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ABSTRACT

Let k ∈ N, k ≥ 2, (h1, h2, · · · , hk−1) ∈ N
k−1 and consider the k-tuple Hk :=

(0, h1, h2, · · · , hk−1) with 0 < h1 < · · · < hk−1.

Let q ∈ P and consider the set Bq := {b ∈ N | gcd(b,
∏

p≤q
p prime

p) = 1}.

Let q(x) be the largest prime number verifiying x ≥
(

∏

p≤q(x)
p prime

p
)

.

Consider the functions IHk
(x) := #{(b, b + h1, b + h2, · · · , b + hk−1) ∈ Bk

q(x) | b ≤ x} and

πHk
(x) := #{(p, p+ h1, p+ h2, · · · , p+ hk−1) ∈ P

k | p ≤ x}
I proved the following theorem as x → +∞ : IHk

(x) ∼ S(Hk) e
−γk x

log(log(x))k
.

Where γ is Euler–Mascheroni constant, and S(Hk) :=
∏

p prime

1− w(Hk,p)
p

(1− 1
p )

k
and w(Hk, p) is the num-

ber of distinct residues (mod p) in Hk.

Finally, i will explain why i conjecture that IHk
(x) ∼ πHk

(x)
(

π(q(x))e−γ
)k

.

If we can prove this conjecture, then we prove immediately πHk
(x) ∼ S(Hk)

x

log(x)k
.

Keywords k-tuple conjecture · prime numbers · admissible k-tuple
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1 Introduction

Let k ∈ N, k ≥ 2.
Let (h1, h2, · · · , hk−1) ∈ N

k−1.
Consider the k-tuple Hk := (0, h1, h2, · · · , hk−1) with 0 < h1 < · · · < hk−1.

Conjecture 1 : If Hk is an admissible k-tuple (see the definition in the next section), then there exists infinitely
many k-tuples (p, p+ h1, · · · , p+ hk−1) ∈ P

k.

Conjecture 2 : Consider the k-tuple Hk, and πHk
(x) := #{(p, p + h1, · · · , p + hk−1) ∈ P

k | p ≤ x}, then as
x → +∞ :

πHk
(x) ∼ S(Hk)

x

log(x)k
.

Where S(Hk) :=
∏

p prime

1− w(Hk,p)
p

(1− 1
p )

k
and w(Hk, p) is the number of distinct residues (mod p) in Hk.

Conjecture 2 was given first time by Hardy and Littlewood in there 1923 paper Some problems of ‘Partitio
numerorum’; III : On the expression of a number as a sum of primes. [1]
The probabilistic model for prime numbers gives also the same predicted asymptotic formula in conjecture2.
Conjecture1 and conjecture2 are both not proven up to now, in this article we will prove a theorem and then predict
the same result in conjecture2 using an elementary methods.

Let q(x) be the largest prime number verifiying x ≥
(

∏

p≤q(x)
p prime

p
)

.

To compute prime numbers we should sieved by prime numbers less than
√
x.

Using prime numbers theorem, we have q(x) = (1 + o(1)) log(x), then the target of this article is not im-
proving sieve theory results, but to divine a non-trivial relation between prime numbers less than x, and numbers
sieved by 2, 3, · · · , q(x) and less than x.

2 Admissible k-tuples :

Let k ∈ N, k ≥ 2.
Let (h1, h2, · · · , hk−1) ∈ N

k−1.
Consider the k-tuple Hk := (0, h1, h2, · · · , hk−1) with 0 < h1 < · · · < hk−1.

Definition : The k-tuple Hk is admissible if and only if the product p(p + h1) · · · (p + hk−1) haven’t a fix prime
divisor q for all p ∈ P, p ≥ q.

Example : Hk = (0, 2, 4) is not admissible, because p or p+ 2 or p+ 4 is always divisible by 3 for p ∈ P, p ≥ 3.
Consider this constante (in the next section we will prove it convergence) :

S(Hk) :=
∏

p prime

1− w(Hk,p)
p

(1− 1
p )

k
.

