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Computing persistent Stiefel-Whitney classes
of line bundles

Raphaël Tinarrage

Datashape, Inria Paris-Saclay – LMO, Université Paris-Saclay

Abstract. We propose a definition of persistent Stiefel-Whitney classes of vector bundle fil-
trations. It relies on seeing vector bundles as subsets of some Euclidean spaces. The usual Čech
filtration of such a subset can be endowed with a vector bundle structure, that we call a Čech
bundle filtration. We show that this construction is stable and consistent. When the dataset
is a finite sample of a line bundle, we implement an effective algorithm to compute its persis-
tent Stiefel-Whitney classes. In order to use simplicial approximation techniques in practice,
we develop a notion of weak simplicial approximation. As a theoretical example, we give an
in-depth study of the normal bundle of the circle, which reduces to understanding the persistent
cohomology of the torus knot (1,2).

Numerical experiments. A Python notebook containing illustrations can be found at https:
//github.com/raphaeltinarrage/PersistentCharacteristicClasses/blob/master/Demo.ipynb.
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2.2 Čech bundle filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Simplicial approximation of Čech bundle filtrations 20
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1 Introduction

1.1 Statement of the problem

Let M0 and M′0 denote the torus and the Klein bottle. Only one of them is orientable, hence
these two manifolds are not homeomorphic. Let Z2 be the field with two elements. Observe that
the cohomology groups of M0 and M′0 over Z2 are equal:

H0(M0) = H0(M′0) = Z2,

H1(M0) = H1(M′0) = Z2 × Z2,

H2(M0) = H2(M′0) = Z2.

Therefore, the cohomology groups alone do not permit to differenciate the manifolds M0 and
M′0. To do so, several refinements from algebraic topology may be used. For example, the
first cohomology groups H1(M0) and H1(M′0), or the second ones H2(M0) and H2(M′0) are
distinct when computed over the rings Z or Zp, p ≥ 3. Also, the cup product structures on
the cohomology rings H∗(M0) and H∗(M′0) are distinct, even over Z2. In this paper, we will
consider another invariant associated to M0 and M′0: the characteristic classes of their vector
bundles. For instance, if we equip M0 and M′0 with their tangent bundles, their first Stiefel-
Whitney classes are distinct: only one of them is zero. Hence we are able to differenciate these
two manifolds.

H∗(M0) = Z2[x, y]/〈x2, y2〉
w1(τM0

) = 0

H∗(M′0) = Z2[x, y]/〈x3, x2y−2, xy〉
w1(τM′0) = x

Figure 1: The cohomology rings ofM0 andM′0 over Z2, and the first Stiefel-Whitney classes of
their respective tangent bundles τM0 and τM′0 .

In general, if X is a topological space endowed with a vector bundle ξ of dimension d, there
exists a collection of cohomology classes w1(ξ), ..., wd(ξ), the Stiefel-Whitney classes, such that
wi(ξ) is an element of the cohomology group Hi(M0) over Z2 for i ∈ [1, d]. We discuss in
Subsection 1.5 the interpretation of these classes. As we explain in Subsection 1.4, defining a
vector bundle over a compact space M0 is equivalent to defining a continuous map p : M0 →
Gd(Rm) for m large enough, where Gd(Rm) is the Grassmann manifold of d-planes in Rm. Such
a map is called a classifying map for ξ. It is closely related to the Gauss map of submanifolds of
R3.

Figure 2: If M is an orientable 2-submanifold of R3, the Gauss map g : M → S2 maps every
x ∈M to a normal vector ofM at x. By post-composing this map with the usual quotient map
S2 → G1(R3), we obtain a classifying map f : M→ G1(R3) for the normal bundle of M.
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Given a classifying map p : X → Gd(Rm) of a vector bundle ξ, the Stiefel-Whitney classes
w1(ξ), ..., wd(ξ) can be defined by pushing forward some particular classes of the Grassmannian
via the induced map in cohomology p∗ : H∗(X)← H∗(Gd(Rm)).

In order to translate these considerations in a persistent-theoretic setting, suppose that we
are given a dataset of the form (X, p), where X is a finite subset of Rn, and p is a map p : X →
Gd(Rm). Denote by (Xt)t≥0 the Čech filtration of X, which is the collection of the t-thickenings
Xt of X in the ambient space Rn. In order to define some persistent Stiefel-Whitney classes,
one would try to extend the map p : X → Gd(Rm) to pt : Xt → Gd(Rm). However, the author
did not find any interesting way to extend this map.

To adopt another point of view, (X, p) can be seen as a subset of Rn × Gd(Rm), via X̌ =
{(x, p(x)) , x ∈ X}. The Grassmann manifold Gd(Rm) can be naturally embedded in the matrix
space M(Rm), hence X̌ can be seen as a subset Rn ×M(Rm). If (X̌t)t≥0 denotes the Čech
filtration of X̌ in the ambient space Rn×M(Rm), then a natural map pt : X̌t → Gd(Rm) can be
defined: map a point (x,A) ∈ X̌t to the projection of A on Gd(Rm), seen as a subset ofM(Rm).
Using the extended maps pt : X̌t → Gd(Rm), we are able to define a notion of persistent Stiefel-
Whitney classes (Definition 2.2). The nullity of a persistent Stiefel-Whitney class is summarized
in a diagram that we call a lifebar.

As an example, consider the embedding of the torus u : M0 → M ⊂ R3 depicted in Figure
3. Denote Px the tangent space of M at x. The set M̌ = {(x, Px), x ∈ M} can be seen as a
subset of R3 ×M(R3).

Figure 3: The submanifold M ⊂ R3, and the submanifold M̌ ⊂ R3 ×M(R3) ' R12 projected
in a 3-dimensional subspace via PCA.

The lifebar of the first persistent Stiefel-Whitney class of this torus is depicted in Figure 4. The
bar is hatched, which means that the class is zero all along the filtration. This is coherent with
the actual first Stiefel-Whitney class of the normal bundle of the torus, which is zero.

Figure 4: Lifebar of the first persistent Stiefel-Whitney class of M̌. It is only defined on the

interval
[
0,
√

2
2

)
(see Definition 2.3).

To continue, consider the immersion of the Klein bottle u′ : M′0 → M′ ⊂ R3 depicted in
Figure 5. For x0 ∈ M′0, denote Px0 the tangent space of M′0 at x0, seen in R3. The set
M̌′ = {(u(x0), Px0

) , x0 ∈M′0} can be seen as a subset of R3 × M(R3). Note that M̌′ is a
submanifold (diffeomorphic to the Klein bottle), while M′ is not.
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Figure 5: The set M′ ⊂ R3, and the submanifold M̌′ ⊂ R3 ×M(R3) ' R12 projected in a
3-dimensional subspace via PCA.

Just as before, we can define persistent Stiefel-Whitney classes over the Čech filtration of M̌′.
Figure 6 represents the lifebar of the first Stiefel-Whitney class of this filtration. The bar is
filled, which means that the class is nonzero all along the filtration. This is coherent with the
first Stiefel-Whitney class of the normal bundle of the Klein bottle, which is nonzero.

Figure 6: Lifebar of the first persistent Stiefel-Whitney class of M̌′.

The construction we propose is defined for any subset X ⊂ Rn ×M(Rm). In particular,
it can be applied to finite samples of M̌ and M̌′. We prove that it is stable and consistent
(Theorems 2.3 and 2.6). As an illustration, Figure 7 represents the lifebars of the first persistent
Stiefel-Whitney classes of samples X and X ′ of M̌ and M̌′. Observe that they are close to the
original ones.

Figure 7: Left: a sample of M̌ ⊂ R3 ×M(R3), seen in R3, and the lifebar of its first persistent
Stiefel-Whitney class. Right: same for M̌′.

1.2 Notations

We adopt the following notations:

• I denotes a set, card(I) its cardinal and Ic its complement.

• Rn and Rm denotes the Euclidean spaces of dimension n and m, E denotes a Euclidean
space.
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• M(Rm) the vector space of m×m matrices, Gd(Rm) the Grassmannian of d-subspaces of
Rm, and Sk ⊂ Rk+1 the unit k-sphere.

• ‖ · ‖ the usual Euclidean norm on Rn, ‖ · ‖F the Frobenius norm onM(Rm), ‖ · ‖γ the norm
on Rn ×M(Rm) defined as ‖(x,A)‖2γ = ‖x‖2 + γ2‖A‖2F where γ > 0 is a parameter.

• X = (Xt)t∈T denotes a set filtration. V[X] denotes the corresponding persistent cohomology
module. If X is a subset of E, then X = (Xt)t∈T denotes the Čech set filtration of X.

• (V,v) denotes a persistence module over T , with V = (V t)t∈T a family of vector spaces,
and v = (vts : Xs ← Xt)s≤t∈T a family of linear maps.

• U denotes a cover of a topological space, and N (U) its nerve. S = (St)t∈T denotes a
simplicial filtration.

• (X,p) denotes a vector bundle filtration, with X a set filtration, and p = (pt)t∈T a family
of maps pt : Xt → Gd(Rm). If X is a subset of Rn×M(Rm), then (X,p) denotes the Čech
bundle filtration associated to X.

• If X is a topological space, H∗(X) denotes its cohomology ring, and Hi(X) the ith coho-
mology group. If f : X → Y is a continuous map, f∗ : H∗(X)← H∗(Y ) is the map induced
in cohomology.

• If ξ is a vector bundle, wi(ξ) denotes its ith Stiefel-Whitney class. If (X,p) is a vector bundle
filtration, wi(p) denotes the ith persistent Stiefel-Whitney class, with wi(p) = (wti(p))t∈T
(see Definition 2.2).

• If A is a subset of E, then med (A) denotes its medial axis, reach(A) its reach, dist (·, A) the
distance to A (see Subsection 1.3). The projection on A is denoted proj (·, A) or projA (·).
dH(·, ·) denotes the Hausdorff distance between two sets of E.

• If K is a simplicial complex, Ki denotes its i-skeleton. For every vertex v ∈ K0, St (v)
and St (v) denote its open and closed star. The topological realization of K is denoted
|K|, and the topological realization of a simplex σ ∈ K is |σ|. The face map is denoted
FK : |K| → K (see Subsection 3.1).

• If f : K → L is a simplicial map, |f | : |K| → |L| denotes its topological realization. The
ith barycentric subdivision of the simplicial complex K is denoted subi (K) (see Subsection
3.2).

1.3 Background on persistent cohomology

In the following, we consider interleavings of filtrations, interleavings of persistence modules and
their associated pseudo-distances. Their definitions, in the context of cohomology, are recalled
in this subsection. Compared to the standard definitions of persistent homology, the arrows go
backward. Let T ⊆ [0,+∞) be an interval that contains 0, and let E be a Euclidean space.

Filtrations of sets and simplicial complexes. A family of subsets X = (Xt)t∈T of E is a
filtration if it is non-decreasing for the inclusion, i.e. for any s, t ∈ T , if s ≤ t then Xs ⊆ Xt.
Given ε ≥ 0, two filtrations X = (Xt)t∈T and Y = (Y t)t∈T of E are ε-interleaved if, for every
t ∈ T , Xt ⊆ Y t+ε and Y t ⊆ Xt+ε. The interleaving pseudo-distance between X and Y is defined
as the infimum of such ε:

di(X,Y) = inf {ε, X and Y are ε-interleaved} .

Filtrations of simplicial complexes and their interleaving distance are similarly defined: given
an abstract simplex S, a filtration of S is a non-decreasing family S = (St)t∈T of subcomplexes
of S. The interleaving pseudo-distance between two filtrations (St1)t∈T and (St2)t∈T of S is the
infimum of the ε ≥ 0 such that they are ε-interleaved, i.e., for any t ∈ T , we have St1 ⊆ St+ε2 and
St2 ⊆ St+ε1 .
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Persistence modules and interleavings. Let k be a field. A persistence module over T is a
pair (V,v) where V = (V t)t∈T is a family of k-vector spaces, and v = (vts)s≤t∈T is a family of
linear maps vts : V s ← V t such that:

• for every t ∈ T , vtt : V t ← V t is the identity map,

• for every r, s, t ∈ T such that r ≤ s ≤ t, vsr ◦ vts = vtr.

When there is no risk of confusion, we may denote a persistence module by V instead of (V,v).
Given ε ≥ 0, an ε-morphism between two persistence modules (V,v) and (W,w) is a family of
linear maps (φt : V

t →W t−ε)t≥ε such that the following diagrams commute for every ε ≤ s ≤ t:

V s V t

W s−ε W t−ε

φs

vts
φt

wt−εs−ε

If ε = 0 and each φt is an isomorphism, the family (φt)t∈T is an isomorphism of persistence
modules. An ε-interleaving between two persistence modules (V,v) and (W,w) is a pair of
ε-morphisms (φt : V

t → W t−ε)t≥ε and (ψt : W
t → V t−ε)t≥ε such that the following diagrams

commute for every t ≥ 2ε:

V t−2ε V t

W t−ε

vtt−2ε

φtψt−ε

V t−ε

W t−2ε W t

φt−ε

wtt−2ε

ψt

The interleaving pseudo-distance between (V,v) and (W,w) is defined as

di(V,W) = inf{ε ≥ 0, V and W are ε-interleaved}.

In some cases, the proximity between persistence modules is expressed with a function. Let
T ′ ⊆ T and η : T ′ → T be a non-increasing function such that for any t ∈ T ′, η(t) ≤ t. A
η-interleaving between two persistence modules (V,v) and (W,w) is a pair of families of linear
maps (φt : V

t →W η(t))t∈T ′ and (ψt : W
t → V η(t))t∈T ′ such that the following diagrams commute

for every t ∈ T ′:

V η(η(t)) V t

W η(t)

vtη(η(t))

φtψη(t)

V η(t)

W η(η(t)) W t

φη(t)

wtη(η(t))

ψt

When η is t 7→ t − c for some c > 0, it is called an additive c-interleaving and corresponds
with the previous definition. When η is t 7→ ct for some 0 < c < 1, it is called a multiplicative
c-interleaving.

Persistence diagrams. A persistence module (V,v) is said to be pointwise finite-dimensional
if for every t ∈ T , V t is finite-dimensional. This implies that we can define a notion of persistence
diagram [BCB18, Theorem 1.2]. It is based on the algebraic decomposition of the persistence
module into interval modules. Moreover, given two pointwise finite-dimensional persistence mod-
ules V,W with persistence diagrams D(V), D(W), the so-called isometry theorem states that
db(D(V), D(W)) = di(V,W) where di(·, ·) denotes the interleaving distance, and db(·, ·) denotes
the bottleneck distance between diagrams.

More generally, the persistence module (V,v) is said to be q-tame if for every s, t ∈ T such
that s < t, the map vts is of finite rank. The q-tameness of a persistence module ensures that we
can still define a notion of persistence diagram, even though the module may not be decomposable
into interval modules. Moreover, the isometry theorem still holds [CdSGO16, Theorem 4.11].
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Relation between filtrations and persistence modules. Applying the singular cohomol-
ogy functor to a set filtration gives rise to a persistence module whose linear maps between
cohomology groups are induced by the inclusion maps between sets. As a consequence, if two
filtrations are ε-interleaved, then their associated cohomology persistence modules are also ε-
interleaved, the interleaving homomorphisms being induced by the interleaving inclusion maps.
As a consequence of the isometry theorem, if the modules are q-tame, then the bottleneck dis-
tance between their persistence diagrams is upperbounded by ε.

The same remarks hold when applying the simplicial cohomology functor to simplicial filtra-
tions.

