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Introduction and main results

A noncompact Riemannian manifold M is said to be parabolic if every positive superharmonic function u : M → R + is constant. This is equivalent to asking that there exists no positive fundamental solution of the Laplace equation or that Brownian motion is recurrent on M, see e.g. [START_REF] Grigor Yan | The existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds[END_REF]. R 2 is parabolic, while R N is not when N ≥ 3. Hoping that our findings could give an interesting way to study noncompact Riemannian manifolds 1 in higher dimensions, we focus in what follows on those positive superharmonic functions that are also solutions of a semilinear elliptic equation. We shall be interested more specifically in solutions having some stability property, although this assumption is not needed for some of our results. We work in the Euclidean setting and prove sharp Liouville-type theorems and classification results.

Since R N is invariant under dilations, such theorems are very much related to the corresponding regularity theory, notably some tools and results of the recent paper [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF] exploiting the dilation invariance (a version of Pohozaev's classical argument [START_REF] Pohožaev | On the eigenfunctions of the equation ∆u + λf (u) = 0[END_REF] suited for stable solutions), the autonomous nature of the equation (a geometric Poincaré formula 2 discovered in [START_REF] Sternberg | A Poincaré inequality with applications to volume-constrained area-minimizing surfaces[END_REF]) and universal bounds in the C α and H 1 norms (due to [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF]). Among novelties in what follows, we are able to handle the critical dimension N = 10, to work without any convexity assumption on the nonlinearity and to classify solutions which are stable outside a compact set. Finally, we provide new Liouville-type theorems on half-spaces, improving those of [START_REF] Farina | Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems[END_REF], as well as on coercive epigraphs.

Our first result extends a theorem in our earlier work [START_REF] Dupaigne | Stable solutions of -∆u = f (u) in R N[END_REF], which held for bounded stable solutions in dimension N 4, and reads as follows.

Theorem 1. Assume that u ∈ C 2 (R N ) is bounded below and that u is a stable solution of (1)

-∆u = f (u) in R N
where f : R → R is locally Lipschitz and nonnegative. If N ≤ 10, then u must be constant.

We recall that if f ∈ C 1 (R), a solution u of -∆u = f (u) in an open set Ω ⊆ R N is stable if for every ϕ ∈ C 1 c (Ω), there holds

(2) ˆΩ f (u)ϕ 2 ≤ ˆΩ |∇ϕ| 2
When f is locally Lipschitz, the definition 3 requires more care, see [START_REF] Farina | Bernstein and De Giorgi type problems: new results via a geometric approach[END_REF] and [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF].

Under a weaker lower bound, the previous result remains true up to dimension 9 :

Theorem 2. Assume that u ∈ C 2 (R N ) is a stable solution of [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi[END_REF], where f : R → R is locally Lipschitz and nonnegative. Assume in addition that for some C > 0

(3) u(x) ≥ -C ln(2 + |x|), x ∈ R N .
If N ≤ 9, then u must be constant.

1. at least under curvature or curvature-dimension conditions.

2. which also holds on manifolds, see [START_REF] Farina | Splitting Theorems, Symmetry Results and Overdetermined Problems for Riemannian Manifolds[END_REF], and ca also be reformulated in the general language of Γ-calculus, see [START_REF] Dipierro | Rigidity results in diffusion Markov triples[END_REF] 3. In [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF], a slightly different definition than that in [START_REF] Farina | Bernstein and De Giorgi type problems: new results via a geometric approach[END_REF], is used. Note that when f is nondecreasing, the condition in [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF] is a priori more restrictive. However, as observed by the authors of both papers, when restricting to test functions of the form ϕ = |∇u|ψ or of the form ϕ = ∂ruψ, ψ ∈ C 1 c (R N ), then both definitions yield the same information. In particular, our results hold using one definition or the other.

Remark 3.

Some remarks are in order.

-Theorem 1 is sharp. Indeed, if N ≥ 11, for f (u) = u p , p sufficiently large, there exists a nontrivial positive bounded stable solution to the equation, see [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF].

-Theorem 2 is also sharp. Indeed, if N ≥ 10 and f (u) = e u , there exists 4 a radial stable solution u ∈ C 2 (R N ) such that u(x) ∼ -2 ln |x| as |x| → +∞.

-In the important cases where f (u) = |u| p-1 u, p > 1 and f (u) = e u , Theorems 1 and 2 were already known to hold, see [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF][START_REF] Farina | Stable solutions of -∆u = e u on R N[END_REF]. In addition, in these cases, the theorems hold without assuming any bound on u, due to the scale invariance of the equations.

-In the particular case where u is radial and bounded, Theorems 1 and 2 were already known to hold, see [START_REF] Cabré | Regularity of radial minimizers and extremal solutions of semilinear elliptic equations[END_REF][START_REF] Villegas | Asymptotic behavior of stable radial solutions of semilinear elliptic equations in R N[END_REF].

-It will be clear from the proof of Theorem 2 that the same conclusion holds true if we replace (3) by the weaker one : u(x) ≥ -C ln γ (2 + |x|), where γ ≥ 1. Some lower bound is however needed in Theorems 1 and 2. Indeed, the function u(x) = -|x| 2 is a stable solution (with f (u) = 2N ). It is bounded above, but not below.