Where w(Hk, p) is the number of distinct residues (mod p) in Hk.

Example1 : Let H3 = (0, 2, 4)
mod 3
= (0, 2, 1), then w(H3, 3) = 3.

Example2 : Let H3 = (0, 2, 6)
mod 3
= (0, 2, 0), then w(H3, 3) = 2.

It’s clear that ∀p ∈ P, 1 ≤ w(Hk, p) ≤ p and if p > hk−1 then w(Hk, p) = k.

Theorem 2.1. Hk is not admissible ⇐⇒ ∃q ∈ P : w(Hk, q) = q
Consequence : Hk is not admissible ⇐⇒ S(Hk) = 0.

2
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Proof :
=⇒ ) Suppose that Hk is not admissible
Then (∃q ∈ P)(∀p ∈ P, p ≥ q) : q|p(p+ h1) · · · (p+ hk−1)
We have q is a prime number, then for p ∈ P we have q = p or q devide p+ hi where i ∈ {1, 2, · · · , k − 1}
According to Dirichlet’s theorem on arithmetic progressions and for p 6= q, p (mod q) can take values 1, 2, · · · , q−
1 infinitly many times whene p ∈ P

Taking r equals each time 1, 2, · · · , q− 1 and p = r (mod q), we have p+hi = 0 (mod q) for i ∈ {1, 2, · · · , k− 1}
Then hi (mod q) can take all values 1, 2, · · · , q − 1
And adding the case q = p we have w(Hk, q) = q
⇐=) suppose that ∃q ∈ P : w(Hk, q) = q
Let p ∈ P and p = r (mod q)
If r = 0 then p = q then q devide p
If r 6= 0 we have 1 ≤ q − r ≤ q − 1
w(Hk, q) = q =⇒ ∃i ∈ {1, 2, · · · , k − 1}, hi = q − r (mod q)
Then q devide p+ hi

Then Hk is not admissible.

Theorem 2.2. If ∃q ∈ P : w(Hk, q) = q then q ≤ k.

Proof : The proof is simple, because we have k elements in the k-tuple Hk.

Theorem 2.3.

Hk is admissible ⇐⇒ ∀p ∈ P, p ≤ k : w(Hk, p) 6= p (1)

Example1 : Hk = (0, 4, 6) is admissible :

(0, 4, 6)
mod 2
= (0, 0, 0) =⇒ w(H3, 2) = 1

(0, 4, 6)
mod 3
= (0, 1, 0) =⇒ w(H3, 3) = 2

Example2 : H5 = (0, 4, 12, 16, 18) is not admissible :

(0, 4, 12, 16, 18)
mod 2
= (0, 0, 0, 0, 0) =⇒ w(H5, 2) = 1

(0, 4, 12, 16, 18)
mod 3
= (0, 1, 0, 1, 0) =⇒ w(H5, 3) = 2

(0, 4, 12, 16, 18)
mod 5
= (0, 4, 2, 1, 3) =⇒ w(H5, 5) = 5

3 Υb,q(k) function :

Let b, q ∈ P, k ∈ N and k < b.
Consider those functions :

Υb,q(k) :=
∏

b≤p≤q
p prime

(

1− k

p

)

.

Fb(k) :=
∏

b≤p
p prime

(

1− k2

p2

)

, Cb(k) :=
∏

b≤p
p prime

(

1−
(

k − 1

p− 1

)2
)

.

In this section we will find the asymptotic formula of Υb,q(k) as q → +∞.
We have :

Υb,q(k) =
∏

b≤p≤q
p prime

(

1−
(

k − 1

p− 1

)2
)

∏

b≤p≤q
p prime

(

1− 1

p

)2
∏

b≤p≤q
p prime

(

1 +
k − 2

p

)−1

(2)

Consider this constant Ab :=
∏

p<b
p prime

(

1− 1

p

)

.

