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Abstract

Whether in medical imaging, astronomy or remote sensing, the data are increasingly complex. In addi-

tion to the spatial dimension, the data may contain temporal or spectral information that characterises the

different sources present in the image. The compromise between spatial resolution and temporal/spectral

resolution is often at the expense of spatial resolution, resulting in a potentially large mixing of sources

in the same pixel/voxel. Source separation methods must incorporate spatial information to estimate

the contribution and signature of each source in the image. We consider the particular case where the

position of the sources is approximately known thanks to external information that may come from another

imaging modality or from a priori knowledge. We propose a spatially constrained dictionary learning

source separation algorithm that uses e.g. high resolution segmentation map or regions of interest defined

by an expert to regularise the source contribution estimation. The originality of the proposed model is

the replacement of the sparsity constraint classically expressed in the form of an `1 penalty on the

localisation of sources by an indicator function exploiting the external source localisation information.

The model is easily adaptable to different applications by adding or modifying the constraints on the

sources properties in the optimisation problem. The performance of this algorithm has been validated on

synthetic and quasi-real data, before being applied on real data previously analysed by other methods

of the literature in order to compare the results. To illustrate the potential of the approach, different

applications have been considered, from scintigraphic data to astronomy or fMRI data.
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I. INTRODUCTION

The issue of source separation, or unmixing, is well known to the signal and image processing

community. It concerns a very large number of applications and can occur under different conditions

of source mixing. A large part of the literature is devoted to blind source separation (BSS) [1]–[3]. BSS

methods allow to solve cocktail party problems for which P signals (or images) composed of a mixture

of R sources are observed, without any a priori on the properties of the sources. If the number of sources

involved in the mixtures is not known a priori, then they must also be estimated [4], [5]. Early BSS

methods mainly comprised Independent Component Analysis (ICA) and sparse decomposition analysis.

Many variants of the ICA approach have been proposed in the literature to solve BSS problems. All of

them are based on the general principle of spatial independence of the sources, which makes it possible

to estimate their temporal (or spectral) signatures.

For instance, in brain functional networks detection in functional Magnetic Resonance Imaging (fMRI)

data, ICA is widely used to separate spatial sources by assuming the independence of the temporal signals

associated with each spatial source, i.e. functional network. Spatial ICA has proven effective in [6], [7]

for fMRI data, but the main drawback of ICA approaches is the unknown number of sources which is

set arbitrarily and may lead to a large number of nuisance sources, that must be screened manually or

by a semi-automatic method [8].

In contrast to the BSS problem, many unmixing problems involve a dictionary of pre-defined sources.

For example, in hyperspectral imaging for remote sensing, libraries of light spectra corresponding to

the different materials that may be observed in the scene are available, so only the proportion of the

different materials in each pixel is estimated. Between these two extreme cases, there are a large number

of unmixing problems where some information on the form or location of the sources or the type of

mixture is known. Sum-to-one and positivity constraints on the coefficients of the mixing matrix are classic

in signal and image processing. In remote sensing applications, hyperspectral data linear unmixing is for

instance carried out by methods based on nonnegative matrix factorization [9], [10]. In recent years,

sparse decomposition methods have been widely used to solve source separation problems. The sparsity

constraint is another way to reduce the set of solutions. It can be combined with the two latter constraints.

The sparsity may concern the mixing itself, i.e. for a given observed signal, only a few number of sources

is involved, or the decomposition of the sources on a dictionary (wavelet, discrete cosine transform, or

custom atoms) [11]. Recently for fMRI application, sparse analysis based on dictionary learning methods

have proven to be promising [12]–[15]. Dictionary learning methods take into account the spatial sparsity

of the functional networks in the form of `1 constraints on the mixing matrix in the minimisation problem.
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In this paper, we are interested in the problem of source separation in spatially structured data: 2D

or 3D images that contain temporal information (fMRI, scintigraphy) or light spectrum information

(hyperspectral imaging). We consider two categories of this kind of unmixing problems. In the first one,

for a given pixel/voxel, different sources contribute to the mix in the sense that the spatial resolution is

not fine enough to allow spatial separation of the sources. This is the case, for example, with unmixing

problems in remote sensing [10] or fMRI applications [15], [16]. In this case, the mixing matrix is a

matrix of proportions where for a given pixel, the sum of the contributions of each source is equal to 1.

In the second category of unmixing problems, the mixing is additive, the signals of the different sources

are superimposed and their sum forms the observed mixing signal. Decomposition of scintigraphic image

sequences into tissue images and their time-activity curves, or unmixing of light sources in hyperspectral

data in astronomy are examples of this second category of problems. In this case, the sum-to-one constraint

is not relevant, the coefficients of the mixing matrix are the intensity of the contribution of each source

in the mixture. Since the observed signals are observed in the form of images, the constraints that can

be defined in the optimisation problem should be related to the location of the sources and not to their

shape. We consider the case where no information on the temporal or spectral signature of the different

sources, or on their dependence is available.

We propose a dictionary learning method that introduces sparsity constraints on the spatial localisation

of sources from external knowledge. Additional constraints on the mixing matrix (positivity and sum-to-

one constraints) can be added or removed depending on the application. To illustrate the potential of the

approach, different applications have been considered, from scintigraphic data to astronomy or fMRI data.

