0,t−g(v(y))√
Λ(t)

. By changing variables x = v(y) and

z = E0,t−g(x)√
Λ(t)

, the equation (3.13) becomes

0 =

∫ +∞

−∞
w′p

(
t, N

(
E0,t − g(x)√

Λ(t)

))
N ′

(
E0,t − g(x)√

Λ(t)

)
g′(x)

(
1− E0,t − g(x)

Λ(t)
λ(t)

)
u′(x)dx

= −
∫ +∞

−∞
w′p

(
t, N

(
E0,t − g(x)√

Λ(t)

))
N ′

(
E0,t − g(x)√

Λ(t)

)(
1− E0,t − g(x)

Λ(t)
λ(t)

)
du′(x)

= −
∫ +∞

−∞
w′p(t, N(z))N ′(z)

(
1− z√

Λ(t)
λ(t)

)
de
√

Λ(t)z−E0,t

= −e−E0,t
∫ +∞

−∞
w′p(t, N(z))N ′(z)(

√
Λ(t)− zλ(t))e

√
Λ(t)zdz

= −e−E0,tE
[
w′p(t, N(ξ))

(√
Λ(t)− ξλ(t)

)
e
√

Λ(t)ξ
]
,

where ξ ∼ N(0, 1). This equation is further equivalent to

√
Λ(t)E

[
w′p(t, N(ξ))e

√
Λ(t)ξ

]
= λ(t)E

[
w′p(t, N(ξ))ξe

√
Λ(t)ξ

]
,

or

λ(t) =
h(t,

√
Λ(t))

h′(t,
√

Λ(t))

√
Λ(t),

which holds true by the facts that Λ solves equation (3.3) and Λ′(t) = −λ(t)2|θ(t)|2.

Similarly, we can rewrite the inequality (3.14) as∫ +∞

−∞
w′p

(
t, N

(
E0,t − g(x)√

Λ(t)

))
N ′

(
E0,t − g(x)√

Λ(t)

)(
g′′(x) + g′(x)2E0,t − g(x)

Λ(t)

)
du(x) ≥ 0,

(3.15)

which is satisfied under (3.5). �

In the above proof, there are two technical results, the martingale condition (3.10) and the

inequality (3.12), left unproved. We provide proofs in the next two subsections.

3.3 The martingale condition (3.10)

Proposition 3.2 The martingale condition (3.10) holds for sufficiently small ε > 0.

Proof. As before the variable y is suppressed. It suffices to prove that B(s) is locally square

integrable at s = 0+. Note that λ(·), θ(·), σ(·) are all bounded, and 1√
Λ(t+s)

is locally bounded
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at s = 0+. It thus follows from the expression of B(·) that we only need to estimate a bound

of N ′(Y (s))g′(m(s)).

Because lim supy→+∞
y−α

−I′(y)
< +∞ (Assumption 2.4-(i)) and 1

−I′(y)
≡ −u′′(I(y)) is increas-

ing in y (Assumption 2.4-(iii)), we have that there exists K > 0 such that

1

−I ′(y)
≤ K(yα + 1) ∀ y > 0. (3.16)

Recalling that m(s) = f(E0,t+s −
√

Λ(t+ s)Y (s)) and f ′(x) = −κ̃I ′(κ̃e−x)e−x where κ̃ :=

κe−
1
2

Λ(0), we have

g′(m(s)) = g′(f(E0,t+s −
√

Λ(t+ s)Y (s)))

=
1

f ′(E0,t+s −
√

Λ(t+ s)Y (s))

=
1

−κ̃I ′(κ̃e
√

Λ(t+s)Y (s)−E0,t+s)
eE0,t+s−

√
Λ(t+s)Y (s)

≤ K

κ̃

(
κ̃αe(α−1)

√
Λ(t+s)Y (s)−(α−1)E0,t+s + eE0,t+s−

√
Λ(t+s)Y (s)

)
,

where the last inequality is due to (3.16). However, N ′(x)eγx is bounded in x ∈ R for any

given γ ∈ R; hence

0 < N ′(Y (s))g′(m(s)) ≤ c1e
−(α−1)E0,t+s + c2e

E0,t+s .

The right hand side above is locally square integrable as a process in s. The proof is complete.�

3.4 The inequality (3.12)

We now prove the inequality (3.12). In view of Fatou’s lemma, it suffices to show that the inte-

grand on its left hand side is dominated by an integrable function. Throughout this subsection,

we keep t ∈ [0, T ) fixed.

Lemma 3.3 For any constant γ ∈ (0, 1] and ε ∈ (0, T − t), there exists a constant c1(γ) > 0

such that

|A(δ, y)|
N ′(Y (δ, y))1−γ =

|A(δ, y)|
N ′(−Y (δ, y))1−γ ≤ c1(γ)e

γ
4Λ(t+δ)

E2
0,t+δ ∀δ ∈ (0, ε], y ∈ R.

Proof. As before, we drop the y variable to save space in this proof. Since g(x) = l(x) + lnκ−
1
2
Λ(0), Assumption 2.4-(ii) is satisfied with l(·) replaced by g(·) (and the constants a and b
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properly modified). Hence,

|A(δ)|
N ′(Y (δ))1−γ ≤ c2(γ)N ′(Y (δ))γ(ea|g(m(δ))|+b + |Y (δ)|e2a|g(m(δ))|+2b)

=
c2(γ)√

2π
e−

γ
2
Y (δ)2

(ea|g(m(δ))|+b + |Y (δ)|e2a|g(m(δ))|+2b)

≤ c3(γ)e−
γ
4
Y (δ)2

e2a|g(m(δ))|+2b

= c3(γ)e−
γ

4Λ(t+δ)
(E0,t+δ−g(m(δ)))2

e2a|g(m(δ))|+2b,

where c2(γ) > 0 and c3(γ) > 0 are suitable constants. Making use of the general inequality

(x+ y)2 ≥ 1
2
x2 − y2, we deduce

|A(δ)|
N ′(Y (δ))1−γ ≤ c3(γ)e−

γ
4Λ(t+δ)

(E0,t+δ−g(m(δ)))2

e2a|g(m(δ))|+2b

≤ c3(γ)e
γ

4Λ(t+δ)
E2

0,t+δe−
γ

8Λ(t+δ)
g(m(t+δ))2+2a|g(m(t+δ))|+2b

≤ c3(γ)en1(γ)e
γ

4Λ(t+δ)
E2

0,t+δ , (3.17)

where n1(γ) := maxx∈R{− γ
8Λt+δ

x2 + 2a|x|+ 2b} < +∞. This completes the proof. �

Lemma 3.4 For any γ ∈ (0, 1), there exists ε ∈ (0, T − t) and a constant M1(γ) < +∞ such

that
Et|A(δ, y)|

[EtN(Y (δ, y))]γ
≤M1(γ) ∀ δ ∈ (0, ε], y ∈ R.

Proof. Again we omit to write out y. Denote m = 1/γ and n = m
m−1

. Then Cauchy–Schwarz’s

inequality yields

Et|A(δ)|
[EtN(Y (δ))]γ

≡ Et|A(δ)|
[EtN(Y (δ))]1/m

≤
(
Et
[
|A(δ)|nN(Y (δ))−n/m

])1/n
.

Write

|A(δ)|nN(Y (δ))−n/m =

(
N ′(Y (δ))

N(Y (δ))

)n/m( |A(δ)|
N ′(Y (δ))1/m

)n
=

(
N ′(Y (δ))

N(Y (δ))

)n/m( |A(δ)|
N ′(Y (δ))(γ+1)/2

)n
N ′(Y (δ))n(1−γ)/2.

