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Abstract:

This paper presents a joint optimisation framework for optimal estimation and stochas-
tic optimal control with imperfect information. It provides a estimation and control
scheme that can be decomposed into a classical optimal estimation step and an opti-
mal control step where a new term coming from optimal estimation is added to the
cost. It is shown that a specific particle filter algorithm allows one to solve the first
step approximately in the case of Mean Square Error minimisation and under suitable
assumptions on the model. Then, it is shown that the estimation-based control step
can justify formally the use of Explicit dual controllers which are most of the time de-
rived from empirical matters. Finally, a relevant example from Aerospace engineering
is presented.

1. Introduction

Optimal estimation and control problems arise when one wants to reconstruct and monitor in an optimal
way the state of a system using only partial information. Such problems are widespread, for instance, in
chemical engineering [1], in electrical and mechanical engineering [2], in mathematical finance [3] and in aerospace
engineering [4]. In the presence of nonlinearities and disturbances, these problems are challenging for mainly
two reasons.

First, nonlinear estimation (or filtering) problems are known to be difficult on their own. While Kalman
filters or optimisation-based estimators are cheap and perform well in the case of uni-modal uncertainty [5, 6],
they become inefficient when the conditional distribution is spread over several modes. A typical solution is
to use particle filters, which are able to find these modes. As particle filters are Monte Carlo approximations
of the optimal filter, there exists a zoo of theoretical convergence results. For example, in [7], almost sure and
L2-convergence of particle filters are reviewed. In [8] and [9], the authors show a Central Limit Theorem for
classes of particle filters. In practice though, it is very common to assess the performance of a filter using the
Mean Square Error (MSE). Intuitively, one would expect that, if the number of particles is sufficiently high,
the MSE generated by a particle filter converges to the optimal MSE associated to the optimal filter. The MSE
can also be a tool for assessing the stability a filter, see [10] and [11] for stability results of nonlinear Kalman
filters. Consequently, showing that a particle filter reaches a quasi-optimal MSE might be a way to show its
moment stability provided that another suboptimal filter is stable. Regrettably, the MSE involves integrals of
unbounded functions w.r.t. the particle filter that are not handled by classical convergence results. Thus, even
though MSE’s relevance can be discussed in multi-modal cases, MSE convergence results for particle filters lack
in the literature. Besides, despite the very good performance of particle filtering in very nonlinear applications,

in optimal control schemes, see for instance [12, 13, 14, 15].
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Secondly, stochastic optimal control problems with imperfect information are more difficult than their full
information counterpart. Actually, when only partial information is available, optimal controls have two roles.
They must guide the system in a standard way and probe information to be aware of and improve the quality of
the future information. It is called the dual effect property of the control [16]. As optimal solutions are usually
intractable, suboptimal control laws (also called dual controllers) are designed instead with the requirement to
keep the property of dual effect. There are two main types of suboptimal dual controllers: implicit ones where
one tries to approximate the Bellman equation usually by preserving the feedback structure on the information
inside the optimal control problem (see [12, 17, 18]) and explicit ones where an external excitation is introduced
in the system to make it actively look for more information. The excitation can take the form of a constraint
on the future information [19] or of an additional term in the cost representing a loss of information. The
latter way is called integrated experiment design. See [20] for a review in the Stochastic Model Predictive
Control framework and [21] for a survey in Adaptive Control. Information constraints may lead to infeasibility
issues and are not very flexible. For this reason, in this article, we focus on Explicit dual control methods by
integrated experiment design. Implicit methods are solidly formally grounded because they try to reproduce
Bellman equation’s behaviour. However, explicit ones are less well justified. In fact, the general link between
the original optimal control problem and the new one is not clear since the modifications usually come from
empirical considerations. The need for an external excitation that makes the control actively learn is generally
assumed and justified in specific cases only.

In other words, the dual effect property means that estimation and control must be coupled in their design.
In particular, the separation principle cannot be applied for general nonlinear systems. Several attempts have
been made to study coupled estimation and control in a general framework. In [22], a general formalism for
joint nonlinear observer and control design is presented in a continuous-time deterministic framework. In [23],
a min-max formalism for combined Moving Horizon Estimation and Model Predictive Control is presented but
without imposing the dual effect property. To the best of our knowledge, there exists no joint formulation of
the problem of optimal estimation and control in a general discrete time stochastic framework.

In this paper, an infinite-horizon multistage stochastic optimisation problem that gathers an optimal estima-
tion problem and a stochastic optimal control problem with imperfect information is proposed. After writing its
Bellman equation, one can decompose the problem into two steps. The first step is a classical optimal estimation
step and the second one is a modified stochastic optimal control step in which the optimal estimation error is
added to the cost. These steps allow us to justify the use of particle filtering and Explicit dual control in an
estimation/control scheme. In fact, we prove the near-optimality of the empirical mean of a specific particle
filter in the case of MSE minimisation, with a rate of convergence. This means that the first step can be solved
approximately by a particle filter under suitable assumptions on the model. Afterwards, we make a strong
analogy between the modified control problem and integrated experiment design. The idea is that the addi-
tional empirical cost could be seen as a approximation of the optimal estimation error as it is itself a measure
of information. Explicit dual control is then an practical solution of our second step. Finally, we present an
example coming from Aerospace engineering in which both particle filtering and Explicit dual control are very
relevant. We also check that this application satisfies the assumptions of our near-optimality results.

The paper is structured as follows. Section 2 gathers important notations used in the sequel. Section 3
recalls some basics of optimal estimation and stochastic optimal control with imperfect information. Section 4
presents the coupling multistage program along with its analysis and re-decomposition into two steps. Section
5 contains the main convergence results concerning particle filtering and MSE minimisation. Section 6 presents
the link between the modified control problem and Explicit dual control. Finally, Section 7 describes how the
example of Terrain-Aided Navigation fits the proposed framework.

2. Notations

Let (Q,F, P) be a probability space. In the following, random variables refer to F-measurable functions
defined on Q. For i € N*, B(R?) denotes the set of Borel sets of R? and P(R?) the set of probability distributions
on R?. For a random variable X and a probability distribution, X ~ p means that p is the probability law of
X. P(-|-) and E(-|-) denotes the conditional probability and expectation. For X and Y two random variables
valued respectively in R? and R and A € B(R/) , P(Y € A|X = z) is uniquely defined only for almost all x
in R? considering the distribution of X. However, we will omit it several times in this paper when it is not
important. In the sequel, a.a. is an abbreviation for almost all. For u € P(R?), f : R® — RJ p-integrable, and
A € B(R"), we denote the integral of f w.r.t g on A by [, f(z)u(dz). Integrals w.r.t the Lebesgue measure
are denoted by [ 4 f(x)dz. When conciseness is required, we use a bracket notation for the integrals on the
whole space, so that [o, f(2)u(dz) = (i, f). For x € R’, §, denotes the Dirac probability measure centered at



z. Id stands for the identity fonctions on R?. In the sequel, all the optimisation problems are assumed to have
a solution, in particular the notation 'min’ is used instead of ’inf’.

