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1 Introduction Let k ∈ N, k ≥ 2. Let (h 1 , h 2 , • • • , h k-1 ) ∈ N k-1 . Consider the k-tuple H k := (0, h 1 , h 2 , • • • , h k-1 ) with 0 < h 1 < • • • < h k-1 .
Conjecture 1 : If H k is an admissible k-tuple (see the definition in the next section), then there exists infinitely many k-tuples (p, p + h 1 , • • • , p + h k-1 ) ∈ P k .

Conjecture 2 : Consider the k-tuple H k , and π H k (x) := #{(p, p + h 1 , • • • , p + h k-1 ) ∈ P k | p ≤ x}, then as x → +∞ :

π H k (x) ∼ S(H k ) x log(x) k .
Where S(H k ) := p prime 1 -w(H k ,p) p (1 -1 p ) k and w(H k , p) is the number of distinct residues (mod p) in H k . Conjecture 2 was given first time by Hardy and Littlewood in there 1923 paper Some problems of 'Partitio numerorum' ; III : On the expression of a number as a sum of primes. [1] The probabilistic model for prime numbers gives also the same predicted asymptotic formula in conjecture2. Conjecture1 and conjecture2 are both not proven up to now, in this article we will prove a theorem and then predict the same result in conjecture2 using an elementary methods.

Let q(x) be the largest prime number verifiying x ≥ p≤q(x) p prime p .

To compute prime numbers we should sieved by prime numbers less than √ x.

Using prime numbers theorem, we have q(x) = (1 + o(1)) log(x), then the target of this article is not improving sieve theory results, but to divine a non-trivial relation between prime numbers less than x, and numbers sieved by 2, 3, • • • , q(x) and less than x.

2 Admissible k-tuples :

Let k ∈ N, k ≥ 2. Let (h 1 , h 2 , • • • , h k-1 ) ∈ N k-1 . Consider the k-tuple H k := (0, h 1 , h 2 , • • • , h k-1 ) with 0 < h 1 < • • • < h k-1 . Definition : The k-tuple H k is admissible if and only if the product p(p + h 1 ) • • • (p + h k-1
) haven't a fix prime divisor q for all p ∈ P, p ≥ q.

Example : H k = (0, 2, 4) is not admissible, because p or p + 2 or p + 4 is always divisible by 3 for p ∈ P, p ≥ 3. Consider this constante (in the next section we will prove it convergence) :

S(H k ) := p prime 1 -w(H k ,p) p (1 -1 p ) k .
Where w(H k , p) is the number of distinct residues (mod p) in H k .

Example1 : Let H 3 = (0, 2, 4)

mod 3
= (0, 2, 1), then w(H 3 , 3) = 3.

Example2 : Let H 3 = (0, 2, 6) mod 3 = (0, 2, 0), then w(H 3 , 3) = 2. It's clear that ∀p ∈ P, 1 ≤ w(H k , p) ≤ p and if p > h k-1 then w(H k , p) = k. Theorem 2.1. H k is not admissible ⇐⇒ ∃q ∈ P : w(H k , q) = q Consequence : H k is not admissible ⇐⇒ S(H k ) = 0. Proof : =⇒ ) Suppose that H k is not admissible Then (∃q ∈ P)(∀p ∈ P, p ≥ q) : q|p(p + h 1 ) • • • (p + h k-1 )
We have q is a prime number, then for p ∈ P we have q = p or q devide p + h i where i ∈ {1, 2, • • • , k -1} According to Dirichlet's theorem on arithmetic progressions and for p = q, p (mod q) can take values 1, 2, • • • , q-1 infinitly many times whene p ∈ P Taking r equals each time 1, 2, • • • , q -1 and p = r (mod q), we have p + h i = 0 (mod q) for i ∈ {1, 2, • • • , k -1} Then h i (mod q) can take all values 1, 2, • • • , q -1 And adding the case q = p we have w(H k , q) = q ⇐=) suppose that ∃q ∈ P : w(H k , q) = q Let p ∈ P and p = r (mod q) If r = 0 then p = q then q devide p If r = 0 we have

1 ≤ q -r ≤ q -1 w(H k , q) = q =⇒ ∃i ∈ {1, 2, • • • , k -1}, h i = q -r (mod q) Then q devide p + h i Then H k is not admissible. Theorem 2.2. If ∃q ∈ P : w(H k , q) = q then q ≤ k.
Proof : The proof is simple, because we have k elements in the k-tuple H k .