All these data are of very different natures, as well as the a priori information available on the location

of the sources. We thus show that our algorithm is adaptable to different types of data and different types

of a priori knowledge on the location of sources. In the case of multimodal observations, information

regarding the possible spatial location of sources is usually derived from a high spatial resolution image

that does not provide the second dimension, namely temporal or spectral information. Unlike multimodal

image fusion problems, such as pansharpening [17], our goal is not to produce a spatially and spectrally

or temporally well-resolved image. We rather aim at exploiting a segmentation information from a high

spatial resolution image in order to improve the unmixing of spectral or temporal sources at a lower

resolution image level. In some applications, such a segmentation map is not available, but approximate

spatial location information can be provided by an expert who can define regions of interest (ROIs) (see

for example the unmixing method for highly realistic simulated renography dataset in [18], [19]).

This paper is organised as follow: section II presents the observation model and the dictionary learning

approach for unmixing spatially structured data based on the spatial sparsity constraint. The performance
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and adaptability of the algorithm to different applications are illustrated on synthetic data in section

III and on real data in section IV. Comparison of our approach with application-specific state-of-the-art

methods are proposed on three different applications: unmixing in scintigraphic image sequences, fMRI

and hyperspectral astronomic datacubes.

II. MODEL AND METHOD

The classical linear model used in source separation may be written as:

Y ' UA, (1)

where Y ∈ RN×P is the observed data. In spatio-spectral separation, N can be interpreted as the spectral

length and in spatio-temporal separation N is the length of the temporal signals. P is the number of voxels

or pixels, depending upon the dataset. Matrix U ∈ RN×R contains the temporal/spectral signatures where

R is the number of sources. Matrix A ∈ RR×P , usually called mixing or abundance matrix, codes the

fraction of the R components contributions at each voxel or pixel.

A. Constrained optimisation formulation

Given the observation model ( 1), the following minimisation problem:

min
A,U

1

2
‖Y −UA ‖2F (2)

does not have a unique solution because of the joint estimation of A and U, and the ill-posedness of the

problem. In order to restrain the number of solutions, we introduce some standard constraints on matrix

A such as the positivity constraint A ∈ R+ and the sum-to-one constraint
∑

A[., i] = 1, with i = 1 : P ,

as these are the proportions voxel by voxel. The form of matrix A may also be constrained by some

extra information from high resolution (HR) segmentations of sources or source locations knowledge:

we know which ROIs may contribute to a given voxel, i.e. present a non-zero proportion at this voxel.

When the total number of sources R is high, this a priori knowledge allows to constrain the possible

solutions of the minimisation problem. In the most general setting, the unmixing problem is recast as:

min
A,U

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F + IR+(A)+ IS(A) + IM(Ã)(A), (3)

where the first term is the data fidelity term, the second term is a Tikhonov regularisation controlled by

parameter µσ set to 10−4 to prevent bad conditioning (see section II-B). The third term is a positivity

constraint where IR+(A) = ∞ if at least one of the elements of A is negative, and 0 otherwise. The

fourth term in eq. ( 3) codes an optional sum-to-one constraint on each column of matrix A, IS(A) =∞
if at least one column of A does not sum to one, and 0 otherwise. The last term IM(Ã)(A) is the indicator
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function on the set M(Ã) of matrices having a structure similar to a given binary “structure matrix” Ã,

i.e. A ∈ M(Ã) if and only if A ∈ RR×P and coefficient Ai,j = 0 if Ãi,j = 0. Ã is a binary matrix,

where element (Ã)r,i = 1 if, according to a priori knowledge about spatial localisation of the sources,

the rth region of interest could exist in the ith voxel, and 0 otherwise. This results in IM(Ã)(A) = ∞
if at least one element of A is non-zero while it is zero in Ã, and 0 otherwise.

Combining sets R+ ∩ S = S+, the optimisation problem can be rewritten as follows:

min
A,U

1

2
‖Y −UA‖2F+

µσ
2
‖U‖2F+IS+(A) +IM(Ã)(A). (4)

Estimating jointly U and A in eq. ( 4) is a typical problem of dictionary learning (DL). But, unlike

conventional DL algorithms, there is no sparsity regularisation term in the form of an `1 penalty: it is

the sources localisation information coded in the structural term IM(Ã)(A) which enforces the sparse

decomposition of each voxel. A classical way to solve the joint estimation problem is to optimise

alternatively the cost function eq. ( 3) along U and A.

B. Estimation of the temporal / spectral signatures matrix U

Considering that A is fixed, problem ( 3) becomes:

min
U

1

2
‖Y −UA ‖2F +

µσ
2
‖U‖2F . (5)

The Tikhonov regularisation term µσ
2 ‖U‖2F is introduced to improve the conditioning of problem ( 2),

µσ is set to 10−4 to prevent collinearity between columns of U.

The solution of ( 5) is the ridge estimator defined by:

Û = YAT (AAT + µσIR)
−1, (6)

where IR is the R×R identity matrix.

C. Estimation of the abundance / mixing matrix A

Consider that U is fixed, then problem eq. ( 3) becomes minA f(A), where:

f(A)=
1

2
‖Y −UA‖2F+IS+(A) +IM(Ã)(A). (7)

Note that this function is separable according to the pixels/voxels i ∈ {1,. . . , P}, which leads to:

minai f(ai), with:

f(ai)=
1

2
‖yi −Uai‖2F+IS+(ai) +IM(ãi)(ai), (8)
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where ai is a column vector from the matrix A (and with an abuse of notation for f(.)). The set of all

the vectors with a structure similar to ai is given by ãi, where ãi is a column of Ã. The regularisation

terms in eq. ( 8) can be summarised as:

g(ai) = IM(ã)∩S+(ai). (9)

Note that the objective function eq. ( 8) is convex since the first term is convex and differentiable and g(ai)

is convex but non differentiable. The proof of convexity for g(ai) is given in Appendix A. Minimisation

of the objective function given by eq. ( 8) belongs to the class of problems on which the proximal

gradient methods can be applied. Different algorithms are available, for example, alternating direction

method of multipliers (ADMM) [20], projected gradient, also known as iterative shrinkage-thresholding

algorithm (ISTA) or FISTA (Fast ISTA) [21]. Algorithm FISTA was preferred for its rapid convergence:

its implementation is given in Algorithm 1.