3. Elements of stochastic estimation and control

3.1. Setup

We consider a discrete-time process X = (Xj), oy valued in R™ representing the state of a controlled
stochastic dynamical system described by the following equation:

Xi+1 = f(Xk, Uk, &k), Vk €N (1)
Xo ~ po,
where:
e pg is a probability law on R"=;
® (Uk)pen is the control process valued in & C R™. U is the set of admissible control values;

® (&k)pey areii.d. random variables valued in R™¢ distributed according to pe. For each k € N, &, represents
an external disturbance on the dynamics;

o f: R"™ x R™ x R™ — R"= is measurable.

In fact, equation (1) defines (Xy), oy as a Markov Decision Process on R™s. Its transition kernel, denoted by
K, is assumed to has a density with respect to the Lebesgue measure meaning that for all A € B(R"=), for
r € R™ and u € R™«,

P(Xkp1 € AlXpy =2, U, =u) = / K(z,z,u)dz, (2)
A

where K: R™ x R™ x R™ — R is measurable and satisfies for x € R"* and u € R™, [o,. K(z z,u)dz =1.
Additionally, we assume that the state of the system is only available through some observations represented
by a stochastic process Y = (Y),cy valued in R™ which verifies for any & € N,

Yk: - h(Xka nk)a (3)
where:

® (&)yey are i.i.d. random variables valued in R distributed according to p,; for each k € N, 7, represents
an external disturbance on the observations.

e h:R" x R" — R™ is measurable.

In the following, we assume that the conditional distribution defined by equation (3) has a density with
respect to the Lebesgue measure such that there exists a likelihood function p : R™* x R" — RT. Therefore,
for k € N, for « in R™ for B € B(R™) :

P(Yi € B|X;, = 24) = / oy, 2)dy,
B

with p measurable and fRny p(y,x)dy = 1. For k € N, we define the vector of available information I}, as follows:
Iy = (Yo,Uoy -, Y1, Up—1, Yi). (4)

Note that I, represents all the values that are available to compute an estimator of the state and a control.
Another important quantity in this framework is the conditional distribution of X given Iy, called the filtering
distribution (or optimal filter) and denoted by p. It is of central importance in Bayesian filtering as it contains
and weighs the possible values of the current state X given only the value of I. It is known that u; satisfies
the nonlinear filtering equations which can be summed up as follows:

Prt1 = F (p, Y1, Uk) (5)



where F' : P(R") x R™ x R™ — P(R"=) and pg is supposed to be known.
The problem of estimation and control treated in this paper can be formulated as finding an estimator of
the state, X and a control Uy as functions of I such that:

Xy =75(Iy), U = m5(Iy), (6)

where 7mf: (R™ x R™)* x R™ —3 R and s (R™ x R™)" x R™ —s U C R™ are measurable. Sequences
of the form ¢ = (n§,...,75,...) (resp. 7° = (n§,...,7},...)) are called estimation (resp. control) policies.

Besides, it can be shown that uj carries as much information as I. More precisely, looking at ux as a
random variable on P(R"=) equipped with the Borel g-algebra for the weak topology, it is a sufficient statistics
(see [24, 25]). It means that the estimation and control policies can also be looked for as functions of py, instead
of I. Since equation (5) describes a time homogeneous Markov Chain on P(R"™=) [25, 26], one can look for
time-homogeneous functions such that, for £ > 0:

~

Xp =76 (k) Up =75 (1), (7)

where 75: P(R"*) — R"™ and n§: P(R™) — U C R™ are also measurable with the policies being 7¢ =
(7§, 7§, ... ) and 7€ = (7§, 75, ... ).

The idea of the following is to look for 7¢ and 7€ in a optimal way. With this in mind, the basics of optimal
estimation and stochastic optimal control with imperfect information are recalled.

3.2. Optimal estimation

Classically, optimal estimation is concerned with finding an estimator of X}, as a function of I}, that minimises
in average a general measure of the estimation error denoted by ¢¢. This leads to the following optimisation
problem:

min  E | ¢°( Xy, Xi)|I
0 [g( Ky Xk)| k] ®)

s.t. )?k = Wi(]k).

Actually, the conditional expectation in the cost function from Problem (8) can also be represented as an
integral of ¢g¢ w.r.t. the filtering distribution pj and a new cost g. can be written as follows for any p € P(R"=)
and & € R"=:

ge(:u‘? j) = </L7 ge('7 i’)>’

where (-, -) denotes the integral operator. Since g¢ does not depend explicitly on time, one obtains the following
reformulation of Problem (8) using a time homogeneous estimation policy of the form of (7):

min (k. Xi
b ( ) ©

s.t. )?k = Tl'(e)(uk.).

Problem (8) and (9) have generally no analytical solutions except in a few cases including the case where
¢¢(x,#) = ||# — z||* with ||-|| standing for the Euclidean norm on R™=. The latter problem is referred to as the
conditional Mean Square Error (MSE) minimisation problem and reads:

~ 2
min E[ .- X 1]
in B X% = Xkl [ (10)
s.t. Xk:ﬂ'z(fk).

By simple calculations, one gets that the almost surely optimal estimator w.r.t. the distribution of Iy is
the expectation of Xj conditionally to Iy, defined in the following by X} := E[Xy|I;]. Note that X} can be
rewritten as the integral of Id w.r.t. py such that:

X} = (. 1d). (11)



It is well known from [27] that X + is also the solution of the total MSE minimisation problem which reads:

min - B [H)Afk - Xk||2]

s.t. Xi = Tr;([k).