Theorem 2.3.

H k is admissible ⇐⇒ ∀p ∈ P, p ≤ k : w(H k , p) = p (1) 
Example1 :

H k = (0, 4, 6) is admissible : (0, 4, 6) mod 2 = (0, 0, 0) =⇒ w(H 3 , 2) = 1 (0, 4, 6) mod 3 = (0, 1, 0) =⇒ w(H 3 , 3) = 2
Example2 : H 5 = (0, 4, 12, 16, 18) is not admissible : (0,4,12,16,18) mod 2 = (0, 0, 0, 0, 0) =⇒ w(H 5 , 2) = 1 (0,4,12,16,18) mod 3

= (0, 1, 0, 1, 0) =⇒ w(H 5 , 3) = 2 (0,4,12,16,18) mod 5

= (0, 4, 2, 1, 3) =⇒ w(H 5 , 5) = 5

3 Υ b,q (k) function :

Let b, q ∈ P, k ∈ N and k < b. Consider those functions :

Υ b,q (k) := b≤p≤q p prime 1 - k p . F b (k) := b≤p p prime 1 - k 2 p 2 , C b (k) := b≤p p prime 1 - k -1 p -1 2 .
In this section we will find the asymptotic formula of Υ b,q (k) as q → +∞.

We have :

Υ b,q (k) = b≤p≤q p prime 1 - k -1 p -1 2 b≤p≤q p prime 1 - 1 p 2 b≤p≤q p prime 1 + k -2 p -1 (2) Consider this constant A b := p<b p prime 1 - 1 p .
Consider Mertens' third theorem :

p≤q p prime 1 - 1 p ∼ e -γ log(q) (3) Where γ is Euler-Mascheroni constant : γ = lim n→+∞ n k=1 1 k -log(n).
Using (2) and (3) we have as q → +∞ :

Υ b,q (k) ∼                1 if k = 0 e -γ A b log(q) if k = 1 C b (k) e -2γ A 2 b F b (k -2) log 2 (q) Υ b,q (k -2) if k ≥ 2
Then for k ≥ 2 we have :

Υ b,q (k) ∼            C b (2)C b (4) • • • C b (k) e -kγ F b (0)F b (2) • • • F b (k -2)A k b 1 log k (q) if k is even C b (3)C b (5) • • • C b (k) e -kγ F b (1)F b (3) • • • F b (k -2)A k b 1 log k (q) if k is odd
We should simplify this formula, we have :

F b (k) = b≤p p prime (p -k)(p + k) p 2 , C b (k) = b≤p p prime (p -k)(p + k -2) (p -1) 2 .
For k ≥ 2 we have :

b≤p p prime p k-1 (p -k) (p -1) k =          C b (2)C b (4) • • • C b (k) F b (0)F b (2) • • • F b (k -2) if k is even C b (3)C b (5) • • • C b (k) F b (1)F b (3) • • • F b (k -2) if k is odd (4)
And we have :

b≤p p prime p k-1 (p -k) (p -1) k = b≤p p prime 1 -k p (1 -1 p ) k
Then, formula (4) show that for k < b the product b≤p p prime

1 -k p (1 -1 p ) k is convergente and not null.
Theorem 3.1. For a fixed k ∈ N, b ∈ P and q → +∞ we have

Υ b,q (k) ∼     b≤p p prime 1 -k p (1 -1 p ) k     e -kγ A k b 1 log(q) k
4 Chinese remainder theorem :

Let q ∈ P, q ≥ 5. Consider the set :

B q := {b ∈ N | gcd(b, p≤q p prime p) = 1}
B q is the set of numbers coprime to 2, 3, • • • , q. Let x ∈ R + and Consider the function :

I H k (x, q) := #{(b, b + h 1 , b + h 2 , • • • , b + h k-1 ) ∈ B k q | b ≤ x}. I H k (x, q)
is the number of k-tuples coprime to 2, 3, • • • , q and less than x.