-The assumption that u is superharmonic (i.e. f ≥ 0) is also essential. Indeed, if f (u) = u -u 3 , then f changes sign and for any

N ≥ 1, u(x) = tanh(x 1 / √ 2)
is bounded and monotone (hence stable) yet non constant 5 . Similarly, if f (u) = -2N , then f ≤ 0 and u(x) = |x| 2 is a stable solution bounded below. Still, when f ≤ 0, one can clearly use our theorems to classify stable solutions which are bounded above (simply work with -u in place of u).

-At last, the theorems cannot be generalized to solutions which are merely stable outside a compact set (and so to finite Morse index solutions). Indeed, if N ≥ 3, the standard bubble is a nonconstant bounded solution of -∆u = u

N +2 N -2 in R N of Morse index 1.
The same remark holds in dimension N = 2 for solutions stable outside a compact set satisfying the weaker bound (3), by considering the Liouville equation -∆u = e u in R 2 (see Theorem 3 in [START_REF] Farina | Stable solutions of -∆u = e u on R N[END_REF]).

-Additional examples of non-trivial solutions of finite Morse index are provided by subcritical nonlinearities of the form

f (u) = [(u -β) + ] p , for all p ∈ (1, N +2 N -2 )
, N ≥ 3 and some β > 0, see [START_REF] Dupaigne | Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities[END_REF]. -Note however that all these counter-examples are radial functions. We address the question of radial symmetry in Theorem 10 below.

As important corollaries, we obtain the following Liouville-type results on half-spaces and on coercive epigraphs.

Theorem 4. Let u ∈ C 2 (R N + ) be a bounded solution of (4) 
       -∆u = f (u) in R N + , u > 0 in R N + , u = 0 on ∂R N + . Assume f ∈ C 1 (R) and
(1) either f (t) 0 for t 0, (2) or there exists z > 0 such that f (t) 0 for t ∈ [0, z] and f (t) 0 for t z.

If 2 N ≤ 11, then u must be one-dimensional and monotone (i.e., u = u(x N ) and ∂u ∂x N > 0 in R N + ).

Theorem 4 recovers and improves upon a result of [START_REF] Farina | Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems[END_REF], which held for N 5 (see also [START_REF] Berestycki | Symmetry for elliptic equations in the halfspace[END_REF][START_REF] Berestycki | Further qualitative properties for elliptic equations in unbouded domains[END_REF][START_REF] Chen | Monotonicity and nonexistence results to cooperative systems in the half space[END_REF][START_REF] Dancer | Some notes on the method of moving planes[END_REF][START_REF] Dancer | Stable and finite Morse index solutions on R n or on bounded domains with small diffusion[END_REF][START_REF] Farina | Rigidity and one-dimensional symmetry for semilinear elliptic equations in the whole of R N and in half spaces[END_REF][START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF][START_REF] Farina | Some symmetry results and Liouville-type theorems for solutions to semilinear equations[END_REF][START_REF] Farina | Qualitative properties and classification of nonnegative solutions to -∆u = f (u) in unbounded domains when f (0) < 0[END_REF][START_REF] Farina | Monotonicity and symmetry of nonnegative solutions to -∆u = f (u) in half-planes and strips[END_REF][START_REF] Farina | Bernstein and De Giorgi type problems: new results via a geometric approach[END_REF] for some other results concerning problem (4).)

For the Neumann boundary condition, the following result holds.

4. To prove this, using Emden's transformation, the equation is equivalent to an autonomous ode having a unique stationary point, which corresponds to the singular solution us(x) = ln

2(N -2) |x| 2
and is attractive, see e.g. pp. 36-37 in Chapter 2 in [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF]. In addition, us is stable for N ≥ 10, thanks to Hardy's inequality. Since us is singular at the origin, it is clear that u ≤ us in some ball B R . In fact, the inequality holds throughout R N and so u is also stable. Otherwise, there would exist R such that us -u = 0 on ∂B R . Using ϕ = us -u ∈ H 1 0 (B R ) as a test function in (2) would then contradict the stability of us, using (the proof of) Proposition 3.2.1 in [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF].

5. One could ask whether other kinds of solutions exist. This is a delicate question deeply related to the celebrated De Giorgi conjecture, see e.g. [START_REF] Chan | On De Giorgi's conjecture: recent progress and open problems[END_REF][START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF][START_REF] Farina | The state of the art for a conjecture of De Giorgi and related problems[END_REF] for more on this subject.

Theorem 5. Let u ∈ C 2 (R N + ) be a stable solution of (5) -∆u = f (u) in R N + , ∂ n u = 0 on ∂R N
+ . Assume in addition that f : R → R is locally Lipschitz and nonnegative and u is bounded below. If N ≤ 10, then u must be constant.

Here, a solution of ( 5) is said to be stable if [START_REF] Berestycki | Symmetry for elliptic equations in the halfspace[END_REF] holds with Ω = R N + for all ϕ ∈ C 1 c (R N + ). At last, for coercive epigraphs, the following result holds true. Theorem 6. Let Ω ⊂ R N denote a locally Lipschitz coercive epigraph and u ∈ C 2 (Ω)∩C(Ω) be a bounded solution of

(6)      -∆u = f (u) in Ω, u ≥ 0 in Ω, u = 0 on ∂Ω. Assume that f ∈ C 1 (R), f (t) > 0 for t > 0 and 2 N ≤ 11. Then, f (0) = 0 and u = 0.
Before stating our results on solutions which are merely stable outside a compact set, it will be useful to discuss the proof of Theorem 2, which relies on the following a priori estimate, recently established in [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF].

