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Original Article Antiviral Chemistry and Chemotherapy

Genome analysis of coxsackievirus
B1 isolates during the consecutive
alternating administration
course of triple antiviral
combination in newborn mice

Petar Grozdanov1, Marie-Line Joffret2 , Adelina Stoyanova1,
Patsy Polston2, Emna Achouri2,3, Ivanka Nikolova1,
Francis Delpeyroux2 and Angel S Galabov1

Abstract

Background: We developed a new approach for the treatment of enterovirus infections, the consecutive alternating

administration (CAA) of a combination of enterovirus inhibitors. On the model of coxsackievirus B1 (CVB1) in mice,

two phenomena were observed: absence of drug resistance and increased susceptibility to the antivirals. This study aims

to clarify the genetic basis of these phenomena.

Methods: Brain samples from CVB1-infected mice subjected to a CAA course with the combination pleconaril/MDL-

860/oxoglaucine were used for viral RNA extraction and next generation sequencing. In parallel, samples from

monotherapeutic courses of the three substances included in the combination were studied. Whole genome sequence

analysis was carried out on all samples.

Results: Samples of pleconaril monotherapy showed mutations in 50untranslated region, VP3, 2C, 3C and 2A regions of

viral RNA, translated in amino acid substitution of the 2A protein. The MDL-860 course induced changes in CVB1 RNA

in the VP3 and 2C regions. The oxoglaucine monotherapy samples showed RNA mutation and amino acid substitution in

the VP1 region and nucleotide substitution in the 3D region. In the specimens taken from mice subjected to the CAA

course with pleconaril/MDL-860/oxoglaucine, the following RNA mutations were established: 50 untranslated region,

2A, and 2B, and amino acids substitutions in VP3 and 2A, which differ from those mentioned above. These changes could

be the reason for the prevention of drug resistance development and also to be considered as the basis for the

phenomenon of increased drug susceptibility.

Conclusions: The results reveal that the high anti-enteroviral efficacy of the CAA course is substantiated by the

appearance of specific changes in the viral genome.

Keywords

Drug combination, drug resistance, enteroviruses, genomic analysis

Date received: 11 September 2019; accepted: 8 January 2020

Introduction

Enterovirus (EV) infections are a significant cause of
morbidity and mortality throughout the world. EVs

have been associated with many human diseases,
including myocarditis; pericarditis; dilated cardiomy-
opathy; Bornholm disease; aseptic meningitis; poliomy-

elitis; juvenile insulin-dependent diabetes; hand, foot,
and mouth disease; common cold; uveitis; and so on.

1Department of Virology, The Stephan Angeloff Institute of Microbiology,

Sofia, Bulgaria
2Department of Virology, Institut Pasteur, Paris, France
3Department of Computational Biology, Institut Pasteur, Paris, France

Corresponding author:

Angel S Galabov, Department of Virology, The Stephan Angeloff Institute

of Microbiology, Sofia, Bulgaria.

Email: galabov@microbio.bas.bg

Antiviral Chemistry and Chemotherapy

2020, Vol. 28: 1–6

! The Author(s) 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/2040206620906061

journals.sagepub.com/home/avc

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-

NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and dis-

tribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.

sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-5244-5429
https://orcid.org/0000-0001-8554-1655
mailto:galabov@microbio.bas.bg
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/2040206620906061
journals.sagepub.com/home/avc


Currently, clinically effective antivirals for use in the
treatment of EV infections do not exist due to the
development of drug resistance during the routinely
applied or trialed monotherapy. This phenomenon is
based on the unusually high degree of mutation in
Picornaviridae resulting in viral progeny consisting of
countless quasi species.

The genome of coxsackieviruses as EVs consists of a
positive single-stranded RNA molecule of approxi-
mately 7400 nucleotides long flanked by 50 and 30

untranslated regions (UTRs). This RNA is translated
in a polyprotein which is then proteolytically processed
to yield the capsid proteins VP1, VP2, VP3, and VP4,
non-structural proteins 2A, 2B, 2C, 3A, 3B, 3C, and
viral RNA polymerase 3D.1–4

Viral and host cell proteins involved in viral RNA
replication induce a change in the host membrane per-
meability and the production of membranous struc-
tures playing a significant role in viral replication,
especially in the formation and functioning of the
viral replication complexes. The viral replication com-
plex, consisting of viral RNA replicative form, viral
RNA polymerase molecules, and (þ)RNA strands
(from initiation to complete elongation), has been
found to be strongly associated with virus-induced mem-
branous vesicles and various replication-associated viral
proteins, such as 2B, 2BC, 3A, and 3D, as well as with
host proteins.5

In previous studies, we proposed a new, effective
treatment approach for EV (coxsackievirus B) infec-
tions in mice, which involved consecutive alternating
administration (CAA) of triple combinations of entero-
viral replication inhibitors.6–10 (Vassileva-Pencheva and
Galabov, 2016).