Reach of subsets of E. Let X be any subset of E. Following [Fed59, Definition 4.1], the
function distance to X is the map dist (·, X) : y ∈ E 7→ inf{‖y−x‖, x ∈ X}. A projection of y on
X is a point x ∈ X which attains this infimum. The medial axis of X is the subset med (X) ⊂ E
which consists of points y ∈ E that admits at least two projections:

med (X) = {y ∈ E,∃x, x′ ∈ X,x 6= x′, ‖y − x‖ = ‖y − x‖ = dist (y,X)} .

The reach of X is
reach(X) = inf {‖x− y‖, x ∈ X, y ∈ med (X)} .

Alternatively, let Xt denote the t-thickening of X, i.e. the subset of points of E at distance at
most t from X. Then the reach of X can be defined as the supremum of t ≥ 0 such that Xt does
not intersect med (X).

Suppose that X is closed and let reach(X) be the reach of X. One shows that each Xt deform
retracts onto X for 0 ≤ t < reach(X). Besides, if Y is any other subset of E with Hausdorff
distance dH(X,Y ) ≤ ε, then for any t ∈ [4ε, reach(X)− 3ε), Y t deform retracts on X [CCSL09,
Theorem 4.6, case µ = 1].

Weak feature size of compact subsets of E. Let X be any compact subset of E, and
denote by dX the distance function to X. It is not differentiable in general. However, one can
define a generalized gradient vector field ∇X : E → E, as in [BCY18, Section 9.2]. A point x ∈ E
is called a critical point of dX if ∇X(x) = 0. One shows that x is a critical point of dX if it lies
in the convex hull of its projections on X. The weak feature size of X is defined as

wfs (X) = inf {dist (x,X) , x is a critical point of dX} .

The Isotopy Lemma [BCY18, Theorem 9.5] states that for every s, t ∈ R such that 0 < s ≤ t <
wfs (X), the thickening Xt is isotopic to Xs. This isotopy can be chosen to be a deformation
retraction. If X admits a positive reach, we deduce that the thickenings Xt deform retracts on
X. The weak feature size and reach of X satisfy the inequality reach(X) ≤ wfs (X).

Čech set filtrations. Let X denote any subset of E. The Čech set filtration associated to
X is the filtration of E defined as the collection of subsets X = (Xt)t≥0, where Xt denotes the
t-thickening of X in E, that is, Xt = {x ∈ E,dist (x,X) ≤ t}.

If X is a compact submanifold, then according to the previous considerations about the
reach, for every t ∈ [0, reach(X)), Xt deform retracts on X. Therefore, the corresponding
cohomology persistence module is constant on the interval [0, τ), and is equal to the cohomology
of X. Moreover, if Y is any other subset of E with Hausdorff distance dH(X,Y ) ≤ ε, then the
cohomology persistence module of the Čech filtration associated to Y is constant on the interval
[4ε, τ − 3ε) and is equal to the cohomology of X.

Čech simplicial filtrations. Let X denote a finite subset of E and X = (Xt)t≥0 its associated
Čech set filtration. For all t ≥ 0, Xt is a union of closed balls of radius t: Xt =

⋃
x∈X B (x, t).

Consider the simplicial filtration S = (St), where St is the nerve of the cover U t defined as U t =
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{B (x, t) , x ∈ X}. It is called the Čech simplicial filtration associated to X. The persistent nerve
lemma [CO08, Lemma 3.4] states that the persistence (singular) cohomology module associated
to X and the persistent (simplicial) cohomology module associated to S are isomorphic.

1.4 Background on vector bundles

This subsection and the next one follow the presentation of [MS16].

Vector bundles. Let X be a topological space. A vector bundle ξ of dimension d consists of a
topological space A = A(ξ), the total space, a continuous map π = π(ξ) : A→ X, the projection
map, and for every x ∈ X, a structure of d-dimensional vector space on π−1({x}). Moreover, ξ
must satisfies the local triviality condition: for every x ∈ X, there exists a neighborhood U ⊆ X
of x and a homeomorphism h : U ×Rd → π−1(U) such that for every y ∈ U , the map z 7→ h(y, z)
defines an isomorphism between the vector spaces Rd and π−1({y}).

A(ξ)

X

π

π−1(U) U × Rd

U

π

h

p1

In this subsection, the fibers π−1({x}) will be denoted Fx(ξ).

Isomorphisms of vector bundles. An isomorphism of vector bundles ξ, η with common base
space X is a homeomorphism f : A(ξ)→ A(η) which sends each fiber Fx(ξ) isomorphically into
Ff(x)(η). We obtain a commutative diagram

A(ξ) A(η)

X

f

π(ξ) π(η)

The trivial bundle of dimension d over X, denoted ε = εdX , is defined with the total space
A(ε) = X × Rd, with the projection map π being the projection on the first coordinate, and
where each fiber is endowed with the usual vector space structure of Rd. A vector bundle ξ over
X is said trivial if it is isomorphic to ε.

Operations on vector bundles. If ξ, η are two vector bundles on X, we define their Whitney
sum ξ ⊕ η by

A(ξ ⊕ η) = {(x, a, b), x ∈ X, a ∈ Fx(ξ), b ∈ Fx(η)},

where the projection map is given by the projection on the first coordinate, and where the vector
space structures are the product structures. If η is a vector bundle on Y and g : X → Y a
continuous map, the pullback bundle g∗ξ is the vector bundle on X defined by

A(g∗ξ) = {(x, a), x ∈ X, a ∈ Fg(x)(ξ)},

where the projection map is given by the projection on the first coordinate.

Bundle maps. A bundle map between two vector bundles ξ, η with base spaces X and Y is a
contiuous map f : A(ξ) → A(η) which sends each fiber Fx(ξ) isomorphically into another fiber
Fx′(η). If such a map exists, there exist a unique map f which makes the following diagram
commute:

8



A(ξ) A(η)

X Y

f

π(ξ) π(η)

f

In this case, ξ is isomorphic to the pullback bundle f
∗
η [MS16, Lemma 3.1]. We say that the

map f covers f .

Universal bundles. Let 0 < d ≤ m. The Grassmann manifold Gd(Rm) is a set which consists
of all d-dimensional linear subspaces of Rm. It can be given a smooth manifold structure. When
d = 1, G1(Rm) corresponds to the real projective space Pn(R). On Gd(Rm), there exists a
canonical vector bundle of dimension d, denoted γmd . It consists in the total space

A(γmd ) = {(V, v), V ∈ Gd(Rm), v ∈ V } ⊂ Gd(Rm)× Rm,

with the projection map on the first coordinate, and the linear structure inherited from Rm.

Lemma 1.1 ([MS16, Lemma 5.3]). Let ξ be vector bundle of dimension d over a compact space
X. Then for m large enough, there exists a bundle map from ξ to γmd .

If such a bundle map f : ξ → γmd exists, then ξ is isomorphic to the pullback f
∗
γmd , where f

denotes the map that f covers.
In order to avoid mentionning m, it is convenient to consider the infinite Grassmannian. The

infinite Grassmann manifold Gd(R∞) is the set of all d-dimensional linear subspaces of R∞, where
R∞ is the vector space of series with a finite number of nonzero terms. The infinite Grassmannian
is topologized as the direct limit of the sequence Gd(Rd) ⊂ Gd(Rd+1) ⊂ Gd(Rd+2) ⊂ · · · . Just as
before, there exists on Gd(R∞) a canonical bundle γ∞d . It is called a universal bundle, for the
following reason:

Lemma 1.2 ([MS16, Lemma 5.3]). if ξ is vector bundle of dimension d over a paracompact
space X, then there exists a bundle map from ξ → γ∞d .

Such a bundle map is denoted fξ : A(ξ) → A(γ∞d ). The underlying map between base spaces,
denoted fξ : X → Gd(R∞), is called a classifying map for ξ. As before, ξ is isomorphic to

the pullback (fξ)
∗γ∞d . Note that if f is a bundle map given by Lemma 1.1, then the following

composition is a classifying map for ξ:

X Gd(Rm) Gd(R∞).
f

A correspondance. Let ξ, η be bundles over X, and let fξ, fη be classifying maps. If these
maps are homotopic, one shows that the bundles ξ and η are isomorphic. The following theorem
states that the converse is also true.

Theorem 1.3 ([MS16, Corollary 5.10]). Let X be a paracompact space. There exists a bijection
between the vector bundles over X (up to isomorphism) and the continuous maps X → Gd(R∞)
(up to homotopy). It is given by ξ 7→ fξ, where fξ denotes a the classifying map for ξ.

This result leads to the following convention:

In the rest of this paper, we will consider that vector bundles are given as a continuous
maps X → Gd(Rm) or X → Gd(R∞).

1.5 Background on Stiefel-Whitney classes

The Stiefel-Whitney classes are a particular instance of the theory of characteristic classes, with
coefficient group being Z2. We first define them axiomatically, and then describe their construc-
tion.
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Axioms for Stiefel-Whitney classes. To each vector bundle ξ over a paracompact base
space X, one associates a sequence of cohomology classes

wi(ξ) ∈ Hi(X,Z2), i ∈ N,

called the Stiefel-Whitney classes of ξ. These classes satisfy:

• Axiom 1: w0 is equal to 1 ∈ H0(X,Z2), and if ξ is of dimension d then wi(ξ) = 0 for
i > d.

• Axiom 2: if f : ξ → η is a bundle map, then wi(ξ) = f
∗
wi(η), where f

∗
is the map in

cohomology induced by the underlying map f .

• Axiom 3: if ξ, η are bundles over the same base space X, then for all k ∈ N, wk(ξ ⊕ η) =∑k
i=0 wi(ξ) ^ wk−i(η), where ^ denotes the cup product.

• Axiom 4: w1(γ1
1) 6= 0, where γ1

1 denotes the universal bundle of the projective line G1(R2).

The Stiefel-Whitney classes are invariants of vector bundles, and carry topological information.
For instance, the following lemma shows that the first Stefel-Whitney class detects orientability.

Proposition 1.4 ([MS16, Lemma 11.6 and Problem 12-A]). If X is a compact manifold and τ
its tangent bundle, then X is orientable if and only if w1(τ) = 0.

Construction of the Stiefel-Whitney classes. The cohomology ring of the Grassmann
manifolds admits a simple description: H∗(Gd(R∞),Z2) is the free abelian ring generated by d
elements w1, ..., wd. As a graded algebra, the degree of these elements are |w1| = 1, ..., |wd| = d
[MS16, Theorem 7.1]. Hence we can write

H∗(Gd(R∞),Z2) ' Z2[w1, ..., wd].

In particular, the infinite projective space P∞ = G1(R∞) space has cohomology H∗(P∞,Z2) =
Z2[w1], the polynomial ring.

The generators w1, ..., wd can be seen as the Stiefel-Whitney classes of the universal bundle
γ∞d on Gd(R∞). Now, for any vector bundle ξ, define

wi(ξ) = f
∗
ξ(wi),

where fξ : X → Gd(R∞) is a classifying map for ξ (as in Theorem 1.3) and f
∗
ξ : H∗(X) ←

H∗(Gd(R∞)) the induced map in cohomology. This construction yields the Stiefel-Whitney
classes:

Theorem 1.5 ([MS16, Theorem 7.3]). Defined this way, the classes satisfy the four axioms.
And they are unique.

2 Persistent Stiefel-Whitney classes

2.1 Definition

Let E be a Euclidean space, and X = (Xt)t∈T a set filtration of E (see Subsection 1.3). Let
us denote by its the inclusion map from Xs to Xt. In order to define persistent Stiefel-Whitney
classes, we have to give such a filtration a vector bundle structure.

Definition 2.1 (Vector bundle filtrations). A vector bundle filtration of dimension d on E is a
couple (X,p) where X = (Xt)t∈T is a set filtration of E and p = (pt)t∈T a family of continuous
maps pt : Xt → Gd(R∞) such that, for every s, t ∈ T with s ≤ t, we have pt ◦ its = ps. In other
words, the following diagram commutes:

10



Xs Xt

Gd(R∞)

ps

its

pt

Let us fix a t ∈ T . The map pt : Xt → Gd(R∞) gives the topological space Xt a vector
bundle structure, as discussed in Subsection 1.4. Following Subsection 1.5, the induced map
in cohomology, (pt)∗, allows to define the Stiefel-Whitney classes of this vector bundle. Let us
introduce some notations. The Stiefel-Whitney classes of Gd(R∞) are denoted w1, ..., wd. The
Stiefel-Whitney classes of the vector bundle (Xt, pt) are denoted wt1(p), ..., wtd(p), and can be
defined as wti(p) = (pt)∗(wi) (as in Theorem 1.5).

(pt)∗ : H∗
(
Xt
)

H∗
(
Gd(R∞)

)
wt1(p) w1

wtd(p) wd

...

Let (V,v) denote the persistence module corresponding to the filtration X, with V = (V t)t∈T
and v = (vts)s≤t∈T . For every t ∈ T , the classes wt1(p), · · · , wtd(p) belong to the vector space V t.
The persistent Stiefel-Whitney classes are defined to be the collection of such classes over t.

Definition 2.2 (Persistent Stiefel-Whitney classes). Let (X,p) be a vector bundle filtration.
The persistent Stiefel-Whitney classes of (X,p) are the families of classes

w1(p) =
(
wt1(p)

)
t∈T

...

wd(p) =
(
wtd(p)

)
t∈T .

Let i ∈ [1, d], and consider a persistent Stiefel-Whitney class wi(p). Note that it satisfies
the following property: for all s, t ∈ T such that s ≤ t, we have wsi (p) = vts

(
wti(p)

)
. As a

consequence, if a class wti(p) is given for a t ∈ T , one obtains all the others wsi (p), with s ≤ t, by
applying the maps vts. In particular, if wti(p) = 0, then wsi (p) = 0 for all s ∈ T such that s ≤ t.

Lifebar. In order to visualize the evolution of a persistent Stiefel-Whitney class through the
persistence module (V,v), we propose the following bar representation: the lifebar of wi(p) is
the set {

t ∈ T,wti(p) 6= 0
}
.

According to the last paragraph, the lifebar of a persistent class is an interval of T , of the form
[t†, sup(T )) or (t†, sup(T )), where

t† = inf
{
t ∈ T,wti(p) 6= 0

}
,

with the convention inf(∅) = inf(T ). In order to distinguish the lifebar of a persistent Stiefel-
Whitney class from the bars of the persistence barcodes, we draw the rest of the interval hatched.

Figure 8: Example of a lifebar of a persistent Stiefel-Whitney class with t† = 0,2 and max(T ) = 1.
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2.2 Čech bundle filtration

In this subsection, we propose a particular construction of vector bundle filtration, called the
Čech bundle filtration. We will work in the ambient space E = Rn ×M(Rm). Let ‖ · ‖ be
the usual Euclidean norm on the space Rn, and ‖ · ‖F the Frobenius norm on the matrix space
M(Rm). Let γ > 0. We endow the vector space E with the Euclidean norm ‖ · ‖γ defined for
every (x,A) ∈ E as

‖(x,A)‖2γ = ‖x‖2 + γ2‖A‖2F. (1)

See Subsection 4.4 for a discussion about the parameter γ.
In order to define the Čech bundle filtration, we will first study the usual embedding of the

Grassmann manifold Gd(Rm) into the matrix space M(Rm).