Consider Mertens’ third theorem :
∏

p≤q
p prime

(

1− 1

p

)

∼ e−γ

log(q)
(3)

3
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Where γ is Euler–Mascheroni constant : γ = lim
n→+∞

n
∑

k=1

1

k
− log(n).

Using (2) and (3) we have as q → +∞ :

Υb,q(k) ∼































1 if k = 0
e−γ

Ab log(q)
if k = 1

Cb(k) e
−2γ

A2
b Fb(k − 2) log2(q)

Υb,q(k − 2) if k ≥ 2

Then for k ≥ 2 we have :

Υb,q(k) ∼























Cb(2)Cb(4) · · ·Cb(k) e
−kγ

Fb(0)Fb(2) · · ·Fb(k − 2)Ak
b

1

logk(q)
if k is even

Cb(3)Cb(5) · · ·Cb(k) e
−kγ

Fb(1)Fb(3) · · ·Fb(k − 2)Ak
b

1

logk(q)
if k is odd

We should simplify this formula, we have :

Fb(k) =
∏

b≤p
p prime

(p− k)(p+ k)

p2
, Cb(k) =

∏

b≤p
p prime

(p− k)(p+ k − 2)

(p− 1)2
.

For k ≥ 2 we have :

∏

b≤p
p prime

pk−1(p− k)

(p− 1)k
=



















Cb(2)Cb(4) · · ·Cb(k)

Fb(0)Fb(2) · · ·Fb(k − 2)
if k is even

Cb(3)Cb(5) · · ·Cb(k)

Fb(1)Fb(3) · · ·Fb(k − 2)
if k is odd

(4)

And we have :
∏

b≤p
p prime

pk−1(p− k)

(p− 1)k
=
∏

b≤p
p prime

1− k
p

(1− 1
p )

k

Then, formula (4) show that for k < b the product
∏

b≤p
p prime

1− k
p

(1− 1
p )

k
is convergente and not null.

Theorem 3.1. For a fixed k ∈ N, b ∈ P and q → +∞ we have

Υb,q(k) ∼









∏

b≤p
p prime

1− k
p

(1− 1
p )

k









e−kγ

Ak
b

1

log(q)k

4 Chinese remainder theorem :

Let q ∈ P, q ≥ 5.
Consider the set :

Bq := {b ∈ N | gcd(b,
∏

p≤q
p prime

p) = 1}

Bq is the set of numbers coprime to 2, 3, · · · , q.
Let x ∈ R+ and Consider the function :

IHk
(x, q) := #{(b, b+ h1, b+ h2, · · · , b+ hk−1) ∈ Bk

q | b ≤ x}.

4
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IHk
(x, q) is the number of k-tuples coprime to 2, 3, · · · , q and less than x.

In this section we will compute IHk
(x, q) for x =

(

∏

p≤q
p prime

p
)

.

Theorem 4.1.

IHk
(
∏

p≤q
p prime

p, q) =
∏

p≤q
p prime

(p− w(Hk, p))

Where w(Hk, p) is the number of distinct residues (mod p) in Hk.

proof : Let pi be a prime number verify pi ≤ q

To compute k-tuples coprime to
(

∏

p≤q
p prime

p
)

and less than
(

∏

p≤q
p prime

p
)

we should compute the number of k-tuples verifying :

b = r0,i (mod pi)
b+ h1 = r1,i (mod pi)

· · ·
b+ hk−1 = rk−1,i (mod pi)

(5)

With b ≤
∏

p≤q
p prime

p and ∀j ∈ {0, 1, 2, · · · , k − 1} : rj,i 6= 0 for every pi ≤ q

If hj = hl (mod pi) for some j 6= l then they represent the same equations in (5)
Then we have pi − w(Hk, pi) possibilities that rj,i 6= 0 for j ∈ {0, 1, · · · , k − 1} Then using Chinese remainder
theorem and fundamental counting principle we have :

IHk
(
∏

p≤q
p prime

p, q) =
∏

p≤q
p prime

(p− w(Hk, p))

5 Asymptotic formula :

Let q ∈ P, q ≥ 5, and Bq := {b ∈ N | gcd(b,
∏

p≤q
p prime

p) = 1}.