1 Initialisation of A(0), ω(1)

2 while STOPPING CRITERIA 6= TRUE do

3 Minimisation problem w.r.t U

4 U(l+1) = YA(l)T (A(l)A(l)T + µσIR)
−1

5 Parallel minimisation w.r.t. the columns ai of A by employing FISTA [21]

6 for k ← 1 to proxsteps do

7 a
(k)
i = proxg(ω

(k) − λ∇f(ω(k)))

8 t(k+1) =
1+
√

1+4(t(k))2

2

9 ω(k+1) = a
(k)
i +

(
t(k)−1
t(k+1)

)
(a

(k)
i − a

(k−1)
i )

10 end

11 a
(l+1)
i = a

(proxsteps)
i

12 end

13 return A, U

Algorithm 1: Alternate optimisation algorithm to estimate A and U

In Algorithm 1, ∇f(ai) is the gradient of f(ai), given by UT (Uai−yi). The step size λ is set equal to

the inverse of the Lipschitz constant of ∇f(ai) i.e. 1/L, where L = ‖UTU‖F . t(k+1) is an auxiliary

variable which helps in the fast convergence of FISTA, ω calculates intermediate values based on a

special linear combination of the last two points and prox refers to the proximal operator [21]. In our

case, the proximal operator is just the projection of ai in the positive orthant, with the vector normalised
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to-sum-to-one. This projection also forces the elements of abundance matrix (A)r,i to be non-zero only

at positions where the region of interest r projects on pixel/voxel i (IM(ã) constraint). The proximal

operator of the function g is:

proxg(y) = argmin
x∈M(ã)∩S+

‖x− y‖2 = PM(ã)∩S+(y), (10)

where P is the projection operator on set M(ã) ∩ S+. The orthogonal projection of a vector y ∈ RR

on M(ã) ∩ S+ is obtained using the projection onto convex sets (POCS) method [22]. POCS algorithm

alternates projection onto the simplex S+ = R+ ∩S and projection onto the set M(ã) of vectors having

the same structure as ãi. Only a few iterations are required for convergence of the POCS algorithm.

Convergence towards a global minimum of DL algorithms cannot be proven. In practice, a good

initialisation of A and the presence of pure pixels (as in remote sensing applications) in each region

guarantee a good joint estimation of U and A. Previous work [16] has demonstrated the importance

of well-defining the spatial constraint on abundance IM(Ã)(A) to ensure an acceptable estimate of

abundances and spectral or temporal signatures.

III. EVALUATION ON SYNTHETIC DATASETS

In this section we evaluate the unmixing performance of our algorithm on two different synthetic

datasets. Dataset I was created to show unmixing of signals/spectra taking into account different situations

that could occur in real applications such as fMRI or astronomical data unmixing. Dataset II is an example

of realistic synthetic data in scintigraphy used in [18], for which the authors have proposed an unmixing

method based on prior knowledge of the location of the regions of interest. This method, called Robust

Unmixing of Dynamic Sequences Using Regions of Interest (RUDUR), has been compared in [18] to

different region of interest-based algorithms commonly used in scintigraphy and has shown to be better at

estimating spatial maps and temporal signals. The performance of our algorithm is compared to RUDUR

in paragraph III-B.

A. Dataset I

1) Data description: Unmixing algorithms are often sensitive to the assumption of pure pixels (i.e.

each source or region has an abundance of 1 in at least one pixel of the image). To challenge this

hypothesis, synthetic temporal data were simulated. Seven temporal signatures are mixed in a 120× 120

pixels image. Ground truth signals and locations for the different regions are presented in Fig. 1. In Fig.

1a, we see a region 6 superimposed on two regions (2 and 5). Two other regions (3 and 4), partially

covering each other, are included. Region 7 and region 1 are comprised of pixels not belonging to any
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other region. Data was generated for different SNRs ranging from -20dB to 20dB with a zero mean

Gaussian white noise.

0 20 40 60 80 100
0

20

40

60

80

100 1

3 4

2 56

7

(a) Localisation map for the 7 different sources. Region 6

is a difficult region, which overlaps region 2 and region 5.

Region 7 and 1 do not intersect any other region. Regions

3 and 4 are partially overlapping.

−1

1
reg1

−1

1

reg2

−1

1
reg3

−1

1
reg4

−1

1
reg5

−1

1
reg6

0 200 400

−1

1
reg7

(b) Nature of signals

Fig. 1: Localisation map and temporal signatures used to build synthetic data.