In this section we will compute I H k (x, q) for x = p≤q p prime p .

Theorem 4.1.

I H k ( p≤q p prime p, q) = p≤q p prime (p -w(H k , p))
Where w(H k , p) is the number of distinct residues (mod p) in H k .

proof : Let p i be a prime number verify p i ≤ q To compute k-tuples coprime to 

b = r 0,i (mod p i ) b + h 1 = r 1,i (mod p i ) • • • b + h k-1 = r k-1,i (mod p i ) (5) With b ≤ p≤q p prime p and ∀j ∈ {0, 1, 2, • • • , k -1} : r j,i = 0 for every p i ≤ q
If h j = h l (mod p i ) for some j = l then they represent the same equations in (5) Then we have p iw(H k , p i ) possibilities that r j,i = 0 for j ∈ {0, 1, • • • , k -1} Then using Chinese remainder theorem and fundamental counting principle we have :

I H k ( p≤q p prime p, q) = p≤q p prime (p -w(H k , p))
5 Asymptotic formula :

Let q ∈ P, q ≥ 5, and B q := {b ∈ N | gcd(b, p≤q p prime p) = 1}.

Let x ∈ R + and consider the function I(x, q) := #{b ∈ B q | b ≤ x}. I(x, q) is the number of numbers coprime to 2, 3, • • • , q and less than x.

Theorem 5.1. Let x ≥ p≤q p prime p, then as q → +∞ :

I(x, q) x ∼ p≤q p prime 1 - 1 p (6)
Sketch of the proof : Let x ≥ p≤q p prime p, and let q 0 be the previous prime of q, then we prove :

1) q 0 → +∞, I(x, q 0 ) x ∼ p≤q 0 p prime 1 - 1 p 
2) For F (x) = I(x, q 0 ) -I(x, q) we have lim

q0→+∞ p≤q 0 p prime 1 - 1 p -1 F (x) x = 0 
3) conclusion : q → +∞,

I(x, q) x ∼ p≤q p prime 1 - 1 p . proof : 1) Let n ∈ N * We have I(n p≤q 0 p prime p, q 0 ) = n p≤q 0 p prime (p -1)
The function x → I(x, q 0 ) is increasing Then for n • (

p≤q 0 p prime p) ≤ x ≤ (n + 1) • ( p≤q 0 p prime
p), we have :

n p≤q 0 p prime (p -1) ≤ I(x, q 0 ) ≤ (n + 1) p≤q 0 p prime (p -1)
We have : n • (

p≤q 0 p prime p) ≤ x < (n + 1) • ( p≤q 0 p prime p) ⇐⇒ 1 (n + 1) • p≤q 0 p prime p < 1 x ≤ 1 n • p≤q 0 p prime p Then : n n + 1 ≤ p≤q 0 p prime 1 - 1 p -1 I(x, q 0 ) x ≤ n + 1 n We have x ≥ p≤q p prime p then n ≥ q Then q 0 → +∞ =⇒ q → +∞ =⇒ n → +∞ Then lim q0→+∞ n n + 1 = lim q0→+∞ n + 1 n = 1 Conclusion : q 0 → ∞, I(x, q 0 ) x ∼ p≤q 0 p prime 1 - 1 p 
2) Let n ∈ N * , we have :

F (n • p≤q p prime p) = I(n • p≤q p prime p, q 0 ) -I(n • p≤q p prime p, q) = I(nq • p≤q 0 p prime p, q 0 ) -I(n • p≤q p prime p, q) = nq p≤q 0 p prime (p -1) -n p≤q p prime (p -1) = n p≤q 0 p prime (p -1) • (q -(q -1)) = n p≤q 0 p prime (p -1)
We have x → F (x) an increasing function (F(x) is the number of numbers less than x and has q as little divisor) For n • (

p≤q p prime p) ≤ x < (n + 1) • ( p≤q p prime
p) we have :

n p≤q 0 p prime (p -1) ≤ F (x) ≤ (n + 1) p≤q 0 p prime (p -1)
We have :