A study on the effect of the CAA course in newborn
mice infected with coxsackievirus B1 (CVB1) neuroin-
fection and treated with the triple combination
disoxarilþ guanidine.HClþ oxoglaucine observed a
suppression of the development of drug resistance fol-
lowed by the appearance of drug-increased sensitivity.6

This phenomenon was strongly established and proved
during subsequent studies of CAA with the combina-
tions pleconarilþ guanidine.HClþoxoglaucine (PGO)
and pleconarilþMDL-860þoxoglaucine (PMO).9,10

To clarify the mechanism of this phenomenon, we ana-
lyzed the genomes of coxsackievirus B1 brain isolates
from mice subjected to either a CAA course with the
PMO triple combination mentioned above or to mono-
therapies of the compounds. This provided a unique
opportunity to investigate any potential virus adapta-
tions to the tested compounds, such as specific genomic
features that would sustain dissemination.

After sequence analysis of the collected specimens,
nucleotide and amino acid changes were observed in
the viral proteins VP1, VP3, 2A, 2B, and 2C.

Materials and methods

Virus

Coxsackievirus B1 (Connecticut-5 strain) for in vivo

experiments was obtained through intracerebral pas-

sages (0.02mL/mouse) in newborn albino mice and

prepared as a 10% wt/volume brain suspension in

phosphate-buffered saline (PBS). The virus underwent

at least three intracerebral passages in newborn mice
(without intermediary passages in cell cultures).

Mice

ICR random-bred newborn albino mice (obtained from

the Experimental and Breeding Base for Laboratory

Animals of the Bulgarian Academy of Sciences,

Slivnitza, Bulgaria) were used. Each dam was housed

in specially designed, well-ventilated acrylic cage con-

tainers, with free access to water and food, and main-

tained in the Animal House Facility of the Stephan

Angeloff Institute of Microbiology, BAS. Animal hus-

bandry and experiments were conducted in accordance
with the guidelines of Bulgaria’s Directorate of Health

Prevention and Humane Behaviour toward Animals.

Compounds

Pleconaril, 3-f3,5-dimethyl-4-[3–(3-methyl-1,2-isoxazol-

5-yl)propoxy]phenylg-5-(trifluoromethyl)-1,2,4-oxadia-

zole (VP 63843, WIN 63843, PicovirVR ), was synthesized

by Dr Vadim Makarov (State Research Center for

Antibiotics, Moscow, Russia). It was dissolved in poly-

ethylene glycol 400 (PEG400).
MDL-860 was obtained from Professor Gerhard

Pürstinger (Institute of Pharmacy, University of

Innsbruck, Innsbruck, Austria), and an additional

amount was synthesized by Dr Vladimir Dimitrov’s

team (Institute of Organic Chemistry with Centre of

Phytochemistry, Bulgarian Academy of Sciences, Sofia,

Bulgaria). The compound was dissolved in PEG400.
Oxoglaucine, f1,2,9,10-tetramethoxy-7h-dibenzo[de,

g]quinolin-7-oneg, an aporphinoid alkaloid from

Glaucium flavum Cranz (yellow horned poppy), was

obtained by Dr Stefan Philipov from the Institute of

Organic Chemistry with the Centre of Phytochemistry,

Bulgarian Academy of Sciences. The compound was

dissolved in 1:9 v/v dimethyl sulfoxide/saline.

Coxsackievirus B1 infection in newborn mice: Testing

the anti-enteroviral triple combination

Prior to treatment, newborn mice received subcutane-

ous inoculations of CVB1 at 20 MLD50 (mouse lethal

dose). CAA treatment groups received PMO com-

pounds, administered consecutively, starting 1 h post
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virus inoculation (pvi) (Day 1) and continuing through
Day 12. Pleconaril was administered orally, while MDL-
860 and oxoglaucine were injected subcutaneously. Each
compound was administered every third day, one com-
pound per day, beginning with pleconaril, followed by
MDL-860, and ending with oxoglaucine. In addition to
the placebo group (received 1/1 v:v PEG400/saline every
day), control groups received monotherapies of pleco-
naril, MDL-860, or oxoglaucine.