2) Algorithm details: The ground truth is given by the localisation map in Fig. 1a. To initialise A(0),

each region was dilated with a 7 pixels square structuring element and then the proportion for each

region over each pixel was calculated, respecting the sum-to-one condition. The dilatation was done to

introduce the uncertainty in the localisation of regions; as the localisation is seldom precise when dealing

with real data. The algorithm used for unmixing is given in Algorithm 1. 400 steps were adopted for

FISTA, in combination with 50 steps of alternate optimisation. The weighting parameter in the Tikhonov

regularisation was set to 10−4 as no more smoothing was required. A standard normalisation was applied

to the data before processing: Y (i) = Y (i)−µ(i)

σ
(i)
Y

, where µ is the mean of the temporal signal of the ith

pixel and σ is the standard deviation of the timecourse of the ith pixel.
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3) Results and discussion: We observe that the timecourses and the abundances for the seven regions

are well estimated even if the abundances are not perfectly initialised. The mean squared errors (MSE)

for the estimation of the timecourses are displayed in table I, The MSE in estimating the abundances are

given in table III. From table I and table III we see that for most of the regions the errors decrease as SNR

increases. The spectral angle distances (SAD)(formula in Appendix B) given in table II follow a similar

trend, proving the effectiveness of the unmixing method. The estimated timecourses for each region were

normalised by standard deviation before calculating the SAD and MSE. We also generated synthetic data

where region 6 was completely included in region 5. In this case, due to noise it was impossible to

correctly estimate the timecourse of the region included in the other (and therefore its abundance).

-20dB -10dB 0dB 10dB 20dB

reg1 9.5e-02 1.0e-02 1.1e-03 1.1e-04 1.1e-05

reg2 1.3e-01 1.3e-02 1.2e-03 1.2e-04 1.3e-05

reg3 2.2e-01 2.1e-02 2.4e-03 3.2e-03 4.0e-03

reg4 2.3e-01 2.2e-02 2.5e-03 3.2e-03 4.0e-03

reg5 1.3e-01 1.3e-02 1.3e-03 1.3e-04 1.3e-05

reg6 1.4e+00 3.4e-01 4.2e-02 4.3e-03 6.3e-04

reg7 9.6e-03 9.6e-04 9.6e-05 9.6e-06 1.0e-06

TABLE I: Region wise mean squared errors for U for different SNRs

-20dB -10dB 0dB 10dB 20dB

reg1 1.8e+01 5.8e+00 1.9e+00 5.9e-01 1.9e-01

reg2 2.0e+01 6.5e+00 2.0e+00 6.4e-01 2.0e-01

reg3 2.7e+01 8.3e+00 2.8e+00 3.2e+00 3.6e+00

reg4 2.7e+01 8.6e+00 2.9e+00 3.2e+00 3.6e+00

reg5 2.0e+01 6.5e+00 2.1e+00 6.5e-01 2.1e-01

reg6 7.1e+01 3.4e+01 1.2e+01 3.7e+00 1.4e+00

reg7 5.6e+00 1.8e+00 5.6e-01 1.8e-01 5.7e-02

TABLE II: Region wise spectral angles for U for different SNRs

Fig. 2 illustrates the convergence of the algorithm for different SNRs. Fig. 2 plots ‖Y−UA‖F
‖η‖F , as a

function of the number of steps in the alternate minimisation and η denotes the white Gaussian noise
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-20dB -10dB 0dB 10dB 20dB

reg1 5.8e-04 6.1e-05 4.7e-06 3.2e-07 2.8e-08

reg2 2.2e-03 2.1e-4 3.8e-05 1.0e-04 1.3e-04

reg3 3.2e-03 3.4e-04 4.9e-05 5.6e-05 7.0e-05

reg4 3.4e-03 3.8e-04 5.4e-05 5.9e-05 7.1e-05

reg5 2.1e-03 2.0e-04 4.6e-05 1.1e-04 1.3e-04

reg6 9.2e-04 8.9e-05 7.0e-05 2.1e-04 2.6e-04

reg7 5.4e-03 5.4e-04 6.3e-05 9.4e-05 1.2e-04

TABLE III: Region wise mean squared errors for A for different SNRs

present in the dataset at different SNRs. In the very first steps of the alternate optimisation we see that

the curves decrease sharply and ultimately settle around a particular value when convergence is achieved.

In Fig. 2 the -20dB and -10dB curves converge to values less than 1 since some noise remains in the

estimated timecourses. The 0th iteration shows the ratio ‖Y−UA‖F
‖η‖F calculated with the initial enlarged

A and U, estimated with least squares.

0 10 20 30 40 50

1

1.5

2

2.5

Alternate steps

‖Y
−
U
A
‖ F

‖η
‖ F

-20dB

-10dB

0dB

10dB

20dB

Fig. 2: Convergence curves plotted for different values of SNR for Dataset I. The curves represent
‖Y−UA‖F
‖η‖F plotted against the number of iterations.
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B. Dataset II

In an effort to objectively evaluate the performances of our approach, we propose to test and compare

our method on a more realistic synthetic data set of scintigraphy images created for the evaluation of

the performances of the state-of-the-art RUDUR method [18]. We have reused the RUDUR code, as it

is distributed by the authors [18].

1) Data description: This second dataset provides a first test case in which the method is confronted

with a real application, on physical model-based simulations of scintigraphic images, with ground truth. It

enables a comparison with a recent reference method in the field [18]. Region of interest-based unmixing

methods are common in scintigraphy [5], [19], [23]. All standard methods are source separation methods.

They estimate the time activity curves (TACs) and emissions of a tracer (a radioactive element) in the

different body organs. A dataset of scintigraphic data has been made available at [24]. This dataset is

based on a Monte Carlo simulation of scintillation camera imaging [25]. The datacube comprises images

of size 21 × 26, with N = 60. The dataset, containing R = 3 regions, is shown in Fig. 3. In Fig. 3 the

first row (a) shows the ground truths for the spatial maps. In the second row (b) the ROI initialisation is

presented. This initialisation is not the same as in [18] as our method needs strictly greater initial ROIs

than the regions which need to be unmixed.