Noting N ′(x)
N(x)

≤ C(|x| + 1) ∀x ∈ R for some C > 0, we conclude that the last term above

converges to 0 faster than the first term going to +∞ when Y (δ) goes to +∞; hence we can
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find a bound M2(γ) > 0 such that

|A(δ)|nN(Y (δ))−n/m ≤ M2(γ)

(
|A(δ)|

N ′(Y (δ))(γ+1)/2

)n
≤ M2(γ)c1((1− γ)/2)ne

1
8Λ(t+δ)

E2
0,t+δ ,

where the last inequality is due to Lemma 3.3. When ε > 0 is small enough, there exists

M3(γ) < ∞ such that Et[e
1

8Λ(t+δ)
E2

0,t+δ ] < M3(γ) for any δ ∈ (0, ε]. This leads to the desired

inequality. �

Proposition 3.5 We have the following conclusions:

(i) For any γ > 0, there are a sufficiently small ε ∈ (0, T − t) and a function H1(·; γ) with∫ y(γ)

−∞ H1(y; γ)dy < +∞ for some y(γ) < 0, such that when δ ∈ (0, ε), we have

(Et|A(δ)|)γ ≤ H1(y; γ) ∀y ∈ (−∞, y(γ)].

(ii) For any γ > 0, there are a sufficiently small ε ∈ (0, T − t) and a function H2(·; γ) with∫ +∞
ȳ(γ)

H2(y; γ)dy < +∞ for some ȳ(γ) > 0, such that when δ ∈ (0, ε), we have

(Et|A(δ)|)γ ≤ H2(y; γ) ∀y ∈ [ȳ(γ),+∞).

Proof. We prove only (i), while (ii) being similar. Applying γ = 1 to the second inequality of

(3.17), we get

|A(δ)| ≤ c3(1)e
1

4Λ(t+δ)
E2

0,t+δe−
1

8Λ(t+δ)
g(m(δ))2+2a|g(m(δ))|+2b.

Define n2 := maxx∈R{− 1
16Λ(t+δ)

x2 + 2a|x|+ 2b} < +∞. Then

|A(δ)| ≤ c3(1)en2e
1

4Λ(t+δ)
E2

0,t+δe−
1

16Λ(t+δ)
g(m(δ))2

.

So

Et|A(δ)| ≤ c3(1)en2Et[e
1

4Λ(t+δ)
E2

0,t+δe−
1

16Λ(t+δ)
g(m(δ))2

]

≤ c3(1)en2

√
Ete

1
2Λ(t+δ)

E2
0,t+δ

√
Ete−

1
8Λ(t+δ)

g(m(δ))2

.

Set n3 := c3(1)2e2n2Et[e
1

2Λt+δ
E2

0,t+δ ] which is a finite constant when ε (and hence δ) is

sufficiently small, and ξ := k>∆(t, δ) ∼ N(0, η2) conditional on Ft, where η2 ≡ η(δ)2 =
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Var(ξ) ≤ |k|2
∫ t+δ
t
|σ(s)|2ds. Then

(Et|A(δ)|)2 ≤ n3Et[e−
1

8Λ(t+δ)
g(m(δ))2

]

= n3Et[e−
1

8Λ(t+δ)
ln2 u′(v(y)−ξ)]

=
n3√
2π

∫ +∞

−∞
e−

1
8Λ(t+δ)

ln2 u′(v(y)+ηz)e−z
2/2dz

=
n3√
2π

∫ +∞

−∞
e−

1
8Λ(t+δ)

ln2 u′(ηz̃)e−(z̃−v(y)/η)2/2dz̃

=
n3√
2π

[∫ v(y)/(2η)

−∞
+

∫ 0

v(y)/(2η)

+

∫ +∞

0

]
e−

1
8Λ(t+δ)

ln2 u′(ηz̃)e−(z̃−v(y)/η)2/2dz̃.

We now find an integrable bound (as a function of y) for each of the three integrals in the

above.

For the first integral, take y0 < 0 small enough such that v(y0) < 0 and u′(v(y0)/2) > 1.

Then v(y) < 0 and u′(v(y)/2) ≥ u′(v(y0)/2) > 1 ∀y ≤ y0. Thus∫ v(y)/(2η)

−∞
e−

1
8Λ(t+δ)

ln2 u′(ηz̃)e−(z̃−v(y)/η)2/2dz̃ <
√

2πe−
1

8Λ(t+δ)
ln2 u′(v(y)/2) ≤ c4(a1)u′(v(y)/2)−a1 , y ≤ y0,

for any a1 > 0 and some c4(a1) < +∞.7

For the second integral, we have∫ 0

v(y)/(2η)

e−
1

8Λ(t+δ)
ln2 u′(ηz̃)e−(z̃−v(y)/η)2/2dz̃ ≤ e−v(y)2/(8η2)|v(y)/(2η)| ≤ c5e

−v(y)2/(9η2)

for some constant c5 > 0.

For the last integral, we get∫ +∞

0

e−
1

8Λ(t+δ)
ln2 u′(ηz̃)e−(z̃−v(y)/η)2/2dz̃

=

∫ +∞

0

e−
1

8Λ(t+δ)
ln2 u′(ηz̃)e−z̃

2/2ez̃v(y)/ηe−v(y)2/(2η2)dz̃

< e−v(y)2/(2η2)

∫ +∞

0

e−z̃
2/2dz̃ =

√
π

2
e−v(y)2/(2η2).

Combining the three integrals, we conclude that, for any a1 > 0, a2 > 0, when ε ∈ (0, T − t)

is small enough and y1 < 0 with v(y1) sufficiently negative, there exists constant c6 > 0 such

that for any δ ∈ (0, ε),

(Et|A(δ)|)2 ≤ c6[u′(v(y))−a1 + e−a2v(y)2

] := H1(y; γ)2/γ ∀y ≤ y1.

7This is based on the fact (which can be easily shown) that given α > 0, for any a > 0 there is a constant

c(a) > 0 such that e−α ln2 x ≤ c(a)x−a ∀x > 1.
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Finally, for any γ > 0, we can take suitable a2 and a3 (which may depend on γ) such that,

in view of Assumption 2.5,
∫ y(γ)

−∞ H1(y)dy < +∞, where y(γ) is sufficiently negative. �

Theorem 3.6 There exists an integrable function H(·) such that when ε > 0 is sufficiently

small, it holds that∣∣∣∣w(t,Et[N(Y (ε, y))])− w(t, N(Y (0, y)))

ε

∣∣∣∣ ≤ H(y) ∀y ∈ R.

Proof. Fix ε > 0. For any y ∈ R, by the mean-value theorem, there exists δ ∈ [0, ε] (which

depends on t and y) such that

∣∣∣∣w(t,Et[N(Y (ε, y))])− w(t, N(Y (0, y)))

ε

∣∣∣∣ =
∣∣w′p(t,Et[N(Y (δ, y)])Et[A(δ)]

∣∣
≤ w′p(t,Et[N(Y (δ, y)])Et[|A(δ)|],

where we have used the fact that, by virtue of (3.9), d
dδ
Et[N(Y (δ, y))] = Et[A(δ)]. By Assump-

tion 3.1-(iv), we have∣∣∣∣w(t,Et[N(Y (ε, y))])− w(t, N(Y (0, y)))

ε

∣∣∣∣ ≤ c
Et[|A(δ)|]

(Et[N(Y (δ, y)])−m
+ c

Et[|Aδ|]
(1− Et[N(Y (δ, y)])−m

for some c > 0 and m ∈ (−1, 0).

Recall that Et[N(Y (δ, y)] = Pt
(
u(X(T ) + k>∆(t, δ)) > y

)
. Choose y1 and y2 such that

Et[N(Y (δ, y1)] < 1/2 and Et[N(Y (−δ, y2)] < 1/2 for all δ ∈ (0, ε].

Using notations in Lemma 3.4 and Proposition 3.5, denote

y := y((1 +m)/2)) ∧ y1, ȳ := ȳ((1 +m)/2) ∨ y2,

and

Ĥ1(y) := 2cH1(y; (1 +m)/2)M1((2m)/(m− 1))(1−m)/2,

Ĥ2(y) := 2cH2(y; (1 +m)/2)M1((2m)/(m− 1))(1−m)/2.