Embedding of Gd(Rm). We embed the Grassmannian Gd(Rm) intoM(Rm) via the application
which sends a d-dimensional subspace T ⊂ Rm to its orthogonal projection matrix PT . We can
now see Gd(Rm) as a submanifold ofM(Rm). Recall thatM(Rm) is endowed with the Frobenius
norm. According to this metric, Gd(Rm) is included in the sphere of center 0 and radius

√
d of

M(Rm).
In the metric space (M(Rm), ‖ · ‖F), consider the distance function to Gd(Rm), denoted

dist (·,Gd(Rm)). Let med (Gd(Rm)) denote the medial axis of Gd(Rm). It consists in the points
A ∈M(Rm) which admit at least two projections on Gd(Rm):

med (Gd(Rm)) = {A ∈M(Rm),∃P, P ′ ∈ Gd(Rm), P 6= P ′,

‖A− P‖F = ‖A− P‖F = dist (A,Gd(Rm))}.

Figure 9: Representation of the Grassmannian G1(R2) ⊂ M(R2) ' R4. It is equal to the circle

of radius
√

2
2 , in the 2-dimensionnal affine space generated by

(
1 0
0 −1

)
and ( 0 1

1 0 ), and with origin
1
2 ( 1 0

0 1 ). The matrix 1
2 ( 1 0

0 1 ) is an element of med
(
G1(R2)

)
.

On the set M(Rm) \med (Gd(Rm)), the projection on Gd(Rm) is well-defined:

proj (·,Gd(Rm)) : M(Rm) \med (Gd(Rm)) −→ Gd(Rm) ⊂M(Rm)

A 7−→ P such that ‖P −A‖F = dist (A,Gd(Rm)) .

The following lemma describes this projection explicitly. We defer its proof to Appendix A.

Lemma 2.1. For any A ∈ M(Rm), let As denote the matrix As = 1
2 (A + tA), and let

λ1(As), ..., λn(As) be the eigenvalues of As in decreasing order. The distance from A to med (Gd(Rm))
is

dist (A,med (Gd(Rm))) =

√
2

2

∣∣λd(As)− λd+1(As)
∣∣.
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If this distance is positive, the projection of A on Gd(Rm) can be described as follows: consider
the symmetric matrix As, and let As = ODtO, with O an orthogonal matrix, and D the diagonal
matrix containing the eigenvalues of As in decreasing order. Let Jd be the diagonal matrix whose
first d terms are 1, and the other ones are zero. We have

proj (A,Gd(Rm)) = OJd
tO.

Observe that, as a consequence of this lemma, every point of Gd(Rm) is at equal distance from

med (Gd(Rm)), and this distance is equal to
√

2
2 . Therefore the reach of the subset Gd(Rm) ⊂

M(Rm) is

reach(Gd(Rm)) =

√
2

2
.

Čech bundle filtration. Let X be a subset of E = Rn ×M(Rm). Consider the usual Čech
filtration X = (Xt)t≥0, where Xt denotes the t-thickening of X̌ in the metric space (E, ‖ · ‖γ).
In order to give this filtration a vector bundle structure, consider the map pt defined as the
composition

Xt ⊂ Rn ×M(Rm) M(Rm) \med (Gd(Rm)) Gd(Rm),
proj2 proj(·,Gd(Rm))

(2)

where proj2 represents the projection on the second coordinate of Rn×M(Rm), and proj (·,Gd(Rm))
the projection on Gd(Rm) ⊂M(Rm). Note that pt is well-defined only when Xt does not intersect
Rn ×med (Gd(Rm)). The supremum of such t’s is denoted tmax

γ (X). We have

tmax
γ (X) = inf {distγ (x,Rn ×med (Gd(Rm))) , x ∈ X} , (3)

where distγ (x,Rn ×med (Gd(Rm))) is the distance between the point x ∈ Rn×M(Rm) and the
subspace Rn ×med (Gd(Rm)), with respect to the norm ‖ · ‖γ . By definition of ‖ · ‖γ , Equation
3 rewrites as

tmax
γ (X) = γ · inf{dist (A,med (Gd(Rm))) , (y,A) ∈ X},

where dist (A,med (Gd(Rm))) represents the distance between the matrix A and the subspace
med (Gd(Rm)) with respect to the Frobenius norm ‖ · ‖F. Denoting tmax (X) the value tmax

γ (X)
for γ = 1, we obtain

tmax
γ (X) = γ · tmax (X)

and tmax (X) = inf{dist (A,med (Gd(Rm))) , (y,A) ∈ X}.
(4)

Note that the values tmax (X) can be computed explicitly thanks to Lemma 2.1. In particular,

if X is a subset of Rn × Gd(Rm), then tmax (X) =
√

2
2 . Accordingly,

tmax
γ (X) =

√
2

2
γ. (5)

Definition 2.3 (Čech bundle filtration). Consider a subset X of E = Rn×M(Rm), and suppose
that tmax (X) > 0. The Čech bundle filtration associated to X in the ambient space (E, ‖ · ‖γ) is
the vector bundle filtration (X,p) consisting of the Čech filtration X = (Xt)t∈T , and the maps
p = (pt)t∈T as defined in Equation 2. This vector bundle filtration is defined on the index set
T =

[
0, tmax

γ (X)
)
, where tmax

γ (X) is defined in Equation 4.

The ith persistent Stiefel-Whitney class of the Čech bundle filtration (X,p), as in Definition
2.2, will be denoted wi(X) instead of wi(p).
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Example 2.2. Let E = R2 ×M(R2). Let X and Y be the subsets of E defined as:

X =

{((
cos(θ)
sin(θ)

)
,

(
cos(θ)2 cos(θ) sin(θ)

cos(θ) sin(θ) sin(θ)2

))
, θ ∈ [0, 2π)

}
Y =

{((
cos(θ)
sin(θ)

)
,

(
cos( θ2 )2 cos( θ2 ) sin( θ2 )

cos( θ2 ) sin( θ2 ) sin( θ2 )2

))
, θ ∈ [0, 2π)

}
The set X is to be seen as the normal bundle of the circle, and Y as the universal bundle of the

circle, known as the Mobius band. We have tmax (X) = tmax (Y ) =
√

2
2 as in Lemma 2.1. Let

γ = 1.

Figure 10: Representation of the sets X and Y ⊂ R2 ×M(R2): the black points correspond
to the R2-coordinate, and the pink segments over them correspond to the orientation of the
M(R2)-coordinate.

Figure 11: The sets X and Y ⊂ R2 ×M(R2), projected in a 3-dimensional subspace of R3 via
PCA.

We now compute the persistence diagrams of the Čech filtrations of X and Y in the ambient
space E.

Figure 12: H0 and H1 persistence barcode of the Čech filtration of X (left) and Y (right).
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Consider the first persistent Stiefel-Whitney classes w1(X) and w1(Y ) of the corresponding
Čech bundle filtrations. We compute that their lifebars are ∅ for w1(X), and [0, tmax (Y )) for
w1(Y ). This is illustrated in Figure 13. One reads these bars as follows: wt1(X) is zero for every

t ∈
[
0,
√

2
2

)
, while wt1(Y ) is nonzero.

Figure 13: Lifebars of the first persistent Stiefel-Whitney classes w1(X) and w1(Y ).

2.3 Stability

In this subsection we derive a straigthforward stability result for persistent Stiefel-Whitney
classes. We start by defining a notion of interleavings for vector bundle filtrations, in the same
vein as the usual interleavings of set filtrations.

Definition 2.4 (Interleavings of vector bundle filtrations). Let ε ≥ 0, and consider two vector
bundle filtrations (X,p), (Y,q) of dimension d on E with respective index sets T and U . They
are ε-interleaved if the underlying filtrations X = (Xt)t∈T and Y = (Y t)t∈U are ε-interleaved,
and if the following diagrams commute for every t ∈ T ∩ (U − ε) and s ∈ U ∩ (T − ε):

Xt Y t+ε

Gd(R∞)
pt qt+ε

Y s Xs+ε

Gd(R∞)

qs qs+ε

The following theorem shows that interleavings of vector bundle filtrations give rise to inter-
leavings of persistence modules which respect the persistent Stiefel-Whitney classes.

Theorem 2.3. Consider two vector bundle filtrations (X,p), (Y,q) of dimension d with respec-
tive index sets T and U . Suppose that they are ε-interleaved. Then there exists an ε-interleaving
(φ, ψ) between their corresponding persistent cohomology modules which sends persistent Stiefel-
Whitney classes on persistent Stiefel-Whitney classes. In other words, for every i ∈ [1, d], and
for every t ∈ (T + ε) ∩ U and s ∈ U ∩ (T + ε), we have

φt(wti(p)) = wt−εi (q)

and ψs(wsi (p)) = ws−εi (q).

Proof. Define (φ, ψ) to be the ε-interleaving between the cohomology persistence modules V(X)
and V(Y) given by the ε-interleaving between the filtrations X and Y. Explicitly, if it+εt denotes
the inclusion Xt ↪→ Y t+ε and js+εs denotes the inclusion Y s ↪→ Xs+ε, then φ = (φt)t∈(T+ε)∩U
is given by the induced maps in cohomology φt = (itt−ε)

∗, and ψ = (ψs)s∈(U+ε)∩T is given by
ψs = (jss−ε)

∗.
Now, by fonctoriality, the diagrams of Definition 2.4 give rise to commutative diagrams in

cohomology:

H∗(Xt−ε) H∗(Y t)

H∗(Gd(R∞))

φt

(pt−ε)∗ (qt)∗

H∗(Y s−ε) H∗(Xs)

H∗(Gd(R∞))

ψs

(qs−ε)∗ (ps)∗
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Let i ∈ [1, d]. By definition, the persistent Stiefel-Whitney classes wi(p) = (wti(p))t∈T and
wi(q) = (wsi (q))s∈U are wti(p) = (pt)∗(wi) and wsi (q) = (qs)∗(wi), where wi is the ith Stiefel-
Whitney class of Gd(R∞). The previous commutative diagrams then tranlates as φt(wti(p)) =
wt−εi (q) and ψs(wsi (p)) = ws−εi (q), as wanted.

Consider two vector bundle filtrations (X,p), (Y,q) such that there exists an ε-interleaving
(φ, ψ) between their persistent cohomology modules V(X), V(Y) which sends persistent Stiefel-
Whitney classes on persistent Stiefel-Whitney classes. Let i ∈ [1, d]. Then the lifebars of their
ith persistent Stiefel-Whitney classes wi(p) and wi(q) are ε-close in the following sense: if we
denote t†(p) = inf{t ∈ T,wti(p) 6= 0} and t†(q) = inf{t ∈ T,wti(q) 6= 0}, then |t†(p)− t†(q)| ≤ ε.

Figure 14: Two ε-close lifebars, with ε = 0,1.

Let us apply this result to the Čech bundle filtrations. Let X and Y be two subsets of
E = Rn ×M(Rm). Suppose that the Hausdorff distance dH(X,Y ), with respect to the norm
‖ · ‖γ , is not greater than ε, meaning that the ε-thickenings Xε and Y ε satisfiy Y ⊆ Xε and
X ⊆ Y ε. It is then clear that the vector bundle filtrations are ε-interleaved, and we can apply
Theorem 2.3 to obtain the following result.

Corollary 2.4. If two subsets X,Y ⊂ E satisfy dH(X,Y ) ≤ ε, then there exists an ε-interleaving
between the persistent cohomology modules of their corresponding Čech bundle filtrations which
sends persistent Stiefel-Whitney classes on persistent Stiefel-Whitney classes.

Example 2.5. In order to illustrate Corollary 2.4, consider the sets X ′ and Y ′ represented in
Figure 15. They are noisy samples of the sets X and Y defined in Example 2.2. They contain
50 points each.

Figure 15: Representation of the sets X ′, Y ′ ⊂ R2 ×M(R2).

We choose the parameter γ = 1. Figure 16 represents the barcodes of the Čech filtrations of
the sets X ′ and Y ′, together with the lifebar of the first persistent Stiefel-Whitney class of their
corresponding Čech bundle filtrations. Observe that they are close to the original descriptors of
X and Y (Figures 12 and 13).
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Experimentally, we computed that the Hausdorff distances between X,X ′ and Y, Y ′ are
approximately dH(X,X ′) ≈ 0,43 and dH(Y, Y ′) ≈ 0,39. This is coherent with the lifebar of
w1(Y ′), which is ε-close to the lifebar of w1(Y ) with ε ≈ 0,3 ≤ 0,39.

Figure 16: Left: H0 and H1 barcodes of X ′ and lifebar of w1(X ′). Right: same for Y ′.

2.4 Consistency

In this subsection we describe a setting where the persistent Stiefel-Whitney classes wi(X) of
the Čech bundle filtration of a set X can be seen as consistent estimators of the Stiefel-Whitney
classes of some underlying vector bundle.

Let M0 be a compact C2-manifold, and u0 : M0 → Rn an immersion. Suppose that M0 is
given a d-dimensional vector bundle structure p : M0 → Gd(Rm). Let E = Rn ×M(Rm), and
consider the set

M =
{(
u0(x0), Pp(x0)

)
, x0 ∈M0

}
⊂ E, (6)

where Pp(x0) denotes the orthogonal projection matrix onto the subspace p(x0) ⊂ Rm. The set
M is called the lift of M0. Consider the lifting map defined as

u : M0 −→M ⊂ E
x0 7−→

(
u0(x0), Pp(x0)

)
.

(7)

We make the following assumption: u is an embedding. As a consequence, M is a submanifold
of E, and M0 and M are diffeomorphic. An extensive study of this setting can be found in
[Tin19].

The persistent cohomology of M can be used to recover the cohomology of M0. To see
this, select γ > 0, and denote by reach(M) the reach of M, where E is endowed with the
norm ‖ · ‖γ . Note that reach(M) is positive and depends on γ. Let M = (Mt)t≥0 be the
Čech set filtration of M in the ambient space (E, ‖ · ‖γ), and let V(M) be the corresponding
persistent cohomology module. For every s, t ∈ [0, reach(M)) such that s ≤ t, we know that
the inclusion maps its : Ms ↪→ Mt are homotopy equivalences (see Subsection 1.3). Hence
the persistence module V(M) is constant on the interval [0, reach(M)), and is equal to the
cohomology H∗(M) = H∗(M0).

Consider the Čech bundle filtration (M,p) of M. The following theorem shows that the
persistent Stiefel-Whitney classes wti(M) are also equal to the usual Stiefel-Whitney classes of
the vector bundle (M0, p).

Theorem 2.6. Let M0 be a compact C2-manifold, u0 : M0 → Rn an immersion and p : M0 →
Gd(Rm) a continuous map. LetM be the lift ofM0 (Equation 6) and u the lifting map (Equation
7). Suppose that u is an embedding.
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Let γ > 0 and consider the Čech bundle filtration (M,p) ofM. Its maximal filtration value is

tmax
γ (M) =

√
2

2 γ. Denote by wi(p) = (wti(p))t∈T its persistent Stiefel-Whitney classes, i ∈ [1, d].
Denote also by it0 the inclusion M→Mt, for t ∈ [0, reach(M)).

Let t ≥ 0 be such that t < min
(
reach(M), tmax

γ (M)
)
. Then the map it0 ◦ u : M0 → Mt

induces an isomorphism H∗(M0) ← H∗(Mt) which maps the ith persistent Stiefel-Whitney
class wti(p) of (M,p) to the ith Stiefel-Whitney class of (M0, p).

