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CLASSIFICATION AND LIOUVILLE-TYPE THEOREMS FOR SEMILINEAR
ELLIPTIC EQUATIONS IN UNBOUNDED DOMAINS.

LOUIS DUPAIGNE AND ALBERTO FARINA

1. Introduction and main results

A noncompact Riemannian manifoldM is said to be parabolic if every positive superharmonic function
u :M→ R+ is constant. This is equivalent to asking that there exists no positive fundamental solution
of the Laplace equation or that Brownian motion is recurrent onM, see e.g. [29]. R2 is parabolic, while
RN is not when N ≥ 3. Hoping that our findings could give an interesting way to study noncompact
Riemannian manifolds 1 in higher dimensions, we focus in what follows on those positive superharmonic
functions that are also solutions of a semilinear elliptic equation. We shall be interested more specifically
in solutions having some stability property, although this assumption is not needed for some of our results.
We work in the Euclidean setting and prove sharp Liouville-type theorems and classification results.

Since RN is invariant under dilations, such theorems are very much related to the corresponding
regularity theory, notably some tools and results of the recent paper [6] exploiting the dilation invariance
(a version of Pohozaev’s classical argument [32] suited for stable solutions), the autonomous nature of
the equation (a geometric Poincaré formula 2 discovered in [33]) and universal bounds in the Cα and H1

norms (due to [6]). Among novelties in what follows, we are able to handle the critical dimension N = 10,
to work without any convexity assumption on the nonlinearity and to classify solutions which are stable
outside a compact set. Finally, we provide new Liouville-type theorems on half-spaces, improving those
of [26], as well as on coercive epigraphs.

Our first result extends a theorem in our earlier work [15], which held for bounded stable solutions in
dimension N 6 4, and reads as follows.

Theorem 1. Assume that u ∈ C2(RN ) is bounded below and that u is a stable solution of

(1) −∆u = f(u) in RN

where f : R→ R is locally Lipschitz and nonnegative. If N ≤ 10, then u must be constant.

We recall that if f ∈ C1(R), a solution u of −∆u = f(u) in an open set Ω ⊆ RN is stable if for every
ϕ ∈ C1

c (Ω), there holds

(2)
ˆ

Ω

f ′(u)ϕ2 ≤
ˆ

Ω

|∇ϕ|2

When f is locally Lipschitz, the definition 3 requires more care, see [25] and [6].

Under a weaker lower bound, the previous result remains true up to dimension 9 :

Theorem 2. Assume that u ∈ C2(RN ) is a stable solution of (1), where f : R → R is locally Lipschitz
and nonnegative. Assume in addition that for some C > 0

(3) u(x) ≥ −C ln(2 + |x|), x ∈ RN .

If N ≤ 9, then u must be constant.

1. at least under curvature or curvature-dimension conditions.
2. which also holds on manifolds, see [22], and ca also be reformulated in the general language of Γ-calculus, see [13]
3. In [6], a slightly different definition than that in [25], is used. Note that when f is nondecreasing, the condition in [6]

is a priori more restrictive. However, as observed by the authors of both papers, when restricting to test functions of the
form ϕ = |∇u|ψ or of the form ϕ = ∂ruψ, ψ ∈ C1

c (RN ), then both definitions yield the same information. In particular,
our results hold using one definition or the other.
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2 LOUIS DUPAIGNE AND ALBERTO FARINA

Remark 3.
Some remarks are in order.
— Theorem 1 is sharp. Indeed, if N ≥ 11, for f(u) = up, p sufficiently large, there exists a nontrivial
positive bounded stable solution to the equation, see [19].

— Theorem 2 is also sharp. Indeed, if N ≥ 10 and f(u) = eu, there exists 4 a radial stable solution
u ∈ C2(RN ) such that u(x) ∼ −2 ln |x| as |x| → +∞.

— In the important cases where f(u) = |u|p−1u, p > 1 and f(u) = eu, Theorems 1 and 2 were
already known to hold, see [19,20]. In addition, in these cases, the theorems hold without assuming
any bound on u, due to the scale invariance of the equations.

— In the particular case where u is radial and bounded, Theorems 1 and 2 were already known to
hold, see [5, 34].

— It will be clear from the proof of Theorem 2 that the same conclusion holds true if we replace
(3) by the weaker one : u(x) ≥ −C lnγ(2 + |x|), where γ ≥ 1. Some lower bound is however needed
in Theorems 1 and 2. Indeed, the function u(x) = −|x|2 is a stable solution (with f(u) = 2N). It
is bounded above, but not below.

— The assumption that u is superharmonic (i.e. f ≥ 0) is also essential. Indeed, if f(u) = u − u3,
then f changes sign and for any N ≥ 1, u(x) = tanh(x1/

√
2) is bounded and monotone (hence

stable) yet non constant 5. Similarly, if f(u) = −2N , then f ≤ 0 and u(x) = |x|2 is a stable solution
bounded below. Still, when f ≤ 0, one can clearly use our theorems to classify stable solutions
which are bounded above (simply work with −u in place of u).