Then:

(i) For any y < y, we deduce∣∣∣∣w(t,Et[N(Y (ε, y))])− w(t, N(Y (0, y)))

ε

∣∣∣∣ ≤ 2c
Et[|A(δ)|]

(Et[N(Y (δ, y)])−m

≤ 2c(Et[|A(δ)|])(1+m)/2 (Et[|A(δ)|])(1−m)/2

(Et[N(Y (δ, y)])−m

≤ 2cH1(y; (1 +m)/2)M1((2m)/(m− 1))(1−m)/2

= Ĥ1(y).
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(ii) Similarly, for any y > ȳ, we have
∣∣∣w(t,Et[N(Y (ε,y))])−w(t,N(Y (0,y)))

ε

∣∣∣ ≤ Ĥ2(y).

(iii) Finally,
∣∣∣w(t,Et[N(Y (ε,y))])−w(t,N(Y (0,y)))

ε

∣∣∣ ≤ 2cM1(−m) when y ∈ [y, ȳ].

Then H(·), where H(y) = Ĥ1(y)1y<y+2cM1(−m)+Ĥ2(y)1y≥ȳ, y ∈ R, is the desired function.�

4 Sufficient Conditions

Theorem 3.1 holds under three major assumptions: the existence of a positive constant κ

such that the budget constraint (3.6) holds, the existence of a positive solution to the ODE

(3.3), and the validity of the inequality (3.5). It is hard to verify these assumptions (and

hence hard to tell if they are reasonable) because they are not imposed directly on the model

primitives. This section explores equivalent or at least sufficient conditions, that are shown to

be reasonable economically, under which these three assumptions are satisfied respectively.

4.1 Budget constraint (3.6)

The equation (3.6) is not a “standard” budget constraint appearing in the classical Merton

problem because ρ(T ) and ρ̄(T ) are in general different. However, we have the following result.

Theorem 4.1 The following two statements are equivalent:

(i) There exists κ > 0 such that (3.6) holds.

(ii) There exists κ̄ > 0 such that

E[ρ̄(T )I(κ̄ρ̄(T ))] = x0. (4.1)

Proof. Let Q and Q̄ be respectively the equivalent martingale measures corresponding to ρ(T )

and ρ̄(T ); namely,
dQ
dP

= ρ(T ),
dQ̄
dP

= ρ̄(T ).

By Girsanov’s theorem, W̃ (·) and W̄ (·) are respectively Brownian motions under Q and Q̄,

where

W̃ (t) := W (t) +

∫ t

0

θ(s)ds, W̄ (t) := W (t) +

∫ t

0

λ(s)θ(s)ds, t ∈ [0, T ].
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Now, we have

E[ρ(T )I(κρ̄(T ))] = EQ
[
I(κe−

1
2

∫ T
0 |λ(s)θ(s)|2ds−

∫ T
0 λ(s)θ(s)>dW (s))

]
= EQ

[
I(κe−

1
2

∫ T
0 |λ(s)θ(s)|2ds+

∫ T
0 λ(s)|θ(s)|2ds−

∫ T
0 λ(s)θ(s)>dW̃ (s))

]
= E

[
I(κe−

1
2

∫ T
0 |λ(s)θ(s)|2ds+

∫ T
0 λ(s)|θ(s)|2ds−

∫ T
0 λ(s)θ(s)>dW (s))

]
= EQ̄

[
I(κe−

1
2

∫ T
0 |λ(s)θ(s)|2ds+

∫ T
0 λ(s)|θ(s)|2ds−

∫ T
0 λ(s)θ(s)>dW̄ (s))

]
= E

[
ρ̄(T )I(κe−

1
2

∫ T
0 |λ(s)θ(s)|2ds+

∫ T
0 λ(s)|θ(s)|2ds−

∫ T
0 λ(s)θ(s)>dW̄ (s))

]
= E

[
ρ̄(T )I

(
κe

∫ T
0 λ(s)(1−λ(s))|θ(s)|2dsρ̄(T )

)]
.

This establishes the desired equivalence with κ̄ = κe
∫ T
0 λ(s)(1−λ(s))|θ(s)|2ds. �

So the assumption in Theorem 3.1 regarding the existence of a positive constant κ satisfying

(3.6) boils down to the familiar condition (4.1). The latter condition is standard in the classical

Merton problem in which the pricing kernel is ρ̄(T ) or, equivalently, the market price of risk

process is λ(·)θ(·). Note that because the probability weighting function w has been embedded

into λ(·), the existence of a positive κ̄ satisfying (4.1) becomes a condition on the utility

function u only, which is satisfied by, say, the exponential utility.8

More important, with Theorem 4.1, Theorem 3.1 shows that the investment behavior of the

sophisticated RDU agent is indistinguishable from an EUT maximizer in a market where the

market price of risk is revised from θ(·) to λ(·)θ(·). This finding may have important economic

implications especially in the study of market equilibria.

4.2 Existence of positive solutions to (3.3)

The main result of this paper depends crucially on the existence of a positive solution to the

ODE (3.3). Note that this equation is highly nonlinear, and singular at t = T in that the

denominator of the right hand side of the equation is 0 at T . In this subsection we provide

conditions under which (3.3) admits positive solutions, by applying a general existence result

for a class of ODEs with singular initial/terminal values (see Appendix A).

8Indeed, if this condition fails, than it is usually an indication that the original problem is not well-posed

and/or an optimal solution is not attainable; see Jin et al (2008) for a detailed analysis on this constraint.
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Setting y(t) = Λ(T − t), (3.3) is equivalent to y′(t) = |θ(T − t)|2
(

h(T−t,
√
y(t))

h′x(T−t,
√
y(t))

)2

y(t), t ∈ (0, T ],

y(0) = 0.

(4.2)

In the rest of this subsection we study equation (4.2) instead of (3.3). The key idea is to first

establish the local existence in the right neighborhood of t = 0, and then extend it globally to

the whole time interval [0, T ].

We introduce the following assumption on the function h(·, ·) (which depends directly on

the probability weighting function) and on the market represented by θ(·):

Assumption 4.2 (i) h′x(t, 0) ≥ 0 and h′′′x (t, 0) ≥ 0 ∀t ∈ [0, T ].

(ii) lim supt↑T
h′x(t,0)√
|θ(t)|2(T−t)

< 1 and lim inft↑T |θ(t)|2 > 0.

(iii) supt∈[0,T ] h(t, 1) < +∞ and lim supt↑T h
′′
x(t, 1) < +∞.

(iv) inft∈[0,T ] h
′′
x(t, 0) > 0.

Assumption 4.2-(iii) and -(iv) are mild. Assumption 4.2-(i) can be relaxed with a more

subtle analysis than the one to be given below; although we will not pursue in that direction.

The first part of Assumption 4.2-(ii) is the most important of all, which regulates how the

probability weighting function w(t, ·) should behave, given the market, when t is sufficiently

close to the terminal time T .9 Mathematically, this terminal behavior of weighting functions is

translated into the singularity of the ODE (3.3) at T , which is why Assumption 4.2 is needed

for a proof of the existence of (3.3). Luckily, we will show in Appendix B that all the parts

of Assumption 4.2 are satisfied by a family of time-varying Tversky–Kahnamen’s weighting

functions.

We first strengthen Lemma 2.7 under Assumption 4.2-(i).

Lemma 4.3 Under Assumption 4.2-(i) in addition to the same assumption of Lemma 2.7, for

any t ∈ [0, T ], h(t, ·) has the following properties:

(i) h(t, x) and h′′(t, x) are both increasing in x ≥ 0, and h′x(t, x) is convex in x ≥ 0.

9We believe that this is a distinctive feature of the continuous-time setting. In the discrete-time case, there

is no infinitesimal issue of the weighting functions close to the terminal time.
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(ii) xh′′x(t, 0) ≤ h′x(t, x) ≤ h′x(t, 0) + xh′′x(t, x) ∀x ≥ 0.

Proof. (i) It follows from Lemma 2.7-(iii) that h′x(t, x) and h
(3)
x (t, x) are both increasing in

x ≥ 0. Assumption 4.2-(i) then leads to the desired results readily.