Proof. Consider the following commutative diagram, defined for every t < tmax
γ (M):

M0 M Mt

Gd(Rm)

u

p

it0

pt

We obtain a commutative diagram in cohomology:

H∗(M0) H∗(M) H∗(Mt)

H∗(Gd(Rm))

u∗ (it0)∗

(pt)∗p∗

Since t < reach(M), the map (it0)∗ is an isomorphism (see Subsection 1.3). So is u∗ since u is
an embedding. As a consequence, the map it0 ◦ u induces an isomorphism H∗(M0) ' H∗(Mt).

Let wi denotes the ith Stiefel-Whitney class of Gd(Rm). By definition, the ith Stiefel-
Whitney class of (M0, p) is p∗(wi), and the ith persistent Stiefel-Whitney class of (M,p) is
wti(p) = (pt)∗(wi). By commutativity of the diagram, we obtain p∗(wi) = (pt)∗(wi), under the
identification H∗(M0) ' H∗(Mt).

Applying Theorems 2.3, 2.6 and the considerations of Subsection 1.3 yield an estimation
result.

Corollary 2.7. Let X ⊂ E be any subset such that dH(X,M) ≤ ε. Then for every t ∈
[4ε, reach(M) − 3ε), the composition of inclusions M0 ↪→ M ↪→ Xt induces an isomorphism
H∗(M0) ← H∗(Xt) which sends the ith persistent Stiefel-Whitney class wti(X) of the Čech
bundle filtration of X to the ith Stiefel-Whitney class of (M0, p).

As a consequence of this corollary, on the set [4ε, reach(M) − 3ε), the ith persistent Stiefel-
Whitney class of the Čech bundle filtration of X is zero if and only if the ith Stiefel-Whitney
class of (M0, p) is.

Example 2.8. In order to illustrate Corollary 2.7, consider the torus and the Klein bottle,
immersed in R3 as in Figure 17.

Figure 17: Immersion of the torus and the Klein bottle in R3.

Let them be endowed with their normal bundles. They can be seen as submanifolds M,M′
of R3 ×M(R3). We consider two samples X,X ′ of M,M′, represented in Figure 18. They
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contain respectively 346 and 1489 points. We computed experimentally the Hausdorff distances
dH(X,M) ≈ 0,6 and dH(X ′,M′) ≈ 0,45, with respect to the norm ‖ · ‖γ where γ = 1.

Figure 18: Samples X and X ′ ofM andM′. The black points corresponds to the R3-coordinate,
and the pink arrows over them correspond to the orientation of the M(R3)-coordinate.

Figure 19 represents the barcodes of the persistent cohomology of X and X ′, and the lifebars of
their first persistent Stiefel-Whitney classes w1(X) and w1(X ′). Observe that w1(X) is always
zero, while w1(X ′) is nonzero for t ≥ 0,3. This is an indication thatM, the underlying manifold
of X, is orientable, whileM′ is not. To see this, recall Proposition 1.4: the first Stiefel-Whitney
class of the tangent bundle of a manifold is zero if and only if the manifold is orientable. One can
deduce the following fact: the first Stiefel-Whitney class of the normal bundle of an immersed
manifold is zero if and only if the manifold is orientable (see the following lemma). Therefore,
one interprets these lifebars as follows: X is sampled on an orientable manifold, while X ′ is
sampled on a non-orientable one.

Figure 19: Left: H0, H1 and H2 barcodes of X and lifebar of w1(X). Right: same for X ′.

Lemma 2.9. Let M0 → M be an immersion of a manifold M0 in a Euclidean space. Then
M0 is orientable if and only if the first Stiefel-Whitney class of its normal bundle is zero.

Proof. Let τ and ν denote the tangent and normal bundles of M0. The Whitney sum τ ⊕ ν is
a trivial bundle, hence its first Stiefel-Whitney class is w1(τ ⊕ ν) = 0. Using Axioms 1 and 3 of
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the Stiefel-Whitney classes, we obtain

w1(τ ⊕ ν) = w1(τ) ^ w0(ν) + w0(τ) ^ w1(ν)

= w1(τ) ^ 1 + 1 ^ w1(ν)

= w1(τ) + w1(ν).

Therefore, w1(τ) = w1(ν). To conclude, w1(τ) is zero if and only if w1(ν) is zero, and Proposition
1.4 yields the result.

3 Simplicial approximation of Čech bundle filtrations

In order to build an effective algorithm to compute the persistent Stiefel-Whitney classes, we
have to find an equivalent formulation in terms of simplicial cohomology. We start by reviewing
the usual technique of simplicial approximation, and then apply it to the particular case of Čech
bundle filtrations.

3.1 Background on simplicial complexes

To start, we recall some elements of combinatorics and topology of simplicial complexes.

(Combinatorial) simplicial complexes. Let K be a simplicial complex. It means that there
exists a set V , the set of vertices, such that K ⊆ P(V ), and K satisfies the following condition:
for every σ ∈ K and every subset ν ⊆ σ, ν is in K. The elements of K are called faces or
simplices of the simplicial complex K.

For every simplex σ ∈ K, we define its dimension dim(σ) = card(σ) − 1. The dimension of
K, denoted dim(K), is the maximal dimension of its simplices. For every i ≥ 0, the i-skeleton
Ki is defined as the subset of K consisting of simplices of dimension at most i. Note that K0

corresponds to the underlying vertex set V , and K1 is a graph.
Given a simplex σ ∈ K, its (open) star St (σ) is the set of all the simplices ν ∈ K that contain

σ. The open star is not a simplicial complex in general. We also define its closed star St (σ) as
the smallest simplicial subcomplex of K which contains St (σ).

K St (v) in red and pink St (v) in red and pink

Figure 20: Open and closed star of a vertex of K.

Given a graph G, the corresponding clique complex is the simplicial complex whose simplices
are the sets of vertices of the cliques of G. We say that a simplicial complex K is a flag complex
if it is the clique complex of its 1-skeleton K1.

Topological realizations. For every p ≥ 0, the standard p-simplex ∆p is a topological space
defined as the convex hull of the canonical basis vectors e1, ..., ep+1 of Rp+1, endowed with
the subspace topology. We now describe the construction of the topological realization of the
simplicial complex K, denoted |K|. It is a particular case of the construction CW-complexes
[Hat02, Appendix].
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1. Start with the discrete topological space
∣∣K0

∣∣ consisting of the vertices of K.

2. Inductively, form the p-skeleton |Kp| from
∣∣Kp−1

∣∣ by attaching p-dimensional simplices

to
∣∣Kp−1

∣∣. More precisely, for each σ ∈ K of dimension p, take a copy of the standard
p-simplex ∆p. Denote this simplex by ∆σ. Label its vertices with the elements of σ.
Whenever τ ⊂ σ ∈ K, identify ∆τ with a subset of ∆σ, via the face inclusion which sends
the elements of τ to the corresponding elements of σ. Give |Kp| the quotient topology.

3. Endow |K| =
⋃
p≥0 |Kp| with the weak topology: a set A ⊂ |K| is open if and only if

A ∩ |Kp| is open in |Kp| for each p ≥ 0.

Alternatively, the topology on |K| can be described as follows: a subset A ⊂ |K| is open (or
closed) if and only if for every σ ∈ K, the set A ∩ ∆σ is open (or closed) in ∆σ. Note that
condition 3 is superfluous when K is finite dimensional.

If σ = [v] is a vertex of K, we will denote by |σ| the singleton {v}, seen as a subset of |K|.
If σ is a face of K of dimension at least 1, we will denote by |σ| the open subset of |K| which
corresponds to the interior of the face ∆σ ⊂ |K|. We denote by |σ| its closure in |K|. Observe
that if σ denotes the smallest simplicial subcomplex of K that contains σ, then |σ| = ∆σ = |σ|.
The following set is a partition of |K|:

{|σ| , σ ∈ K} .

This allows to define the face map of K. It is the unique map FK : |K| → K that satisfies
x ∈ |FK(x)| for every x ∈ |K|.

If L is a subset of K, we define its topological realization as |L| =
⋃
σ∈L |σ|. For every

simplex σ ∈ K, the topological realization of its open star, |St (σ)|, is open in |K|. Besides, the
topological realization of its closed star,

∣∣St (σ)
∣∣, is equal to |St (σ)|, hence is closed with respect

to the weak topology.
If σ is a face of K of dimension at least 1, the subset |σ| of |K| is canonically homeomorphic

to the interior of the standard p-simplex ∆p, where p = dim(σ). This allows to define on |K| the
barycentric coordinates: for every face σ = [v0, ..., vp] ∈ K, the points x ∈ |σ| can be written as

x =

p∑
i=0

λivi

with λ0, ..., λp > 0 and
∑p
i=0 λi = 1.

Triangulation and geometric realizations. Let X be a subset of E. A triangulation of X
consists of a simplicial complex K together with a homeomorphism h : X → |K|. The set X is
called a geometric realization of K, and K is called a triangulation of X.

3.2 Simplicial approximation

This subsection is based on [Hat02, Section 2.C]. In the following, K and L are two simpli-
cial complexes. We recall the reader that |K| denotes the topological realization of K, and
St (v) ,St (v) denote the open and closed star of a vertex v ∈ K0.

Simplicial maps. A simplicial map between simplicial complexes K and L is a map g : |K| →
|L| which sends vertices on vertices and is linear on every simplices. In other words, for every
σ = [v0, ..., vp] ∈ K, the map g restricted to |σ| ⊂ |K| can be written in barycentric coordinates
as

p∑
i=0

λivi 7−→
p∑
i=0

λig(vi). (8)
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A simplicial map g : |K| → |L| is uniquely determined by its restriction to the vertex sets
g|K0 : K0 → L0. Reciprocally, let f : K0 → L0 be a map between vertex sets which satisfies the
following condition:

∀σ ∈ K, f(σ) ∈ L. (9)

Then f induces a simplicial map via barycentric coordinates, denoted |f | : |K| → |L|. In the rest
of the paper, a simplicial map will either refer to a map g : |K| → |L| which satisfies Equation
8, to a map f : K0 → L0 which satisfies Equation 9, or to the induced map f : K → L.

Simplicial approximation. Let g : |K| → |L| be any continuous map. The problem of the
simplicial approximation consists in finding a simplicial map f : K → L with topological real-
ization |f | : |K| → |L| homotopic to g. A way to solve this problem is to consider the following
property: we say that the map g satisfies the star condition if for every vertex v of K, there
exists a vertex w of L such that

g
(∣∣St (v)

∣∣) ⊆ |St (w)| .

If this is the case, let f : K0 → L0 be any map between vertex sets such that for every vertex v
of K, we have g

(∣∣St (v)
∣∣) ⊆ |St (f(v))|. Equivalently, f satisfies

g
(
St (v)

)
⊆ St (f(v)) .

Such a map is called a simplicial approximation to g. One shows that it is a simplicial map, and
that its topological realization |f | is homotopic to g [Hat02, Theorem 2C.1].

K
L g f

Figure 21: The map f (in red) is a simplicial approximation to g.

In general, a map g may not satisfy the star condition. However, there is always a way to
subdivise the simplicial complex K in order to obtain an induced map which does (see Theorem
3.1). We describe this construction in the following paragraph.

Barycentric subdivisions. Let us describe briefly the process of barycentric subdivision of a
simplicial complex. A more extensive description can be found in [Hat02, Proof of Proposition
2.21]. Let ∆p denote the standard p-simplex, with vertices denoted v0, ..., vp. The barycentric
subdivision of ∆p consists in decomposing ∆p into (p + 1)! simplices of dimension p. It is a
simplicial complex, whose vertex set corresponds to the points

∑p
i=0 λivi for which some λi are

zero and the other ones are equal. Equivalently, one can see these this new set of vertices as a
the power set of the set of vertices of ∆p.

More generally, if K is a simplicial complex, its barycentric subdivision sub(K) is the simpli-
cial complex obtained by subdivising each of its faces. The set of vertices of sub(K) can be seen
as a subset of the power set of the set of vertices of K.
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Figure 22: The first three barycentric subdivisions of a 2-simplex.

By subdivising K, we shrink its faces. More precisely, if h : X → |K| is a geometric realization
of K, with X ⊂ Rn, and if D is the diameter of a face σ ∈ K seen in X, then the faces of the

barycentric subdivision of σ are of diameter at most dim(σ)
dim(σ)+1D. Therefore one can repeat the

subdivision to obtain arbitrarly small faces. Applying barycentric subdivisions n times will be
denoted subn (K).

Theorem 3.1 ([Hat02, Theorem 2C.1]). Consider two simplicial complexes K,L with K finite,
and let g : |K| → |L| be a continuous map. Then there exists n ≥ 0 such that g : |subn (K)| → |L|
satisfies the star condition.

As a consequence, such a map g : |subn (K)| → |L| admits a simplicial approximation. This
is known as the simplical approximation theorem. As an illustration, Figure 23 represents a map
g : |K| → |L| which does not satisfies the star condition, but whose first barycentric subdivision
does.

Figure 23: The map g : |K| → |L| does not satisfy the star condition, but its first barycentric
subdivision does (see Figure 21).

3.3 Application to Čech bundle filtrations

In this subsection, we apply the principle of simplicial approximation to the particular case of
persistent Stiefel-Whitney classes of Čech bundle filtrations.

Let X be a subset of E = Rn × M(Rm). Let us recall Definition 2.3: the Čech bundle
filtration associated to X is the vector bundle filtration (X,p) whose underlying filtration is the
Čech filtration X = (Xt)t∈T , with T = [0, tmax

γ (X)), and whose maps p = (pt)t∈T are given by
the following composition, as in Equation 2:

Xt M(Rm) \med (Gd(Rm)) Gd(Rm).
proj2

pt

proj(·,Gd(Rm))

23



Let t ∈ T . The aim of this subsection is to describe a simplicial approximation to pt : Xt →
Gd(Rm). To do so, let us fix a triangulation L of Gd(Rm). It comes with a homeomorphism
h : Gd(Rm)→ |L|. We will now triangulate the Čech set filtration Xt, as described in Subsection
1.3. The thickening Xt is a subset of the metric space (E, ‖ · ‖γ) which consists in a union of
closed balls centered around points of X:

Xt =
⋃
x∈X
Bγ (x, t) ,

where Bγ (x, t) denotes the closed ball of center x and radius t for the norm ‖ · ‖γ . Let U t denote
the cover {Bγ (x, t) , x ∈ X} of Xt, and let N (U t) be its nerve. By the nerve theorem for convex
closed covers [BCY18, Theorem 2.9], the simplicial complex N (U t) is homotopy equivalent to its
underlying set Xt. That is to say, there exists a continuous map gt : |N (U t)| → Xt which is a
homotopy equivalence.

As a consequence, in cohomological terms, the map pt : Xt → Gd(E) is equivalent to the map
qt defined as qt = h ◦ pt ◦ gt.

Xt Gd(Rm)

|N (U t)| |L|

pt

hgt

qt

(10)

This gives a way to compute the induced map (pt)∗ : H∗ (Xt)← H∗ (Gd(Rm)) algorithmically:

• Subdivise N (U t) until qt satisfies the star condition (as in Theorem 3.1),

• Choose a simplicial approximation f t to qt,

• Compute the induced map between simplicial cohomology groups (f t)∗ : H∗(N (U t)) ←
H∗(L).

By correspondance between simplicial and singular cohomology, the map (f t)∗ corresponds to
(pt)∗. Hence the problem of computing (pt)∗ is solved, if it were not for the following issue: in
practice, the map gt : |N (U t)| → Xt given by the nerve theorem is not explicit. The rest of this
subsection is devoted to showing that gt can be chosen canonically as the shadow map.