Theorem A ([6]). Let B 1 be the unit ball of R N , N 1. Assume that u ∈ C 2 (B 1 ) is a stable solution of -∆u = f (u) in B 1 ,
where f : R → R is locally Lipschitz and nonnegative. If N ≤ 9, then

(7) u C α (B 1/2 ) ≤ C u L 1 (B1) ,
where α ∈ (0, 1), C > 0 are dimensional constants.

Since the proof of Theorem 2 is very short, we provide it without further ado. Proof of Theorem 2.

Given R > 2, apply (7

) to u R (x) = u(Rx), leading to |u(x) -u(y)| ≤ CR -α |x -y| α B R |u| for x, y ∈ B R/2 .
Since u satisfies the lower bound (3), observe that

|u| = |u + C ln(2 + |x|) -C ln(2 + |x|)| ≤ |u + C ln(2 + |x|)| + |C ln(2 + |x|)| = u + 2C ln(2 + |x|).
So, recalling that u is superharmonic,

0 ≤ B R |u| ≤ B R u + 2C ln(2 + R) ≤ u(0) + 2C ln(2 + R) and so |u(x) -u(y)| ≤ CR -α |x -y| α (u(0) + 2C ln(2 + R)). Let R → +∞ to conclude that u(x) = u(y) for all x, y ∈ R N .
Remark 7. Since Theorem 2 fails for finite Morse index solutions, it follows from the proof above that the a priori estimate in Theorem A cannot hold either for such solutions.

As already observed in Remark 3, Theorems 1 and 2 fail for solutions with positive and finite Morse index. Nevertheless, we can prove radial symmetry and sharp asymptotic behavior at infinity of such solutions. More precisely, we have the following two results.

Theorem 8. Let u ∈ C 2 (R N ) be a solution of (8) -∆u = f (u) in R N ,
which is stable outside the ball B 1 and bounded below. Assume that f 0 is locally lipschitz continuous and

1 ≤ N ≤ 10. Then, i) if N = 1, 2, then u is constant.
ii) if 3 N 9, there exists a constant C > 0 depending on u and N only such that

(9) |u(x) -inf R N u| ≤ C|x| -N 2 - √ N -1+2 , for all x ∈ R N , |∇u| ∈ L 2 (R N ) and ˆRN \B R |∇u| 2 ≤ CR -2( √ N -1-1) , for all R > 2.
iii) if N = 10, for any ε > 0 (small enough) there exists a constant C ε > 0 depending on u, N and ε only such that

(10) |u(x) -inf R N u| C ε |x| -N 2 - √ N -1+2+ε , for all x ∈ R N , |∇u| ∈ L 2 (R N ) and ˆRN \B R |∇u| 2 ≤ C ε R -2( √ N -1-1)+ε , for all R > 2. Furthermore, f (inf R N u) = 0 and (u -inf R N u) ∈ L 2 * (R N ).
Remark 9.

-Clearly, Theorem 8 remains true for solutions stable outside a compact set.

-Theorem 8 complements some results established in [START_REF] Dupaigne | Stable solutions of -∆u = f (u) in R N[END_REF][START_REF] Farina | Some symmetry results and Liouville-type theorems for solutions to semilinear equations[END_REF]. It was already known to hold for any N ≥ 3 in the particular case where u is bounded and radial, see [START_REF]Dichotomy of stable radial solutions of -∆u = f (u) outside a ball[END_REF].

-Theorem 8 fails if N ≥ 12 for nonradial solutions. Indeed, if n ≥ 11, there exists a nontrivial bounded stable positive radial solution v for the nonlinearity f (v) = v p , p large, see [START_REF] Farina | On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF]. Then, the function u

(x , x N ) = v(x ) for (x , x N ) ∈ R n × R is a bounded stable positive solution (of the same problem) in dimension N = n + 1 ≥ 12. In addition, u → 0 as |x| → ∞ and ∇u ∈ L 2 (R N ).
-Whether Theorem 8 holds in dimension N = 11 is an open problem.

Theorem 10. Let u ∈ C 2 (R N ) be a solution of (1) which is stable outside a compact set and bounded below. Assume that f ∈ C 3,1 loc (R), f 0 and N 10. Then, u is radially symmetric about some point and radially decreasing (and radially strictly decreasing if u is not a constant).

Remark 11.

-The assumption f ∈ C 3,1 loc (R) is most likely technical. It is needed only at every zero of f . As follows from its proof, the theorem remains true if f ∈ C -Thanks to the result of [START_REF]Dichotomy of stable radial solutions of -∆u = f (u) outside a ball[END_REF], [START_REF] Dávila | Partial regularity of finite Morse index solutions to the Lane-Emden equation[END_REF] holds true for = 0, that is, optimal asymptotic bounds also hold in dimension N = 10.

Stable solutions

Let us prove Theorem 1.

Proof of Theorem 1.

We start by noting that, if u is a stable solution of (1) in R n , n 1, then the function v k := v k (x 1 , ..., x n , ..., x n+k ) := u(x 1 , ..., x n ) is a stable solution of (1) in R n+k for any k 1. Therefore, it is enough to prove the claim for solutions u in dimension N = 10.