(ii) Applying the Taylor expansion, we have for any x > 0, there exists ζ ∈ [0, x] such that

h′x(t, x) = h′x(t, 0) + xh′′x(t, 0) +
1

2
x2h(3)

x (t, ζ) ≥ xh′′x(t, x).

On the other hand, the convexity of h′x(t, x) in x ≥ 0 implies that

h′x(t, x) ≤ h′x(t, 0) + xh′′x(t, x).

The proof is complete. �

Lemma 4.4 Under Assumption 4.2, there exist k1 > 0 greater than any given number and

δ1 > 0 such that

|θ(T − t)|2
(√

th(T − t,
√
k1t)

h′x(T − t,
√
k1t)

)2

< 1 ∀t ∈ (0, δ1]. (4.3)

Moreover, there exist k2 > 0 less than any given positive number and δ2 > 0 such that

|θ(T − t)|2
(√

th(T − t,
√
k2t)

h′x(T − t,
√
k2t)

)2

> 1 ∀t ∈ (0, δ2]. (4.4)

Proof. By Lemma 4.3-(i), h(T − t, x) is increasing when x ≥ 0; hence

lim sup
t↓0

h(T − t,
√
kt) ≤ lim sup

t↓0
h(T − t, 1) < +∞, (4.5)

where the finiteness is due to Assumption 4.2-(iii). On the other hand, it follows from Lemma

4.3-(ii) that, for any k > 0,

h′x(T − t,
√
kt)√

t
≥
√
kh′′x(T − t, 0) ≥

√
k inf
s∈[0,T ]

h′′x(s, 0) > 0, (4.6)

where the last inequality is due to Assumption 4.2-(iv). Combining (4.5) and (4.6) and noting

the boundedness of θ(·), we conclude that there is k = k1 greater than any given number such

that (4.3) is satisfied.

Next, by Lemma 4.3-(ii), we deduce that for sufficiently small k > 0,

lim sup
t↓0

h′x(T − t,
√
kt)√

|θ(T − t)|2t
≤ lim sup

t↓0

{
h′x(T − t, 0)√
|θ(T − t)|2t

+
√
k
h′′x(T − t,

√
kt)√

|θ(T − t)|2

}

≤ lim sup
t↓0

h′x(T − t, 0)√
|θ(T − t)|2t

+
√
k lim sup

t↓0

h′′x(T − t, 1)√
|θ(T − t)|2

< 1,
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where the last inequality follows from Assumption 4.2-(ii) and -(iii). Since h(T − t,
√
kt) ≥

h(T − t, 0) = 1, we conclude that there is k = k2 less than any given positive number so that

(4.4) is satisfied. �

The following establishes the local existence of the ODE (4.2).

Proposition 4.5 Under Assumption 4.2, equation (4.2) admits a solution y(·) ∈ C[0, δ] ∩

C1(0, δ] on a time interval [0, δ] for some δ > 0, with y(t) > 0 ∀t ∈ (0, δ].

Proof. Fix k1 > 0 and 0 < k2 < k1 as in Lemma 4.4, and take δ = δ1 ∧ δ2. Then it is easy

to check that β(t) = k1t and α(t) = k2t satisfy all the requirements in Theorem A.2 on (0, δ];

hence the result. �

Next we extend the local solution y(·) obtained in Proposition 4.5 to the whole time interval

[0, T ]. Denote y(δ) = x1 > 0. Without loss of generality, we assume x1 < 1 (otherwise, we can

make δ closer to 0 to reduce x1).

Proposition 4.6 Under Assumption 4.2-(i) and (iv), for any δ > 0 and 0 < x1 < 1, the

equation  y′(t) = |θ(T − t)|2
(

h(T−t,
√
y(t))

h′x(T−t,
√
y(t))

)2

y(t), t ∈ (δ, T ],

y(δ) = x1

(4.7)

has a solution y(·) ∈ C1[δ, T ] with y(t) > 0 ∀t ∈ [δ, T ].

Proof. Since lnh(x, t) is convex in x ≥ 0 (by Lemma 2.7-(iv)), we have

h′x(t, x)

h(t, x)
≥
h′x(t,

√
x1)

h(t,
√
x1)
≥
√
x1

h′′x(t, 0)

h(t,
√
x1)
≥
√
x1
h′′x(t, 0)

h(t, 1)
≥ c1 > 0 ∀t ∈ [0, T ], x ≥

√
x1,

where the second inequality is due to Lemma 4.3-(ii) and c1 (which may depend on x1) is a

constant arising from Assumption 4.2-(iii) and -(iv). Hence for any y ≥ x1, we have

|θ(T − t)|2
(
h(T − t,√y)

h′x(T − t,
√
y)

)2

y ≤ c2y,

where c2 > 0 is a constant depending on c1 and the bound of |θ(·)|2.

Denote c3 = x1e
c2T < +∞, and a truncation function r(y) = (y ∨ x1) ∧ c3 for y ≥ 0.

Consider the ODE  y′(t) = f(t, y(t)), t ∈ (δ, T ],

y(δ) = x1

(4.8)

26



where

f(t, y) := |θ(T − t)|2
(
h(T − t,

√
r(y))

h′x(T − t,
√
r(y))

)2

r(y).

It is easy to show that f(·, ·) satisfies the conditions in Theorem A.3 on (δ, T ]; hence (4.8)

admits a solution y(·). Moreover, since y′(t) ≥ 0 we have y(t) ≥ x1 ∀t ∈ [δ, T ].

Take t1 := inf{t ∈ (δ, T ] : y(t) ≥ c3} ∧ T . If t1 < T , then y(t1) = c3 and y(t) < c3 ∀t <

t1. Consequently y′(t) = |θ(T − t)|2
(

h(T−t,
√
y(t))

h′x(T−t,
√
y(t))

)2

y(t) ≤ c2y(t), ∀t ∈ (δ, t1). Grownwall’s

inequality then yields y(t1) ≤ x1e
c2t1 < c3, which is a contradiction. Hence t1 = T and y(t) ≤ c3

on [δ, T ]. In this case equations (4.8) and (4.7) coincide. �

Combing Propositions 4.5 and 4.6, we arrive at

Theorem 4.7 Under Assumption 4.2, the equation (3.3) admits a solution Λ(·) ∈ C[0, T ] ∩

C1[0, T ) satisfying Λ(t) > 0 ∀t ∈ [0, T ).

4.3 Inequality (3.5)

We now provide conditions on the model primitives under which the inequality (3.5) holds. We

assume that the ODE (3.3) admits a positive solution Λ(·) ∈ C[0, T ]∩C1[0, T ), and introduce

the following additional assumption.

Assumption 4.8 For a.e. t ∈ [0, T ), w(t, ·) is either convex or inverse S-shaped.

A convex weighting function captures risk aversion in terms of exaggerating the small

probability of very “bad” events while downplaying very “good” events; see Yaari (1987).

On the other hand, as discussed in Introduction, an inverse S-shaped probability weighting

function is more interesting as it reflects the tendency of inflating the small probabilities of

both tails which are consistent with the conclusions of many experimental and empirical works.

Lemma 4.9 Under Assumptions 4.2 and 4.8, we have

lim
|y|→+∞

w′p(t, N(y))N ′(y)

I ′(e
√

Λ(t)y−c)
= 0 ∀c ∈ R, ∀t ∈ [0, T ). (4.9)

Proof. It follows from (3.16) that

0 ≤
w′p(t, N(y))

−I ′(e
√

Λ(t)y−c)
≤ Kw′p(t, N(y))(eα

√
Λ(t)y−αc + 1).
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However ∫ +∞

−∞
w′p(t, N(y))(eα

√
Λ(t)y−αc + 1)N ′(y)dy = e−αch(t, α

√
Λ(t)) + 1 < +∞,

implying

lim
|y|→+∞

w′p(t, N(y))(eα
√

Λ(t)y−αc + 1)N ′(y) = 0.