— At last, the theorems cannot be generalized to solutions which are merely stable outside a compact
set (and so to finite Morse index solutions). Indeed, if N ≥ 3, the standard bubble is a nonconstant
bounded solution of −∆u = u

N+2
N−2 in RN of Morse index 1. The same remark holds in dimension

N = 2 for solutions stable outside a compact set satisfying the weaker bound (3), by considering
the Liouville equation −∆u = eu in R2 (see Theorem 3 in [20]).

— Additional examples of non-trivial solutions of finite Morse index are provided by subcritical
nonlinearities of the form f(u) = [(u− β)+]p, for all p ∈ (1, N+2

N−2 ), N ≥ 3 and some β > 0, see [16].
— Note however that all these counter-examples are radial functions. We address the question of
radial symmetry in Theorem 10 below.

As important corollaries, we obtain the following Liouville-type results on half-spaces and on coercive
epigraphs.

Theorem 4. Let u ∈ C2(RN+ ) be a bounded solution of

(4)


−∆u = f(u) in RN+ ,

u > 0 in RN+ ,

u = 0 on ∂RN+ .

Assume f ∈ C1(R) and
(1) either f(t) > 0 for t > 0,

(2) or there exists z > 0 such that f(t) > 0 for t ∈ [0, z] and f(t) 6 0 for t > z.
If 2 6 N ≤ 11, then u must be one-dimensional and monotone (i.e., u = u(xN ) and ∂u

∂xN
> 0 in RN+ ).

Theorem 4 recovers and improves upon a result of [26], which held for N 6 5 (see also [2, 3, 8, 11, 12,
18,19,21,23–25] for some other results concerning problem (4).)

For the Neumann boundary condition, the following result holds.

4. To prove this, using Emden’s transformation, the equation is equivalent to an autonomous ode having a unique
stationary point, which corresponds to the singular solution us(x) = ln

2(N−2)

|x|2 and is attractive, see e.g. pp. 36-37 in
Chapter 2 in [14]. In addition, us is stable for N ≥ 10, thanks to Hardy’s inequality. Since us is singular at the origin, it is
clear that u ≤ us in some ball BR. In fact, the inequality holds throughout RN and so u is also stable. Otherwise, there
would exist R′ such that us − u = 0 on ∂BR′ . Using ϕ = us − u ∈ H1

0 (BR′ ) as a test function in (2) would then contradict
the stability of us, using (the proof of) Proposition 3.2.1 in [14].

5. One could ask whether other kinds of solutions exist. This is a delicate question deeply related to the celebrated De
Giorgi conjecture, see e.g. [7, 14,27] for more on this subject.
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Theorem 5. Let u ∈ C2(RN+ ) be a stable solution of

(5)

{
−∆u = f(u) in RN+ ,

∂nu = 0 on ∂RN+ .
Assume in addition that f : R→ R is locally Lipschitz and nonnegative and u is bounded below. If N ≤ 10,
then u must be constant.

Here, a solution of (5) is said to be stable if (2) holds with Ω = RN+ for all ϕ ∈ C1
c (RN+ ).

At last, for coercive epigraphs, the following result holds true.

Theorem 6. Let Ω ⊂ RN denote a locally Lipschitz coercive epigraph and u ∈ C2(Ω)∩C(Ω) be a bounded
solution of

(6)


−∆u = f(u) in Ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω.

Assume that f ∈ C1(R), f(t) > 0 for t > 0 and 2 6 N ≤ 11. Then, f(0) = 0 and u = 0.

Before stating our results on solutions which are merely stable outside a compact set, it will be useful to
discuss the proof of Theorem 2, which relies on the following a priori estimate, recently established in [6].

Theorem A ([6]). Let B1 be the unit ball of RN , N > 1. Assume that u ∈ C2(B1) is a stable solution of

−∆u = f(u) in B1,

where f : R→ R is locally Lipschitz and nonnegative. If N ≤ 9, then

(7) ‖u‖Cα(B1/2) ≤ C‖u‖L1(B1),

where α ∈ (0, 1), C > 0 are dimensional constants.

Since the proof of Theorem 2 is very short, we provide it without further ado.
Proof of Theorem 2.

Given R > 2, apply (7) to uR(x) = u(Rx), leading to

|u(x)− u(y)| ≤ CR−α|x− y|α
 
BR

|u| for x, y ∈ BR/2.

Since u satisfies the lower bound (3), observe that

|u| = |u+ C ln(2 + |x|)− C ln(2 + |x|)| ≤ |u+ C ln(2 + |x|)|+ |C ln(2 + |x|)| = u+ 2C ln(2 + |x|).
So, recalling that u is superharmonic,

0 ≤
 
BR

|u| ≤
 
BR

u+ 2C ln(2 +R) ≤ u(0) + 2C ln(2 +R)

and so
|u(x)− u(y)| ≤ CR−α|x− y|α(u(0) + 2C ln(2 +R)).