Let x ∈ R+ and consider the function I(x, q) := #{b ∈ Bq | b ≤ x}.
I(x, q) is the number of numbers coprime to 2, 3, · · · , q and less than x.

Theorem 5.1. Let x ≥
∏

p≤q
p prime

p, then as q → +∞ :

I(x, q)

x
∼
∏

p≤q
p prime

(

1− 1

p

)

(6)

Sketch of the proof : Let x ≥
∏

p≤q
p prime

p, and let q0 be the previous prime of q, then we prove :

1) q0 → +∞,
I(x, q0)

x
∼
∏

p≤q0
p prime

(

1− 1

p

)

2) For F (x) = I(x, q0)− I(x, q) we have lim
q0→+∞

∏

p≤q0
p prime

(

1− 1

p

)−1
F (x)

x
= 0

3) conclusion : q → +∞,
I(x, q)

x
∼
∏

p≤q
p prime

(

1− 1

p

)

.

5
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proof : 1) Let n ∈ N
∗

We have I(n
∏

p≤q0
p prime

p, q0) = n
∏

p≤q0
p prime

(p− 1)

The function x → I(x, q0) is increasing

Then for n · (
∏

p≤q0
p prime

p) ≤ x ≤ (n+ 1) · (
∏

p≤q0
p prime

p), we have :

n
∏

p≤q0
p prime

(p− 1) ≤ I(x, q0) ≤ (n+ 1)
∏

p≤q0
p prime

(p− 1)

We have :

n · (
∏

p≤q0
p prime

p) ≤ x < (n+ 1) · (
∏

p≤q0
p prime

p) ⇐⇒ 1

(n+ 1) ·
∏

p≤q0
p prime

p
<

1

x
≤ 1

n ·
∏

p≤q0
p prime

p

Then :
n

n+ 1
≤
∏

p≤q0
p prime

(

1− 1

p

)−1
I(x, q0)

x
≤ n+ 1

n

We have x ≥
(

∏

p≤q
p prime

p
)

then n ≥ q

Then q0 → +∞ =⇒ q → +∞ =⇒ n → +∞
Then lim

q0→+∞

n

n+ 1
= lim

q0→+∞

n+ 1

n
= 1

Conclusion :

q0 → ∞,
I(x, q0)

x
∼
∏

p≤q0
p prime

(

1− 1

p

)

2) Let n ∈ N
∗, we have :

F (n ·
∏

p≤q
p prime

p) = I(n ·
∏

p≤q
p prime

p, q0)− I(n ·
∏

p≤q
p prime

p, q)

= I(nq ·
∏

p≤q0
p prime

p, q0)− I(n ·
∏

p≤q
p prime

p, q)

= nq
∏

p≤q0
p prime

(p− 1)− n
∏

p≤q
p prime

(p− 1)

= n
∏

p≤q0
p prime

(p− 1) · (q − (q − 1))

= n
∏

p≤q0
p prime

(p− 1)

We have x → F (x) an increasing function (F(x) is the number of numbers less than x and has q as little divisor)

For n · (
∏

p≤q
p prime

p) ≤ x < (n+ 1) · (
∏

p≤q
p prime

p) we have :

n
∏

p≤q0
p prime

(p− 1) ≤ F (x) ≤ (n+ 1)
∏

p≤q0
p prime

(p− 1)