n • ( p≤q p prime p) ≤ x < (n + 1) • ( p≤q p prime p) ⇐⇒ 1 (n + 1) • p≤q p prime p < 1 x ≤ 1 n • p≤q p prime p Then : n n + 1 1 q ≤ p≤q 0 p prime 1 - 1 p -1 F (x) x ≤ n + 1 n 1 q We have x ≥    p≤q p prime p   , then : lim q0→+∞ p≤q 0 p prime 1 - 1 p -1 F (x) x = 0 3) We have x ≥    p≤q p prime p   
We proved that lim

q0→+∞ p≤q 0 p prime 1 - 1 p -1 I(x, q 0 ) -I(x, q)
x = 0 and lim

q0→+∞ p≤q 0 p prime 1 - 1 p -1 I(x, q 0 ) x = 1 Conclusion : q → +∞, I(x, q) x ∼ p≤q p prime 1 - 1 p . Theorem 5.2. Let x ≥ p≤q p prime
p , then as q → +∞ : I(x, q) ∼ e -γ x log(q)

Proof : Let x ≥ p≤q p prime p , from theorem 5.1 we have as q → +∞ :

I(x, q) x ∼ p≤q p prime 1 - 1 p
Consider Mertens' third theorem :

p≤q p prime 1 - 1 p ∼ e -γ log(q)
Then we have the resulte.

Let k ∈ N, k ≥ 2. Consider the k-tuple H k = (0, h 1 , h 2 , • • • , h k-1 ).
Consider the function :

I H k (x, q) := #{(b, b + h 1 , • • • , b + h k-1 ) ∈ B k q | b ≤ x} I H k (x, q)
is the number of k-tuples less than x and coprime to 2, 3, • • • , q.

Theorem 5.3. Let x ≥ p≤q p prime p, then as q → +∞ :

I H k (x, q) x ∼ p≤q p prime 1 - w(H k , p) p
Proof : We proceed like the proof of theorem 5.1 and we prove : Let x ≥ p≤q p prime p Let q 0 be the previous prime of q, then we prove :

1) q 0 → +∞, I H k (x, q 0 ) x ∼ p≤q 0 p prime 1 - w(H k , p) p 2) For F (x) = I H k (x, q 0 ) -I H k (x, q) we have lim q0→+∞ p≤q 0 p prime 1 - w(H k , p) p -1 F (x) x = 0 
3) Conclusion :

I H k (x, q) x ∼ p≤q p prime 1 - w(H k , p) p . Let S(H k ) := p prime 1 -w(H k ,p) p (1 -1 p ) k Theorem 5.4. Let x ≥ p≤q p prime
p , then as q → +∞ :

I H k (x, q) ∼ e -γk S(H k ) x log(q) k Proof : Let x ≥ p≤q p prime
p , in theorem 5.3 we proved as q → +∞ :

I H k (x, q) x ∼ p≤q p prime 1 - w(H k , p) p
If p ∈ P and p > h k-1 we have w(H k , p) = k Let b ∈ P be the smallest prime number verifying b > h k-1 , then using Υ b,q (k) function in section 3 :

p≤q p prime 1 - w(H k , p) p = p<b p prime 1 - w(H k , p) p b≤p≤q p prime 1 - k p = p<b p prime 1 - w(H k , p) p Υ b,q (k) 
In theorem 3.1 we proved that as q → +∞ :

Υ b,q (k) ∼     b≤p p prime 1 -k p (1 -1 p ) k     e -kγ A k b 1 log(q) k With A b = p<b p prime 1 - 1 p
Then we have the result as q → +∞ :

p≤q p prime 1 - w(H k , p) p ∼   p prime 1 -w(H k ,p) p (1 -1 p ) k   e -kγ log(q) k
Finally as q → +∞ :

I H k (x, q) ∼ S(H k ) e -γk x log(q) k .
Let q(x) be the largest prime number verifiying x ≥ p≤q(x) p prime p .

Theorem 5.5. As x → +∞, we have : q(x) ∼ log(x)

Proof : We have q(x) is the largest prime number verifiying x ≥ p≤q(x) p prime p , then :

   p≤q(x) p prime p    ≤ x <    p≤q 1 (x) p prime p   
Where q 1 (x) is the next prime to q(x), then :

log    p≤q(x) p prime p    q(x) ≤ log(x) q(x) < log    p≤q 1 (x) p prime p    q(x)
Using Prime numbers theorem we have as x → +∞ :

log    p≤q(x) p prime p    ∼ q(x) , q(x) ∼ q 1 (x)
Then we have the result : q(x) ∼ log(x)

.