Let R→ +∞ to conclude that u(x) = u(y) for all x, y ∈ RN . �

Remark 7. Since Theorem 2 fails for finite Morse index solutions, it follows from the proof above that
the a priori estimate in Theorem A cannot hold either for such solutions.

As already observed in Remark 3, Theorems 1 and 2 fail for solutions with positive and finite Morse
index. Nevertheless, we can prove radial symmetry and sharp asymptotic behavior at infinity of such
solutions. More precisely, we have the following two results.

Theorem 8. Let u ∈ C2(RN ) be a solution of

(8) −∆u = f(u) in RN ,
which is stable outside the ball B1 and bounded below. Assume that f > 0 is locally lipschitz continuous
and 1 ≤ N ≤ 10. Then,

i) if N = 1, 2, then u is constant.
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ii) if 3 6 N 6 9, there exists a constant C > 0 depending on u and N only such that

(9) |u(x)− inf
RN

u| ≤ C|x|−N2 −
√
N−1+2, for all x ∈ RN ,

|∇u| ∈ L2(RN ) and ˆ
RN\BR

|∇u|2 ≤ CR−2(
√
N−1−1), for all R > 2.

iii) if N = 10, for any ε > 0 (small enough) there exists a constant Cε > 0 depending on u, N and
ε only such that

(10) |u(x)− inf
RN

u| 6 Cε|x|−
N
2 −
√
N−1+2+ε, for all x ∈ RN ,

|∇u| ∈ L2(RN ) andˆ
RN\BR

|∇u|2 ≤ CεR−2(
√
N−1−1)+ε, for all R > 2.

Furthermore, f(infRN u) = 0 and (u− infRN u) ∈ L2∗(RN ).

Remark 9.
— Clearly, Theorem 8 remains true for solutions stable outside a compact set.
— Theorem 8 complements some results established in [15, 21]. It was already known to hold for
any N ≥ 3 in the particular case where u is bounded and radial, see [35].

— Theorem 8 fails if N ≥ 12 for nonradial solutions. Indeed, if n ≥ 11, there exists a nontrivial
bounded stable positive radial solution v for the nonlinearity f(v) = vp, p large, see [19]. Then, the
function u(x′, xN ) = v(x′) for (x′, xN ) ∈ Rn ×R is a bounded stable positive solution (of the same
problem) in dimension N = n+ 1 ≥ 12. In addition, u 6→ 0 as |x| → ∞ and ∇u 6∈ L2(RN ).

— Whether Theorem 8 holds in dimension N = 11 is an open problem.

Theorem 10. Let u ∈ C2(RN ) be a solution of (1) which is stable outside a compact set and bounded
below. Assume that f ∈ C3,1

loc (R), f > 0 and N 6 10. Then, u is radially symmetric about some point and
radially decreasing (and radially strictly decreasing if u is not a constant).

Remark 11.
— The assumption f ∈ C3,1

loc (R) is most likely technical. It is needed only at every zero of f . As
follows from its proof, the theorem remains true if f ∈ C1,1

loc (R) and 5 ≤ N ≤ 10 and if f ∈ C2,1
loc (R)

and N = 4.
— Whether the result remains true in dimension N = 11 is an open problem, even for the nonli-
nearity f(u) = up, p large. However, the positive cylindrical solution mentioned in Remark 9 shows
that Theorem 10 fails in dimension N ≥ 12. Working similarly with the exponential nonlinearity,
Theorem 10 also fails in dimension N ≥ 11 under the weaker lower-bound (3).

— Thanks to the result of [35], (10) holds true for ε = 0, that is, optimal asymptotic bounds also
hold in dimension N = 10.

2. Stable solutions

Let us prove Theorem 1.

Proof of Theorem 1.
We start by noting that, if u is a stable solution of (1) in Rn, n > 1, then the function vk :=

vk(x1, ..., xn, ..., xn+k) := u(x1, ..., xn) is a stable solution of (1) in Rn+k for any k > 1. Therefore, it
is enough to prove the claim for solutions u in dimension N = 10.

Since u is superharmonic and bounded below, its spherical average
ffl
∂BR

u decreases to a limit ` ∈ R,
as R→ +∞. Replacing u by u− `, we may assume from here on that

(11)
 
∂BR

u↘ 0, as R→ +∞
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(note that u−` is a bounded below stable solution of (1) with f replaced by the non negative nonlinearity
f(·+ `).)

We begin by proving the following lemma (which holds in any dimension) :

Lemma 1.

(12)
ˆ
BR

|x|2−N |∇u|2 = o(lnR), as R→ +∞.

Proof. According to Proposition 2.5 in [6], the following H1-bound holds true

‖∇u‖L2(B1) ≤ C‖u‖L1(B2)

Applying the above to uR(x) = u(Rx) (as we may) yields

(13)
ˆ
BR

|∇u|2 ≤ CRN−2
(  

B2R

u
)2

.