(12)

3.3. Stochastic Optimal Control with imperfect information

We consider classical time-homogeneous, infinite horizon stochastic optimal control problems with imperfect
information. To do so, we define a time homogeneous instantaneous cost g¢: R™ x R™ x R" —3 Rt and
a discount factor o €)0,1]. Using also the dynamics (1), the observation equation (2) and the information
dynamics (4), one gets the following problem in the information vector space, for any i:

%(ZO) = micn E I:Z;:;.OO akgc(Xk7 Ukagk)‘lo = ZO]
T

s.t. Xk+1 = f(Xk; Ukvé.k)7
Yk == h(Xkank)a (13)
Iivr = (I, Uk, Yiya),
Us = n¢(Ii), Yk >0,

Using the Markov structure of (), mentioned previously, one can reformulate Problem (13) as a perfect
information one on P(R"*) with the new state being ;. Additionally, as g¢ does not depend explicitly on time,
similarly to ¢°, one can use policies of the form (7). The resulting problem can be written compactly as follows,
for any p € P(R"=):

V(p) = min B[/ a3 (. Un) o = p
o

s.t. Hk+1 = F(/J/k;Yk-‘rlaUk)v
U, = 7T8(,uk), Vk >0,

(14)

with §¢(uk, u) = (ug,c(-,u)) where ¢ depends on g¢ and on the conditional distribution of & knowing Xj. As
Problem (14) is a perfect information one, the Dynamics Programming (DP) Principle can be applied (see [25]
for the details) and one obtains the following Bellman equation, for any p € P(R"=):

Vip) = min - E [°(p, u) + @V (pes1) | e = ]

(15)
st. pepr = F(Nfan+1au)'

It can be seen from the DP Principle (15) that any optimal policy, denoted by 7¢, exhibits implicit dual
effect. It means that the controls influence the future available information and thus future state estimation.
The term ’implicit’ refers to the fact that, in the case of optimal policies, the dual effect comes from optimality
and not from an external excitation. In this sense, control and state estimation cannot be separated and must
be coupled in their design. In the sequel, we formalise this idea in a joint optimisation framework.

4. Coupled optimal estimation and control

4.1. Formalisation of the optimisation problem

In this section, we consider the system (1) with the observation equation (3) and focus on the infinite horizon
case. The idea is to add an estimator as a variable in (13) in order to mix Problem (8) and (13). To do so we
consider an augmented control Wy, = (Uy, )A(k) and the corresponding augmented information vector I, defined
recursively as follows:

Iy =Yj, Tipr = (In, Wi, Yig).- (16)
In fact, Wy, is chosen as a function of I}, as in equation (6) such that for k > 0:

~ ~ ~

Up=7mi(Ix),  Xp=mi(ly),  m" = (7%, m5),

Wi = (Ug, Xi) = 78"9(1,).



We also define the new augmented cost function ¢g**9 and dynamics f**9 in the following way, for z € R"=,
w=(u,z) €U X R"™ £ e R"™:

gaug(x,w7£) = gc<x7ua§) + ge(x, j)v (17)
faug(x7w7£) = f(m,u,§), (18)

where ¢g¢: R"= x R" — R* is a measure of the estimation error as in Problem (8) and g¢: R"= x R« x R"¢ —
RT is the cost function of a classical stochastic optimal control of the form (13). Note that the augmented
dynamics f**9 does not depend on . The main assumption in (17) is that the total cost g*“9 can be separated
as a sum of a control-oriented term and an estimation-oriented term. It is a mild assumption as one can consider
that the true underlying estimation and control problem would be a bi-objective one with ¢¢ and ¢g¢ being the
two cost functions. Intuitively, g¢ and g° are often anti-correlated because one often needs to trade some control
performance for a better estimation. See [21] for an example in adaptive control. With this in mind, equation
(17) can be seen as a trade-off coming from the conversion of a bi-objective problem into a mono-objective one.
The last remarks lead to the following optimisation problem for iy € R™:

V(ip) = min [Zk %0 akgauI (X, Wi, &) I = 20]
TGS
s.t. Xk+1 = faug(Xk;Wkagk)7
Ve = h(Xkm), (19)
In = (Ik,Wk,YkH)

=
I

(w5 (L) w5 (L), Wk > 0.

Problem (19) combines Problems (8) and (13) in one multistage optimisation problem. The study of this
formulation has been started in [14]. It is actually inspired from [23] in which a similar gathering is done in
a min-max optimisation framework. We would like to write the DP principle for the problem (19) to make
explicit links with classical optimal control and optimal estimation. As we did for the problem (13), we can
rewrite the problem (19) in terms of the conditional distribution of X} knowing I, denoted by fi. As for uy,
one can derive the dynamics of fi;, from equations (3) and (18):

frerr = F (i, Yier1, Wa) (20)

with F249 ; P(R=) x R x R — P(R") leading to:

V(i) =min B[ 520% %57 i, Wi lfio = 1|

aug

St P = F (g, Yiyr, Wi)
Wy = my (i), Yk >0,

(21)

where g**9 = g. + ge with g. and g. defined as in Sections 3.2 and 3.3. One would like to use the structure of
the cost to separate the problem of control and estimation. In this sense, the formulation (21) is not practical
because it involves [i;, which depends on the estimator whereas f**¢ actually does not. To split the two problems
back, we start by noticing that the filtering equation of the augmented system and of the original one are the
same meaning that:

F9 (fig, Yy 1, W) = F (i, Yer1, Ug) -

Note that fi9 = po. This leads, by recursion on k, to i = px almost surely. Finally, we can write our coupled
control and estimation problem as a perfect information problem with py as the state:

V) = min B[S 0H G ue Ue) + 5 (i K)o = ]
070
st. prp41 = (,Uk,Yk-&-laUk) (22)
Ue = mG(pe),
Xp = 75(ur), Yk = 0.



4.2. Dynamic Programming principle
From (22), the Bellman equation of the coupled problem reads:

Vi) = min  B|§mu) + (0 8) + aV (o) e = ol
(u,®) EUXR"=

s.t. He+1 = F (H’Za YT@‘FI?”) )

As §°(u,u) and §°(u, &) are deterministic and F' does not depend on &:

Vo =niy (min 3°009) + 3000 + o8 [P ) = ] -

st pep1 = F (pe, Yeyr,u) .

Equation (23) illustrates the fact that Problem (19), which gathers optimal control and optimal estimation, can
actually be split back into a hierarchy of two problems. Indeed, it justifies the use of a resolution scheme in two
steps:

1. First, one solves the inner minimisation in Problem (23) which is a classical optimal problem of the form
(9). Any of its solution gives a time invariant optimal estimation policy denoted by 7¢(u). From this, we
set:

95(u) = g°(u, m2(p)) = min §°(p, ) (24)

2. Secondly, by substituting (24) in (23) one gets:

V() =min g5(u) +§°(n, ) + o [V (o) e =
ueU

(25)
st pey1 = F (pe, Yoy1,u) .

Equation (25) can be interpreted as the Bellman equation of a stochastic optimal control problem on
P(R™) which has the same optimal value as Problem (21). The second step is then to solve this problem:

~

Vi) =min B | 7% (@ e Ur) + 3 (i) o = ]

st. pkrr = F(pg, Yy, Ur) s

(26)

Note that g¢(u) = (i, g°(-,7(1))) so g¢ is generally nonlinear in g and is not an integral w.r.t. g as in
(14). Therefore, Problem (26) cannot be written back in the form of Problem (13).