This completes the proof. �

We now analyze the integral in (3.5) by decomposing it into M0 +M , where

M0 =

∫ +∞

−∞
w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′

(
c− g(x)√

Λ(t)

)
c− g(x)

Λ(t)
g′(x)2du(x),

and

M =

∫ +∞

−∞
w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′

(
c− g(x)√

Λ(t)

)
g′′(x)du(x)

=

∫ +∞

−∞
w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′

(
c− g(x)√

Λ(t)

)
u′(x)dg′(x).

Applying integration by parts and noting that N ′′(x) = −xN ′(x), we can further decompose

M into −(M1 +M2 +M3) where

M1 =

∫ +∞

−∞
g′(x)w′′p

(
t, N

(
c− g(x)√

Λ(t)

))(
N ′

(
c− g(x)√

Λ(t)

))2

u′(x)
−g′(x)√

Λ(t)
dx

M2 =

∫ +∞

−∞
g′(x)w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′′

(
c− g(x)√

Λ(t)

)
u′(x)

−g′(x)√
Λ(t)

dx

= −
∫ +∞

−∞
g′(x)w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′

(
c− g(x)√

Λ(t)

)
u′(x)

c− g(x)√
Λ(t)

−g′(x)√
Λ(t)

dx

=

∫ +∞

−∞
g′(x)2w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′

(
c− g(x)√

Λ(t)

)
u′(x)

c− g(x)√
Λ(t)

dx

≡ M0,

M3 =

∫ +∞

−∞
g′(x)w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′

(
c− g(x)√

Λ(t)

)
u′′(x)dx,

assuming that for any c ∈ R,

w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′

(
c− g(x)√

Λ(t)

)
u′(x)g′(x) = 0 when |x| → +∞. (4.10)
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Since g′(x) = −u′′(x)
u′(x)

, (4.10) can be written as

w′p

(
t, N

(
c− g(x)√

Λ(t)

))
N ′

(
c− g(x)√

Λ(t)

)
u′′(x) = 0 when |x| → ∞,

which is equivalent to (4.9).

Now, denoting y = c−g(x)√
Λ(t)

, we have

M0 +M = −(M1 +M3)

= −
∫ +∞

−∞
g′(x)N ′(y)

(
w′′p (t, N(y))N ′(y)u′(x)

dy

dx
+ w′p (t, N(y)))u′′(x)

)
dx

= −
∫ +∞

−∞
g′(x)N ′(y)d

[
w′p (t, N(y))u′(x)

]
= −

∫ −∞
+∞

g′(f(c−
√

Λ(t)y))N ′(y)d
[
w′p (t, N(y))u′(f(c−

√
Λ(t)y))

]
=

∫ +∞

−∞

[
N ′(y)

f ′(c−
√

Λ(t)y)

]
d
[
w′p (t, N(y))u′(f(c−

√
Λ(t)y))

]
.

Hence, inequality (3.5) is equivalent to∫ +∞

−∞

N ′(y)

f ′(c−
√

Λ(t)y)
d
[
w′p (t, N(y))u′(f(c−

√
Λ(t)y))

]
≥ 0 (4.11)

for any c ∈ R, a.e. t ∈ [0, T ).

An obvious sufficient condition for (4.11) is that

w′p (t, N(y))u′(f(c−
√

Λ(t)y)) ≡ w′p (t, N(y)) e
√

Λ(t)y−c

is increasing in y for any c ∈ R, which holds automatically if w(t, ·) is convex.

Theorem 4.10 Under Assumptions 4.2 and 4.8, the inequality (3.5) holds.

Proof. We have shown above that (3.5) holds at t when w(t, ·) is convex. Let us now focus on

the case when w(t, ·) is inverse S-shaped.

First of all, it follows from Theorem 4.7 that the ODE (3.3) admits a positive solution

Λ(·) ∈ C[0, T ] ∩ C1[0, T ).

Fix t ∈ [0, T ). Noting f ′(x) = −κ̃I ′(κ̃e−x)e−x where κ̃ = κe−
1
2

Λ(0) > 0, we can rewrite
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condition (4.11) as

0 ≤
∫ +∞

−∞

N ′(y)

f ′(c−
√

Λ(t)y)
d
[
w′p (t, N(y))u′(f(c−

√
Λ(t)y))

]
=

∫ +∞

−∞

N ′(y)

−κ̃I ′(κ̃e
√

Λ(t)y−c)e
√

Λ(t)y−c
d
[
w′p (t, N(y)) e

√
Λ(t)y−c

]
=

∫ +∞

−∞

N ′(y)

−κ̃I ′(κ̃e
√

Λ(t)y−c)

[
w′p (t, N(y))

√
Λ(t) +

∂w′p(t, N(y))

∂y

]
dy

=
√

Λ(t)M4 +M5,

where M4 =
∫ +∞
−∞

w′p(t,N(y))N ′(y)

−κ̃I′(κ̃e
√

Λ(t)y−c)
dy > 0, and

M5 =

∫ +∞

−∞

∂w′p(t,N(y))

∂y

−κ̃I ′(κ̃e
√

Λ(t)y−c)
N ′(y)dy

= E[F (ξ)G(ξ)]

with F (y) =
∂w′p(t,N(y))

∂y
and G(y) = 1

−κ̃I′(κ̃e
√

Λ(t)y−c)
> 0.

Since w(t, ·) is inverse S-shaped, there exists q ∈ (0, 1) such that w′′p(t, p) ≤ 0 on (0, q),

w′′p(t, p) ≥ 0 on (q, 1), and w′′p(t, q) = 0. Furthermore, for any b > 0,∫ b

0

∂w′p(t, N(y))

∂y
N ′(y)dy

=

∫ b

0

N ′(y)d[w′p(t, N(y))]

= (w′p(t, N(y))N ′(y))|y=b
y=0 −

∫ b

a

w′p(t, N(y))dN ′(y)

= w′p(t, N(b))N ′(b)− 1√
2π
w′p(t,

1

2
) +

∫ b

0

w′p(t, N(y))ydN(y).

Since w′′p(t, p) ≥ 0 for sufficiently large p,
∫ b

0

∂w′p(t,N(y))

∂y
N ′(y)dy is increasing in b for suf-

ficiently large b. Hence limb↑+∞
∫ b

0

∂w′p(t,N(y))

∂y
N ′(y)dy exists. However, +∞ > h′x(t, 0) ≡

E[w′p(t, N(ξ))ξ], we conclude that limb↑+∞
∫ b

0
w′t(N(y))ydN(y) exists and is finite. This im-

plies that a := limb↑+∞w
′
p(t, N(b))N ′(b) exists. It then follows from the fact that +∞ >

h(t, 0) ≡ E[w′p(t, N(ξ))] that a = 0, i.e.,∫ +∞

0

∂w′p(t, N(y))

∂y
N ′(y)dy = − 1√

2π
w′p

(
t,

1

2

)
+

∫ +∞

0

w′p(t, N(y))ydN(y).

Similarly, we can show that∫ 0

−∞

∂w′p(t, N(y))

∂y
N ′(y)dy =

1√
2π
w′p

(
t,

1

2

)
+

∫ 0

−∞
w′p(t, N(y))ydN(y).
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As a result,

E[F (ξ)] =

∫ +∞

−∞

∂w′p(t, N(y))

∂y
N ′(y)dy =

∫ +∞

−∞
w′p(t, N(y))ydN(y) = h′x(t, 0) ≥ 0.

Denote c = N−1(q). Then F (ξ) is negative on (−∞, c), positive on (c,+∞), and F (c) = 0.

Since u′′(x) is increasing in x, so is I ′(x) = 1/u′′(I(x)); hence G(·) is increasing. Then we have

F (ξ)(G(ξ)−G(c)) ≥ 0. Consequently,

0 ≤ E[F (ξ)(G(ξ)−G(c))] = E[F (ξ)G(ξ)]−G(c)E[F (ξ)] = E[F (ξ)G(ξ)]−G(c)h′x(t, 0),

which implies

E[F (ξ)G(ξ)] ≥ G(c)h′x(t, 0) ≥ 0.

The proof is complete. �

5 An Example

In this section, we give a concrete example to demonstrate our results.