Here, we have used that
´
∂Br

u ≥ 0, thanks to (11). Using polar coordinates and integration by parts,
we findˆ

BR\B1

|x|2−N |∇u|2 =

ˆ R

1

r2−N
ˆ
∂Br

|∇u|2 =

[
r2−N

ˆ
Br

|∇u|2
]r=R
r=1

− (2−N)

ˆ R

1

r1−N
ˆ
Br

|∇u|2

Let us inspect each term in the right-hand side. Since u is superharmonic,
ffl
Br
u ≤ u(0). By (13), we

deduce that the first term is bounded. For the second term, either
´
Br
u is bounded and so

lim
r→+∞

r−N
ˆ
Br

u = 0

or using L’Hôpital’s rule and (11) we have, once again,

lim
r→+∞

r−N
ˆ
Br

u = lim
r→+∞

N−1r1−N
ˆ
∂Br

u = 0

Hence, by (13) and the above

r1−N
ˆ
Br

|∇u|2 ≤ C 1

r

( 
B2r

u
)2

= o(1/r), as r → +∞.

Hence, ˆ R

1

r1−N
ˆ
Br

|∇u|2 = o

(ˆ R

1

1

r

)
= o(lnR),

and the lemma follows since
´
B1
|x|2−N |∇u|2 is bounded. �

Next, we use inequality 6 (2.2) in [6], which, up to rescaling, reads as follows : for all ζ ∈ C0,1
c (RN ), if

2 ≤ N ≤ 10, there holds

0 ≤
ˆ
−2|x|2−N |∇u|2ζ(x · ∇ζ) +

ˆ
4|x|2−N (x · ∇u)ζ∇u · ∇ζ+

ˆ
(2−N)|x|−N |x · ∇u|2ζ(x · ∇ζ) +

ˆ
|x|2−N |x · ∇u|2|∇ζ|2

In particular, if ζ is radial and r = |x|, the above inequality reduces to

2

ˆ
r2−N |∇u|2ζrζ ′ ≤

ˆ
r2−N

(
∂u

∂r

)2

rζ ′ {(6−N)ζ + rζ ′}

6. This inequality is derived by computing the second variation of energy along dilations, similarly yet differently from
what can be done in Pohozaev’s identity or certain monotonicity formulae.
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Choose ζ as follows. Given R > R1 > 2, r ∈ R+,

ζ(r) =



r4 in [0, R1),

R4
1 in [R1, R)

R4
1

ln r
R2

ln 1
R

in [R,R2),

0 otherwise

Since N = 10, we have that
rζ ′ {(6−N)ζ + rζ ′} = 0 in [0, R],

which leads us to an inequality of the form

8

ˆ
BR1

|∇u|2 ≤ CR8
1

ˆ
BR2\BR

|x|2−N |∇u|2
(
(lnR)−1 + (lnR)−2

)
Applying Lemma 1 and letting R→ +∞, we arrive atˆ

BR1

|∇u|2 = 0.

Letting R1 → +∞, we deduce that u is constant. �

Proof of Theorem 4. Since f(0) > 0 and u is bounded, we have that ∂u
∂xN

> 0 on RN+ (see [3], [11]).
Therefore ∂u

∂xN
is a positive solution of the linearized equation −∆w − f ′(u)w = 0 on RN+ and so u is a

stable solution of −∆w = f(w) on RN+ (see for instance [28,31]).
The boundedness of u, standard elliptic estimates and the monotonicity of u with respect to the

variable xN , imply that the function

v(x1, ..., xN−1) := lim
xN→+∞

u(x)

satisfies

(14)


v ∈ C2(RN−1) ∩ L∞(RN−1),

−∆v = f(v) in RN−1,

v > 0 in RN−1.

In addition v is a stable solution of the above problem (see for instance [1, 3]). Here we have used the
continuity of f

′
.

If f satisfies 1. we can apply Theorem 1 to (14) to infer that v ≡ c = const. Here we have used
that N − 1 ≤ 9. The equation then yields f(c) = 0. To conclude we observe that ∂u

∂xN
> 0 on RN+

implies supRN+ u = supRN v (= c) and so f(supRN+ u) = 0. The one-dimensional symmetry of u is then a
consequence of Theorem 1 in [2].

When 2. is in force, we observe that u(x) ≤ z for any x ∈ RN+ , thanks to Lemma 2.4 in [26]. The
latter and the definition of v imply that v(x) ≤ z for any x ∈ RN+ and supRN+ u = supRN v 6 z. As before,
to conclude, it is enough to prove that f(supRN+ v) = 0. If supRN+ v = z we are done since f(supRN+ v) =

f(z) = 0. If supRN+ v < z, then v is a stable solution of

(15)

{
v ∈ C2(RN−1) ∩ L∞(RN−1),

−∆v = g(v) in RN−1,

where g is any nonnegative function of class C1(R,R) which coincide with f on (−∞, β), for a fixed
β ∈ (supRN+ v, z). Therefore an application of Theorem 1 to (15) yields v ≡ c = const. and so f(c) = 0.
Hence f(supRN+ u) = f(supRN v) = f(c) = 0, which concludes the proof.