Shadow map. We still consider the thickening Xt, the corresponding cover U t and its nerve
N (U t). The underlying vertex set of the simplicial complexN (U t) is the set X itself. The shadow
map gt : |N (U t)| → Xt is defined as follows: for every simplex σ = [x0, ..., xp] ∈ N (U t) and every
point

∑p
i=0 λixi of |σ| written in barycentric coordinates, associate the point

∑p
i=0 λixi of E:

gt :

p∑
i=0

λixi ∈ |σ| 7−→
p∑
i=0

λixi ∈ E.

The author is not aware if the shadow map is indeed a homotopy equivalence from |N (U t)| to
Xt. Nevertheless, the following result will be enough for our purposes: the shadow map induces
an isomorphism at cohomology level.

Lemma 3.2. Suppose that X is finite and in general position. Then the shadow map gt : |N (U t)| →
Xt induces an isomorphism (gt)∗ : H∗(|N (U t)|)← H∗(Xt).

Proof. Recall that U t =
{
Bγ (x, t) , x ∈ X

}
. Let us consider a smaller cover. For every x ∈ X,

let Vor(x) denote the Voronoi cell of x in the ambient metric space (E, ‖ · ‖γ), and define

Vt =
{
B (x, t) ∩Vor(x), x ∈ X

}
.

The set Vt is a cover of Xt, and its nerve N (Vt) is known as the Delaunay complex (see [BE17]).
Let ht : |N (Vt)| → Xt denote the shadow map of N (Vt). The Delaunay complex is a subcomplex
of the Čech complex, hence we can consider the following diagram:
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|N (Vt)| |N (U t)| Xt.

ht

gt

This yields the following commutative diagram between cohomology rings:

H∗(|N (Vt)|) H∗(|N (U t)|) H∗(Xt).
(gt)∗

(ht)∗

Now, it is proven in [Ede93, Theorem 3.2] that the shadow map ht : |N (Vt)| → Xt is a ho-
motopy equivalence (it is required here that X is in general position). Therefore the map
(ht)∗ : H∗(|N (Vt)|) ← H∗(Xt) is an isomorphism. Moreover, we know from [BE17, Theorem
5.10] that N (U t) collapses to N (Vt). Therefore the inclusion |N (Vt)| ↪→ |N (U t)| also is a homo-
topy equivalence, hence the induced map H∗(|N (Vt)|) ← H∗(|N (U t)|) is an isomorphism. We
conclude from the last diagram that (gt)∗ is an isomorphism.

3.4 A sketch of algorithm

Suppose that we are given a finite set X ⊂ E = Rn ×M(Rm). Choose d ∈ [1, n− 1] and γ > 0.
Consider the Čech bundle filtration of dimension d of X. Let T =

[
0, tmax

γ (X)
)
, t ∈ T and

i ∈ [1, d]. From the previous discussion we can infer an algorithm to solve the following problem:

Compute the persistent Stiefel-Whitney class wti(X) of the Čech bundle filtration of X,
using a cohomology computation software.

Denote:

• X = (Xt)t≥0 the Čech set filtration of X,

• S the Čech simplicial filtration of X, and gt : |St| → Xt the shadow map,

• L a triangulation of Gd(Rn) and h : Gd(Rn)→ |L| a homeomorphism,

• (X,p) the Čech bundle filtration of X,

• (V,v) the persistent cohomology module of X,

• wi ∈ Hi(Gd(Rn)) the ith Stiefel-Whitney class of the Grassmannian.

Let t ∈ T and consider the map qt, as defined in Equation 10:

|St| Xt Gd(Rm) |L| .
gt

qt

pt h

We propose the following algorithm:

• Subdivise barycentrically St until qt satisfies the star condition. Denote k the number of
subdivisions needed.

• Consider a simplicial approximation f t : subk (St)→ L to qt.

• Compute the class (f t)∗(wi).

The output (f t)∗(wi) is equal to the persistent Stiefel-Whitney class wti(X) at time t, seen in the
simplicial cohomology group Hi(St) = Hi(subk (St)). In the following section, we gather some
technical details needed to implement this algorithm in practice.

Note that this also gives a way to compute the lifebar of wi(X). This bar is determined by
the value t† = inf{t ∈ T,wi(X) 6= 0}. This quantity can be approximated by computing the
classes wti(X) for several values of t. We point out that, in order to compute the value t†, there
may exist a better algorithm than evaluating the class wti(X) several times.
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4 An algorithm when d = 1

Even though the last sections described a theoretical way to compute the persistent Stiefel-
Whitney classes, some concrete issues are still to be discussed:

• verifying that the star condition is satisfied,

• the Grassmann manifold has to be triangulated,

• in practice, the Vietoris-Rips filtration is prefered to the Čech filtration,

• the parameter γ has to be tuned.

The following subsections will elucidate these points. Concerning the first one, the author is
not aware of a computational-explicit process to triangulate the Grassmann manifolds Gd(Rm),
except when d = 1, which corresponds to the projective spaces G1(Rm). We will then restrict to
the case d = 1.

4.1 The star condition in practice

Let us get back to the context of Subsection 3.2: K,L are two simplicial complexes, K is finite,
and g : |K| → |L| is a continuous map. We have seen that finding a simplicial approxima-
tion to g reduces to finding a small enough barycentric subdivision subn (K) of K such that
g : |subn (K)| → |L| satisfies the star condition, that is, for every vertex v of subn (K), there
exists a vertex w of L such that

g
(∣∣St (v)

∣∣) ⊆ |St (w)| .

In practice, one can compute the closed star St (v) from the finite simplicial complex subn (K).
However, computing g

(∣∣St (v)
∣∣) requires to evaluate g on the infinite set

∣∣St (v)
∣∣. In order to

reduce the problem to a finite number of evaluations of g, we will consider a related property
that we call the weak star condition.

Definition 4.1 (Weak star condition). A map g : |K| → |L| between topological realizations of
simplicial complexes K and L satisfies the weak star condition if for every vertex v of subn (K),
there exists a vertex w of L such that∣∣∣g (St (v)

0
)∣∣∣ ⊆ |St (w)| ,

where St (v)
0

denotes the 0-skeleton of St (v), i.e. its vertices.

Observe that the practical verification of the condition
∣∣∣g (St (v)

0
)∣∣∣ ⊆ |St (w)| requires only

a finite number of computations. Indeed, one just has to check whether every neighbor v′ of v in
the graph K1, v included, satisfies g(v′) ∈ |St (w)|. The following lemma rephrases this condition
by using the face map FL : |L| → L defined in Subsection 3.1. We remind the reader that the
face map is defined by the relation x ∈ FL(x) for all x ∈ |L|.

Lemma 4.1. The map g satisfies the weak star condition if and only if for every vertex v of K,
there exists a vertex w of L such that for every neighbor v′ of v in K1, we have

w ∈ FL(g(v′)).

Proof. Let us show that the assertion “w ∈ FL(g(v′))” is equivalent to “g(v′) ∈ |St (w)|”. Remind
that the open star St (w) consists of simplices of L that contain w. Moreover, the topological
realization |St (w)| is the union of |σ| for σ ∈ St (w). As a consequence, g(v′) belongs to |St (w)|
if and only if it belongs to |σ| for some simplex σ ∈ L that contains w. Equivalently, the face
map FL(g(v′)) contains w.
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Suppose that g satisfies the weak star condition. Let f : K0 → L0 be a map between vertex
sets such that for every v ∈ K0, ∣∣∣g (St (v)

0
)∣∣∣ ⊆ |St (f(v))| .

According to the proof of Lemma 4.1, an equivalent formulation of this condition is: for all
neighbor v′ of v in K1,

f(v) ∈ FL(g(v′)). (11)

Such a map is called a weak simplicial approximation to g. It plays a similar role as the simplicial
approximations to g.

Lemma 4.2. If f : K0 → L0 is a weak simplicial approximation to g : |K| → |L|, then f is a
simplicial map.

Proof. Let σ = [v0, ..., vn] be a simplex of K. We have to show that f(σ) = [f(v0), ..., f(vn)]

is a simplex of L. Note that each closed star St (vi) contains σ. Therefore each
∣∣∣g (St (vi)

0
)∣∣∣

contains
∣∣g (σ0

)∣∣ = {g(v0), ..., g(vn)}. Using the weak simplicial approximation property of f ,
we deduce that each |St (f(vi))| contains {g(v0), ..., g(vn)}. Using Lemma 4.3 stated below, we
obtain that [f(v0), ..., f(vn)] is a simplex of L.

Lemma 4.3 ([Hat02, Lemma 2C.2]). Let w0, ...wn be vertices of a simplicial complex L. Then⋂n
i=0 St (wi) 6= ∅ if and only if [w0, ..., wn] is a simplex of L.

As one can see from the definitions, the weak star condition is weaker than the star condition.
Consequently, the simplicial approximation theorem admits the following corollary.

Corollary 4.4. Consider two simplicial complexes K,L with K finite, and let g : |K| → |L| be
a continuous map. Then there exists n ≥ 0 such that g : |subn (K)| → |L| satisfies the weak star
condition.

However, some weak simplicial approximations to g may not be simplicial approximations, and
may not even be homotopic to g. Figure 24 gives such an example.

K
L g : |K| → |L|

Figure 24: The map g admits a weak simplicial approximation which is constant.

Fortunately, these two notions coincides under the star condition assumption:

Proposition 4.5. Suppose that g satisfies the star condition. Then every weak simplicial ap-
proximation to g is a simplicial approximation.

Proof. Let f be a weak simplicial approximation to g, and f ′ any simplicial approximation. Let
us show that f and f ′ are contiguous simplicial maps. Let σ = [v0, ..., vn] be a simplex of K. We
have to show that [f(v0), ..., f(vn), f ′(v0), ..., f ′(vn)] is a simplex of L. As we have seen in the

proof of Lemma 4.2, each
∣∣∣g (St (vi)

0
)∣∣∣ contains {g(v0), ..., g(vn)}. Therefore, by definition of

weak simplicial approximations and simplicial approximations, each |St (f(vi))| and |St (f ′(vi))|
contains {g(v0), ..., g(vn)}. We conclude by applying Lemma 4.3.
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Remark that the proof of this proposition can be adapted to obtain the following fact: any
two weak simplicial approximations are equivalent—as well as any two simplicial approximations.

Let us comment Proposition 4.5. If K is subdivised enough, then every weak simplicial
approximation to g is homotopic to g. But in practice, the number of subdivisions needed by
the star condition is not known. We propose to subdivise the complex K until it satisfies the
weak star condition, and then use a weak simplicial approximation to g. However, such a weak
simplicial approximation may not be homotopic to g, and our algorithm would output a wrong
result.

To close this subsection, we state a lemma that gives a quantitative idea of the number of
subdivisions needed by the star condition. We say that a Lebesgue number for an open cover U
of a compact metric space X is a positive number ε such that every subset of X with diameter
less than ε is included in some member of the cover U .

Lemma 4.6. Let |K| , |L| be endowed with metrics. Suppose that g : |K| → |L| is l-Lipschitz
with respect to these metrics. Let ε be a Lebesgue number for the open cover {|St (w)| , w ∈ L} of
|L|. Let p be the dimension of K and D an upper bound on the diameter of its faces. Then for
n > log(Dlε )

/
log(p+1

p ), the map g : |subn (K)| → |L| satisfies the star condition.

Proof. The map g satisfies the star condition if for every vertex v of K, there exists a vertex w
of L such that g(

∣∣St (v)
∣∣) ⊆ |St (w)|. Since the cover {|St (w)| , w ∈ L} admits ε as a Lebesgue

number, it is enough for v to satisfy the following inequality:

diam
(
g(
∣∣St (v)

∣∣)) < ε. (12)

Since g is l-Lipschitz, we have diam
(
g
(∣∣St (v)

∣∣)) ≤ l · diam
(∣∣St (v)

∣∣). Using the hypothesis

diam
(∣∣St (v)

∣∣) ≤ D, Equation 12 leads to the condition Dl < ε. Now, we use the fact that a
barycentric subdivision reduces the diameter of each face by a factor p

p+1 . After n barycentric

subdivision, the last inequality rewrites
(

p
p+1

)n
Dl < ε. It admits n > log(Dlε )

/
log(p+1

p ) as a

solution.

4.2 Triangulating the projective spaces

As we described in Subsection 4.1, the algorithm we propose rests on a triangulation L of the
Grassmannian G1(Rm), together the map FL ◦ h : G1(Rm) → L, where h : G1(Rm) → |L| is
a homeomorphism and FL : G1(Rm) → L is the face map. In the following, we also refer to
F := FL ◦ h as the face map.

We will use the following folklore triangulation of the projective space G1(Rm). It uses the
fact that the quotient of the sphere Sm−1 by the antipodal relation gives G1(Rm). Let ∆m

denote the standard m-simplex, v0, ..., vm its vertices, and ∂∆m its boundary. The simplicial
complex ∂∆m is a triangulation of the sphere Sm−1. Denote its first barycentric subdivision
as sub1 (∂∆m). The vertices of sub1 (∂∆m) are in bijection with the non-empty proper subsets
of {v0, ..., vm} (see Subsection 3.2). Consider the equivalence relation on these vertices which
associates a vertex to its complement. The quotient simplicial complex under this relation, L, is
a triangulation of G1(Rm).

∂∆2 sub1
(
∂∆2

)
Equivalence relation Quotient complex L

Figure 25: Triangulating G1(R2).
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Let us now describe how to define the homeomorphism h : G1(Rm) → |L|. First, embed
∆m in Rm+1 via vi 7→ (0, ..., 0, 1, 0, ...), where 1 sits at the ith coordinate. Its image lies on
a m-dimensional affine subspace P , with origin being the barycenter of v0, ..., vm. Seen in P ,

the vertices of ∆m now belong to the sphere centered at the origin and of radius
√

m
m+1 (see

Figure 26). Let us denote this sphere as Sm−1. Next, subdivise barycentrically ∂∆m once, and
project each vertex of sub1 (∂∆m) on Sm−1. By taking the convex hulls of its faces, we now see∣∣sub1 (∂∆m)

∣∣ as a subset of P . Define an application p : Sm−1 →
∣∣sub1 (∂∆m)

∣∣ as follows: for
every x ∈ Sm−1, the image p(x) is the unique intersection point between the segment [0, x] and
the set

∣∣sub1 (∂∆m)
∣∣. The application p can also be seen as the inverse function of the projection

on Sm−1, written projSm−1
(·) :

∣∣sub1 (∂∆m)
∣∣→ Sm−1.

∂∆3 is included in Sm−1 sub1
(
∂∆3

)
and Sm−1 L

Figure 26: Triangulating G1(R3).

The next lemma shows that the antipodal relation on Sm−1 can be pulled-back to
∣∣sub1 (∂∆m)

∣∣
via p, and it corresponds to the equivalence relation we defined on sub1 (∂∆m). As a consequence,
we can factorize p : Sm−1 →

∣∣sub1 (∂∆m)
∣∣ as

h : (Sm−1/∼)→
(∣∣sub1 (∂∆m)

∣∣ /∼) ,
and we can identify these spaces with

h : G1(Rm)→ |L| ,

giving the desired homeomorphism.

Lemma 4.7. For any vertex x ∈ sub1 (∂∆m), denote by |x| its embedding in P . Let − |x| denote
the image of |x| by the antipodal relation on Sm−1. Denote by y the image of x by the relation
on sub1 (∂∆m). Then y = − |x|.

More generally, pulling back the antipodal relation onto
∣∣sub1 (∂∆m)

∣∣ via p gives the relation

we defined on sub1 (∂∆m).