We have :

n · (
∏

p≤q
p prime

p) ≤ x < (n+ 1) · (
∏

p≤q
p prime

p) ⇐⇒ 1

(n+ 1) ·
∏

p≤q
p prime

p
<

1

x
≤ 1

n ·
∏

p≤q
p prime

p

6
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Then :

n

n+ 1

1

q
≤
∏

p≤q0
p prime

(

1− 1

p

)−1
F (x)

x
≤ n+ 1

n

1

q

We have x ≥







∏

p≤q
p prime

p






, then :

lim
q0→+∞

∏

p≤q0
p prime

(

1− 1

p

)−1
F (x)

x
= 0

3) We have x ≥







∏

p≤q
p prime

p







We proved that lim
q0→+∞

∏

p≤q0
p prime

(

1− 1

p

)−1
I(x, q0)− I(x, q)

x
= 0 and lim

q0→+∞

∏

p≤q0
p prime

(

1− 1

p

)−1
I(x, q0)

x
= 1

Conclusion :

q → +∞,
I(x, q)

x
∼
∏

p≤q
p prime

(

1− 1

p

)

.

Theorem 5.2. Let x ≥
(

∏

p≤q
p prime

p
)

, then as q → +∞ :

I(x, q) ∼ e−γ x

log(q)

Proof : Let x ≥
(

∏

p≤q
p prime

p
)

, from theorem 5.1 we have as q → +∞ :

I(x, q)

x
∼
∏

p≤q
p prime

(

1− 1

p

)

Consider Mertens’ third theorem :
∏

p≤q
p prime

(

1− 1

p

)

∼ e−γ

log(q)

Then we have the resulte.

Let k ∈ N, k ≥ 2.
Consider the k-tuple Hk = (0, h1, h2, · · · , hk−1).
Consider the function :

IHk
(x, q) := #{(b, b+ h1, · · · , b+ hk−1) ∈ Bk

q | b ≤ x}
IHk

(x, q) is the number of k-tuples less than x and coprime to 2, 3, · · · , q.

Theorem 5.3. Let x ≥
∏

p≤q
p prime

p, then as q → +∞ :

IHk
(x, q)

x
∼
∏

p≤q
p prime

(

1− w(Hk, p)

p

)

7
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Proof : We proceed like the proof of theorem 5.1 and we prove : Let x ≥
(

∏

p≤q
p prime

p
)

Let q0 be the previous prime of q, then we prove :

1) q0 → +∞,
IHk

(x, q0)

x
∼
∏

p≤q0
p prime

(

1− w(Hk, p)

p

)

2) For F (x) = IHk
(x, q0)− IHk

(x, q) we have lim
q0→+∞

∏

p≤q0
p prime

(

1− w(Hk, p)

p

)−1
F (x)

x
= 0

3) Conclusion :
IHk

(x, q)

x
∼
∏

p≤q
p prime

(

1− w(Hk, p)

p

)

.

Let S(Hk) :=
∏

p prime

1− w(Hk,p)
p

(1− 1
p )

k

Theorem 5.4. Let x ≥
(

∏

p≤q
p prime

p
)

, then as q → +∞ :

IHk
(x, q) ∼ e−γk

S(Hk)
x

log(q)k

Proof : Let x ≥
(

∏

p≤q
p prime

p
)

, in theorem 5.3 we proved as q → +∞ :

IHk
(x, q)

x
∼
∏

p≤q
p prime

(

1− w(Hk, p)

p

)

If p ∈ P and p > hk−1 we have w(Hk, p) = k
Let b ∈ P be the smallest prime number verifying b > hk−1, then using Υb,q(k) function in section 3 :

∏

p≤q
p prime

(

1− w(Hk, p)

p

)

=
∏

p<b
p prime

(

1− w(Hk, p)

p

)

∏

b≤p≤q
p prime

(

1− k

p

)

=
∏

p<b
p prime

(

1− w(Hk, p)

p

)

Υb,q(k)

In theorem 3.1 we proved that as q → +∞ :

Υb,q(k) ∼









∏

b≤p
p prime

1− k
p

(1− 1
p )

k









e−kγ

Ak
b

1

log(q)k

With Ab =
∏

p<b
p prime

(

1− 1

p

)

Then we have the result as q → +∞ :

∏

p≤q
p prime

(

1− w(Hk, p)

p

)

∼





∏

p prime

1− w(Hk,p)
p

(1− 1
p )

k





e−kγ

log(q)k

8
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Finally as q → +∞ :

IHk
(x, q) ∼ S(Hk) e

−γk x

log(q)k
.