Theorem 5.6. Let I(x) = I(x, q(x)), we have x ≥    p≤q(x) p prime p    then using theorem 5.2 as x → +∞ :

I(x) ∼ e -γ x log(log(x)) . Theorem 5.7. Let I H k (x) = I H k (x, q(x)), we have x ≥    p≤q(x) p prime p  
 then using theorem 5.4 as x → +∞ :

I H k (x) ∼ S(H k ) e -γk
x log(log(x)) k .

Notice : we can prove theorems 5.6 and 5.7 without using prime numbers theorem, we can use Chebyshev theorems :

log    p≤q(x) p prime p    ≍ q(x)
Then we have :

log log    p≤q(x) p prime p    ∼ log q(x)
We have : π(x) ≍ x log(x) Then :

log π(x) ∼ log(x) =⇒ log p n ∼ log n We can deduce that (independetely to prime numbers theorem) : log q(x) ∼ log log(x)

6 The link with the k-tuple conjecture :

We proved in theorem 5.6 as x → +∞ :

I(x) ∼ e -γ x log(log(x)) (7) 
Where I(x) is the number of numbers less than x and coprime to 2, 3, • • • , q(x) = (1 + o(1)) log(x), with q(x) is the largest prime number verifying x ≥ p≤q(x) p prime p .

We can see that :

x log(log(x)) = x log(x) log(x) log(log(x))
Then using prime numbers theorem we can rewrite formula (7) as :

I(x) ∼ π(x) π(q(x))e -γ (8) 
The number of numbers less than x and coprime to 2, 3, • • • , q(x) is giving asymptoticaly by the number of prime numbers less than x multiplied by the number of prime numbers less than q(x) multiplied by the constant e -γ .

Then, formula (8) can represent a non-trivial relation between prime numbers less than x and numbers less than x and sieved by 2, 3, • • • , q(x).

It is legitimate to think that, if we denote P(x) the set of prime number less than x (π(x) = #P(x)) and I 1 (x) the set of numbers coprime to 2, 3, • • • , q(x) and less than x (I(x) = #I 1 (x)) we have : (P(x) P(q(x))) ⊂ I 1 (x)

The trivial relation between P(x) and I 1 (x) is that every prime number p verify q(x) < p ≤ x is coprime to 2, 3, • • • , q(x) and then p ∈ I 1 (x).

Let π H k (x) = #{(p, p + h 1 , • • • , p + h k-1 ) ∈ P k | p ≤ x}. Conjecture : As x → +∞ : I H k (x) ∼ π H k (x) π(q(x))e -γ k . ( 9 
) This conjecture and prime numbers theorem give immediately as x → +∞ :

π H k (x) ∼ S(H k ) x log(x) k . ( 10 
)
The same conjecture founded by the probabilistic model for prime numbers and Harddy-Littlewood circle method.

To prove formula (9) (and then proving the k-tuple conjecture) we should to prove formula (8) without using prime numbers theorem.

We proved formula (7) without using prime numbers theorem, then if we arrive to prove also (8) without using prime numbers theorem we will do the same work to prove (9). L b (x) is the number of numbers coprime to 2, 3, • • • , q(x) and written as n 2 + 1 and less than x.

Using Chinese remainder theorem we prove that : 

G b (n) =

p

  we should compute the number of k-tuples verifying :

  For n even number, let :G(n) := #{(p, np) ∈ P 2 | p n}. Let : L(x) := #{p = n 2 + 1 ∈ P | p x}. Let : G b (n) := # (b, nb) ∈ B 2 q(n) | b p≤q(n) p prime p G b (n) is the number of 2-tuples (b, nb) coprime to 2, 3, • • • , q(n) and b less than b (x) := # b ∈ B q(x) | b = n 2 + 1, b x .

  ) (p-1)/2 p -1

Then we have the result :

We have the result :

.

Using the conjecture about the non-trivial relation between prime numbers less than x and numbers coprime to 2,3,...,q(x) and less than x :

And :

Then we have the results :

And :

.
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