�
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Proof of Theorem 5. By proceeding as in the first part of the proof of Theorem 2 in [12] we get that
the even extension of u to RN is a bounded below stable solution of (1) in RN , N 6 10. This function
must be constant by Theorem 1. The latter implies the desired conclusion. �

Proof of Theorem 6. Assume by contradiction that u > 0 in Ω. According to [4] (see also [17] for a
prior result concerning smooth epigraphs) u is monotone. Therefore u is a stable solution and working as
in the proof of Theorem 4, we deduce that

v(x1, ..., xN−1) := lim
xN→+∞

u(x)

is a positive stable solution of −∆u = f(u) in RN−1, with N − 1 6 10, and so it must be constant by
Theorem 1. But this is in contradiction with f(t) > 0 for t > 0. Hence u must vanish somewhere in Ω and
so it must be identically zero by the strong maximum principle. The latter then implies that f(0) = 0.

�

3. Solutions which are stable outside a compact set

Proof of Theorem 8. If N 6 2 the solution u must be constant since it is bounded and superharmonic.
We may therefore suppose that N > 3.

We begin by adapting Lemma 1 to solutions which are stable outside a compact set.

Lemma 2. Assume that N ≥ 3 and that u is a solution which is stable outside a compact set. Then,

(16)
ˆ
BR

|x|2−N |∇u|2 = o(lnR), as R→ +∞.

Proof. Assume without loss of generality that (11) holds and that R = 2n for some n ∈ N∗. Then,
ˆ
BR\B2

|∇u|2 =

ˆ
B2n\B2

|∇u|2 =

n∑
k=2

ˆ
B

2k
\B

2k−1

|∇u|2.

Given k ∈ {2, . . . , n}, let v(x) = u(2k−1x), x ∈ RN \B2−(k−1) . Then, v is stable outside the ball of radius
B2−(k−1) and ˆ

B
2k
\B

2k−1

|∇u|2 = 2(k−1)(N−2)

ˆ
B2\B1

|∇v|2

The annulus B2 \B1 can be covered by finitely many balls of radius 1
2 . On each of these balls, v is stable.

Applying Proposition 2.5 in [6], we deduce thatˆ
B2\B1

|∇v|2 ≤ C
ˆ
B4\B1/2

|v| = C

 
B

2k+1\B2k−2

u = o(1) as k → +∞,

where we used (11) for the last equality. So,

(17)
ˆ
BR\B2

|∇u|2 ≤ C
n∑
k=2

o(2(k−1)(N−2)) = o(RN−2) as R = 2n → +∞.

Integrate by parts
´
BR\B1

|x|2−N |∇u|2 exactly as in the proof of Lemma 1 and (16) follows. �

Next, we prove that ∇u ∈ L2(RN ). Assume that 3 ≤ N ≤ 9. According to Lemma 2.1, inequality (2.2)
in [6], for all ζ ∈ C0,1

c (RN ), ζ radial with support outside the ball of radius 1, there holds

(18)
(N − 2)(10−N)

4

ˆ
RN

r2−N
(
∂u

∂r

)2

ζ2 ≤

≤ −2

ˆ
RN

r2−N |∇u|2ζrζ ′ +
ˆ
RN

r2−N
(
∂u

∂r

)2

rζ ′ {(6−N)ζ + rζ ′}

By analogy with a strategy found in [35], we choose ζ as follows. Fix R2 > R > 2 and

(19) α =
N

2
+
√
N − 1− 2.
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Given r ∈ R+, let

ζ(r) =



2α(r − 1) in [1, 2),
rα in [2, R)

Rα in [R,R2)

Rα
ln r

R2
2

ln 1
R2

in [R2, R
2
2),

0 otherwise
All integral terms in (18) in the region [1 ≤ |x| ≤ 2] are controlled by a constant C depending on u and
N only. For the region [2 ≤ |x| ≤ R], our choice of α leads to the cancellation of all terms involving the
radial derivative of u, so that all remains is the negative term (in the right-hand side)

−2α

ˆ
BR\B2

r2−N+2α|∇Tu|2,

where we denoted the tangential part of the gradient by ∇Tu = ∇u − ∂u
∂r er, er = x/|x|. In the region

[R,R2), all terms disappear except the left-hand side :

R2α (N − 2)(10−N)

4

ˆ
BR2
\BR

r2−N
(
∂u

∂r

)2

Finally, in the region [R2 ≤ |x| ≤ R2
2], all terms can be bounded above by a constant C = C(R,N) times(ˆ

B
R2

2
\BR2

|x|2−N |∇u|2
)(

(lnR2)−1 + (lnR2)−2
)
.