At first sight, this split scheme looks like any classical one because most of the outputfeedback controllers are
built from an estimation and a control step. However, it is different from a classical scheme in several ways.
First, the two hierarchical steps appears naturally from the coupled problem (19) meaning that the splitting is
structural in this case and does not come from an assumption of separation. Secondly, the actual value of X k is
not directly involved in the control problem (26) but only ug. In practice however, the same approximation of
1k is generally used both in the estimation and the control step. Finally, the Problem (26) has new interesting
properties that will be the topic of Section 6. The goal of the next two sections is to give a practical resolution
of the scheme described in this section by means of a particle filtering algorithm for Step 1 and of a general
Explicit dual control scheme for Step 2.

5. Particle filtering and near-optimal estimation

In equation (7), the posterior distribution gy is implicitly assumed known when I is. However, for a
general nonlinear case, py does not have an analytical form and approximations must be carried out. Kalman
filters are widespread and easy-to-compute approximations of pj; but they may fail in the presence of high
nonlinearities and multimodality. Besides, nonlinear Kalman filters are not optimal even for problem (10) and
their suboptimality is generally impossible to quantify. That is why, in the sequel, we focus on particle filtering
algorithms to approach u;. Then, we show that the empirical mean of a specific particle filter is near-optimal
for Problem (10) and a rate of convergence is provided.



5.1. Particle filtering

A particle filter approximates the posterior distribution pg by a set of N > 1 particles, (:ci)izl n valued

in R™ associated with nonnegative and normalized weights (w,’C) This approximation is denoted by

i=1,.,N"
,u{cv . The same can be done with the predicted distribution fig,_; with similar notations:

N N
N i N i
P = Zwlkéz;c’ Plle—1 = sz‘kfl(szi\kff (27)
i=1

i=1

As for Kalman filters, a particle filter is computed recursively following two steps: prediction and correction.
During the prediction step, the particles are propagated using an importance distribution that is often chosen
as the Markov kernel K from the dynamics. During the correction step, the weights are updated thanks to
the last observation and the particles are resampled from the updated weights. In the sequel, we consider a
particular algorithm coming from [28] where an intermediary step of selection of the particles according to their
likelihood is added. Moreover, we define the empirical mean of the filter ug , denoted by X ,iv as follows:

N
XN =3 wiah = (), 1d). (28)
=1

5.2. Near-optimal estimation

5.2.1. Statement of the problem

In this section, we consider a fixed vector of information ix. Thus, g is the distribution of X} conditionally
to Iy = ig and g r—1 is the distribution of X} conditionally to Iy 1 = ix—1. In Section 4, we have seen that if
we model the problem of control and estimation as an optimisation problem then a step of optimal estimation
is required at each time k. We focus on the Mean Square Error minimisation problem i.e. we assume that

¢¢(x,2) = ||# — z||*>. We recall the problem seen in Section 3.2:
Juin Ef[l2 — Xl |1k = ). (29)

We are concerned with MSE because it is a very popular estimation error measure of particle filters in
practice but it has not really been studied theoretically. Besides, in this section, we study the conditional MSE
minimisation problem (10) precisely because this problem appears in Step 1 in Section 4. However, we are also
interested in the minimisation of the total MSE. In fact, It gives a more useful assessment of the filter than the
conditional MSE because it does not depend on i which is unknown at the initial time.

From this, we define the conditional and total optimal MSE at time k denoted respectively by ez?fd and

tot > .
ey, as follows, for any i:

. w2 . ° S
i in) = B|IX = Ril 1o =in |, efeh =B [0 - K57

Similarly to the optimal MSE, we define the empirical conditional and total MSE associated with X N

denoted respectively by ef%¢ and el°;, as follows, for any i:

. SN2 : o SN2
eioatlin) == B [1X0 = XN I =i |, eleh = B[1%e - KN

where the expectation is also taken over the randomness of the particles.

The main contribution of the sequel, gathered in Theorems 5.3 and 5.5 is to show that under suitable
assumptions on the dynamics (1), the observation equation (3) and the particle filter (27), the empirical MSE
converges to the optimal MSE as the number of particles goes to infinity. More precisely, we prove error bounds

between e£%(ix) and e£"4(ix) and between el and ef%.

5.2.2. Error bounds between the optimal MSE and the empirical MSE

The main difficulty in the following comes from the fact that, even if X N is very commonly used as an
approximation of X}, estimating rigorously the convergence of X} to X; cannot be achieved by classical error



bounds on particle filters. In fact, from equations (11) and (28), X + and X N are the integral of Id, which is
unbounded, w.r.t. p; and plY. Therefore, it does not fit in the classical framework of weak error bounds.
To begin with, without assumptions, we can compare the several MSE using the optlmahty of ew”d and

e};"i This is the topic of Lemma 5.1 which is a direct consequence of the optimality of X b

Lemma 5.1. The following inequalities hold, for any k > 0 and any iy:

(i) < eRiR), et < e

Thus, considerations of optimality give a lower bound on both the conditional and total MSE of the particle
filter. To find upper bounds, we first treat the conditional case and extend it later to the total case.

Bounds on the conditional MSE

This section is dedicated to the proof of an upper bound on ei"}{,d(zk) and of the convergence of ew"d( k) to

ez‘md( ). The main result of this section is contained in Theorem 5.3. First, before stating the results of this

section, we would like to stress the particularity of our problem by rewriting ec"”d(zk) as follows:
v 2 . Uk U v 2 .
it (in) = B [1Xs = XN 11 = i | = B{1Xe = R + &5 = KV 1 = a (30)
By Young’s inequality, we get for any € > O:

Bk = &M = | < 1+ BIX0 = Ki |1 = i (31)

+

(1+2) 1 - K211 =]
<A+0E [||Xk — 111 = i

2 .
+ <1+ ) I, Tl) = (i’ 1) | uk:%].