Proof. Pick a vertex x of sub1 (∂∆m). It can be described as a proper subset {vi, i ∈ I} of the

vertex set (∂∆m)
0

= {v0, ..., vm}, where I ⊂ [0,m]. According to the relation on (∂∆m), the
vertex x is in relation with the vertex y described by the proper subset {vi, i ∈ Ic}.

The point x can be written in barycentric coordinates as 1
card(I)

∑
i∈I |vi|. Seen in P , |x| can

be written |x| = projSm−1

(∑
i∈I vi

)
. Similarly, |y| can be written |y| = projSm−1

(∑
i∈Ic vi

)
.

Now, denote by 0 the origin of the hyperplane P , and embed the vertices v0, ..., vm in P .
Observe that

0 =
∑
i≤0

vi =
∑
i∈I

vi +
∑
i∈Ic

vi.

Hence −
∑
i∈I vi =

∑
i∈Ic vi, and we deduce that

− |x| = projSm−1

(
−
∑
i∈I

vi

)
= projSm−1

(∑
i∈Ic

vi

)
= |y| .
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Applying the same reasoning, one obtains the following result: for every simplex σ of sub1 (∂∆m),
if ν denotes the image of σ by the relation of sub1 (∂∆m), then the image of |σ| by the antipodal
relation is also |ν|. As a consequence, these two relations coincide.

At a computational level, let us describe how to compute the face map F : G1(Rm) → L.
Since F can be obtained as a quotient, it is enough to compute the face map of the sphere,
F ′ : Sm−1 → sub1 (∂∆m), which corresponds to the homeomorphism p : Sm−1 →

∣∣sub1 (∂∆m)
∣∣.

It is given by the following lemma, which can be used in practice.

Lemma 4.8. For every x ∈ Sm−1, the image of x by the face map F ′ is equal to the intersection of
all maximal faces σ = [w0, ..., wm] of sub1 (∂∆m) that satisfies the following conditions: denoting
by x0 any point of the affine hyperplane spanned by {w0, ..., wm}, and by h a vector orthogonal
to the corresponding linear hyperplane,

• the inner product 〈x, h〉 has the same sign as 〈x0, h〉,

• the point 〈x0,h〉
〈x,h〉 x, which is included in the affine hyperplane spanned by {w0, ..., wm}, has

nonnegative barycentric coordinates.

Proof. Recall that for every x ∈ Sm−1, the image p(x) is defined as the unique intersection point
between the segment [0, x] and the set

∣∣sub1 (∂∆m)
∣∣. Besides, the face map F ′(x) is the unique

simplex σ ∈ sub1 (∂∆m) such that p(x) ∈ |σ|. Equivalently, F ′(x) is equal to the intersection of
all maximal faces σ ∈ sub1 (∂∆m) such that p(x) belongs to the closure |σ|.

Consider any maximal face σ = [w0, ..., wm] of sub1 (∂∆m). The first condition of the lemma
ensures that the segment [0, x] intersects the affine hyperplane spanned by {w0, ..., wm}. In this

case, a computation shows that this intersection consists of the point 〈x0,h〉
〈x,h〉 x. Then, the second

condition of the lemma tests whether this point belongs to the convex hull of {w0, ..., wk}. In
conclusion, if σ satisfies these two conditions, then p(x) ∈ |σ|.

As a remark, let us point out that the verification of the conditions of this lemma is subject

to numerical errors. In particular, the point 〈x0,h〉
〈x,h〉 x may have nonnegative coordinates, yet

mathematical softwares may return (small) negative values. Consequently, the algorithm may
recognize less maximal faces that satisfy these conditions, hence return a simplex that strictly
contains the wanted simplex F ′(x). Nonetheless, such an error will not affect the output of

the algorithm. Indeed, if we denote by F̃ ′ the face map computed by the algorithm, we have
that F ′(x) ⊆ F̃ ′(x) for all x ∈ Sm−1. As a consequence of Lemma 4.1, F̃ ′ satisfies the weak
star condition if F ′ does, and Equation 11 shows that every weak simplicial approximations for
F ′ are weak simplicial approximations for F̃ ′. Since every weak simplicial approximations are
homotopic, we obtain that the induced maps in cohomology are equal, therefore the output of
the algorithm is unchanged.

4.3 Vietoris-Rips version of the Čech bundle filtration

We still consider a subset X ⊂ Rn×M(Rm). Denote by X the corresponding Čech set filtration,
and by S = (St)t≥0 the simplicial Čech filtration. For every t ≥ 0, let Rt be the flag complex

of St, i.e. the clique complex of the 1-skeleton (St)
1

of St. It is known as the Vietoris-Rips
complex of X at time t. The collection R = (Rt)t≥0 is called the Vietoris-Rips filtration of X.
The simplicial filtrations S and R are multiplicatively

√
2-interleaved [BLM+17, Theorem 3.1].

In other words, for every t ≥ 0, we have

St ⊆ Rt ⊆ S
√

2t.

Let γ > 0 and consider the Čech bundle filtration (X,p) of X. Suppose that its maximal
filtration value tmax

γ (X) is positive. Let |R| = (|Rt|)t≥0 denote the topological realization of the
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Vietoris-Rips filtration. We can give |R| a vector bundle filtration structure with (p′)t : |Rt| →
Gd(Rm) defined as

(p′)t = p
√

2t ◦ it,

where p
√

2t denotes the maps of the Čech bundle filtration (X,p), and it denotes the inclusion

|Rt| ↪→
∣∣∣S√2t

∣∣∣. These maps fit in the following diagram:

|Rt|
∣∣∣S√2t

∣∣∣ X
√

2t

Gd(Rm)

it

(p′)t
p
√

2t

This new vector bundle filtration is defined on the index set T ′ =
[
0, 1√

2
tmax
γ (X)

)
.

It is clear from the construction that the vector bundle filtrations (X,p) and (|R| ,p′) are
multiplicatively

√
2-interleaved, with an interleaving that preserves the persistent Stiefel-Whitney

classes. This property is a multiplicative equivalent of Theorem 2.3.

We recall the reader that, if X is a subset of Rn×Gd(Rm), then the maximal filtration value of

the Čech bundle filtration on X is tmax
γ (X) =

√
2

2 γ (see Equation 5). Consequently, the maximal

filtration value of its Vietoris-Rips version is 1
2γ.

From an application perspective, we choose to work with the Vietoris-Rips filtration since it
is easier to compute. Indeed, its construction only relies on computing pairwise distances and
finding cliques in graphs.

4.4 Choice of the parameter γ

This subsection is devoted to discussing the influence of the parameter γ > 0. Recall that γ
affects the norm ‖ · ‖γ we chose on Rn ×M(Rm):

‖(x,A)‖2γ = ‖x‖2 + γ2‖A‖2F.

Let X ⊂ Rn × M(Rm). If γ1 ≤ γ2 are two positive real numbers, the corresponding Čech
filtrations X1 and X2, as well as the Čech bundle filtrations (X1,p1) and (X2,p2), are γ2

γ1
-

interleaved multiplicatively. This comes from the straightforward inequality

‖ · ‖γ1 ≤ ‖ · ‖γ2 ≤
γ2

γ1
‖ · ‖γ1 .

Note that we also have the additive inequality

‖(x,A)‖γ1 ≤ ‖(x,A)‖γ2 ≤ ‖(x,A)‖γ1 +
√
γ2

2 − γ2
1‖A‖F.

One deduces that the Čech bundle filtrations (X1,p1) and (X2,p2) are
√
γ2

2 − γ2
1 · tmax (X)-

interleaved additively, where tmax (X) is the maximal filtration value when γ = 1. As a conse-
quence of these interleavings, when the values γ1 and γ2 are close, the persistence diagrams and
the lifebars of the persistent Stiefel-Whitney classes are close (see Theorem 2.3).

As a general principle, one would choose the parameter γ to be large, since it would lead
to large filtrations. More precisely, if tmax

γ1 (X) and tmax
γ2 (X) denote repectively the maximal

filtration values of (X1,p1) and (X2,p2), then tmax
γ1 (X) = γ1 · tmax (X) and tmax

γ2 (X) = γ2 ·
tmax (X), as in Equation 4. Moreover, we have the following inclusion:

X
tmax
γ1

(X)

1 ⊆ X
tmax
γ2

(X)

2 ,
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where X
tmax
γ1

(X)

1 denotes the thickening of X with respect to the norm ‖ · ‖γ1 , and X
tmax
γ2

(X)

2 with
respect to ‖ · ‖γ2 . This inclusion can be proven from the following fact, valid for every x ∈ Rn
and A ∈M(Rm) such that ‖A‖F ≤ tmax (X):

‖(x,A)‖γ1 ≤ tmax
γ1 (X) =⇒ ‖(x,A)‖γ2 ≤ tmax

γ2 (X) .

Hence larger parameters γ lead to larger maximal filtration values and larger filtrations.
However, as we show in the following examples, different values of γ may result in different

behaviours of the persistent Stiefel-Whitney classes. In Example 4.10, large values of γ highlight
properties of the dataset that are not consistent with the underlying vector bundle: the persistent
Stiefel-Whitney class is nonzero, yet the vector bundle is orientable. Notice that, so far, we always
picked the value γ = 1, for it seemed experimentally relevant with the datasets we chose.

Example 4.9. Consider the set Y ⊂ R2×M(R2) representing the Mobius band, as in Example
2.2 of Subsection 2.2:

Y =

{((
cos(θ)
sin(θ)

)
,

(
cos( θ2 )2 cos( θ2 ) sin( θ2 )

cos( θ2 ) sin( θ2 ) sin( θ2 )2

))
, θ ∈ [0, 2π)

}
.

As we show in Appendix B.1, Y is a circle, included in a 2-dimensional affine subspace of

R2×M(R2). Its radius is
√

1 + γ2

2 . As a consequence, the persistence of the Čech filtration of Y

consists of two bars: one H0-feature, the bar [0,+∞), and one H1-feature, the bar

[
0,
√

1 + γ2

2

)
.

For any γ > 0, the maximal filtration value of the Čech bundle filtration of Y is tmax
γ (Y ) =

√
2

2 γ. Moreover, the persistent Stiefel-Whitney class wt1(Y ) is nonzero all along the filtration.

In this example, we see that the parameter γ does not influence the qualitative interpretation
of the persistent Stiefel-Whitney class. It is always nonzero where it is defined. The following
example shows a case where γ does influence the persistent Stiefel-Whitney class.

Example 4.10. Consider the set X ⊂ R2×M(R2) representing the normal bundle of the circle
S1, as in Example 2.2:

X =

{((
cos(θ)
sin(θ)

)
,

(
cos(θ)2 cos(θ) sin(θ)

cos(θ) sin(θ) sin(θ)2

))
, θ ∈ [0, 2π)

}
.

As we show in Appendix B.2, X is a subset of a 2-dimensional flat torus embedded in R2×M(R2),
hence can be seen as a torus knot.

Before studying the Čech bundle filtration of X, we discuss the Čech filtration X. Its be-
haviour depends on γ:

• if γ ≤
√

2
2 , then Xt retracts on a circle for t ∈ [0, 1), Xt retracts on a 3-sphere for t ∈[

1,
√

1 + 1
2γ

2
)

, and Xt retracts on a point for t ≥
√

1 + 1
2γ

2.

• if γ ≥
√

2
2 , then Xt retracts on a circle for t ∈ [0, 1), Xt retracts on another circle for t ∈[

1,
√

2
2

√
1 + γ2 + 1

4γ2

)
, Xt retracts on a 3-sphere for t ∈

[√
2

2

√
1 + γ2 + 1

4γ2 ,
√

1 + 1
2γ

2
)

,

and Xt has the homotopy type of a point for t ≥
√

1 + 1
2γ

2.

Let us interpret these facts. If γ ≤
√

2
2 , then the persistent cohomology of X looks similar

to the persistent cohomology of the underlying set
{(

cos(θ)
sin(θ)

)
, θ ∈ [0, 2π)

}
⊂ R2, but with a

H3 cohomology feature added. Besides, if γ ≥
√

2
2 , a new topological feature appears in the

H1-barcode: the bar
[
1,
√

2
√

1 + γ2 + 1
4γ2

)
. These barcodes are depicted in Figures 27 and 28.
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Figure 27: H0-, H1-, H3-barcodes and lifebar of the first persistent Stiefel-Whitney class of X

with γ = 1
2 (left) and γ =

√
2

2 (right).

Figure 28: H0-, H1-, H3-barcodes and lifebar of the first persistent Stiefel-Whitney class of X
with γ = 1 (left) and γ = 2 (right).

Let us now discuss the corresponding Čech bundle filtrations. For any γ > 0, the maximal

filtration value of the Čech bundle filtration of X is tmax
γ (X) =

√
2

2 γ. We observe two behaviours:

• if γ ≤
√

2
2 , then wt1(X) is zero all along the filtration,

• if γ >
√

2
2 , then wt1(X) is nonzero from t† = 1.

This in proven in Appendix B.2. To conclude, this persistent Stiefel-Whitney class is consistent
with the underlying bunlde—the normal bundle of the circle, which is trivial—only for t ≤ 1.

33



5 Conclusion

In this paper we defined the persistent Stiefel-Whitney classes of vector bundle filtrations. We
proved that they are stable with respect to the interleaving distance between vector bundle
filtrations. We studied the particular case of Čech bundle filtrations of subsets of Rn ×M(Rm),
and showed that they yield consistent estimators of the usual Stiefel-Whitney classes of some
underlying vector bundle. Moreover, when the dimension of the bundle is 1 and X is finite, we
proposed an algorithm to compute the persistent Stiefel-Whitney classes.

Our algorithm is limited to the bundles of dimension 1, since we only implemented triangu-
lations of the Grassmannian Gd(Rm) when d = 1. However, any other triangulation of Gd(Rm),
with a computable face map, could be included in the algorithm without any modification. We
also described a way to compute the lifebar of the persistent Stiefel-Whitney classes, by evalu-
ating the class for several values of t.

A Supplementary material for Section 2

We prove Lemma 2.1, stated page 12.

Proof of Lemma 2.1. Note that Gd(Rm) is contained in the linear subspace S of symmetric ma-
trices. Therefore, to project a matrix A ∈ M(Rm) onto Gd(Rm), we may project on S first. It
is well known that the projection of A onto S is the matrix As = 1

2 (A+ tA).
Suppose now that we are given a symmetric matrix B. Let it be diagonalized as B = ODtO.

A projection of B onto Gd(Rm) is a matrix P which minimizes the following quantity:

min
P∈Gd(E)

‖B − P‖F. (13)

This problem is equivalent to

min
P∈Gd(E)

‖D − P‖F

via P 7→ tOPO. Now, let e1, · · · , en denote the canonical basis of Rm. We have

‖D − P‖2F = ‖D‖2F + ‖P‖2F − 2〈D,P 〉F
= ‖D‖2F + ‖P‖2F − 2

∑
〈λiei, P (ei)〉 ,

where 〈·, ·〉F is the Frobenius inner product, and 〈·, ·〉 the usual inner product on Rm. Therefore,
Equation 13 is a problem equivalent to

max
P∈Gd(E)

∑
λi 〈ei, P (ei)〉 .

Since P is an orthogonal projection, we have 〈ei, P (ei)〉 = 〈P (ei), P (ei)〉 = ‖P (ei)‖2 for all
i ∈ [1, n]. Moreover, d = ‖P‖2F =

∑
‖P (ei)‖2. Denoting pi = ‖P (ei)‖2 ∈ [0, 1], we finally obtain

the following alternative formulation of Equation 13:

max
p1,...pn∈[0,1]
p1+...+pn=d

∑
λipi.