This quantity converges to 0 as R2 → +∞, thanks to Lemma 2. So, in the limit R2 → +∞, inequality
(18) reduces to

(N − 2)(10−N)

4
R2α

ˆ
RN\BR

|x|2−N
(
∂u

∂r

)2

+ 2α

ˆ
BR\B2

|x|2−N+2α|∇Tu|2 ≤ C.

The above inequality being true for all R > 2, we readily deduce that for 3 ≤ N ≤ 9,

(20)
ˆ
B2R\BR

|∇u|2 ≤ CR−(2−N+2α)

When N = 10, we only have ˆ
B2R\BR

|∇Tu|2 ≤ CR−(2−N+2α)

However, replacing α by αε = α− ε, ε > 0 small, in the definition of ζ leads to an inequality of the formˆ
B2R\BR

|∇u|2 ≤ CεR−(2−N+2αε),

Note that 2−N + 2α = 2(
√
N − 1− 1) > 0 for N ≥ 3. So, applying this inequality with 2kR, k ∈ N, in

place of R and summing over k implies that ∇u ∈ L2(RN ) and

(21)
ˆ
RN\BR

|∇u|2 ≤ CR−2(
√
N−1−1),

if 3 ≤ N ≤ 9 (and ∇u ∈ L2(RN ) and
´
RN\BR |∇u|

2 ≤ CεR−2(
√
N−1−1)+ε if N = 10).

Next, fix a point x ∈ RN \ B2 and let R = |x|/2. Take another point y ∈ ∂B(x, r), r ≤ R, and apply
the fundamental theorem of calculus :

|u(x)− u(y)| ≤
ˆ 1

0

∣∣∣∣ ddtu(x+ t(y − x))

∣∣∣∣ dt ≤ r ˆ 1

0

|∇u(x+ t(y − x))| dt

Integrating over ∂B(x, r), we deduce thatˆ
∂B(x,r)

|u(x)− u(y)| dσ(y) ≤
ˆ
B(x,r)

|∇u| ≤
ˆ
B(x,R)

|∇u|
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Integrating once more in r ∈ (0, R), using Cauchy-Schwarz and applying at last (21), for 3 6 N 6 9 we
get

(22)
 
B(x,R)

|u(x)− u(y)| dy ≤ CR1−N
ˆ
B(x,R)

|∇u| ≤ CR1−N/2

(ˆ
B(x,R)

|∇u|2
) 1

2

≤ CR1−N/2

(ˆ
B(0,3R)\B(0,R)

|∇u|2
) 1

2

≤ CR−N2 −
√
N−1+2,

(for N = 10 the latter is replaced by CεR−2(
√
N−1−1)+ε).

We may draw two conclusions from the above inequality. Firstly,

lim
|x|→+∞

u(x) = 0.

Recalling that u is superharmonic, we have indeed

u(x) ≤
 
B(x,R)

|u(x)− u(y)| dy +

 
B(x,R)

u ≤ CR−N2 −
√
N−1+2 + C

 
B(0,3R)

u(y) dy

≤ CR−N2 −
√
N−1+2 + Cu(0) ≤ C.

So, u is bounded. By elliptic regularity, so is ∇u. We also know that ∇u ∈ L2(RN ), whence u − ξ ∈
L2∗(RN ), for some ξ ∈ R, thanks to Theorem 1.78 of [30]. The proof of this result also implies that ξ =
limj→∞

ffl
B(0,2j)

u and so ξ = 0 by (11) (as already seen in the proof of Lemma 1.) Therefore, u ∈ L2∗(RN )

and thus u2∗ is integrable and globally Lipschitz on RN . This clearly implies that lim|x|→+∞ u(x) = 0.
Secondly, similarly to (22), we have for 3 ≤ N ≤ 9 

B(2x,R)

|u(2x)− u(y)| dy ≤ CR−N2 −
√
N−1+2 and

 
B( 3

2x,2R)

∣∣∣∣u(3

2
x

)
− u(y)

∣∣∣∣ dy ≤ CR−N2 −√N−1+2.

Using the notation uz,r =
ffl
B(z,r)

u for the average of u on a given ball B(z, r), it follows that

|u(x)− u(2x)| ≤ |u(x)− ux,R|+
∣∣∣∣ux,R − u(3

2
x

)∣∣∣∣+

∣∣∣∣u(3

2
x

)
− u2x,R

∣∣∣∣+ |u2x,R − u(2x)|

≤ CR−N2 −
√
N−1+2 +

 
B(x,R)

∣∣∣∣u(3

2
x

)
− u(y)

∣∣∣∣ dy +

 
B(2x,R)

∣∣∣∣u(3

2
x

)
− u(y)

∣∣∣∣ dy
≤ CR−N2 −

√
N−1+2 + C

 
B( 3

2x,2R)

∣∣∣∣u(3

2
x

)
− u(y)