Since u is superharmonic and bounded below, its spherical average ffl ∂B R u decreases to a limit ∈ R, as R → +∞. Replacing u by u -, we may assume from here on that [START_REF] Dancer | Some notes on the method of moving planes[END_REF] ∂B R u 0, as R → +∞ (note that u-is a bounded below stable solution of (1) with f replaced by the non negative nonlinearity f (• + ).)

We begin by proving the following lemma (which holds in any dimension) :

Lemma 1. ( 12 
) ˆBR |x| 2-N |∇u| 2 = o(ln R), as R → +∞.
Proof. According to Proposition 2.5 in [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF], the following H 1 -bound holds true

∇u L 2 (B1) ≤ C u L 1 (B2)
Applying the above to u R (x) = u(Rx) (as we may) yields ( 13)

ˆBR |∇u| 2 ≤ CR N -2 B 2R u 2 .
Here, we have used that ´∂Br u ≥ 0, thanks to [START_REF] Dancer | Some notes on the method of moving planes[END_REF]. Using polar coordinates and integration by parts, we find

ˆBR \B1 |x| 2-N |∇u| 2 = ˆR 1 r 2-N ˆ∂Br |∇u| 2 = r 2-N ˆBr |∇u| 2 r=R r=1 -(2 -N ) ˆR 1 r 1-N ˆBr |∇u| 2
Let us inspect each term in the right-hand side. Since u is superharmonic, ffl Br u ≤ u(0). By ( 13), we deduce that the first term is bounded. For the second term, either ´Br u is bounded and so

lim r→+∞ r -N ˆBr u = 0
or using L'Hôpital's rule and [START_REF] Dancer | Some notes on the method of moving planes[END_REF] we have, once again,

lim r→+∞ r -N ˆBr u = lim r→+∞ N -1 r 1-N ˆ∂Br u = 0
Hence, by [START_REF] Dipierro | Rigidity results in diffusion Markov triples[END_REF] and the above

r 1-N ˆBr |∇u| 2 ≤ C 1 r B2r u 2 = o(1/r), as r → +∞.
Hence,

ˆR 1 r 1-N ˆBr |∇u| 2 = o ˆR 1 1 r = o(ln R),
and the lemma follows since ´B1 |x| 2-N |∇u| 2 is bounded.

Next, we use inequality 6 (2.2) in [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF], which, up to rescaling, reads as follows : for all

ζ ∈ C 0,1 c (R N ), if 2 ≤ N ≤ 10, there holds 0 ≤ ˆ-2|x| 2-N |∇u| 2 ζ(x • ∇ζ) + ˆ4|x| 2-N (x • ∇u)ζ∇u • ∇ζ+ ˆ(2 -N )|x| -N |x • ∇u| 2 ζ(x • ∇ζ) + ˆ|x| 2-N |x • ∇u| 2 |∇ζ| 2
In particular, if ζ is radial and r = |x|, the above inequality reduces to

2 ˆr2-N |∇u| 2 ζrζ ≤ ˆr2-N ∂u ∂r 2 rζ {(6 -N )ζ + rζ } 6.
This inequality is derived by computing the second variation of energy along dilations, similarly yet differently from what can be done in Pohozaev's identity or certain monotonicity formulae.

Choose

ζ as follows. Given R > R 1 > 2, r ∈ R + , ζ(r) =                r 4 in [0, R 1 ), R 4 1 in [R 1 , R) R 4 1 ln r R 2 ln 1 R in [R, R 2 ), 0 otherwise Since N = 10, we have that rζ {(6 -N )ζ + rζ } = 0 in [0, R],
which leads us to an inequality of the form

8 ˆBR 1 |∇u| 2 ≤ CR 8 1 ˆBR 2 \B R |x| 2-N |∇u| 2 (ln R) -1 + (ln R) -2
Applying Lemma 1 and letting R → +∞, we arrive at

ˆBR 1 |∇u| 2 = 0.
Letting R 1 → +∞, we deduce that u is constant.

Proof of Theorem 4. Since f (0) 0 and u is bounded, we have that ∂u ∂x N > 0 on R N + (see [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbouded domains[END_REF], [START_REF] Dancer | Some notes on the method of moving planes[END_REF]). Therefore ∂u ∂x N is a positive solution of the linearized equation -∆w -f (u)w = 0 on R N + and so u is a stable solution of -∆w = f (w) on R N + (see for instance [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature[END_REF][START_REF] Moss | Positive solutions of elliptic equations[END_REF]). The boundedness of u, standard elliptic estimates and the monotonicity of u with respect to the variable x N , imply that the function v(x 1 , ..., x N -1 ) := lim

x N →+∞ u(x) satisfies (14)      v ∈ C 2 (R N -1 ) ∩ L ∞ (R N -1 ), -∆v = f (v) in R N -1 , v 0 in R N -1 .
In addition v is a stable solution of the above problem (see for instance [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi[END_REF][START_REF] Berestycki | Further qualitative properties for elliptic equations in unbouded domains[END_REF]). Here we have used the continuity of f . If f satisfies 1. we can apply Theorem 1 to [START_REF] Dupaigne | Stable solutions of elliptic partial differential equations[END_REF] to infer that v ≡ c = const. Here we have used that N -1 ≤ 9. The equation then yields f (c) = 0. To conclude we observe that ∂u ∂x N > 0 on R N

+ implies sup R N + u = sup R N v (= c
) and so f (sup R N + u) = 0. The one-dimensional symmetry of u is then a consequence of Theorem 1 in [START_REF] Berestycki | Symmetry for elliptic equations in the halfspace[END_REF].