The last inequality can be rewritten as follows:

- con. 1 wrer
eiﬁ’}(,d(zk) < (1 +€)€k *d( k) + (1 + ) 6“\3 (ix), (32)

where ei%er(zk) =F [||<uk,1d> - <,u£’,1d>||2|f;€ = ik]. One can deduce from equation (32) that, up to ¢, it is

sufficient to control the term eizf\t,er( k). For x = (x1,...,x,,) in the canonical basis of R"=, and j = 1,..,n,
one defines the j** coordinate function, ¢;, such that, Vo € R"=:

¢j(x) = ;.
Then, eif%er (i) can be decomposed as follows:
wrer 2 .
eié\tf Z| Mk7¢j Mka¢]>| |Ik:l}€ )
‘” N 2 ,
=3B [l 65 = (00 1Tk = i | (33)
j=1

This term can be seen as a quadratic error term of the particle filter ukN where the scalar test functions are
the coordinate maps. Actually, classical error bounds do not deal with unbounded functions like Id, see [7] for
a survey. Still, a class of unbounded functions has been treated in the form of a Central Limit Theorem in [9]

but the result of convergence in law is too weak to be applied to eilxer( %). However, in [28], a bound on the



LP-norm for a class of potentially unbounded test functions is given. The error bound is written conditionally
to iy in the following form:

147,
Np—p/T’

B [, 9) = (i 0) 10 = i | < O (34)

1
wherep > 2,1 < r <2, Cy is a coefficient depending on iy, 1 is a test function and HUJH,W = (max(1, {uo, [¥[")7,.

It was originally written conditionally to a sequence of observation yo.; but the extension conditionally to i is

straightforward. In the sequel, we would like to apply the bound (34) to e{:%er (ix). To do so, we present the

adapted assumptions of [28] for the particular case ¢ = ¢;, p =2 and r = 2.
Assumption 5.1. Foranyk > 1, for 0 < e, < 1, for a.a. iy, there exists Ny(ir) > 0 such that, for N > Ny (ix):
e = g1, p) > 0, (35)
P({upp—1sp) > el = i) > 1 = e (36)
In particular, under Assumption 5.1, for a.a. ix, we have (ug—1,p) > Y& with v, independent of .
Assumption 5.2. For k > 1 and for a.a. yx, Tk, Tp—1 and ug_1:
(YK, ) < 400, K(xg, xp—1,ur—1) < +00.

For j = 1,..,n,, we denote respectively the L>-norm of K, p and p¢p; w.r.t. = by || K|, |pll and ||pg;| i.e,
for a.a. 7:

IK|| = sup K(z1,zo,ug—1)

Z0,%1,

o]l = sup p(yk, z),
x
lp3 1l = sup |63 () p(yx, ).
x
Assumption 5.3. For k > 1 and for a.a. iy,

1K< 400, lpll< 400, llpd5ll< +oo.

1
As [lp; 1< 11pg3 |12 ||p||%, Assumption 5.3 implies that ||pg;||< +oco. Lemma 5.2 presents then an upper
bound of ei‘f]’%,d(ik).

Lemma 5.2. Under Assumption 5.1, 5.2 and 5.3, fore >0, for j =1,..,n, and k > 0, for a.a. iy, there exist
Cr,; > 0 and My, ; > 0, such that for N > Ny (ix):

1\ 5ot Crllésl;
ez(jgfd(ik)S(l-‘rE)ez?fd(ik)-f—<1+6) B T (37)

N

where ||¢;l, 5 = max(l,(,uo,|¢j|2> ,...,<Mk,\¢j|2>§). Besides, Cy ; and My ; follow the following coupled

recursion, for a.a. iy:

10
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My,; =3, (38)

Co, = 8C, (39)
4—¢
Mk,j =2+ (o7 (1 + (1 Ek + 1) Mk—l,j) (40)
— €k
o1
1 ~ 11 25(C)? By . 1
CE, =4O gty + 2O P yd (41)
’ ’ (1—€)? ’
3
1K N2l 2Bk,

1 1 1
(1 —ex)[ 5 — (tajp—1 p>\M’5‘17jC'3—17j + 1 K1Br,;CZ_1 55
NE. .

_ lelldigspll+%)
%<Mk\k*1>p>

2ol (llé3ell+%)

Br.j
7 %</’Lk\k717p>

vak =K (42)

Hp\lf.,,g\lKHQm;w Crk-1,5

where: € > 0, |lplls = (un: p) < llpll and Ni(ix) > —¢

with 0 < e, < 1 is fized indepen-

—(unp—1.0)"en
dently of iy.

Proof. See Appendix Appendix A. O
By combining Lemma 5.1 and 5.2, one finally gets Theorem 5.3.

Theorem 5.3. Under Assumption 5.1, 5.2 and 5.3, for e >0, for k > 0, for a.a. iy, there exists Ci ; > 0 such
that VN Z Nk(Zk)

cond (; cond (; cond(; 1 2?21 Ck’j |¢JHi 2
e (in) < ep N (ik) < (14 e)er“(in) + ( 1+ p N =. (43)
In particular, for a.a. iy:
A2 ) S )
E (1% = R 10 = ie] —> B [IXe = K01 = i (44)
N—+4o00
Proof. See Appendix Appendix B. O

Remark 5.1.

Assumption 5.2 is very mild because most systems have finite likelihood and transition kernel. Assumption
5.3 requires that the likelihood function p vanishes sufficiently when ||z||— +o0 for a fixed vector iy, to counter the
increasing effect of ¢, as explained in [29]. It is typically verified with Gaussian measurement noise. Assumption
5.1 is natural in particle filtering. It requires that the predicted distribution p,—1 and the predicted particles
match the likelihood p for each information vector ¢;. The failure of this property a well known issue in particle
filtering and is studied in more depth in [29], [30] and [7]. It is notably showed that it has an impact on the
precision of some error bounds. Intuitively, the algorithm from [28] forces the particles to be positioned where
the true state is sufficiently likely to be with respect to the new observation yg.

Theorem 5.3 basically means that X ,iv is near-optimal with respect to the conditional MSE when the number
of particle is large enough. Besides, equation (43) gives an estimation of the speed of convergence of the empirical

MSE. For example, for ¢ = %, one can see that the speed of convergence of this MSE is of order ﬁ It is

slower than usual in Monte Carlo methods. One would rather expect a convergence rate of order % The
conservativeness of the bound (43) comes from our use of Young’s inequality instead of Minkowsky’s inequality.
Actually, a very similar reasoning could be undertaken using Minkowsky’s inequality and one would get a better

1 1
convergence rate but it would involve the conditional Root Mean Square Errors (RMSE), (ei‘jfd) > and (ez‘f}\‘,d) 2,

and not the MSE. The RMSE is easier to interpret than the MSE in practice in an estimation context for the
same reasons that the standard deviation is easier to relate to concrete data than the variance. However,
minimising a MSE is more adapted to the context of stochastic optimisation defined in Section 4.2. That is
why, we focus on MSEs and not RMSEs in this section even if we lose some precision in the error bounds.