∣∣∣∣ dy
≤ C|x|−N2 −

√
N−1+2

Applying the above inequality to 2kx, k ∈ N, in place of x and summing over k, we deduce that the
sequence (uk) defined by uk(x) = u(2kx), converges in C0

loc(RN \B2) to a limit v as k → +∞ and

|u(x)− v(x)| ≤ C|x|−N2 −
√
N−1+2 if 3 6 N 6 9,

(resp. |u(x)−v(x)| ≤ Cε|x|−
N
2 −
√
N−1+2+ε if N = 10). Since lim|x|→+∞ u(x) = 0 we necessarily have that

v ≡ 0 and so
|u(x)| ≤ C|x|−N2 −

√
N−1+2 if 3 6 N 6 9,

(resp. |u(x)| ≤ Cε|x|−
N
2 −
√
N−1+2+ε if N = 10).

In order to establish (9) and (10), it remains to prove that infRN u = 0. We consider a sequence (xn)
such that u(xn)→ infRN u. Then, either |xn| → +∞ or (xn) posseses a bounded subsequence (still called
(xn)) such that xn → x. In the first case we clearly have infRN u = 0, while in the second case we get that
u(x) = infRN u and so the nonnegative subharmonic function v := u−u(x) vanishes at x. Therefore v must
be zero by the strong maximum principle which, in turn, yields that u ≡ infRN u = lim|x|→+∞ u(x) = 0.

�
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Proof of Theorem 10.
If N 6 2, u is constant by Theorem 8 and so we are done. When N > 3 we can assume that u is not

constant (otherwise the claim is trivially true). As before, up to replacing u by u− infRN u, we may and
do suppose that infRN u = 0 and so u > 0 in RN by the strong maximum principle. Also, thanks to the
asymptotics of Theorem 8 we have

(23)


u ∈ LN

2 (RN ) if N > 5,

u2 ∈ LN
2 (RN ) if N = 4,

u3 ∈ LN
2 (RN ) if N = 3.

Moreover, since f > 0 by assumption and f(0) = 0 by Theorem 8, we must have f ′(0) = 0 and
f ′′(0) > 0. We also observe that in dimension N = 3, 4 we must have f ′′(0) = f ′′′(0) = 0. Indeed, if
f ′′(0) > 0, then lim inft→0+

f(t)

t
N
N−2

∈ (0,+∞] and Theorem 3.5 of [9] implies that u must be identically

zero, in contradiction with u > 0. Thus, f ′′(0) = 0 and so f ′′′(0) = 0 (again by f > 0). In particular we
have

(24) ∀ t ∈ [0,max
RN

u] |f ′(t)| 6


Ct if N > 5,

Ct2 if N = 4,

Ct3 if N = 3,

where C > 0 is a constant depending only on f .
We are now ready to apply the moving planes method. Given λ ∈ R, set Σλ = {(x1, x

′) ∈ RN : x1 < λ}
and for x ∈ Σλ, let as usual xλ = (2λ − x1, x

′), uλ(x) = u(xλ) and wλ = uλ − u. Since u > 0 and
lim|x|→+∞ u(x) = 0 we may and do suppose that (up to translation) u(0) = maxRN u > 0 and then we
prove that u ≡ u0 in Σ0. Since the coordinate axis x1 can be chosen arbitrarily, we will then conclude
that u is radially symmetric about the origin. That u is radially strictly decreasing is also a standard
consequence of the moving planes procedure and the strong maximum principle. This will provide the
desired result.

We claim that wλ ≥ 0 in Σλ if λ ≤ −K for some K > 0. Indeed we have that

(25) −∆wλ = f(uλ)− f(u) = aλwλ in Σλ,

where

(26) aλ :=

{
f(uλ)−f(u)

uλ−u if u− uλ > 0,

0 if u− uλ 6 0,

belongs to LN/2(Σλ). To see this we observe that, by the mean value theorem, for every x ∈ Σλ we have
|aλ(x)| = |f ′(ξ(x, λ))|1{u−uλ>0}(x), where ξ(x, λ) ∈ (uλ(x), u(x)). Combining the latter with (24) we get

(27) |aλ| 6


Cu if N > 5,

Cu2 if N = 4, on Σλ

Cu3 if N = 3,

where C > 0 is a constant depending only on f . The latter and (23) imply aλ ∈ LN/2(Σλ) for any λ.
Therefore, given any ε > 0 we can find K > 0 such that ‖aλ‖LN/2(Σλ) < ε, for any λ 6 −K.