Using that λ1 ≥ ... ≥ λn, we see that this maximum is attained when p0 = ... = pd = 1 and
pd+1 = ... = pn = 0. Consequently, a minimizer of Equation 13 is P = Jd, where Jd is the
diagonal matrix whose first d terms are 1, and the other ones are zero. Moreover, it is unique if
λd 6= λd+1.
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As a consequence of these considerations, we obtain the following characterization: for every
B ∈M(Rm),

B ∈ med (Gd(Rm)) ⇐⇒ λd(B
s) = λd+1(Bs). (14)

Let us now show that for every matrix A ∈M(Rm), we have

dist (A,med (Gd(Rm))) =

√
2

2

∣∣λd(As)− λd+1(As)
∣∣.

First, remark that

dist (A,med (Gd(Rm))) = dist (As,med (Gd(Rm))) . (15)

Indeed, if B is a projection of A on med (Gd(Rm)), then Bs is still in med (Gd(Rm)) according to
Equation 14, and

dist (A,med (Gd(Rm))) = ‖A−B‖F ≥ ‖As −Bs‖F ≥ dist (As,med (Gd(Rm))) .

Conversely, if B is a projection of As on med (Gd(Rm)), then B̂ = B + A − As is still in
med (Gd(Rm)), and

dist (A,med (Gd(Rm))) ≤ ‖A− B̂‖F = ‖As −B‖F = dist (As,med (Gd(Rm))) .

We deduce Equation 15.
Now, let A ∈ S and B ∈ med (Gd(Rm)). Let e1, ..., en be a basis of Rm that diagonalizes A.

Writing ‖A − B‖F =
∑
‖A(ei) − B(ei)‖2 =

∑
‖λi(A)ei − B(ei)‖2, it is clear that the closest

matrix B must satisfy B(ei) = λi(B)ei, with

• λi(B) = λi(A) for i /∈ {d, d+ 1},

• λd(B) = λd+1(B) = 1
2 (λd(A) + λd+1(A)).

We finally compute

‖A−B‖2F =
∑
‖λi(A)ei − λi(B)ei‖2

= |λd(A)− λd(B)|2 + |λd+1(A)− λd+1(B)|2

=
1

2
|λd(A)− λd+1(A)|2 .

B Supplementary material for Section 4

B.1 Study of Example 4.9

We consider the set

X =

{((
cos(θ)
sin(θ)

)
,

(
cos( θ2 )2 cos( θ2 ) sin( θ2 )

cos( θ2 ) sin( θ2 ) sin( θ2 )2

))
, θ ∈ [0, 2π)

}
.

To study the Čech filtration of X, we will apply the following affine transformation: let Y be
the subset of R2 ×M(R2) defined as

Y =

{((
cos(θ)
sin(θ)

)
, γ

(
cos( θ2 )2 cos( θ2 ) sin( θ2 )

cos( θ2 ) sin( θ2 ) sin( θ2 )2

))
, θ ∈ [0, 2π)

}
.

and let Y = (Y t)t≥0 be the Čech filtration of Y in R2 ×M(R2) endowed with the usual norm

‖(x,A)‖1 =
√
‖x‖2 + ‖A‖2F. We recall that the Čech filtration of X, denoted X = (Xt)t≥0, is

defined with respect to the norm ‖ · ‖γ . It is clear that, for every t ≥ 0, the thickenings Xt and
Y t are homeomorphic via the application

h : R2 ×M(R2) −→ R2 ×M(R2)

(x,A) 7−→ O + (x, γA).

As a consequence, the persistence cohomology modules associated to X and Y are isomorphic.
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Next, notice that Y is a subset of the affine subspace of dimension 2 of R2 ×M(R2) with
origin O and spanned by the vectors e1 and e2, where

O =

((
0
0

)
,
γ

2

(
1 0
0 1

))
, e1 =

((
1
0

)
,
γ

2

(
1 0
0 −1

))
, e2 =

((
0
1

)
,
γ

2

(
0 1
1 0

))
.

Indeed, using the equality(
cos( θ2 )2 cos( θ2 ) sin( θ2 )

cos( θ2 ) sin( θ2 ) sin( θ2 )2

))
=

1

2

(
1 0
0 1

)
+

1

2

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
,

we obtain

Y = O + {cos(θ)e1 + sin(θ)e2, θ ∈ [0, 2π)} .

We see that Y is a circle, of radius ‖e1‖ = ‖e2‖ =
√

1 + γ2

2 .

Let E denotes the affine space with origin O and spanned by the vectors e1 and e2. Lemma
B.1, stated below, shows that the persistent cohomology of Y , seen in the ambient space R2 ×
M(R2), is the same as the persistent cohomology of Y restricted to the subspace E. As a

consequence, Y has the same persistence as a circle of radius
√

1 + γ2

2 in the plane. Its barcode

can be described as follows:

• one H0-feature: the bar [0,+∞),

• one H1-feature: the bar

[
0,
√

1 + γ2

2

)
.

Lemma B.1. Let Y ⊂ Rn be any subset, and define Y̌ = Y × {(0, ..., 0)} ⊂ Rn ×Rm. Let these
spaces be endowed with the usual Euclidean norms. Then the Čech filtrations of Y and Y̌ yields
isomorphic persistence modules.

Proof. Let projn : Rn×Rm → Rn be the projection on the first n coordinates. One verifies that,
for every t ≥ 0, the map projn : Y̌ t → Y t is a homotopy equivalence. At cohomology level, these
maps induce an isomorphism of persistence modules.

Let us now study the Čech bundle filtration of Y , denoted (Y,p). According to Equation 5,

its filtration maximal value is tmax (Y ) = tmax
γ (X) = γ√

2
. Note that γ√

2
is lower than

√
1 + γ2

2 ,

which is the radius of the circle Y . Hence, for t < tmax (Y ), the inclusion Y ↪→ Y t is a homotopy
equivalence. Consider the following commutative diagram:

Y Y t

G1(R2)

p0 pt

It induces the following diagram in cohomology:

H∗(Y ) H∗(Y t)

H∗(G1(R2))

∼

(p0)∗ (pt)∗

The horizontal arrow is an isomorphism. Hence the map (pt)∗ : H∗(Y t) ← H∗(G1(R2)) is equal
to (p0)∗. We only have to understand (p0)∗.

Remark that the map p0 : Y → G1(R2) can be seen as the universal bundle of the circle.
Therefore (p0)∗ : H∗(Y ) ← H∗(G1(Rm)) is nontrivial. Alternatively, p0 can be seen as a map
between two circles. It is injective, hence its degree (modulo 2) is one. We still deduce that (p0)∗

is nontrivial. As a consequence, the persistent Stiefel-Whitney class wt1(X) is nonzero for every
t < tmax (Y ).
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B.2 Study of Example 4.10

We consider the set

X =

{((
cos(θ)
sin(θ)

)
,

(
cos(θ)2 cos(θ) sin(θ)

cos(θ) sin(θ) sin(θ)2

))
, θ ∈ [0, 2π)

}
.

As we explained in the previous subsection, the Čech filtration of X with respect to the norm
‖ · ‖γ yields the same persistence as the Čech filtration of Y with respect to the usual norm ‖ · ‖,
where

Y =

{((
cos(θ)
sin(θ)

)
, γ

(
cos(θ)2 cos(θ) sin(θ)

cos(θ) sin(θ) sin(θ)2

))
, θ ∈ [0, 2π)

}
.

Notice that Y is a subset of the affine subspace of dimension 4 of R2 ×M(R2) with origin
O =

(
( 0

0 ), 1
2 ( 1 0

0 1 )
)

and spanned by the vectors e1, e2, e3 and e4, where

e1 =

((
1
0

)
,

(
0 0
0 0

))
, e2 =

((
0
1

)
,

(
0 0
0 0

))
,

e3 =
1√
2

((
0
0

)
,

(
1 0
0 −1

))
, e4 =

1√
2

((
0
0

)
,

(
0 1
1 0

))
.

Indeed, Y can be written as

Y = O +

{
cos(θ)e1 + sin(θ)e2 +

γ√
2

cos(2θ)e3 +
γ√
2

sin(2θ)e4, θ ∈ [0, 2π)

}
.

This comes from the equality(
cos(θ)2 cos(θ) sin(θ)

cos(θ) sin(θ) sin(θ)2

)
=

1

2

(
1 0
0 1

)
+

1

2

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
.

Observe that Y is a torus knot, i.e. a simple closed curve included in the torus T, defined as

T = O +

{
cos(θ)e1 + sin(θ)e2 +

γ√
2

cos(ν)e3 +
γ√
2

sin(ν)e4, θ, ν ∈ [0, 2π)

}
.

The curve Y winds one time around the first circle of the torus, and two times around the second
one. It is known as the torus knot (1, 2).

Let E denotes the affine subspace with origin O and spanned by e1, e2, e3, e4. Since Y is a
subset of E, it is equivalent to study the Čech filtration of Y restricted to this subset (as in Lemma
B.1). We will denote the coordinates of points x ∈ E with respect to the orthonormal basis
(e1, e2, e3, e4). That is, a tuple (x1, x2, x3, x4) will refer to the point O+x1e1 +x2e2 +x3e3 +x4e4

of E. Seen in E, the set Y can be written as

Y =

{(
cos(θ), sin(θ),

γ√
2

cos(2θ),
γ√
2

sin(2θ)

)
, θ ∈ [0, 2π)

}
.

For every θ ∈ [0, 2π), we will denote yθ =
(

cos(θ), sin(θ), γ√
2

cos(2θ), γ√
2

sin(2θ)
)

.

Figure 29: Representations of the set Y , lying on a torus, for a small value of γ (left) and a large
value of γ (right).
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We now state two lemmas that will be useful in what follows.

Lemma B.2. For every θ ∈ [0, 2π), the map θ′ 7→ ‖yθ−yθ′‖ admits the following critical points:

• θ′ − θ = 0 and θ′ − θ = π if γ ≤ 1√
2

,

• θ′ − θ = 0, π, arccos(− 1
2γ2 ) and − arccos(− 1

2γ2 ) if γ ≥ 1√
2

.

They correspond to the values

• ‖yθ − yθ′‖ = 0 if θ′ − θ = 0,

• ‖yθ − yθ′‖ = 2 if θ′ − θ = π,

• ‖yθ − yθ′‖ =
√

2
√

1 + γ2 + 1
4γ2 if θ′ − θ = ± arccos(− 1

2γ2 ).

Moreover, we have
√

2
√

1 + γ2 + 1
4γ2 ≥ 2 when γ ≥ 1√

2
.

Proof. Let θ, θ′ ∈ [0, 2π). One computes that

‖yθ − yθ′‖2 = 4 sin2

(
θ − θ′

2

)
+ 2γ2 sin2(θ − θ′).

Consider the map f : x ∈ [0, 2π) 7→ 4 sin2
(
x
2

)
+ 2γ2 sin2(x). Its derivative is

f ′(x) = 4 cos
(x

2

)
sin
(x

2

)
+ 4γ2 cos(x) sin(x)

= 2 sin(x)
(
1 + 2γ2 cos(x)

)
.

It vanishes when x = 0, x = π, or x = ± arccos(− 1
2γ2 ) if γ ≥ 1√

2
. A computation shows that

f(0) = 0, f(π) = 4 and f
(
± arccos

(
− 1

2γ2

))
= 2

(
1 + γ2 + 1

4γ2

)
.

Lemma B.3. For every x ∈ E such that x 6= 0, the map θ 7→ ‖x− yθ‖ admits at most two local
maxima and two local minima.

Proof. Consider the map g : θ ∈ [0, 2π) 7→ ‖x− yθ‖2. It can be written as

g(θ) = ‖x‖2 + ‖yθ‖2 − 2 〈x, yθ〉

= ‖x‖2 + 1 +
γ2

2
− 2 〈x, yθ〉 .

Let us show that its derivative g′ vanishes at most four times on [0, 2π), which would show the
result. Using the expression of yθ, we see that g′ can be written as

g′(θ) = a cos(θ) + b sin(θ) + c cos(2θ) + d sin(2θ),

where a, b, c, d ∈ R are not all zero. Denoting ω = cos(θ) and ξ = sin(θ), we have ξ2 = 1 − ω2,
cos(2θ) = cos2(θ)− sin2(θ) = 2ω2 − 1 and sin(2θ) = 2 cos(θ) sin(θ) = 2ωξ. Hence

g′(θ) = aω + bξ + 2cω2 + 2dωξ.

Now, if g′(θ) = 0, we get
aω + 2cω2 = −(b+ 2dω)ξ (16)

Squaring this equality yields
(
aω + 2cω2

)2
= (b+ 2dω)

2
(1−ω2). This degree four equation, with

variable ω, admits at most four roots. To each of these w, there exists a unique ξ = ±
√

1− w2

that satisfies Equation 16. In other words, the corresponding θ ∈ [0, 2π) such that ω = cos(θ) is
unique. We deduce the result.
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Before studying the Čech filtration of Y , let us describe some geometric quantities associated
to it. Using a symbolic computation software, we see that the curvature of Y is contant and
equal to

ρ =

√
1 + 8γ2

1 + 2γ2
.

In particular, we have ρ ≥ 1 if γ ≤ 1, and ρ < 1 if γ > 1. We also have an expression for the
diameter of Y :

1

2
diam (Y ) =

{
1 if γ ≤ 1√

2
,

1√
2

√
1 + γ2 + 1

4γ2 if γ ≥ 1√
2
.

It is a consequence of Lemma B.2. We now describe the reach of Y :

reach(Y ) =

{
1+2γ2√
1+8γ2

if γ ≤ 1,

1 if γ ≥ 1.
(17)

Let us prove this by using [AKC+19, Theorem 3.4]. We define a bottleneck of Y as pair of
distinct points (y, y′) ∈ Y 2 such that the open ball B

(
1
2 (y + y′), 1

2‖y − y
′‖
)

does not intersect
Y . Its length is defined as 1

2‖y − y
′‖. Then the reach of Y is equal to

reach(Y ) = min

{
1

ρ
, δ

}
,

where 1
ρ is the inverse curvature of Y , and δ is the minimal length of bottlenecks of Y . As we

computed, 1
ρ is equal to 1+2γ2√

1+8γ2
. Besides, according to Lemma B.2, a bottleneck (yθ, yθ′) has to

satisfy θ′ − θ = π or ± arccos(− 1
2γ2 ). The smallest length is attained when θ′ − θ = π, for which

1
2‖yθ − yθ′‖ = 1. It is straightforward to verify that the pair (yθ, yθ′) is indeed a bottleneck.
Therefore we have δ = 1, and we deduce the expression of reach(Y ).

Last, the weak feature size of Y does not depend on γ and is equal to 1:

wfs (Y ) = 1. (18)

We will prove it by using the characterization of Subsection 1.3: wfs (Y ) is the infimum of
distances dist (x, Y ), where x ∈ E is a critical point of the distance function dY . In this context,
x is a critical point if it lies in the convex hull of its projections on Y . Remark that, if x 6= 0,
then x admits at most two projections on Y . This follows from Lemma B.3. As a consequence,
if x is a critical point, then there exists y, y′ ∈ Y such that x lies in the middle of the segment
[y, y′], and the open ball B (x, dist (x, Y )) does not intersect Y . Therefore y′ is a critical point of
y′ 7→ ‖y − y′‖, hence Lemma B.2 gives that ‖y − y′‖ ≥ 2. We deduce the result.