Virus samples

In accordance with Stoyanova et al.,10 the following
CVB1 mouse brain isolates were selected and prepared
as 10% brain suspensions in PBS for a study on in vivo
experimental neuroinfection for whole genome (RNA)
sequencing analysis: placebo—taken at Day 4 pvi;
pleconaril (25mg/kg) monotherapy—Day 13 pvi;
MDL-860 (75mg/kg) monotherapy—Day 7 pvi; oxo-
glaucine (25mg/kg) monotherapy—Day 4 pvi; treat-
ment with CAA course of the triple combination
pleconaril (25mg/kg)þMDL-860 (75mg/kg)þ oxo-
glaucine (25mg/kg)—Day 13 pvi. Each sample was
prepared by mixing all individual brain samples of
animals of the respective test group.

Sequencing

Viral RNA was extracted using High Pure Viral RNA
kit (Roche Diagnostics, Meylan, France) according to
the manufacturer’s instructions. For entire length
genome amplification, two sets of primers were used.
The �4.1 kb region encoding the viral structural pro-
teins was amplified using primer HT-C004 (50-GGG
AAGCTTTAATACGACTCACTATAGGGTTAAA
ACAGCYYKDGGGTTG) and primer CB1-7075R
(50-AATCCACTCCATCCCTTTGC). The �4.3 kb
region encoding the viral nonstructural proteins was
amplified using primer CB1-3040F (50-GGAGTCT

ACGGGATCAACAC) and primer EVB-polyT (50-T
TTTTTTTTTTTTTTTCCGCACCG). The two over-

lapping amplicons were synthesized by using One-

Step RT-PCR Kit (ref G174, Applied Biological

Materials Inc.) as already described.11 The two

PCR products were pooled and purified and then

sent to the sequencing platform PIBNet (Pasteur

International Bioresources Network, Institut

Pasteur Paris) where the products were sequenced

using Illumina NextSeq HiSeq. Data analysis was

performed using CLC Genomics Workbench 8.5

(CLCbio). Then de novo assembly was performed

using CLC Main Workbench (CLCbio). Variant fre-

quencies were obtained using ViVan pipeline v 0.43.12

Results

Viral RNA of CVB1 was subjected to next generation

sequencing in order to determine and identify possible

mutations arising during treatment with antivirals.
The degree of identity of the established whole

genome sequences between the placebo sample and

antiviral-treated samples was around 99.88%. We

found no deletions or insertions but only nucleotide

substitutions in the studied samples.
Alignment analyses (nucleotide (NA) and amino

acid (AA)) (Table 1) of all virus-containing brain sam-

ples were made in comparison to the placebo sample

from Day 4 pvi. This sample was used because there

were no surviving animals in the placebo group after

that day. Major variants (frequency> 0.5) are repre-

sented in Figure 1. The figure was generated using R

package ggplot2 (R version 3.6.1).
Alignment of the full genome sequences of viruses

resistant to pleconaril (25mg/kg) taken at Day 13 pvi

revealed five nucleotide mutations—T109C (50UTR),

T1914C (VP3 region), A3575G (2A region), C4098T

(2C region), and T5739C (3C region).

Table 1. Nucleotide mutations and amino acid substitutions in the studied samples.

Region 5UTR VP3 VP1 2A 2B 2C 3C 3D

Position in genome 109 615 1914 2004 2332 3040 3556 3575 3850 4098 4916 5739 6876

Placebo (Day 4) T C T A G A C A T C G T C

PMO (Day 13) T T T A G A T A C C G T C

P!Sa

Pleconaril (Day 13) C C C A G A C G T T G C C

H!Ra

MDL-860 (Day 7) T C T T A A C A T C A T C

V!Ia R!Ka

Oxoglaucine (Day 4) T C T A G T C A T C G T T

T!Sa

aAmino acid substitution.

PMO: pleconaril/MDL-860/oxoglaucine.
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The AA sequences of viruses with placebo (Day 4)
and those showing resistance to pleconaril on Day 13
showed one amino acid substitution—H945R (in 2A
region). This histidine to arginine substitution located
within the 2A protein is a conservative change that
replaces an aromatic hydrophilic polar residue with
one non-aromatic positively charged amino acid.

Three nucleotide substitutions were found in the
MDL-860 Day 7 pvi sample—A2004T (VP3 region),
G2332A (VP3 region), and G4916A (2C region)—
which led to two amino acid substitutions—V531I (in
VP3 region) and R1392K (in 2C). The amino acid sub-
stitutions—valine to isoleucine substitution (V531I)
located in VP3 protein and arginine to lysine substitu-
tion (R1392K) located in 2C protein—were both con-
servative substitutions. Sample from Day 7 of this
monotherapy course was chosen due to the mortality
of animals in this group after that day.

The genome analysis of the sample taken at Day 4
pvi of the oxoglaucine monotherapy showed two nucle-
otide mutations—A3040T (VP1 region) and T6876C
(3D region)—and AA registered one substitution—
T767S (VP1 region). Day 4 of this sample was chosen
due to the mortality of animals in this group after
that day.