2) Algorithm details: RUDUR algorithm has a soft constraint on the source locations which allows

the regions to unmix data even if the ROIs selected lie in the interior of the actual locations of the

regions. In our model, we use a hard constraint on the locations of the regions, through the regularization

term IM(Ã), so initial ROIs should be stricly enclosing the regions for which we want to estimate the

timecourses. To achieve this, the binary mask of ROIs used in [18] have been dilated with a 5 pixels

square structuring element.

We should note that this application corresponds to a an additive case of unmixing, so the sum-to-

one constraint was dropped off in our algorithm. Further, as scintigraphy timecourses should be strictly

positive (representing the emission of the tracer), eq. ( 3) was changed to:

min
A,U

1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F + IR+(A)+ IM(Ã)(A)+ IR+(U).

Due to the addition of IR+(U), the constraint of positivity on the TACs, the least squares given in

step 4 of Algorithm 1 to solve for U had to be replaced by FISTA steps to estimate U in each alternate

step. The initialisation of the algorithm was done with the help of least squares using the initial dilated

ROIs.
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As the sum-to-one condition is dropped, the proximal operator of the function g in Algorithm 1 changes

to:

proxg(y) = argmin
x∈M(ã)∩R+

‖x− y‖2 = PR+∩M(ã)(y), (11)

where P is now the projection operator on the set R+ ∩M(ã).

3) Results and discussion: We ran our algorithm with 500 steps of alternate optimisation. At each

iteration l, convergence is monitored by the optimisation gain κl defined as:

κl =
‖Y −U(l)A(l)‖F − ‖Y −U(l−1)A(l−1)‖F

‖Y −U(l−1)A(l−1)‖F
. (12)

which decreases to 10−16 at the 500th alternate step. Estimated temporal signals and spatial maps were

normalised by the criteria given in [18] for comparison with the provided ground truth. The normalised

mean squared error (NMSE) and normalised mean absolute error (NMAE) for the estimated spatial maps

and time activity curves were calculated. In addition, we also provide spectral angle distances (SAD) for

the estimated time activity curves. The formulae for NMAE, NMSE and SAD are given in Appendix

B. The quantitative results on the synthetic scintigraphy data are given in table IV. We observe that the

signals estimated by our method are close to those obtained by RUDUR, with a better estimation by our

algorithm for U2 and U3. The NMSE and NMAE for spatial maps calculated using the two methods are

given in table V. The errors on the spatial maps were calculated by restricting the pixels of the estimated

maps to the initial ROIs. Errors are lower in the case of RUDUR, for the spatial maps.

U1 U2 U3

NMSE Alt opt 0.049 0.046 0.011

NMSE Rudur 0.031 0.047 0.015

NMAE Alt opt 0.173 0.142 0.091

NMAE Rudur 0.130 0.143 0.105

SAD Alt opt 12.181 12.049 6.128

SAD Rudur 9.561 12.362 6.633

TABLE IV: Errors (NMAE and NMSE) and spectral angle differences between the estimated timecourses

and the ground truth for the scintigraphy dataset.

The spatial maps unmixed by our method are presented in Fig. 3 (c) and those estimated by RUDUR

are displayed in Fig. 3 (d). Visually the maps are very similar although the errors are lower in the case

of RUDUR. The last row(e) shows the TACs estimated by the proposed method (in blue). We observe
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A1 A2 A3

NMSE Alt opt 0.189 0.084 0.139

NMSE Rudur 0.147 0.064 0.070

NMAE Alt opt 0.433 0.304 0.419

NMAE Rudur 0.340 0.261 0.344

TABLE V: Errors between the estimated spatial maps for the different regions and the ground truth. The

errors given here were calculated by restricting the pixels of the estimated spatial maps to the initial

ROIs.

in Fig. 3 that our solution is near the target solution (in dashed black) for all the sources and is close to

the solution provided by RUDUR.

IV. APPLICATION ON SEMI-REAL AND REAL DATA

In this section we discuss the application of our algorithm to sources unmixing of (semi-real) resting

state (rs) 3D fMRI data and on a real dataset of hyperspectral astronomic images. In these two applications,

in addition to the 3D + time or hyperspectral data, a high resolution segmentation map is available as a

standard, with a registration on the low resolution images containing the sources to be separated.

A. Semi real rs-fMRI dataset

Resting state functional Magnetic Resonance Imaging (rs-fMRI) has been widely used for studying

brain functional connectivity [26]. Rs-fMRI allows the observation of changes in cerebral activity by

analysing the blood-oxygen-level-dependent (BOLD) signal [27]. At rest, only spontaneous activity is

measured and a set of anatomical regions with the same fluctuations are considered part of a common

network. We apply the algorithm on a single subject rs-fMRI. The motivation to work on single subject has

been detailed in [16]. Benefit of integrating a high resolution (HR) anatomical atlas in the single-subject

case has also been demonstrated in this previous work.

In order to test the proposed unmixing method, we use data acquired in a preclinical study with an

Alzheimer mouse model at ICube laboratory under the IRIS platform, the studies on this data are given in

[28], [29]. The data consist of a 3D+t rs-fMRI and a 3D anatomical image registered to the rs-fMRI image.

The anatomical image has a dimension of 256× 256× 34 and 0.08299× 0.07812× 0.4 mm resolution.