We now describe the thickenings Y t. They present four different behaviours:

• 0 ≤ t < 1: Y t is homotopy equivalent to a circle,

• 1 ≤ t < 1
2diam (Y ): Y t is homotopy equivalent to a circle,

• 1
2diam (Y ) ≤ t <

√
1 + γ2

2 : Y t is homotopy equivalent to a 3-sphere,

• t ≥
√

1 + γ2

2 : Y t is homotopy equivalent to a point.

Recall that, in the case where γ ≤ 1√
2
, we have 1

2diam (Y ) = 1. Consequently, the interval[
1, 1

2diam (Y )
)

is empty, and the second point does not appear in this case.
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Study of the case 0 ≤ t < 1. For t ∈ [0, 1), let us show that Y t deform retracts on Y .
According to Equation 18, we have wfs (Y ) = 1. Moreover, Equation 17 gives that reach(Y ) > 0.
Using the results of Subsection 1.3, we deduce that Y t is isotopic to Y .

Study of the case 1 ≤ t < 1
2diam (Y ). Denote zθ =

(
0, 0, γ√

2
cos(2θ), γ√

2
sin(2θ)

)
, and define

the circle Z = {zθ, θ ∈ [0, π)}.

Figure 30: Representation of the set Y (black) and the circle Z (red).

We claim that Y t deform retracts on Z. To prove so, we will define a continuous application
f : Y t → Z such that, for every y ∈ Y t, the segment [y, f(y)] is included in Y t. This would lead
to a deformation retraction of Y t onto Z, via

(s, y) ∈ [0, 1]× Y t 7→ (1− s)y + sf(y).

Equivalently, we will define an application Θ: Y t → [0, π) such that the segment [y, zΘ(y)] is
included in Y t.

Let y ∈ Y t. According to Lemma B.3, y admits at most two projection on Y . We start
with the case where y admits only one projection, namely yθ with θ ∈ [0, 2π). Let θ ∈ [0, π)
be the reduction of θ modulo π, and consider the point zθ of Z. A computation shows that the
distance ‖yθ − zθ‖ is equal to 1. Besides, since y ∈ Y t, the distance ‖yθ − y‖ is at most t. By
convexity, the segment

[
y, zθ

]
is included in the ball B (yθ, t), which is a subset of Y t. We then

define Θ(y) = θ.
Now suppose that y admits exactly two projection yθ and yθ′ . According to Lemma B.2,

these angles must satisfy θ′ − θ = π. Indeed, the case ‖yθ − yθ′‖ =
√

2
√

1 + γ2 + 1
4γ2 does not

occur since we chose t < 1
2diam (Y ) =

√
2

2

√
1 + γ2 + 1

4γ2 . The angles θ and θ′ correspond to the

same reduction modulo π, denoted θ, and we also define Θ(y) = θ.

Study of the case t ∈
[

1
2diam (X) ,

√
1 + γ2

2

)
. Let S3 denotes the unit sphere of E. For

every v = (v1, v2, v3, v4) ∈ S3, we will denote by 〈v〉 the linear subspace spanned by v, and by
〈v〉+ the cone {λv, λ ≥ 0}. Moreover, we define the quantity

δ(v) = min
y∈Y

dist (y, 〈v〉+) .

and the set

S = {δ(v)v, v ∈ S3} .

We claim that S is a subset of Y t, and that Y t deform retracts on it. This follows from the two
following facts: for every v ∈ S3,

1. δ(v) is not greater than 1
2diam (Y ),

2. 〈v〉+ ∩ Y t consists of one connected component: an interval centered on δ(v)v, that does
not contains the point 0.
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Suppose that these assertions are true. Then one defines a deformation retraction of Y t on S
by retracting each fiber 〈v〉+ ∩ Y t linearly on the singleton {δ(v)v}. We will now prove the two
items.

Figure 31: Representation of the set Y (dashed), lying on a 3-sphere of radius
√

1 + γ2

2 .

Item 1.
Note that Item 1 can be reformulated as follows:

max
v∈S3

min
y∈Y

dist (y, 〈v〉+) ≤ 1

2
diam (Y ) . (19)

Let us justify that the pairs (v, y) that attain this maximum-minimum are the same as in

max
v∈S3

min
y∈Y
‖y − v‖. (20)

From the definition of Y = {yθ, θ ∈ [0, 2π)}, we see that miny∈Y dist (y, 〈v〉+) = miny∈Y dist (y, 〈v〉).
A vector v ∈ S3 being fixed, let us show that y 7→ dist (y, 〈v〉) is minimized when y 7→ ‖v− y‖ is.
Let y ∈ Y . Since v is a unit vector, the projection of y on 〈v〉 can be written as 〈y, v〉 v. Hence

dist (y, 〈v〉)2
= ‖ 〈y, v〉 v − y‖2, and expanding this norm yields

dist (y, 〈v〉)2
= ‖y‖2 − 〈y, v〉2 .

Expanding the norm ‖y−v‖2 and using that ‖y‖2 = 1+ γ2

2 , we get 〈y, v〉 = 1
2

(
2 + γ2

2 − ‖y − v‖
2
)

.

We inject this relation in the preceding equation to obtain

dist (y, 〈v〉)2
= −

(γ
2

)4

+ γ2 +
1

4
‖y − v‖2

(
4 + γ2 − ‖y − v‖2

)
.

Now we can deduce that y 7→ dist (y, 〈v〉)2
is minimized when y 7→ ‖y − v‖ is minimized.

Indeed, the map ‖y − v‖ 7→ 1
4‖y − v‖

2
(
4 + γ2 − ‖y − v‖2

)
is increasing on

[
0, 1

2 (4 + γ2)
]
. But

‖y − v‖ ≤ ‖y‖+ ‖v‖ = 1
2 (4 + γ2).

We deduce that that studying the left hand term of Equation 19 is equivalent to studying
Equation 20. We will denote by g : S3 → R the map

g(v) = min
y∈Y
‖y − v‖. (21)

Let v ∈ S3 that attains the maximum of g, and let y be a corresponding point that attains
the minimum of ‖y − v‖. The points v and y attains the quantity in Equation 19. In order to
prove that dist (y, 〈v〉) ≤ 1

2diam (Y ), let p(y) denotes the projection of y on 〈v〉. We will show
that there exists another point y′ ∈ Y such that p(y) is equal to 1

2 (y + y′) Consequently, we
would have ‖y − p(y)‖ = 1

2‖y
′ − y‖ ≤ 1

2diam (Y ), i.e.

dist (y, 〈v〉) ≤ 1

2
diam (Y ) .
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Remark the following fact: if w ∈ S3 is a unit vector such that 〈p(y)− y, w〉 > 0, then for
ε > 0 small enough, we have

dist (y, 〈v + εw〉) > dist (y, 〈v〉) .

Equivalently, this statement reformulates as 0 ≤
〈
y, 1
‖v+εw‖ (v + εw)

〉
< 〈y, v〉. Let us show that〈

y,
1

‖v + εw‖
(v + εw)

〉
= 〈y, v〉 − εκ+ o(ε), (22)

where κ = 〈p(y)− y, w〉 > 0, and where o(ε) is the little-o notation. Note that 1
‖v+εw‖ =

1− ε 〈v, w〉+ o(ε). We also have

1

‖v + εw‖
(v + εw) = v + ε (w − 〈v, w〉 v) + o(ε).

Expanding the inner product in Equation 22 gives〈
y,

1

‖v + εw‖
(v + εw)

〉
= 〈y, v〉+ ε (〈y, w〉 − ε 〈v, w〉 〈y, v〉) + o(ε)

= 〈y, v〉+ ε 〈y − 〈y, v〉 v, w〉+ o(ε)

= 〈y, v〉+ ε 〈y − p(y), w〉+ o(ε),

and we obtain the result.
Next, let us prove that y is not the only point of Y that attains the minimum in Equation

21. Suppose that it is the case by contradiction. Let w ∈ S3 be a unit vector such that
〈p(y)− y, w〉 > 0. For ε small enough, let us prove that the vector v′ = 1

‖v+εw‖ (v + εw) of

S3 contradicts the maximality of v. That is, let us prove that g(v′) > g(v). Let y′ ∈ Y be a
minimizer ‖y′− v′‖. We have to show that ‖y′− v′‖ > ‖y− v‖. This would lead to g(v′) > g(v),
hence the contradiction.

Expanding the norm yields

‖v′ − y′‖2 = ‖v′ − v + v − y′‖2 ≥ ‖v′ − v‖2 + ‖v − y′‖2 − 2 〈v′ − v, v − y′〉 .

Using ‖v′ − v‖2 ≥ 0 and ‖v − y′‖2 ≥ ‖v − y‖2 by definition of y, we obtain

‖v′ − y′‖2 ≥ ‖v − y‖2 − 2 〈v′ − v, v − y′〉 .

We have to show that 〈v′ − v, y − y′〉 is positive for ε small enough. By writing v− y′ = v− y+
(y − y′) we get

〈v′ − v, v − y′〉 = 〈v′ − v, v〉 − 〈v′ − v, y〉+ 〈v′ − v, y − y′〉

According to Equation 22, −〈v′ − v, y〉 = εκ+o(ε). Besides, using v′−v = ε(w−〈v, w〉 v)+o(ε),
we get 〈v′ − v, v〉 = o(ε). Last, Cauchy-Schwarz inequality gives | 〈v′ − v, y − y′〉 | ≤ ‖v′−v‖‖y−
y′‖. Therefore, 〈v′ − v, y − y′〉 = O(ε)‖y−y′‖, where O(ε) is the big-o notation. Gathering these
three equalities, we obtain

〈v′ − v, v − y′〉 = o(ε) + εκ+O(ε)‖y − y′‖.

As we can read from this equation, if ‖y − y′‖ goes to zero as ε does, then 〈v′ − v, v − y′〉 is
positive for ε small enough. Observe that v′ goes to v when ε goes to 0. By assumption y is the
only minimizer in Equation 21. By continuity of g, we deduce that y′ goes to y.

By contradiction, we deduce that there exists another point y′ which attains the minimum
in g(v). Note that it is the only other one, according to Lemma B.3. Let us show that p(y) lies
in the middle of the segment [y, y′]. Suppose that it is not the case. Then p(y)− y is not equal
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to −(p(y′) − y′), where p(y′) denotes the projection of y′ on 〈v〉. Consequently, the half-spaces
{w ∈ E, 〈p(y)− y, w〉 > 0} and {w ∈ E, 〈p(y′)− y′, w〉 > 0} intersects. Let w be any vector in
the intersection. For ε > 0, denote v′ = 1

‖v+εw‖ (1 + εw). If ε is small enough, the same reasoning

as before shows that v′ contradicts the maximality of v.

Figure 32: Left: Representation of the situation where y and y′ are minimizers of Equation
21. Right: Representation in the plane passing through the points y, y′ and p(y). The dashed
area corresponds to the intersection of the half-spaces {w ∈ E, 〈p(y)− y, w〉 > 0} and {w ∈
E, 〈p(y′)− y′, w〉 > 0}.

Item 2.
Let v ∈ S3. The set 〈v〉+ ∩ Y t can be described as

〈v〉+ ∩
⋃
y∈Y
B (y, t) .

Let y ∈ Y such that 〈v〉+∩B (y, t) 6= ∅. Denote by p(y) the projection of y on 〈v〉+. It is equal to
〈y, v〉 v. Using Pythagoras’ theorem, we obtain that the set 〈v〉+∩B (y, t) is equal to the interval[

p(y)±
√
t2 − dist (y, 〈v〉)2

v

]
.

Using the identity dist (y, 〈v〉)2
= ‖y‖ − 〈y, v〉2 = 1 + γ2

2 − 〈y, v〉
2
, we can write this interval as[

I1(y) · v, I2(y) · v
]
,

where I1(y) = 〈y, v〉 −
√
〈y, v〉2 − (1 + γ2

2 − t2) and I2(y) = 〈y, v〉 +
√
〈y, v〉2 − (1 + γ2

2 − t2).

Seen as functions of 〈y, v〉, the map I1 is decreasing, and the map I2 is increasing (see Figure
33). Let y∗ ∈ Y that minimizes dist (y, 〈v〉). Equivalently, y∗ maximizes 〈y, v〉. It follows that
the corresponding interval

[
I1(y∗) · v, I2(y∗) · v

]
contains all the others. We deduce that the set

〈v〉+ ∩ Y t is equal to this interval.

Figure 33: Left: Representation of two intervals 〈v〉+ ∪ B (y, t) and 〈v〉+ ∪ B (y′, t). Right:
Representation of the maps x 7→ x±

√
x2 − 1.
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Study of the case t ≥
√

1 + 1
2γ

2. For every y ∈ Y , we have ‖y‖ =
√

1 + 1
2γ

2. Therefore, if

t ≥
√

1 + 1
2γ

2, then Y t is star shaped around the point 0, hence it deform retracts on it.

Čech bundle filtration of Y . To close this subsection, let us study the Čech bundle filtration
(Y,p) of Y . According to Equation 5, its filtration maximal value is tmax (Y ) = tmax

γ (X) = γ√
2
.

Note that γ√
2

is lower than 1
2diam (Y ). Consequently, only two cases are to be studied: t ∈ [0, 1),

and t ∈
[
1, 1

2diam (Y )
)
.

The same argument as in Subsection B.2 yields that for every t ∈ [0, 1), the persistent Stiefel-
Whitney class wt1(Y ) is equal to w0

1(Y ). Accordingly, for every t ∈
[
1, 1

2diam (Y )
)
, the class

wt1(Y ) is equal to w1
1(Y ). Let us show that w0

1(Y ) is zero, and that w1
1(Y ) is not.

First, remark that the map p0 : Y → G1(R2) can be seen as the normal bundle of the cir-
cle. Hence (p0)∗ : H∗(Y ) ← H∗(G1(R2)) is nontrivial, and we deduce that w0

1(Y ) = 0. As a
consequence, the persistent Stiefel-Whitney class wt1(X) is nonzero for every t < 1.

Next, consider p1 : Y 1 → G1(R2). Recall that Y 1 deform retracts on the circle

Z =

{(
0, 0,

γ√
2

cos(2θ),
γ√
2

sin(2θ)

)
, θ ∈ [0, π)

}
.

Seen in R2 ×M(R2), we have

Z =

{((
0
0

)
, γ

(
cos(θ)2 cos(θ) sin(θ)

cos(θ) sin(θ) sin(θ)2

))
, θ ∈ [0, π)

}
.

Notice that the map q : Z → G1(R2), the projection on G1(R2), is injective. Seen as a map between
two circles, it has degree (modulo 2) equal to 1. We deduce that q∗ : H∗(Z) ← H∗(G1(R2)) is
nontrivial. Now, remark that the map q factorizes through p1:

Z Y 1

G1(R2)

q
p1

It induces the following diagram in cohomology:

H∗(Z) H∗(Y 1)

H∗(G1(R2))

∼

q∗ (p1)∗

Since q∗ is nontrivial, this commutative diagram yields that the persistent Stiefel-Whitney class
w1

1(Y ) is nonzero. As a consequence, the persistent Stiefel-Whitney class wt1(Y ) is nonzero for
every t ≥ 1.
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complexes. Transactions of the American Mathematical Society, 369(5):3741–3762,
2017.

[BLM+17] Greg Bell, Austin Lawson, Joshua Martin, James Rudzinski, and Clifford Smyth.
Weighted persistent homology. arXiv preprint arXiv:1709.00097, 2017.

[CCSL09] Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for
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