Define

F (x) := N(x/
√

2), and w(t, p) := F (N−1(p)),

where N is the probability distribution function of a standard normal. So in this example our

weighting function is time-invariant, and we will drop t and write w(p) = w(t, p) throughout

this section.

It is clear that w(0) = 0, w(1) = 1, w′(p) = F ′(N−1(p))
N ′(N−1(p))

> 0. So w is a probability weighting

function satisfying Assumption 2.3-(i). Moreover, we have

w(N(x)) = F (x) = N(x/
√

2),

w′(N(x)) =
F ′(x)

N ′(x)
=

1√
2
N ′(x/

√
2)

N ′(x)
=

1√
2
ex

2/4,

h(t, x) ≡ E[w′(N(ξ))exξ] =
1√
2

∫
R

1√
2π
exze−z

2/4dz = ex
2

.
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Now, take any m ∈ (−1,−1/2). Then

lim
p↓0

w′(p)

pm
= lim

x→−∞

w′(N(x))

N(x)m

= lim
x→−∞

1√
2

ex
2/4

N(x)m

=
1√
2

(
lim

x→−∞

ex
2/(4m)

N(x)

)m

=
1√
2

(
lim

x→−∞

xex
2/(4m)/2m

N ′(x)

)m

=
1√
2

(
1

2m
lim

x→−∞
xex

2( 1
4m

+ 1
2

)

)m
= 0.

Also, we have limp↑0
w′(p)

(1−p)m = limq↓0
w′(1−q)
qm

= limq↓0
w′(q)
qm

= 0. So Assumption 2.4-(iv) holds.

Since h(t, x) = ex
2
, it is straightforward to verify that Assumption 4.2 is satisfied. Moreover,

w′(p) = 1
2
e(N−1(p))2/4; so w is concave on [0, 1/2] and convex on [1/2, 1]. It is therefore inverse

S-shaped, satisfying Assumption 4.8. We have now checked the validity of all the assumptions

on w in this paper.

With the explicit form of h, the ODE (3.3) becomes

Λ′(t) = −1

4
|θ(t)|2, t ∈ [0, T ), Λ(T ) = 0,

whose solution is Λ(t) = 1
4

∫ T
t
|θ(s)|2ds. Thus,

λ(t) =
√
−Λ′(t)/|θ(t)|2 = 1/2.

As discussed at the end of Section 4.1, λ(t) = 1/2 means that the RDU agent in this

example acts like an EUT agent with the market price of risk is revised to half of the original

one. In other words, because of the probability weighting and the consistent planning (recall

that consistent planning amounts to a heavily constrained optimization), the agent will lose

half of the risk premium or Sharpe ratio.

To complete this example, we present the equilibrium portfolio π∗ when the exponential

utility function is u(x) = 1 − e−αx, x ∈ R, for some α > 0, which clearly satisfies all the

assumptions on the utility function in this paper.
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In this case, u′(x) = αe−αx and hence I(x) = lnα−lnx
α

, x > 0. It is easy to check that there

exists κ > 0 satisfying the budget constraint (3.6). Hence the desired terminal wealth is

X∗(T ) = I(κρ̄(T )) = c+
1

α

∫ T

0

λ(t)θ(t)>dW̃ (t),

where W̃ (t) = W (t)+
∫ t

0
θ(s)ds is a standard Brownian motion under the risk-neutral measure,

Q, of the original market, and c is a constant dependent of the market parameters.

By the pricing theory, the replicating wealth process X∗(·) of X∗(T ) is a Q-martingale

(recall that the risk-free rate has been assumed to be 0); hence

X∗(t) = c+
1

α

∫ t

0

λ(s)θ(s)>dW̃ (s), t ∈ [0, T ].

Matching the above with the wealth equation dX∗(t) = π∗(t)>σ(t)dW̃ (t), we obtain the equi-

librium portfolio

π∗(t) =
1

α
λ(t)(σ(t)>)−1θ(t).

Recall that the optimal portfolio of an EUT agent with the same exponential utility is πEUT (t) =

1
α

(σ(t)>)−1θ(t). Hence the risky investment of the RDU agent at t is that of the EUT agent

multiplied by λ(t). Note that this result does not depend on the spcific form of the weighting

function so long as λ(·) exists. In the special case when w(t, p) = F (N−1(p)), λ(t) ≡ 1/2; so

the risk exposure is reduced by half.

6 Reduction in Risk Premium

We have seen that the sophisticated RDU agent behaves as if the risk premium is factored by

λ(·). In the example with the specific probability weighting function presented in Section 5,

λ(t) = 1/2; so the risk premium is reduced and the agent acts more cautiously than her EUT

counterpart. In this section, we answer the general question of when there is a reduction in

risk premium or, equivalently, when λ(t) < 1.

We assume Λ(·) exists. It follows from (3.3) that

λ(t) =

∣∣∣∣∣
√

Λ(t)h(t,
√

Λ(t) )

h′x(t,
√

Λ(t) )

∣∣∣∣∣ > 0, t ∈ [0, T ).
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For any x ∈ R+, define a probability measure Qx by dQx
dP = e−

x2

2
+xξ, under which ξ − x ∼

N(0, 1). So

h(t, x) = e
x2

2 E[w′p(t, N(ξ))e−
x2

2
+xξ]

= e
x2

2 EQx [w′p(t, N(ξ − x+ x))]

= e
x2

2 E[w′p(t, N(ξ + x))]

= e
x2

2 H(t, x),

where H(t, x) := E[w′p(t, N(ξ + x))] ≥ 0. The following characterizes the condition λ(t) < 1.

Theorem 6.1 Assume that Λ(·) exists. Then, for any t ∈ [0, T ), λ(t) < 1 if and only if

H ′x(t,
√

Λ(t)) > 0.

Proof. We have

xh(t, x)

h′x(t, x)
=

xe
x2

2 H(t, x)

e
x2

2 H ′x(t, x) + xe
x2

2 H(t, x)
=

xH(t, x)

H ′x(t, x) + xH(t, x)
.

Noting λ(t) > 0 ∀t ∈ [0, T ), we conclude that, for any t ∈ [0, T ), λ(t) = xh(t,x)
h′x(t,x)

|
x=
√

Λ(t)
< 1 if

and only if H ′x(t, x)|
x=
√

Λ(t)
≡ H ′x(t,

√
Λ(t)) > 0. �

Corollary 6.2 For any t ∈ [0, T ), λ(t) < 1 if H(t, x) is strictly increasing in x ∈ R+. In

particular, if w(t, p) is strictly convex in p, then λ(t) < 1.

Proof. This is obvious. �

In the example in Section 5, H(t, x) = e−x
2/2h(t, x) = ex

2/2, which is strictly increasing in

x ∈ R+; hence Corollary 6.2 applies. On the other hand, as explained earlier, a strict convexity

of w(t, p) in p underlines strict overweighting of the left tail (i.e. the bad events) and strict

underweighting of the right tail (i.e. the good events); so it enhances the level of risk aversion

leading to a smaller risk premium and less risky exposure.

Even if w is more general including being inverse S-shaped, it is still possible that λ(t) <

1, as demonstrated by the example in Section 5. In this case, the equivalent condition

H ′x(t,
√

Λ(t)) > 0 can be used to uncover the balance between the risk-averse component

and the risk-seeking component in probability weighting needed to render an overall reduction

in risk premium. We leave a detailed study along this direction to interested readers.
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7 Concluding Remarks

A continuous-time RDU portfolio selection problem is inherently time inconsistent. A sophis-

ticated agent, realizing that in the future she herself might disagree to her current planning,

resorts to consistent investment by implementing intra-personal equilibrium strategies from

which she will have no incentive to deviate at any point in time. We have solved the open

problem of deducing such equilibrium strategies, by developing an approach that to our best

knowledge is new to the literature. The main technical thrust of our approach is to express

the first-order derivative of the small deviation from an equilibrium as a quadratic function

of the deviating amount. The definition of the equilibrium requires the quadratic function to

have a constant sign whatever the amount might be. This leads to an equality (which in turn

leads to an ODE) and an inequality, the two constituting the main sufficient conditions for

deriving explicitly the final wealth profile and, hence, the resulting strategy courtesy of the

market completeness.