When 2. is in force, we observe that u(x) ≤ z for any x ∈ R N + , thanks to Lemma 2.4 in [START_REF] Farina | Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems[END_REF]. The latter and the definition of v imply that v(x) ≤ z for any x ∈ R N + and sup

R N + u = sup R N v z. As before, to conclude, it is enough to prove that f (sup R N + v) = 0. If sup R N + v = z we are done since f (sup R N + v) = f (z) = 0. If sup R N + v < z, then v is a stable solution of (15) v ∈ C 2 (R N -1 ) ∩ L ∞ (R N -1 ), -∆v = g(v) in R N -1 ,
where g is any nonnegative function of class C 1 (R, R) which coincide with f on (-∞, β), for a fixed β ∈ (sup R N + v, z). Therefore an application of Theorem 1 to (15) yields v ≡ c = const. and so

f (c) = 0. Hence f (sup R N + u) = f (sup R N v) = f (c) = 0, which concludes the proof.
Proof of Theorem 5. By proceeding as in the first part of the proof of Theorem 2 in [START_REF] Dancer | Stable and finite Morse index solutions on R n or on bounded domains with small diffusion[END_REF] we get that the even extension of u to R N is a bounded below stable solution of (1) in R N , N 10. This function must be constant by Theorem 1. The latter implies the desired conclusion.

Proof of Theorem 6. Assume by contradiction that u > 0 in Ω. According to [START_REF] Berestycki | Monotonicity for elliptic equations in an unbounded Lipschitz domain[END_REF] (see also [START_REF] Esteban | Existence and nonexistence results for semilinear elliptic problems in unbounded domains[END_REF] for a prior result concerning smooth epigraphs) u is monotone. Therefore u is a stable solution and working as in the proof of Theorem 4, we deduce that v(x 1 , ..., x N -1 ) := lim

x N →+∞ u(x)
is a positive stable solution of -∆u = f (u) in R N -1 , with N -1 10, and so it must be constant by Theorem 1. But this is in contradiction with f (t) > 0 for t > 0. Hence u must vanish somewhere in Ω and so it must be identically zero by the strong maximum principle. The latter then implies that f (0) = 0.

Solutions which are stable outside a compact set

Proof of Theorem 8. If N 2 the solution u must be constant since it is bounded and superharmonic. We may therefore suppose that N 3.

We begin by adapting Lemma 1 to solutions which are stable outside a compact set.

Lemma 2. Assume that N ≥ 3 and that u is a solution which is stable outside a compact set. Then,

ˆBR |x| 2-N |∇u| 2 = o(ln R), as R → +∞. (16) 
Proof. Assume without loss of generality that [START_REF] Dancer | Some notes on the method of moving planes[END_REF] holds and that R = 2 n for some n ∈ N * . Then,

ˆBR \B2 |∇u| 2 = ˆB2 n \B2 |∇u| 2 = n k=2 ˆB2 k \B 2 k-1 |∇u| 2 . Given k ∈ {2, . . . , n}, let v(x) = u(2 k-1 x), x ∈ R N \ B 2 -(k-1) . Then, v is stable outside the ball of radius B 2 -(k-1) and ˆB2 k \B 2 k-1 |∇u| 2 = 2 (k-1)(N -2) ˆB2\B1 |∇v| 2
The annulus B 2 \ B 1 can be covered by finitely many balls of radius 1 2 . On each of these balls, v is stable. Applying Proposition 2.5 in [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF], we deduce that

ˆB2\B1 |∇v| 2 ≤ C ˆB4\B1/2 |v| = C B 2 k+1 \B 2 k-2 u = o(1) as k → +∞,
where we used [START_REF] Dancer | Some notes on the method of moving planes[END_REF] for the last equality. So,

(17) ˆBR \B2 |∇u| 2 ≤ C n k=2 o(2 (k-1)(N -2) ) = o(R N -2 ) as R = 2 n → +∞.
Integrate by parts ´BR \B1 |x| 2-N |∇u| 2 exactly as in the proof of Lemma 1 and ( 16) follows.

Next, we prove that ∇u ∈ L 2 (R N ). Assume that 3 ≤ N ≤ 9. According to Lemma 2.1, inequality (2.2) in [START_REF] Cabré | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF], for all ζ ∈ C 0,1 c (R N ), ζ radial with support outside the ball of radius 1, there holds

(18) (N -2)(10 -N ) 4 ˆRN r 2-N ∂u ∂r 2 ζ 2 ≤ ≤ -2 ˆRN r 2-N |∇u| 2 ζrζ + ˆRN r 2-N ∂u ∂r 2 rζ {(6 -N )ζ + rζ }
By analogy with a strategy found in [START_REF]Dichotomy of stable radial solutions of -∆u = f (u) outside a ball[END_REF], we choose ζ as follows. Fix R 2 > R > 2 and