Functional images have a spatio-temporal dimension of 147× 87× 27× 500 with 0.1445× 0.2299× 0.5

mm spatial resolution and 2s for the temporal resolution. The high resolution (HR) segmentation map
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Fig. 3: (a) Scintigraphic data. Ground truth for spatial maps, (b) Initial ROIs , (c) Spatial maps estimated

by the proposed algorithm, (d) spatial maps estimated by RUDUR, (e) TACs estimated by RUDUR and

our method.

comes from the mouse Allen Brain Atlas (ABA) [30], shown in Fig. 4. This very HR atlas provides a

3D MRI volume (template) and a structural annotation volume, both at 25× 25× 25 µm resolution with

228 × 160 × 264 voxels. The annotations identify more than 600 different anatomical structures in the

mouse brain.
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Fig. 4: Rs-fMRI data unmixing. 3D representation of the segmentation map associated with the Allen

Mouse Brain Atlas [30]. Each colour represents a label associated with an anatomical region.

1) Validation dataset: A validation dataset is created by introducing a set of synthetic temporal

signatures in seven small regions of the real Azheimer mice dataset. The seven regions, labelled ACAd1,

ACAd5, ACAd6a, ACAv1, ACAv5, ORBl1 and PL1, have been arbitrarily chosen in the prefrontal cortex.

A first synthetic signal is obtained by averaging the real signals of the regions ACAd1 and ACAd5 which

were already highly correlated in the real data. This signal is then modified to create signals with arbitrary

high correlation or anti-correlation for the regions ACAd1, ACAd5, ACAd6a, ACAv1, ACAv5, ORBl1

and PL1 (see blue lines in plots of figure Fig. 6). These correlations do not have a physical significance,

they are used as a ground truth for evaluation of the proposed algorithm performances [16]. The seven

synthetic signals are shown in Fig. 6.

The classical fMRI preprocessing pipeline of slice timing and co-registration is applied on the rs-fMRI

dataset. Also, the confounding signals are regressed before analysing the data. The next step consists

in registering the spatially well-resolved ABA template to the artificially augmented anatomical image

(which is already perfectly aligned with the rs-fMRI data). The registration of the ABA mouse template

to the anatomical images provides the deformation field that is applied to the HR segmentation map to

transport the different labelled regions on the augmented rs-fMRI data. The spatial resolution of rs-fMRI

data is augmented by subdividing each original voxel into 3×6×2 high resolution voxels. The registration

of the anatomical image to the augmented rs-fMRI leads to an increase in its own resolution.

Synthetic signals are introduced in the standardised artificially augmented fMRI data, which are then

reduced to the initial low resolution. These synthetic signals are thus mixed with the real signals in

the voxels containing a portion of the seven selected regions. Since the atlas has a much higher spatial

resolution than the fMRI or structural MRI data (up to a factor of 20 in one of the dimensions), the

temporal signatures of the different anatomical regions are highly mixed within each low resolution fMRI

voxel. Let us note that the pure pixel assumption is not verified in the regions where the signals were

added. The minimum and maximum number of overlapping regions on the voxels of each region is given
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in table VI.

ACAd1 ACAd5 ACAd6a ACAv1 ACAv5 PL1 ORBl1

Min 4 2 4 4 6 4 2

Max 9 12 18 12 17 10 10

TABLE VI: Minimum and maximum number of regions overlapping on the voxels for fMRI regions

where signals were added.

2) Algorithm details: Finally, DL is performed at the (low) resolution of the initial fMRI data Y ∈
RN×P , where N = 490 temporal samples and P = 21024 voxels after extracting the brain. The initial

abundance matrix A(0) ∈ RR×P is constructed as follows. Let’s say that each voxel i ∈ {1,. . . , P} was

subdivided into J high resolution voxels during the artificial augmentation step. For each voxel i of

Y and all regions r ∈ {1, . . . , R}, the element (A(0))r,i will contain the proportion of high resolution

voxels in voxel i, occupied by region r. If region r is not transported to the low-resolution voxel i

then (A(0))r,i = 0. Matrix Ã which supports the spatial constraint IM(Ã)(A) in eq. ( 4) is defined as:

(Ã)r,i = 1 when (A(0))r,i > 0 and 0 elsewhere.

3) Results and discussion: The proposed DL method is applied to the validation data set. Empirically,

the algorithm convergences to an acceptable solution for A and U after 500 iterations, see Fig. 5,

corresponding to a gain on the optimization κl < 10−3 (eq. ( 12)). For the estimation of A, the FISTA

algorithm requires a stopping criterion or a maximum number of iterations. In our implementation, FISTA

is stopped when ‖a(l−1)i − a
(l)
i ‖2 < 10−8 or l > 100.

Fig. 6 shows the estimated timecourses in dashed red against the ground truth signals in blue. The mean

squared error (MSE) of the estimated timecourses are given on the plots. Despite the strong mixing in

the voxels of the seven regions, our algorithm provides a very good estimate of the synthetic timecourses

introduced in the data. In neurosciences applications, these timecourses are then used to build functional

brain networks.

B. Hyperspectral astronomic data

In order to confront our algorithm with an unmixing problem on real data, we finally consider the

problem of unmixing sources in hyperspectral astronomic data. Some datasets in this domain comprise

of hyperspectral datacubes and an external information on the spatial location of the sources. We studied

datacubes from the MUSE instrument, the Multi Unit Spectroscopic Explorer [31], installed at the Very
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Fig. 5: Rs-fMRI data. The figure shows that ‖Y −UA‖F converges; as is seen by the flattening of the

curve in the last iterations.