With an intra-personal equilibrium strategy, the agent, at any given time, in effect solves a

constrained dynamically optimal RDU model in which the constraint is to honor all her future

strategies. One may think this would lead to an extremely complicated terminal wealth profile.

Our result, however, shows that the terminal wealth is surprisingly simple – it resembles that of

an optimal Merton portfolio, except that the investment opportunity set needs to be modified

properly. In other words, the RDU agent behaves as if she was an EUT agent, only that she is

in a fictions market where she blends her probability weighting function into the market price

of risk. This observation may in turn shed lights on finding intertemporal market equilibria

for markets where all the agents are EUT and/or RDU consistent planners.

We derived our equilibrium strategy based on an Ansatz; as such, our results do not rule

out the possibility of having other equilibria beyond our Ansatz. In general, uniqueness of

intra-personal equilibrium for time-inconsistent problems remains a very challenging research

question.10 It is particularly the case for the RDU model, or so we believe.

10To our best knowledge, Hu et al (2017) is the only paper that addresses the uniqueness in continuous time.
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Appendices

A Existence of Solutions to a Class of ODEs

In this appendix we present some general existing results on a class of ODEs, taken from

Agarwal and O’Regan (2004). Consider the following ODE y′(t) = f(t, y(t)), t ∈ (0, T ],

y(0) = 0 ∈ R,
(A.1)

where f may not be defined at t = 0.

Denote by AC[0, s] the set of absolutely continuous functions on [0, s] where s > 0. The

following assumption is introduced in Agarwal and O’Regan (2004).

Assumption A.1 There exists t0 ∈ (0, T ] such that

1. There is β ∈ AC[0, t0] ∩ C1(0, t0] with β(0) ≥ 0 such that

β′(t) ≥ f(t, β(t)), t ∈ (0, t0].

2. There is α ∈ AC[0, t0] ∩ C1(0, t0] with α(t) ≤ β(t) ∀t ∈ [0, t0] and α(0) ≤ 0 such that

α′(t) ≤ f(t, α(t)), t ∈ (0, t0].

3. The function

f ∗(t, y) =


f(t, β(t)) + g(β(t)− y) y ≥ β(t),

f(t, y) α(t) < y < β(t),

f(t, α(t)) + g(α(t)− y) y ≤ α(t),

is, in the region (0, t0] × R, continuous in y for any t and measurable in t for any y,

where g(x) = x1|x|≤1 + sign(x)1|x|>1 is the radial retraction.11

The following two propositions, both drawn from Agarwal and O’Regan (2004), concern

the local and global existence of the ODE (A.1) respectively.

11In [1], f∗ is assumed to be (jointly) continuous; but from the proofs therein, we can easily weaken it to

this current version.
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Proposition A.2 (Agarwal and O’Regan 2004, Theorem 3.1) Under Assumption A.1,

the ODE (A.1) admits a solution y ∈ AC[0, t0] satisfying α(t) ≤ y(t) ≤ β(t) for t ∈ [0, t0].

Proposition A.3 (Agarwal and O’Regan 2004, Theorem 1.4) Given t0 ∈ (0, T ], assume

that f(t, y) is continuous in y for any t ∈ [t0, T ], measurable in t for any y ∈ R, and there

exists g(·) ∈ L1[t0, T ] such that |f(t, y)| ≤ g(t) ∀(t, y) ∈ [t0, T ]× R. Then the equation y′(t) = f(t, y(t)), t ∈ (t0, T ],

y(t0) = a ∈ R,
(A.2)

admits a solution y ∈ AC[t0, T ].

B Tversky–Kahnamen’s Probability Weighting Functions

In this appendix we verify that a class of time–varying Tversky–Kahnamen (TK) probability

weighting functions satisfy all the technical assumptions required in the paper.

First of all, the original TK weighting function, introduced in Tversky and Kahnamen

(1992), is

wTK(p; δ) :=
pδ

[pδ + (1− p)δ]1/δ
, p ∈ [0, 1], (B.1)

where δ ∈ (0, 1] is a parameter. This is an inverse S-shaped function, with w′TK(p; δ) > 1

when p is close to both 0 and 1. Moreover, a smaller δ implies a stronger degree of probability

weighting. When δ = 1, there is no probability weighting.

We now vary the parameter δ over time to generate a family of time-dependent TK func-

tions. Given a measurable function δ : [0, T ] 7→ (0, 1] with 0 < δ(t) < 1 for t ∈ [0, T ) and

δ(T ) = 1, define

w̃(t, p) := wTK(p; δ(t)), (t, p) ∈ [0, T ]× [0, 1]. (B.2)

The purpose of this appendix is to show that w̃ satisfies all the assumptions in the paper,

under proper conditions on δ(·).

Clearly, w̃ satisfies Assumption 2.3-(i).

Proposition B.1 w̃ satisfies Assumption 2.4-(iv).

Proof. As t ∈ [0, T ) is fixed in Assumption 2.4-(iv), from the construction of w̃ it suffices to

prove the conclusion for wTK(·; δ) with δ ∈ (0, 1) fixed.
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Denote a function

α(p; δ) := [pδ + (1− p)δ]−
1
δ , p ∈ [0, 1], (B.3)

with parameter δ ∈ (0, 1). It is easy to see that 1 ≤ pδ + (1− p)δ < 2; hence

2−
1
δ < α(p; δ) ≤ 1. (B.4)

Moreover, α(p; δ) = α(1− p; δ), wTK(p; δ) = pδα(p; δ). Hence

α′(p; δ) = −1

δ
[pδ + (1− p)δ]−

1
δ
−1δ[pδ−1 − (1− p)δ−1]

= −α(p; δ)1+δ[pδ−1 − (1− p)δ−1],

w′KT (p; δ) = δpδ−1α(p; δ) + pδα′(p; δ)

= δα(p; δ)pδ−1 + α(p; δ)1+δpδ(1− p)δ−1 − α(p; δ)1+δp2δ−1

< pδ−1 + (1− p)δ−1,

where the last inequality is by (B.4). This completes the proof. �

Before we move to the next assumption, for any probability weighting function w : [0, 1] 7→

[0, 1], define (with a slight abuse of notation) h(x;w) := E[w′(N(ξ))exξ], x ∈ R. It then follows

from Lemma 2.7-(ii) that, for any odd number n ≥ 1,

h(n)(0;w) = E[w′(N(ξ); δ)ξn] (B.5)

=

∫ 0

−∞
w′(N(y))ynN ′(y)dy +

∫ +∞

0

w′(N(y))ynN ′(y)dy

=

∫ 0

+∞
w′(N(−y))(−y)nN ′(−y)d(−y) +

∫ +∞

0

w′(N(y))ynN ′(y)dy

= −
∫ +∞

0

w′(1−N(y))ynN ′(y)dy +

∫ +∞

0

w′(N(y))ynN ′(y)dy

=

∫ +∞

0

[w′(N(y))− w′(1−N(y))]ynN ′(y)dy, (B.6)

and

h′′(0;w) =

∫ 0

−∞
w′(N(y))y2N ′(y)dy +

∫ +∞

0

w′(N(y))y2N ′(y)dy

=

∫ 0

+∞
w′(N(−y))(−y)2N ′(−y)d(−y) +

∫ +∞

0

w′(N(y))y2N ′(y)dy

=

∫ +∞

0

w′(1−N(y))y2N ′(y)dy +

∫ +∞

0

w′(N(y))y2N ′(y)dy

=

∫ +∞

0

[w′(N(y)) + w′(1−N(y))]y2N ′(y)dy. (B.7)
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Proposition B.2 w̃ satisfies Assumption 4.2-(i).

Proof. With a slight abuse of notation, define h(x; δ) := E[w′KT (N(ξ); δ)exξ], x ∈ R, where

δ ∈ (0, 1]. Again, as t ∈ [0, T ] is fixed in Assumption 4.2-(i), we can drop t and need only to

show that h′(0; δ) ≥ 0 and h′′′(0; δ) ≥ 0.