11



In the sequel, we would like to extend the result of Theorem 5.3 to the total MSE. A intuitive way would
be to integrate equation (B.1) over ;. However, it is not possible in its current form because Cy ; and My, ;
depend on i which makes the integrability on the right-hand of equation (B.1) hard to evaluate. Moreover,
the threshold N (ix) also depends on iy so one cannot apply the Dominated Convergence theorem directly.

Bound on the total MSE

The main contribution of this section is the extension of the result of Theorem 5.3 to the total MSE. This
result is presented in Theorem 5.5.
We first assume that Xy is square integrable

Assumption 5.4. For any k > 0:

E[|| X&]”] < +oo.

As in the conditional case, Lemma 5.1 provides a lower bound of e, we are then looking for an upper

bound of e}@oj\,. As suggested earlier, one would like to integrate the right-hand side of equation (37) w.r.t. i,

which is defined, for e > 0, for a.a. i, and for any N > N(i) by:

S0 Crsllslly
= .

1
(1+ €)efor (i) + (1 + 6)

Note first that, under Assumption 5.4, E[eif’fd(ik)] = e}’ < +oo. and that Vk > 0,Vj = 1,..,n, (us, |¢j\2>
is integrable. Thus, ||¢7j||i,2 is integrable.

Actually, the first issue lays in the fact that C, ; depends on 45 and it is not clear at all from equations (38) to
(42) that each term Cy ;|| ¢; ||i2 is integrable w.r.t. 4. To tackle this issue, we show that if the coefficients || K|,
Ioll, [lp3] and |[pg;|| are bounded uniformly w.r.t. ix, then Cy ; and My, j are too. This leads to Assumption
5.0.

Assumption 5.5. Vk >0, Vj=1,..,n,:

K| = sup K(xo,71,up) < +00,

Z1,20,U0

oll oo = sup p(y, z) < +o0,
xr,y

lpd3]l = sup |3 (x)p(y, x)| < +oc.
T,y

11
It is clear that Assumption 5.5 implies Assumption 5.3. As [|pg;| . < ||p¢§|\§o||pHéo, Assumption 5.5 implies
that [|pg;|| < +oo.
We can now state the following Lemma:

Lemma 5.4. Under Assumptions 5.1, 5.2, 5.4 and 5.5, for k > 0, for j = 1,..,n;, there exist C,’C)j > 0 and
My, ; > 0 such that, for a.a. iy:

Proof. See Appendix Appendix C. 0

Finally, each term C} j”¢j”i 5 is integrable which solves our first problem. Our second problem is that the
threshold Ng(ix) also depends on i. Actually, under the same assumption, one can find a larger threshold that
does not depend on 4. This is the topic of the next result:

Theorem 5.5. Under Assumptions 5.1, 5.2 and 5.5, for 0 < q <1, for k > 0, there exists Ny, > 0, such that
for any N > Ny

n 2
: S Chy Bl
et < efoly < (1 - > et (L4 N1 ——— = < oo, (45)

Na N

12



In particular:
SN2 2
E (1% = XN = B [I1X% - Kil . (46)
N—+o00

Proof. See Appendix Appendix D. O

Similarly to Theorem 5.3, Theorem 5.5 means that the total MSE associated with X N is close to be optimal
if the number of particle is sufficiently high. Theorem 5.5 also provides an estimation of the rate of convergence.
This leads to several remarks and interpretations.

Remark 5.2.

Assumption 5.4 is mild and needed to ensure that the optimal estimation error is finite. Assumption 5.5 is
stronger than Assumption 5.3. It is typically verified when the measurement noise is bounded. This will be
illustrated in Section 7.

The coefficients M,’” and C,’C’j tend to +oo with time. Actually, It can be easily seen from equation (C.3)
that, for j =1,..,n,,and &k > 1,

/ / !
Mpj 2 o ;0 My 5,

with 0, =1+ %:Z’Z > 2. In fact, in most relevant cases, ozﬁw- >1so C’,’w- and Ml;j go to +oo as k — +oo. Thus,
N, tends to 4+00 too which means that the error bound from Theorem 5.5 is not uniform in k. This is classical
for this type of error bound as described in [7]. To get uniformity in k, one typically need a mixing assumption
on K, see [30].

Theorem 5.3 justifies the use of particle in the framework of Section 4.2 because it shows that X N solves
approximately Problem (29) which was the first objective of this section. Theorem 5.5 rather paves the way
to a proof of error bounds on particle filters oriented toward particle filter moment stability. Actually, let us
assume that a stricly suboptimal estimator of X w.r.t. to the total MSE, denoted by X3, is available. For
example, X ,j“b may come from a Kalman-like filter in a nonlinear case. By optimality of X » and by Theorem
5.5 for a sufficiently large N, one gets, for k£ > 0:

-~ 2
et < ety < B (11X - £ (47)

This means that the particle filter has better performance than any other suboptimal filter if the number of
particles is sufficiently high. This result is not surprising and observed in practice. However, a rigorous proof of
such a result has never been made to the best of our knowledge. As a result, one can see from equation (47) that
is the MSE generated by X 2ub is bounded w.r.t. k then so is e{°4,. This seems to be a good alternative in order
to show MSE boundedness for a particle filter. In fact, in [10], under a small error assumption, the stability of
the Extended Kalman filter is proven in terms of bounded MSE. Other results of stability of nonlinear filters
can be found in [11]. However, this statement is not rigorous for the moment because one still needs a number of
particle increasing with & according to the previous remark. Note that this kind of result is hard to obtain if one
considers directly the particle filter because one would typically need some nonlinear stochastic observability
condition. See again [11]. Finally, this kind of result is very useful in an output feedback control perspective
because it could be a first step toward showing a closed-loop moment stability result of the true state of system,
Xk, in a nonlinear framework. See [31] for an example of outputfeedback moment stability with bounded MSE
in a linear context.

6. Explicit dual control and Optimal control with an estimation based cost

The objective of this section is to use Step 2 from Section 4.2 as a formal justification of a class of dual
controllers called Explicit dual controllers. More precisely, a link between classically used empirical losses of
information added to the cost and the optimal value of the estimation problem (26) is presented.