Large Telescope, which produces hyperspectral observations of the deep sky. In these hyperspectral

images, we can observe hundreds or even thousands of galaxies. Depending on their age, chemical

composition, type, distance, etc, these galaxies have different spectra. These spectra may contain emission

lines, continuous components, etc. One of the main objectives of MUSE data analysis is the detection of

very distant galaxies, which therefore emit very low light flux. Spectrum of distant galaxies consists of a

single emission line, the Lyman-α emission line, which is a marker of the strong presence of hydrogen

in the galaxy. They are difficult to detect due to their distance and their very faint intensity compared to

closer galaxies, and a strong noise affects the data. Moreover if two galaxies are aligned in the direction

of observation, their spectra will blend inside pixels of MUSE images.

Recently two articles [32], [33] were published around a MUSE dataset called Ultra Deep Field (UDF)

which corresponds to an area of the sky previously observed by the Hubble Space Telescope (HST). The

HST observation is a spatially well-resolved image, of spatial resolution 0.1 × 0.1 arcsec, for which

there is a segmentation map presented in [34]. Due to the difference in resolution of the MUSE data,

which is only 0.7× 0.7 arcsec, two distinct sources in the HST image, may overlap in the MUSE data

creating a mix in the spectra. In [32], [33], the information provided in the Rafelski catalogue is exploited

to perform the deblending and prove that MUSE, despite its lower spatial resolution, allows, thanks to

the spectral information, to unmix two spatially close or even superimposed sources. We have selected

the same portion of the image that is presented in figure 21 of [32] where the objects identified by
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Fig. 6: Rs-fMRI data. The plot shows samples corresponding to the first 500 seconds of the synthetic

signals (in blue) and their corresponding estimated timecourses (in dashed red)

ID#4451, ID#4460 and ID#4465 in [34] are spatially superimposed in the MUSE observation. This

gives a 25 × 25 pixels image with spectra composed of 3681 samples from 4750 to 9350 Angström

(1 Ang = 0.1 nm). A total of 9 galaxies are present in this field of view, with three of them that are

spatially close in the HST segmentation map represented at the middle of the first line in Fig. 7. The
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Fig. 7: UDF Hyperspectral astronomic data. On top, from left to right, MUSE reconstructed white light

image, HST Rafelski segmentation map and narrowband image centered on λ = 6242.5 Ang (position

of the emission line in estimated spectrum of source ID#4451). The central Rafelski source denoted by

red crosshair is ID#4451. Bottom, from left to right: our estimated spectrum of source ID#4451 over

the whole wavelength range and zoom on the Lyα emission line estimated at λ = 6242.5.

source ID#4465 is brighter than galaxies ID#4451 and ID#4460. Its contribution is visible on the white

light image, obtained by averaging the datacube with respect to the wavelength axis. A visible source on

the white light image indicates that its spectrum contains a continuous component plus, possibly, some

emission lines. Contribution of source ID#4451 is embedded in source ID#4465’s one. The objective

of this section is to show that knowing the spatial location of such a blended source provides enough

information to unmix spectra of the different superimposed sources with our algorithm.

For defining the spatial constraint IM(Ã) required by our model, the HST segmentation map provided

by [34] is used. This map is perfectly registered on the MUSE data. Then by degrading the spatial

resolution from 0.1 arcsec to 0.7 arcsec, we obtain binary masks for all the objects present in the field.

For the three central sources, the obtained binary masks are shown on the first line of Fig. 8. The algorithm

used for unmixing galaxy spectra corresponds exactly to the version described in section II. One hundred

alternated optimisation steps allows to reach a gain eq. ( 12) equal to 10−10. It should be noted that

the background is considered here as a source, its mask is available in the segmentation map and it is
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Fig. 8: Hyperspectral astronomic data. On top, from left to right, binary mask of sources ID#4451,

ID#4460 and ID#4465. Bottom, from left to right, estimated abundance map of sources ID#4451,

ID#4460 and ID#4465

processed in the same way as for the galaxies, to degrade its resolution to the resolution of the MUSE

data.

It is impossible to compare quantitatively the results obtained with a ground truth, since no such

information exists for the MUSE data. However, same conclusions as in [32] can be drawn about

the spectrum estimated by our algorithm for source #4451: at wavelength λ = 6242.5 Ang, there is

an emission line corresponding to object #4451 of Rafelski’s catalogue. This emission line has the

characteristics of the Lyman-α line (Lyα), namely an asymmetric profile as illustrated in Fig. 7. These

result are very similar to the ones presented in Figure 21 in [32] that is reproduced in Fig. 9 by courtesy of

the authors. Similarity between results presented in Fig. 7 and Fig. 9 confirms the interest of our generic

approach to solve this particular type of unmixing problem.

C. Discussion

The last application shows the ability of the proposed algorithm to unmix hyperspectral data with

a spatially constrained dictionary learning algorithm. It also underlines the necessity of having some

external knowledge about the localisation of sources in higher spatial resolution to improve classical

dictionary learning unmixing algorithm. In the case of MUSE data, such information coming from the

segmentation of another telescope observation (here the Hubble Space Telescope) is rarely available.

Moreover, a good segmentation of this additional image is also required. Besides, this a priori knowledge
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Fig. 9: Hyperspectral astronomic data. Reproduction of figure 21 from paper [32] with the authors’

permission and pending approval from A&A.

of sources spatial localisation must be precisely registered to the spectral/temporal data to unmix. As

for the fMRI application, in [16] the authors showed that the estimated values were sensitive to the

quality of the localisation maps provided. As these maps are used to define the regularisation term

IM(ãi), their precision influences the estimation of the temporal/spectral signatures and their abundances

in strongly mixed voxels: the better the precision of the localisation map, the better the estimation of the

spectral/temporal information associated to each source.