Let q(x) be the largest prime number verifiying x ≥
(

∏

p≤q(x)
p prime

p
)

.

Theorem 5.5. As x → +∞, we have :

q(x) ∼ log(x)

Proof : We have q(x) is the largest prime number verifiying x ≥
(

∏

p≤q(x)
p prime

p
)

, then :







∏

p≤q(x)
p prime

p






≤ x <







∏

p≤q1(x)
p prime

p







Where q1(x) is the next prime to q(x), then :

log







∏

p≤q(x)
p prime

p







q(x)
≤ log(x)

q(x)
<

log







∏

p≤q1(x)
p prime

p







q(x)

Using Prime numbers theorem we have as x → +∞ :

log







∏

p≤q(x)
p prime

p






∼ q(x) , q(x) ∼ q1(x)

Then we have the result :
q(x) ∼ log(x)

.

Theorem 5.6. Let I(x) = I(x, q(x)), we have x ≥







∏

p≤q(x)
p prime

p






then using theorem 5.2 as x → +∞ :

I(x) ∼ e−γ x

log(log(x))
.

Theorem 5.7. Let IHk
(x) = IHk

(x, q(x)), we have x ≥







∏

p≤q(x)
p prime

p






then using theorem 5.4 as x → +∞ :

IHk
(x) ∼ S(Hk) e

−γk x

log(log(x))k

.

Notice : we can prove theorems 5.6 and 5.7 without using prime numbers theorem, we can use Chebyshev
theorems :

log







∏

p≤q(x)
p prime

p






≍ q(x)
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Then we have :

log log







∏

p≤q(x)
p prime

p






∼ log q(x)

We have :

π(x) ≍ x

log(x)

Then :
log π(x) ∼ log(x) =⇒ log pn ∼ logn

We can deduce that (independetely to prime numbers theorem) :

log q(x) ∼ log log(x)

6 The link with the k-tuple conjecture :

We proved in theorem 5.6 as x → +∞ :

I(x) ∼ e−γ x

log(log(x))
(7)

Where I(x) is the number of numbers less than x and coprime to 2, 3, · · · , q(x) = (1 + o(1)) log(x), with q(x) is the

largest prime number verifying x ≥
(

∏

p≤q(x)
p prime

p
)

.

We can see that :
x

log(log(x))
=

x

log(x)

log(x)

log(log(x))

Then using prime numbers theorem we can rewrite formula (7) as :

I(x) ∼ π(x)
(

π(q(x))e−γ
)

(8)

The number of numbers less than x and coprime to 2, 3, · · · , q(x) is giving asymptoticaly by the number of prime
numbers less than x multiplied by the number of prime numbers less than q(x) multiplied by the constant e−γ .

Then, formula (8) can represent a non-trivial relation between prime numbers less than x and numbers less
than x and sieved by 2, 3, · · · , q(x).

It is legitimate to think that, if we denote P(x) the set of prime number less than x (π(x) = #P(x)) and
I1(x) the set of numbers coprime to 2, 3, · · · , q(x) and less than x (I(x) = #I1(x)) we have :

(P(x)r P(q(x))) ⊂ I1(x)

The trivial relation between P(x) and I1(x) is that every prime number p verify q(x) < p ≤ x is coprime to
2, 3, · · · , q(x) and then p ∈ I1(x).

Let πHk
(x) = #{(p, p+ h1, · · · , p+ hk−1) ∈ P

k | p ≤ x}.