6.1. Explicit dual control

In this section, we focus on Explicit dual controllers based on integrated experiment design. The idea in
this case is to add a quantitative measure of the loss of information in the cost of a stochastic optimal control
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problem like Problem (14). If one defines g"*/°: R"* — R as the loss of information, one can write an
infinite-horizon Explicit dual control problem as follows:

V(i) = min  E™ | 32075 (5 (ue, Un) + 570 (s X)) ito = 1o

TS
St Ug+1 = F (,U/k:a Yk:-i—la Uk) 3 (48)
qk = WS(M’C)a
R = wlm), Yk >0,

Optimal solutions of Problem (48) exhibit the property of Explicit dual effect. The term ’explicit’ comes from
the external nature of the coupling between estimation and control realised by ¢"*f°. Note that optimal solutions
of Problem (48) also exhibit implicit dual effect for the same reason as those of Problem (14) do. However,
Problem (48) is usually destined in practice to be approximated by an Open-loop finite-horizon problem used
inside a dual Explicit Stochastic Model Predictive control scheme. See [20] for a review on the subject. In this
case, the Open-loop approximation destroys the feedback structure of the policies and the implicit dual effect
is lost. The main interest of Problem (48) is precisely that g"/° preserves some dual effect even after these two
approximations. Still, the main flaw of this technique is that ¢*”/° is generally empirical and chosen ad hoc
which makes Problem (48) hard to connect with the original control problem (14).

6.2. Optimal control with an estimation based-cost

We recall here the modified control problem that appears in Step 2 from Section 4.2:

Vi) = min E7 | 3515 (@ e Ur) + 3 (i) o = ]

st. pkrr = F(pr, Yeg1, Ur), (49)
U, = 7r8(,uk), Yk > 0.

Notice that, since g¢ is the minimum estimation error given the current distribution p, one could be tempted
to choose controls that minimise it w.r.t px in order to get more information on the system. In this sense, g¢
can be seen as a measure of a loss of information. Although, it is not a very practical one because it depends
on the value of each past and presents observations and is therefore hard to predict. We would like to use ¢g*/°
as a simpler and a priori measure of information.

We would like to introduce a new perspective linking the Explicit dual control problem (48) and the the
estimation-based control problem (49) which is itself a step in the resolution of the coupled estimation and
control scheme from Section 4.2. We propose to consider that when one solves Problem (48), one solves a sort
of approximation of Problem (49) and not a modified version of the classical problem (14). With this point of
view, we try to narrow the gap created by the empirical consideration in Problem (48). As a result, one could
imagine new explicit dual schemes with better approximations of g¢ than current ones.

7. An application in Aerospace engineering: Terrain-aided navigation

The goal of this section is to give a typical example of application where the practical resolution of the
estimation and control steps from Section (4.2) is relevant. We also show that the modelling assumptions form
Section 5 are satisfied in this example. The application under consideration is the problem of localisation and
guidance of a drone by Terrain-aided Navigation (TAN). The objective is to be able to localise a drone and
guide it in a 3D space using speed measurements and one dimensional measurement related to the position. In
the Cartesian coordinates, we assume that the dynamics of the drone are described as follows:

e the state is composed of a 3 dimensional position and a 3 dimensional speed: Xy = (21 k, T2k, X3k, V1., V2,k, U3 k)
and the control of a 3 dimensional acceleration Uy = (uq g, U2k, us k). Note that (xq,x2 ) represents
the horizontal position and z3 j the altitude.

e its dynamics (50) is linear with bounded controls, for k € N,
X1 = AXy + BUg + &k, 1Ukl1< Unaas (50)

where Upge > 0, A € R*™*" and B € R"*™ correspond to a discrete-time second order and & ~
N(0,Q) with Q positive semi-definite.

14



We assume that the dynamics has a relatively simple form because the main difficulty of this application is
the nature of the observations. Indeed, the only information on the position is a measurement of the difference
between the altitude of the drone, x3 ;, and the altitude of the corresponding vertical point on the ground. We
also suppose that the ground is represented by a bounded map, hys : R2 — R*. In practice, hjys is often
determined by a smooth interpolation of data points which makes it very nonlinear. Therefore, the observation
equation reads:

Yi = haet (X&) + 1, (51)
U1,k

where hget(Xy) = 52’]“ and 7, is measurement noise. Its distribution is assumed to have a
3,k

w3k — har (21,8, T2.k)
density w.r.t the Lebesgue measure denoted by p, which is also bounded with a bounded support. Note that
assuming a bounded sensor noise is relevant in many case and especially in Aerospace engineering.

Intuitively, the use of particle filters is justified in this case by the map hj; which is nonlinear and may
have ambiguities resulting in a multi-modal distribution pg. Actually, its modes are closely related to the level
sets of hps. As a matter of fact, Kalman filters cannot accurately deal with this problem. Moreover, it appears
very naturally that dual control is required in this application. Indeed, the quality of the observations depends
on the area that is flied over by the drone. If the drone flies over a flat area with constant altitude, then, one
measurement of height matches a whole horizontal area and the estimation error on (x; ,2,1) is of the order
of magnitude of the size of the area, which can be very large. On the contrary, if the drone flies over a rough
terrain, then one measurement of height corresponds to a smaller area on the ground and the estimation error is
reduced. Thus, in TAN, information probing consists in flying over informative areas of the ground. Therefore,
information measures based on some norm of the gradient of the h,,, like the Fisher Information Matrix [32], are
relevant. Finally, we would like to show that the system (50)-(51) is an example of system where Assumptions
5.2, 5.3 and 5.5 hold. This results is summed in Proposition 7.1.

Proposition 7.1. The system (50)-(51) satisfies Assumptions 5.2, 5.3 and 5.5.

Proof. Clearly, from equation (51), Assumption 5.2 is satisfied. In the sequel, we prove that Assumption 5.5
holds which implies that Assumption 5.3 holds too. By independence of 1 w.r.t. Xy, the likelihood function
can be written as follows:

P(Ye, Xic) = (Y — haet (X))
From equation (51) and as p,, has a bounded support one can get that
| Xe)?p(Yi, Xic) = 0 for ||(Yi, Xz)|| sufficiently large (52)
One can deduce, using the notation in Assumption 5.5, that:

1942 |00 = sup |22 p(y, x)|< 400, fori=1,2.
@y

Besides, ||p||co< +00 by assumption on p,,. Finally, the noise in the dynamics (50) being Gaussian, || K ||oo< 400
and Assumption 5.5 holds.
O

8. Conclusion

In this paper, a general formalisation of the joint problem of nonlinear optimal filtering and discrete-time
stochastic optimal control is proposed. Under natural assumptions on the cost function one can justify the
use of two steps in the resolution of the problem. The first step is to solve a classical optimal estimation
problem. Near-optimality of the empirical mean of a modified particle filter w.r.t. the mean square error has
been shown which justifies the use of particle filtering in the case of MSE minimisation. The second step is to
solve a modified optimal control problem with a new term coming from optimal estimation. This establishes a
connection with Explicit dual control where a new term representing a measure of information is empirically
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added to the cost. Actually, this empirical term can be seen as an approximation of the term coming from
optimal estimation. Finally, this framework is illustrated by an example coming from Aerospace engineering
namely Terrain-Aided Navigation.