(19) α = N 2 + √ N -1 -2. Given r ∈ R + , let ζ(r) =                      2 α (r -1) in [1, 2), r α in [2, R) R α in [R, R 2 ) R α ln r R 2 2 ln 1 R2 in [R 2 , R 2 
2 ), 0 otherwise All integral terms in [START_REF] Farina | Rigidity and one-dimensional symmetry for semilinear elliptic equations in the whole of R N and in half spaces[END_REF] in the region [1 ≤ |x| ≤ 2] are controlled by a constant C depending on u and N only. For the region [2 ≤ |x| ≤ R], our choice of α leads to the cancellation of all terms involving the radial derivative of u, so that all remains is the negative term (in the right-hand side)

-2α ˆBR \B2 r 2-N +2α |∇ T u| 2 ,
where we denoted the tangential part of the gradient by ∇ T u = ∇u -∂u ∂r e r , e r = x/|x|. In the region [R, R 2 ), all terms disappear except the left-hand side :

R 2α (N -2)(10 -N ) 4 ˆBR 2 \B R r 2-N ∂u ∂r 2
Finally, in the region

[R 2 ≤ |x| ≤ R 2 2 ]
, all terms can be bounded above by a constant

C = C(R, N ) times ˆBR 2 2 \B R 2 |x| 2-N |∇u| 2 (ln R 2 ) -1 + (ln R 2 ) -2 .
This quantity converges to 0 as R 2 → +∞, thanks to Lemma 2. So, in the limit R 2 → +∞, inequality (18) reduces to

(N -2)(10 -N ) 4 R 2α ˆRN \B R |x| 2-N ∂u ∂r 2 + 2α ˆBR \B2 |x| 2-N +2α |∇ T u| 2 ≤ C.
The above inequality being true for all R > 2, we readily deduce that for 3

≤ N ≤ 9, (20) 
ˆB2R \B R |∇u| 2 ≤ CR -(2-N +2α)
When N = 10, we only have

ˆB2R \B R |∇ T u| 2 ≤ CR -(2-N +2α)
However, replacing α by α = α -, > 0 small, in the definition of ζ leads to an inequality of the form

ˆB2R \B R |∇u| 2 ≤ C R -(2-N +2α ) , Note that 2 -N + 2α = 2( √ N -1 -1) > 0 for N ≥ 3.
So, applying this inequality with 2 k R, k ∈ N, in place of R and summing over k implies that ∇u ∈ L 2 (R N ) and ( 21)

ˆRN \B R |∇u| 2 ≤ CR -2( √ N -1-1) , if 3 ≤ N ≤ 9 (and ∇u ∈ L 2 (R N ) and ´RN \B R |∇u| 2 ≤ C ε R -2( √ N -1-1)+ if N = 10).
Next, fix a point x ∈ R N \ B 2 and let R = |x|/2. Take another point y ∈ ∂B(x, r), r ≤ R, and apply the fundamental theorem of calculus :

|u(x) -u(y)| ≤ ˆ1 0 d dt u(x + t(y -x)) dt ≤ r ˆ1 0 |∇u(x + t(y -x))| dt
Integrating over ∂B(x, r), we deduce that ˆ∂B(x,r) |u(x) -u(y)| dσ(y) ≤ ˆB(x,r) |∇u| ≤

ˆB(x,R) |∇u|

Integrating once more in r ∈ (0, R), using Cauchy-Schwarz and applying at last [START_REF] Farina | Some symmetry results and Liouville-type theorems for solutions to semilinear equations[END_REF], for 3 N 9 we get ( 22)

B(x,R) |u(x) -u(y)| dy ≤ CR 1-N ˆB(x,R) |∇u| ≤ CR 1-N/2 ˆB(x,R) |∇u| 2 1 2 ≤ CR 1-N/2 ˆB(0,3R)\B(0,R) |∇u| 2 1 2 ≤ CR -N 2 - √ N -1+2 ,
(for N = 10 the latter is replaced by

C ε R -2( √ N -1-1)+
). We may draw two conclusions from the above inequality. Firstly,

lim |x|→+∞ u(x) = 0.
Recalling that u is superharmonic, we have indeed

u(x) ≤ B(x,R) |u(x) -u(y)| dy + B(x,R) u ≤ CR -N 2 - √ N -1+2 + C B(0,3R) u(y) dy ≤ CR -N 2 - √ N -1+2 + Cu(0) ≤ C.
So, u is bounded. By elliptic regularity, so is ∇u. We also know that ∇u ∈ L 2 (R N ), whence u -ξ ∈ L 2 * (R N ), for some ξ ∈ R, thanks to Theorem 1.78 of [START_REF] Malý | Fine regularity of solutions of elliptic partial differential equations[END_REF]. The proof of this result also implies that ξ = lim j→∞ ffl B(0,2 j ) u and so ξ = 0 by (11) (as already seen in the proof of Lemma 1.) Therefore, u ∈ L 2 * (R N ) and thus u 2 * is integrable and globally Lipschitz on R N . This clearly implies that lim |x|→+∞ u(x) = 0.