Noting that w′TK(1− p; δ) = δ(1− p)δ−1α(p; δ)− (1− p)δα′(p; δ), we have

w′TK(p; δ)− w′TK(1− p; δ) = δpδ−1α(p; δ) + pδα′(p; δ)−
[
δ(1− p)δ−1α(p; δ)− (1− p)δα′(p; δ)

]
= δα(p; δ)[pδ−1 − (1− p)δ−1] + α′(p; δ)[pδ + (1− p)δ]

= δα(p; δ)[pδ−1 − (1− p)δ−1] + α′(p; δ)α(p; δ)−δ

= δα(p; δ)[pδ−1 − (1− p)δ−1] + α(p; δ)[(1− p)δ−1 − pδ−1]

= (δ − 1)α(p; δ)[pδ−1 − (1− p)δ−1] > 0 ∀p ∈ (1/2, 1].

(B.8)

Now Assumption 4.2-(i) holds by virtue of (B.6) where we take w = wPK(·; δ). �

Proposition B.3 If inft∈[0,T ] δ(t) > 0, then w̃ satisfies Assumption 4.2-(iv).

Proof. We have

w′TK(p; δ) + w′TK(1− p; δ) = δpδ−1α(p; δ) + pδα′(p; δ) +
[
δ(1− p)δ−1α(p; δ)− (1− p)δα′(p; δ)

]
= δα(p; δ)[pδ−1 + (1− p)δ−1] + α′(p; δ)[pδ − (1− p)δ]

> δα(p; δ)[pδ−1 + (1− p)δ−1]

> 2−
1
δ δ ∀p ∈ (1/2, 1].

It hence follows from (B.7) that

h′′x(t, 0) >

∫ +∞

0

2−
1
δ(t) δ(t)y2dN(y) = 2−

1
δ(t) δ(t)/2 ≥ inf

t∈[0,T ]
[2−

1
δ(t) δ(t)]/2 > 0,

owing to the condition that inft∈[0,T ] δ(t) > 0. �

For Assumption 4.2-(iii), we need the following lemma.

Lemma B.4 For any ε ∈ (0, 1), we have E[N(ξ)−εexξ] < +∞ ∀x ∈ R.

Proof. The statement is symmetric for x ≤ 0 and x ≥ 0; hence it suffices to prove for the case

when x < 0 (the case of x = 0 is trivial).
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Since E[N(ξ)−εexξ1ξ≥−1] ≤ exE[N(ξ)−ε] = ex

1−ε , we only need to focus on E[N(ξ)−εexξ1ξ<−1].

By the fact that for any γ > 0, limy→−∞N(y)eγy = limy→−∞
N ′(y)
−γe−γy = 0, we deduce that there

exists a constant K > 0 such that N(y)(1−ε)/2exy ≤ K ∀y < −1. Thus

E[N(ξ)−εexξ1ξ<−1] ≤ KE[N(ξ)−(1+ε)/2] < +∞.

The proof is complete. �

Proposition B.5 If inft∈[0,T ] δ(t) > 0, then w̃ satisfies Assumption 4.2-(iii).

Proof. Take ε := 1∧ inft∈[0,T ] δ(t) > 0. For any t ∈ [0, T ], it follows from the bound of w′TK(p; δ)

(see the proof of Proposition B.1) that

h(t, 2) = E[w′TK(N(ξ); δ(t))e2ξ]

≤ E[N(ξ)δ(t)−1e2ξ] + E[N(−ξ)δ(t)−1e2ξ]

= E[N(ξ)δ(t)−1e2ξ] + E[N(ξ)δ(t)−1e−2ξ]

≤ E[N(ξ)ε−1e2ξ] + E[N(ξ)ε−1e−2ξ].

According to Lemma B.4, we know h(t, 2) ≤ K for some constant K independent of t. However,

h(t, x) is increasing in x; so supt∈[0,T ] h(t, 1) ≤ supt∈[0,T ] h(t, 2) < K.

Next, by the fact that ξ2 < eξ + e−ξ we have h′′x(t, 1) ≤ h(t, 2) + h(t, 0) < K + 1. �

Finally, we check Assumption 4.2-(ii). We first need two lemmas.

Lemma B.6 There exists δ̄ ∈ (0, 1) such that

sup
δ∈[δ̄,1]

∫ +∞

0

ln[N(y)δ +N(−y)δ]dy < +∞.

Proof. Fix δ ∈ (0, 1]. Observe that

lim
y→+∞

ln[N(y)δ +N(−y)δ]

y−2
= lim

y→+∞

δN ′(y)

y−3

1

−2

N(y)δ−1 −N(−y)δ−1

N(y)δ +N(−y)δ

≤ lim
y→+∞

δN ′(y)

y−3

1

2

N(−y)δ−1

N(y)δ +N(−y)δ

≤ lim
y→+∞

N ′(y)

N(−y)1−δy−3

δ

2

= lim
y→+∞

δ

2

N ′(y)1−δ/2

N(−y)1−δ
N ′(y)δ/2

y−3

= 0.
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Hence, there exists a constant K > 0 (which may depend on δ), such that

ln[N(y)δ +N(−y)δ] < Ky−2 ∀ y > 1.

As a result,∫ +∞

0

ln[N(y)δ +N(−y)δ]dy ≤
∫ 1

0

ln(N(y)δ +N(−y)δ)dy +K

∫ T

1

y−2dy < +∞.

Note that the integrand on the left hand side is decreasing in δ; hence the above finiteness is

uniform when δ is sufficiently close to 1. �

Recall we have defined h(x; δ) = E[w′TK(N(ξ); δ)exξ], x ∈ R, δ ∈ (0, 1].

Lemma B.7 We have

h′(0; δ) =
1− δ
δ

∫ +∞

0

ln[N(y)δ +N(−y)δ]dy + o

(
1− δ
δ

)
when δ is sufficiently close to 1.

Proof. By (B.6) and (B.8), we have

h′(0; δ) =

∫ +∞

0

(δ − 1)α(N(y); δ)[N(y)δ−1 −N(−y)δ−1]ydN(y)

=
δ − 1

δ

∫ +∞

0

α(N(y); δ)yd[N(y)δ +N(−y)δ]

=
δ − 1

δ

δ

δ − 1

∫ +∞

0

yd[N(y)δ +N(−y)δ]1−1/δ

=

∫ +∞

0

{1− [N(y)δ +N(−y)δ]1−1/δ}dy,

where we have used the fact that limy→+∞{1− [N(y)δ +N(−y)δ]1−1/δ}y = 0.

Applying the general Taylor expansion xε = 1+ε lnx+o(|ε|)(lnx)2 for x > 0 and sufficiently

small |ε|, we deduce∫ +∞

0

{1− [N(y)δ +N(−y)δ]1−1/δ}dy =
1− δ
δ

∫ +∞

0

ln[N(y)δ +N(−y)δ]dy + o

(
1− δ
δ

)
,

where we have used the finiteness
∫ +∞

0
{ln[N(y)δ + N(−y)δ]}2dy < +∞, which follows from

the inequalities 0 < ln[N(y)δ +N(−y)δ] < ln 2 and Lemma B.6. �

Proposition B.8 If

lim sup
t↑T

1− δ(t)
δ(t)
√
T − t

= 0 and lim inf
t↑T

|θ(t)|2 > 0,

then w̃ satisfies Assumption 4.2-(ii).
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Proof. This follows immediately from Lemmas B.6 and B.7. �

The second condition in the above is satisfied if we assume that θ(·) is left continuous at

T and θ(T ) 6= 0, which means that we do not have a trivial market at T . The first condition

means that as t approaches the terminal time T , δ(t) should approach δ(T ) ≡ 1 faster than
√
T − t.

To summarize, the family of time-varying TK weighting functions satisfy all the assumptions

of the paper if the measurable function δ(·) satisfies

inf
t∈[0,T ]

δ(t) > 0, lim sup
t↑T

1− δ(t)
δ(t)
√
T − t

= 0.
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