Appendix A. Proof of Lemma 5.2

We recall that under Assumption 5.1, (uk|k,1,p> > Y > 77’“ Besides, Vk > 1, for 0 < ¢, < 1, for a.a. ig,
there exists Ny (ix) > 0 such that, VN > Ny (ix):

o .
P({upj—1,p) > o k=) 21— e

Therefore, under Assumptions 5.2 and 5.3, we consider theorem 3.1 of [28] with ¢ = ¢;, with p =7 = 2
and with & instead of ;. It implies that, for j = 1,..,n, and k > 1, for almost all i, there exist C ; > 0,

2
My, ; > 0 and N (i) > 0 such that VN > N (ix):

N 2 . CkJH(iji,z
E [|<Nka¢j> - <,Uk a¢j>| ‘Ik = Zk] < T,
1 i sl
B 1) = (T = i | < It (A1)

By putting end to end the computations in [28], one can show that, for £ > 1, and j = 1,..,n,, Cj; and

M;, ; follow the coupled equations (38) to (42). From the computation of C ; and Assumption 5.1, one can
”PHi,zHK”%n;m Cr—1]k—1,5

also show that Ny (i) can be chosen as such that Ny (i) > - T , with 0 < ¢, < 1.
5 —(Bk|k—1,0) | €k

One gets the result by combining equations (32) and (A.1) to obtain Ve > 0, for almost all ix, VN > N(ix):

~ . 1\ Ziei Okl
ei‘fﬁdw<<l+e>ez‘7::d<zk>+(”e) =

Appendix B. Proof of Theorem 5.3

As Lemma 5.1 requires no assumptions, Lemma 5.1 and 5.2 hold under Assumptions 5.1, 5.2 and 5.3 and
one gets directly that Ve > 0, for a.a. iy, for any N > Ni(ix):

2
1951152

1> 2?21 Ch.j

) < R < (1 i) + (14 -

€

By choosing ¢ = ﬁ with 0 < ¢ < 1, one can obtain from (B.1) that, for a.a. i, VN > Ng(ix):

n 2

. . 1 . >i—1 Cr.jll 95l
e i) < R (i) < (1 5y ) eR (i) + (1 NO) ZIm R, (B.1)

) ’ Nq ’ N
Moreover, the right-hand side converges such that:
n 2
1 cond - q Zj:l C’C:j”@‘”k,z cond /-

(1 77 ) et (oo vy SRRy cionay), (B2

Thus, it is now clear from (B.1) and (B.2) that for a.a. i:

eRRY (i) —_eirn i),

Appendix C. Proof of Lemma 5.4

One defines C’,’w-, and M,’w- recursively as follows, Vk >0, Vj =1,..,n:
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C(/)J = 85’, (C 2)
4 €k
M/lw—2+a§€j(l+(1_6k+1)M,’€_1J), (C.3)
1 s a0k 1 235(0) 8y 1
(Crj)? =22(C)° (M} ;)” + ———H (M} )? (C.4)
(1 — Ek)2
K12 llolloo B . , ,
o (M1 )2 (Chy )+ K (oo Bl (Choi ) 2

(1 — Ek)%‘

2 el 3ol + %) ol Ugsplle + %)
O‘;c,j = ”K”oo jvz ) ﬂl/gj = J,Yz = 2 ’. (05)
Dk Tk
2 2
Because of Assumption 5.5, the following inequalities hold, Vj = 1, .., n:
el < llpllee < o0, lpe3 1| < ol < +oe, @il < llpgjlloe < 400 (C.6)
Thus, by recursion on k, Vk > 0,Vj =1,...n
C]ICJ < —l—OO, MI;;J < +OO.
From the definition of oy, ; and B ; in equation (42), One needs to be able to bound the term W
klk—1:P)— 3"

from above uniformly in ix. To do so, from Assumption 5.1, for a.a. i, one gets:

Vi
<u'k|k71ap> > Vi > ?, (07)
Ve o Yk
_ _Es TS
(rip—1:0) = 5 2 5 >0,
1 1 1
- LT C.8
(ne—r0) = 21~ (1,0 =% ~ % (C.8)

Consequently, from (C.6) and (C.8), Vk > 0, Vj = 1, .., n,, for a.a. i:
kg < g g Brj < B (C.9)

Finally, from equations (C.7), (C.9), equations (38) to (42) and equations (C.1) to (C.5), one can show by
recursion on k, that Vk > 0, Vj = 1,..,n, for a.a. ix:

Ck,j < Cllc,ja Mk,j < M’;j'
Besides, since v, [l 0031 and [p¢;l,, do not depend on iy, Cj, ; and My ; do not depend on i, either
and one gets the result.
Appendix D. Proof of Theorem 5.5

Under Assumptions 5.1, 5.2 and 5.5, Lemma 5.2 holds and implies that, for a.a. ix, VN > Ng(ix), Ve > 0:

Z?:l Ch,j
N

2
1951152
)

~ 2 . Swi2 . 1
Bl1x ~ X110 = i | < 0+ O B[ 1X0 ~ il I = 0] + (1 n ) (D.1)

HpHiQHKHszaX Cr—1,5

where N (i) =
(i) |2 —(prje—1.0) | en
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First, one can notice from (C.6), (C.8) and Lemma 5.4 that, Vk > 1, for a.a. iy:

2 2
K
M IRIE oy

Nelin) = (Lk)gek J
2

Ng.

Note that N}, does not depend on i then (D.1) is true for a number of particles independent of iy, i.e Ve > 0,
VN > Ny, for a.a. i, :

By

SN2 . 52
E (1= XN 1 =i | < 1+ ) B [1X - X2 1

1\ X0y Crlleslly
ik]-i-(l-i-e) j=1 NJ ch,2.

using Lemma 5.4 again:

n l 2
1 i |4
ik] 4 <1+ > Z] 1 k]” ]||k,2.

SN2 . 52
B (16 - XY 0 = i | < 1+ 0 B [1X - X710 : o

Now one is able to integrate over iy, which leads to:

BIx - £ < a0 B[ - %o+ (141) 2 ’/“’f edts] (D.2)

a2
We recall that F [||Xk - Xil e = ik] and ||gb]||i , are integrable w.r.t. i, because X} is square-integrable

by Assumption 5.4. Moreover, from Lemma 5.1, and by taking ¢ = ﬁ with 0 < ¢ < 1, one can get additionally
that Vk > 0, VN > Ni:

S Gy (16317 0]
N

1
el < e’y < (1 + Nq> et+ (1+ N9) < 400.

The convergence result is straightforward from the previous equation.
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