Secondly, similarly to ( 22), we have for 3 ≤ N ≤ 9

B(2x,R) |u(2x) -u(y)| dy ≤ CR -N 2 - √ N -1+2 and B( 3 2 x,2R) u 3 2 x -u(y) dy ≤ CR -N 2 - √ N -1+2 .
Using the notation u z,r = ffl B(z,r) u for the average of u on a given ball B(z, r), it follows that

|u(x) -u(2x)| ≤ |u(x) -u x,R | + u x,R -u 3 2 x + u 3 2 x -u 2x,R + |u 2x,R -u(2x)| ≤ CR -N 2 - √ N -1+2 + B(x,R) u 3 2 x -u(y) dy + B(2x,R) u 3 2
x -u(y) dy

≤ CR -N 2 - √ N -1+2 + C B( 3 2 x,2R) u 3 2 x -u(y) dy ≤ C|x| -N 2 - √ N -1+2
Applying the above inequality to 2 k x, k ∈ N, in place of x and summing over k, we deduce that the sequence (u k ) defined by

u k (x) = u(2 k x), converges in C 0 loc (R N \ B 2 ) to a limit v as k → +∞ and |u(x) -v(x)| ≤ C|x| -N 2 - √ N -1+2 if 3 N 9, (resp. |u(x) -v(x)| ≤ C ε |x| -N 2 - √ N -1+2+ε if N = 10). Since lim |x|→+∞ u(x) = 0 we necessarily have that v ≡ 0 and so |u(x)| ≤ C|x| -N 2 - √ N -1+2 if 3 N 9, (resp. |u(x)| ≤ C ε |x| -N 2 - √ N -1+2+ε if N = 10
). In order to establish ( 9) and [START_REF] Dávila | Partial regularity of finite Morse index solutions to the Lane-Emden equation[END_REF], it remains to prove that inf R N u = 0. We consider a sequence (x n ) such that u(x n ) → inf R N u. Then, either |x n | → +∞ or (x n ) posseses a bounded subsequence (still called (x n )) such that x n → x. In the first case we clearly have inf R N u = 0, while in the second case we get that u(x) = inf R N u and so the nonnegative subharmonic function v := u-u(x) vanishes at x. Therefore v must be zero by the strong maximum principle which, in turn, yields that u ≡ inf R N u = lim |x|→+∞ u(x) = 0.

Proof of Theorem 10.

If N 2, u is constant by Theorem 8 and so we are done. When N 3 we can assume that u is not constant (otherwise the claim is trivially true). As before, up to replacing u by u -inf R N u, we may and do suppose that inf R N u = 0 and so u > 0 in R N by the strong maximum principle. Also, thanks to the asymptotics of Theorem 8 we have

(23)      u ∈ L N 2 (R N ) if N 5, u 2 ∈ L N 2 (R N ) if N = 4, u 3 ∈ L N 2 (R N ) if N = 3.
Moreover, since f 0 by assumption and f (0) = 0 by Theorem 8, we must have f (0) = 0 and f (0) 0. We also observe that in dimension N = 3, 4 we must have

f (0) = f (0) = 0. Indeed, if f (0) > 0, then lim inf t→0 + f (t) t N N -2
∈ (0, +∞] and Theorem 3.5 of [START_REF] Mitidieri | A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities[END_REF] implies that u must be identically zero, in contradiction with u > 0. Thus, f (0) = 0 and so f (0) = 0 (again by f 0). In particular we have [START_REF] Farina | Monotonicity and symmetry of nonnegative solutions to -∆u = f (u) in half-planes and strips[END_REF] ∀ t ∈ [0, max

R N u] |f (t)|      Ct if N 5, Ct 2 if N = 4, Ct 3 if N = 3,
where C > 0 is a constant depending only on f . We are now ready to apply the moving planes method. Given λ ∈ R, set Σ λ = {(x 1 , x ) ∈ R N : x 1 < λ} and for x ∈ Σ λ , let as usual x λ = (2λ -x 1 , x ), u λ (x) = u(x λ ) and w λ = u λ -u. Since u > 0 and lim |x|→+∞ u(x) = 0 we may and do suppose that (up to translation) u(0) = max R N u > 0 and then we prove that u ≡ u 0 in Σ 0 . Since the coordinate axis x 1 can be chosen arbitrarily, we will then conclude that u is radially symmetric about the origin. That u is radially strictly decreasing is also a standard consequence of the moving planes procedure and the strong maximum principle. This will provide the desired result.

We claim that w λ ≥ 0 in Σ λ if λ ≤ -K for some K > 0. Indeed we have that

(25) -∆w λ = f (u λ ) -f (u) = a λ w λ in Σ λ , where (26) 
a λ := f (u λ )-f (u) u λ -u if u -u λ > 0, 0 if u -u λ 0, belongs to L N/2 (Σ λ ).
To see this we observe that, by the mean value theorem, for every x ∈ Σ λ we have

|a λ (x)| = |f (ξ(x, λ))|1 {u-u λ >0} (x)
, where ξ(x, λ) ∈ (u λ (x), u(x)). Combining the latter with (24) we get ( 27)

|a λ |      Cu if N 5, Cu 2 if N = 4, on Σ λ Cu 3 if N = 3,
where C > 0 is a constant depending only on f . The latter and ( 23) imply a λ ∈ L N/2 (Σ λ ) for any λ. Therefore, given any ε > 0 we can find K > 0 such that a λ L N/2 (Σ λ ) < , for any λ -K. Let χ R (x) = χ(x/R) be a standard cut-off function, with R > 1. Multiplying (25) by w - λ χ 2 R , integrating by parts and making use of Sobolev's inequality we find

ˆΣλ |w - λ χ R | 2 * 2/2 * ≤ C ˆΣλ |∇[w - λ χ R ]| 2 ≤ C ˆΣλ (w - λ ) 2 |∇χ R | 2 + a λ L N/2 (Σ λ ) ˆΣλ |w - λ χ R | 2 * 2/2 *
Letting R → +∞ and then choosing a λ L N/2 (Σ λ ∩[u>u λ ]) < small enough, we deduce that (w λ ) -≡ 0 as claimed. Here we also used that (w

- λ ) 2 ∈ L N N -2 (R N ) to show that ´Σλ (w - λ ) 2 |∇χ R | 2 → 0 as R → ∞ (recall that u ∈ L 2 * (R N ) by Theorem 8).
Let us now finish the moving planes method by setting λ 0 := sup{λ < 0 : w t ≥ 0 in Σ t ∀t λ }.