The NA analysis of the sample treated with the
CAA course of PMO and taken on Day 13 sample
manifested in three nucleotide substitutions—C615T

(50UTR), C3556T (2A region), and T3850C (2B
region); however, AA showed only one amino acid
change—P939S (2A region). The proline to serine
substitution located within the 2A protein is a
non-conservative change that replaces an aromatic
hydrophilic polar residue with one non-aromatic posi-
tively charged amino acid.

Discussion

Mutation and recombination are well-known phenom-
ena in EV evolution. The infidelity of EV 3D polymer-
ase leads to mutation rates of around one per genome
per replication.4,13,14 Mutations in various regions such
as 50UTR, VP1, VP2, 2A, 2C, and 3D of EV have been
shown to be associated with alterations in virulence in
experimental animal models and in humans.15,16

In this work, we clarify the mechanism of the
suppression of drug resistance and the appearance of
the drug-increased sensitivity phenomenon during the
CAA course of the triple combination of EV replica-
tion inhibitors.

Experimental data from the pleconaril monotherapy
in the CVB1-infected mice show the development of
marked drug resistance after Day 5 pvi, attaining a
maximum level at Days 12–13 pvi. The PGO combina-
tion using the CAA course prevents this phenome-
non.10 Sequence analysis of mouse brain isolates from
the monotherapy samples established the appearance
of nucleotide substitution in the first loop of the inter-
nal ribosomal entry site (IRES) in 50UTR and amino
acid substitution in the 2A region. The 50UTR of cox-
sackievirus B1 contains putative stem-loop structures.
These structures are essential for viral RNA synthesis
and comprise the IRES necessary for translation initi-
ation. The boundaries of the IRES, and the importance
of specific sequences within the element, have been
mapped for poliovirus; the results indicate that the
motif encompasses nt �140–631. The maintenance of
these structural elements is critical for viral viabili-
ty.17,18 The viral protein 2A is a cysteine protease
that cleaves viral polyprotein and specific host proteins.
It is responsible for the cleavage between the P1 and P2
regions, with the first cleavage occurring in the poly-
protein. Moreover, it also cleaves the host translation
initiation factor EIF4G1 to shut down the capped cel-
lular mRNA translation. Finally, it inhibits the host
nucleus–cytoplasm protein and RNA trafficking by
cleaving host members of the nuclear pores.

In addition, analyses of Day 13 pleconaril mono-
therapy samples found the appearance of mutation
in the 50-UTR IRES within the treatment course.
These changes could be related to the development of
drug resistance. The well-known changes in VP1 pro-
tein in the WIN compounds-resistant mutants of CVB1

Figure 1. Major sequence variants obtained via NGS.
NGS: next generation sequencing.
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(Nikolova et al., 2011) were not observed. One of the

aims of this study was to determine the prevalent muta-

tions related to the viral phenotype of interest by

sequencing directly brain homogenates. However, this

approach conceals the low-rate mutations, and we

believe that this is the reason for the lack of the char-

acteristic mutations in the pleconaril resistant progeny.
The well-manifested development of drug resistance

in the course of MDL-860 monotherapy could be

linked to the registered mutations in VP3 and 2C

regions. Protein 2C displays RNA-binding, nucleo-

tide-binding, and NTPase activities. Although the

mutation found in the 2C region is silent, we think it

may play a role in virion morphogenesis and viral

RNA encapsidation by interacting with the capsid pro-

tein VP3.5,19–21

When following the influence of the PMO CAA

course, we found (1) nucleotide mutation in the sixth

loop of 50-UTR IRES; (2) mutation in the 2A region

with one amino acid substitution; (3) mutations with a

lack of the amino acid substitution in VP3, 2A, and 2C,

which were present in the samples of the monotherapy

courses. These mutations led to hampering of the

development of resistance to each of the antivirals

included in the combination. In addition, they could

explain the phenomenon of the increased drug suscep-

tibility observed in the CAA course with triple combi-

nation PMO against experimental CVB1 infection in

vivo. A significant role in this phenomenon could be

played by either the mutation localized in the sixth loop

of 50-UTR IRES, which may disturb the functioning of

EV replicative complexes, or the change in the proper-

ties of the 2A protein due to the amino acid substitu-

tions of aromatic hydrophilic polar residue with one

non-aromatic positively charged amino acid.
The observed phenotypic and genotypic mutations

led to CVB1 drug resistance in the cases of monother-

apy (pleconaril, MDL-860, and oxoglaucine) and to the

virus’s higher sensitivity to these substances when

included in the CAA treatment.
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