From an algorithmic point of view, the strong points of the proposed approach are the small number

of parameters to be set and its genericity. The algorithm has a single intrinsic parameter µσ used in the

Tikhonov regularisation, it has only to be set to a very low arbitrary value, as explained in section II-B.

With the scintigraphy application, it has been shown that it is easy to adapt the unmixing problem

by adding or removing constraints. In some applications, the proportions of each region have a natural

smooth evolution from one pixel to another. A constraint for spatial smoothing within the regions could

be introduced in a future variant of the algorithm. However, depending upon the nature of the added

constraint, it would increase the complexity of the algorithm. For the current version, the constraints that

are in the form of indicator functions, would lead to the introduction of nested loops and consequently

to a significant increase in calculation time.

Concerning the execution time of the algorithm, the main factors are the stopping criteria of the different
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nested iterative algorithms and the size of the images to be unmixed. Furthermore, the calculation time

depends much more on the spatial dimension of the image than on the temporal/spectral dimension as the

complexity lies in the estimation of A, and to a lesser extent on the number of regions. The algorithm

approached convergence for the astronomical data in a few minutes on a laptop, whereas 3 days CPU time

was necessary for the fMRI data on a server with 32 cores, with a processing speed of each core around

1603 Mhz. The applications we presented do not require real-time processing but a GPU implementation

would lead to a significant gain in speed as the code is highly parallelisable.

V. CONCLUSION

A method to unmix data consisting of an image and a temporal or spectral dimension has been

presented. The proposed method proves effective in unmixing problems where some prior information

related to the ROIs is available or where such information can be obtained from a registered high resolution

image. It should be noted that the method does not take into consideration the morphology, the local

structure or the texture of the sources, but only their approximate locations. The spatial constraints are

classically expressed as an `1-penalty to promote sparsity of the mixture in each voxel. Problems with

such constraints are generally solved by dictionary learning algorithms. The originality of the proposed

approach lies in the replacement of this penalty by a constraint on localisation of the different regions of

interests. In some of the examples presented in the article, it has been shown that the algorithm can be

easily adapted for specific applications by introducing or dropping constraints of sum-to-one on spatial

maps or positivity on timecourses. State-of-the-art results have been obtained on three very different

applications. The comprehensiveness of the method makes it possible to easily adapt it to other fields of

application such as remote sensing applications for which incorporation of spatial information has been

proved to enhance hyperspectral image unmixing performance [35]. The code will be available soon

online for the community.

APPENDIX

The convexity of IM(ãi)∩S+(ai) can be proven if we can prove that the set M(ãi)∩S∩R+ is convex.

This can be easily verified by following the assumption that each voxel contains the contribution of at



23

least one region of interest. By definition:

IR+∩M(ãi)∩S(ai)

=+∞ if ai has a non-zero value where ãi is 0

=+∞ if the sum of ai is not equal to 1

=+∞ if at least one element in ai is negative

= 0 otherwise

where (ãi) is a binary vector where element (ãi)r = 1 if the rth region of the segmentation map intersects

the ith voxel, and 0 otherwise. A set formed by the intersection M(ãi) ∩ S ∩ R+ is convex if for all

t ∈ [0, 1] and for all v,w ∈M(ãi) ∩ S ∩ R+, a line segment defined :

z = tv + (1− t)w (13)

lies in M(ãi) ∩ S ∩ R+.

Proof that z ∈ R+ and z ∈ S is straightforward.

Proof that the line segment z belongs to subspace M(ãi) is detailed in the following.

Let u ∈ R+. By introducing the complementary vector (1 − (ãi)) of ãi, where the notation 1 is a

vector of ones of the same size as ãi, we have the equivalence:

u ∈M(ãi) ⇐⇒ uT (1− (ãi)) = 0 (14)

Implication u ∈ M(ãi) =⇒ uT (1 − (ãi)) = 0 is straightforward (vector u lying in M(ãi) has its

coefficients (u)r = 0 when 1 − (ãi)r = 1). It is easy to prove that the reverse is true provided that

u ∈ R+. As a consequence, vectors v and w lying in M(ãi) verify:

vT (1− (ãi)) = 0 and wT (1− (ãi)) = 0 (15)

which yields:

tvT (1− (ãi)) + (1− t)wT (1− (ãi)) = 0,

⇐⇒ zT (1− (ãi)) = 0,

which, since z ∈ R+ and according to ( 14), implies that z ∈M(ãi).

The formulae for the different criteria used to analyse the experimental results are given below:

NMSE(UGTr , Ur) =

∑N
n=1(U

GT
r,n − Ur,n)2∑N

n=1(U
GT
r,n )2

(16)
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NMAE(UGTr , Ur) =

∑N
n=1 |UGTr,n − Ur,n|
|∑N

n=1(U
GT
r,n )|

(17)

SAD(UGTr , Ur) = cos−1
∑N

n=1 U
GT
r,n Ur,n√∑N

n=1 U
GT
r,n

2
√∑N

n=1 U
2
r,n

(18)

where UGTr is the ground truth temporal signal for rth region, Ur is the estimated signal for the rth

region, N is the length of the temporal signal. NMAE and NMSE can be written in a similar manner to

evaluate spatial maps.
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