Conjecture : As x → +∞ :

IHk
(x) ∼ πHk

(x)
(

π(q(x))e−γ
)k
. (9)

This conjecture and prime numbers theorem give immediately as x → +∞ :

πHk
(x) ∼ S(Hk)

x

log(x)k
. (10)

The same conjecture founded by the probabilistic model for prime numbers and Harddy-Littlewood circle
method.
To prove formula (9) (and then proving the k-tuple conjecture) we should to prove formula (8) without using prime
numbers theorem.

We proved formula (7) without using prime numbers theorem, then if we arrive to prove also (8) without
using prime numbers theorem we will do the same work to prove (9).
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Other Examples :
For n even number, let :

G(n) := #{(p, n− p) ∈ P
2 | p 6 n}.

Let :

L(x) := #{p = n2 + 1 ∈ P | p 6 x}.

Let :

Gb(n) := #
{

(b, n− b) ∈ B2
q(n) | b 6

∏

p≤q(n)
p prime

p
}

Gb(n) is the number of 2-tuples (b, n− b) coprime to 2, 3, · · · , q(n) and b less than
∏

p≤q(n)
p prime

p.

Let :

Lb(x) := #
{

b ∈ Bq(x) | b = n2 + 1, b 6 x
}

.

Lb(x) is the number of numbers coprime to 2, 3, · · · , q(x) and written as n2 + 1 and less than x.

Using Chinese remainder theorem we prove that :

Gb(n) =
∏

3≤p≤q(n)
p prime, p|n

(p− 1)
∏

3≤p≤q(n)
p prime, p∤n

(p− 2)

=

(

∏

p|n
p prime

3≤p≤q(n)

p− 1

p− 2

)

(

∏

3≤p≤q(n)
p prime

(p− 2)
)

.

Using Chinese remainder theorem we prove that :

Lb

((

∏

p≤q(x)
p prime

p

)2

+ 1

)

=

(

∏

p6q(x)
p≡3[4]
p prime

p

)

∏

p6q(x)
p≡1[4]
p prime

(p− 2)

Then we prove as n → +∞ :

Gb(n)

n
∼
(

∏

p|n
p prime

3≤p≤q(n)

p− 1

p− 2

)

∏

3≤p≤q(n)
p prime

(

1− 2

p

)

Then we prove as x → +∞ :

Lb(x
2)

x
∼

(

∏

p≤q(x)
p prime

p

)−1(
∏

p6q(x)
p≡3[4]
p prime

p

)

∏

p6q(x)
p≡1[4]
p prime

(p− 2)

∼
∏

p≤q(x)
p prime

(

1− 1

p

)(

∏

p6q(x)
p≡3[4]
p prime

p

p− 1

)(

∏

p6q(x)
p≡1[4]
p prime

p− 2

p− 1

)

∼
∏

p≤q(x)
p prime

(

1− 1

p

)

∏

p≤q(x)
p prime

(

1− (−1)(p−1)/2

p− 1

)

11
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Then we have the result :

Gb(n) ∼ 2C2

(

∏

p|n
p prime

p− 1

p− 2

)

e−2γ n

log(log(n))2
.

Where C2 =
∏

3≤p
p prime

(

1− 1

(p− 1)2

)

.

We have the result :

Lb(x) ∼
∏

3≤p
p prime

(

1− (−1)(p−1)/2

p− 1

)

e−γ

√
x

log(log(x))
.

Using the conjecture about the non-trivial relation between prime numbers less than x and numbers coprime
to 2,3,...,q(x) and less than x :

Gb(n) ∼ G(n)
(

π(q(n))e−γ
)2

And :
Lb(x) ∼ L(x)

(

π(q(x))e−γ
)

Then we have the results :

G(n) ∼ 2C2

(

∏

p|n
p prime

p− 1

p− 2

)

n

log(n)2
.

And :

L(x) ∼
∏

3≤p
p prime

(

1− (−1)(p−1)/2

p− 1

) √
x

log(x)
.
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