Let χR(x) = χ(x/R) be a standard cut-off function, with R > 1. Multiplying (25) by w−λ χ
2
R, integrating

by parts and making use of Sobolev’s inequality we find(ˆ
Σλ

|w−λ χR|
2∗
)2/2∗

≤ C
ˆ

Σλ

|∇[w−λ χR]|2 ≤ C

{ˆ
Σλ

(w−λ )2|∇χR|2 + ‖aλ‖LN/2(Σλ)

(ˆ
Σλ

|w−λ χR|
2∗
)2/2∗

}
Letting R → +∞ and then choosing ‖aλ‖LN/2(Σλ∩[u>uλ]) < ε small enough, we deduce that (wλ)− ≡ 0

as claimed. Here we also used that (w−λ )2 ∈ L
N
N−2 (RN ) to show that

´
Σλ

(w−λ )2|∇χR|2 → 0 as R → ∞
(recall that u ∈ L2∗(RN ) by Theorem 8).
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Let us now finish the moving planes method by setting

λ0 := sup{λ < 0 : wt ≥ 0 in Σt ∀t 6 λ }.
To conclude the proof it is enough to prove that λ0 = 0. We argue by contradiction and suppose that
λ0 < 0. By continuity, wλ0

≥ 0 in Σλ0
. By the strong maximum principle we deduce that either wλ0

>
0 in Σλ0

or wλ0
≡ 0 in Σλ0

. The latter is not possible if λ0 < 0 since in this case we would have
u(2λ0, 0

′) = u(0) = maxRN u > 0 and so wλ ≡ 0 in Σλ for any λ ∈ [2λ0, λ0] by the strong maximum
principle and the Hopf lemma. By repeating (infinitely many times) the previous argument we would find
u(s, 0′) = u(0) = maxRN u > 0 for any s < λ0, contradicting thus the assumption lim|x|→+∞ u(x) = 0.
Therefore wλ0

> 0 in Σλ0
.

Now we achieve a contradiction by proving the existence of τ0 > 0 such that for any 0 < τ < τ0 we
have wλ0+τ > 0 in Σλ0+τ .

To this end we are going to show that, for every δ > 0 there are τ0 > 0 and a compact set K ⊂ Σλ0

(both depending on δ and λ0) such that

(28) ‖aλ‖LN/2(Σλ\K) < δ, wλ > 0 in K, ∀λ ∈ [λ0, λ0 + τ0].

We prove this for N > 5 (the case N = 3, 4 is obtained in the same way by using (23) and (27)
for N = 3, 4). First pick a compact set K ⊂ Σλ0

such that
´

Σλ0\K
(Cu)

N
2 < ( δ2 )

N
2 and then fix a

τ1 = τ1(δ, λ0) > 0 such that
´

Σλ\λ0
(Cu)

N
2 < ( δ2 )

N
2 for every λ ∈ [λ0, λ0 + τ1], where C is the constant

appearing in (27) (this choice is clearly possible in view of (23)). Combining these information with (27)
we obtain that ‖aλ‖LN/2(Σλ\K) < δ for any λ ∈ [λ0, λ0 + τ1]. Then, the uniform continuity of the function
u(2λ − x1, x

′
) − u(x) on the compact set K × [λ0, λ0 + τ1] and the fact that wλ0

> 0 in Σλ0
ensure

that uλ0+τ − u > 0 in K for any 0 ≤ τ < τ2, for some τ2 = τ2(δ, λ0) < τ1. Hence, (28) holds true with
τ0 ∈ (0, τ2).

As before, we multiply the equation (25) by w−λ χ
2
R, we integrate by parts and use Sobolev’s inequality

to get(ˆ
Σλ

|w−λ χR|
2∗
)2/2∗

≤ C2
S

ˆ
Σλ

|∇[w−λ χR]|2 ≤ C2
S

{ˆ
Σλ

(w−λ )2|∇χR|2 + ‖aλ‖LN/2(Σλ)

(ˆ
Σλ

|w−λ χR|
2∗
)2/2∗

}
which, in view of (28) with δ = 1

2C2
S
, gives for every λ ∈ [λ0, λ0 + τ0],(ˆ

Σλ\K
|w−λ χR|

2∗

)2/2∗

≤ C2
S


ˆ

Σλ\K
(w−λ )2|∇χR|2 + ‖aλ‖LN/2(Σλ)

(ˆ
Σλ\K

|w−λ χR|
2∗

)2/2∗


≤ C2
S

ˆ
Σλ\K

(w−λ )2|∇χR|2 +
1

2

(ˆ
Σλ\K

|w−λ χR|
2∗

)2/2∗

.

Then (ˆ
Σλ\K

|w−λ χR|
2∗

)2/2∗

≤ 2C2
S

ˆ
Σλ\K

(w−λ )2|∇χR|2 → 0 when R→∞,

since u ∈ L2∗(RN ). Therefore,
´

Σλ\K |w
−
λ |2

∗
= 0 and so wλ > 0 in Σλ, for every λ ∈ [λ0, λ0 + τ0]. This

contradicts the definition of λ0 and so λ0 = 0 which, in turn, yields u 6 u0 in Σ0. Now we can apply the
same procedure to the function v(x) := u(−x1, x

′)(= u0(x)) to find that v ≤ v0 in Σ0, i.e., u0 6 u in Σ0.
This proves that u0 ≡ u on Σ0 and concludes the proof.

�
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