To conclude the proof it is enough to prove that λ 0 = 0. We argue by contradiction and suppose that λ 0 < 0. By continuity, w λ0 ≥ 0 in Σ λ0 . By the strong maximum principle we deduce that either w λ0 > 0 in Σ λ0 or w λ0 ≡ 0 in Σ λ0 . The latter is not possible if λ 0 < 0 since in this case we would have u(2λ 0 , 0 ) = u(0) = max R N u > 0 and so w λ ≡ 0 in Σ λ for any λ ∈ [2λ 0 , λ 0 ] by the strong maximum principle and the Hopf lemma. By repeating (infinitely many times) the previous argument we would find u(s, 0 ) = u(0) = max R N u > 0 for any s < λ 0 , contradicting thus the assumption lim |x|→+∞ u(x) = 0. Therefore w λ0 > 0 in Σ λ0 . Now we achieve a contradiction by proving the existence of τ 0 > 0 such that for any 0 < τ < τ 0 we have w λ0+τ 0 in Σ λ0+τ .

To this end we are going to show that, for every δ > 0 there are τ 0 > 0 and a compact set K ⊂ Σ λ0 (both depending on δ and λ 0 ) such that [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature[END_REF] a λ L N/2 (Σ λ \K) < δ, w λ > 0 in K, ∀ λ ∈ [λ 0 , λ 0 + τ 0 ].

We prove this for N 5 (the case N = 3, 4 is obtained in the same way by using ( 23) and ( 27) for N = 3, 4). First pick a compact set K ⊂ Σ λ0 such that ´Σλ 0 \K (Cu)

N 2 < ( δ 2 ) N 2
and then fix a

τ 1 = τ 1 (δ, λ 0 ) > 0 such that ´Σλ\λ 0 (Cu) N 2 < ( δ 2 )
N 2 for every λ ∈ [λ 0 , λ 0 + τ 1 ], where C is the constant appearing in (27) (this choice is clearly possible in view of ( 23)). Combining these information with [START_REF] Farina | The state of the art for a conjecture of De Giorgi and related problems[END_REF] we obtain that a λ L N/2 (Σ λ \K) < δ for any λ ∈ [λ 0 , λ 0 + τ 1 ]. Then, the uniform continuity of the function u(2λ -x 1 , x ) -u(x) on the compact set K × [λ 0 , λ 0 + τ 1 ] and the fact that w λ0 > 0 in Σ λ0 ensure that u λ0+τ -u > 0 in K for any 0 ≤ τ < τ 2 , for some τ 2 = τ 2 (δ, λ 0 ) < τ 1 . Hence, (28) holds true with τ 0 ∈ (0, τ 2 ).

As before, we multiply the equation ( 25) by w - λ χ 2 R , we integrate by parts and use Sobolev's inequality to get

ˆΣλ |w - λ χ R | 2 * 2/2 * ≤ C 2 S ˆΣλ |∇[w - λ χ R ]| 2 ≤ C 2 S ˆΣλ (w - λ ) 2 |∇χ R | 2 + a λ L N/2 (Σ λ ) ˆΣλ |w - λ χ R | 2 * 2/2 *
which, in view of (28) with δ = 1 2C 2

S

, gives for every λ ∈ [λ 0 , λ 0 + τ 0 ],

ˆΣλ \K |w - λ χ R | 2 * 2/2 * ≤ C 2 S    ˆΣλ \K (w - λ ) 2 |∇χ R | 2 + a λ L N/2 (Σ λ ) ˆΣλ \K |w - λ χ R | 2 * 2/2 *    ≤ C 2 S ˆΣλ \K (w - λ ) 2 |∇χ R | 2 + 1 2 ˆΣλ \K |w - λ χ R | 2 * 2/2 * . Then ˆΣλ \K |w - λ χ R | 2 * 2/2 * ≤ 2C 2 S ˆΣλ \K (w - λ ) 2 |∇χ R | 2 → 0 when R → ∞,
since u ∈ L 2 * (R N ). Therefore, ´Σλ \K |w - λ | 2 * = 0 and so w λ 0 in Σ λ , for every λ ∈ [λ 0 , λ 0 + τ 0 ]. This contradicts the definition of λ 0 and so λ 0 = 0 which, in turn, yields u u 0 in Σ 0 . Now we can apply the same procedure to the function v(x) := u(-x 1 , x )(= u 0 (x)) to find that v ≤ v 0 in Σ 0 , i.e., u 0 u in Σ 0 . This proves that u 0 ≡ u on Σ 0 and concludes the proof.

Références

  1,1 loc (R) and 5 ≤ N ≤ 10 and if f ∈ C 2,1 loc (R) and N = 4. -Whether the result remains true in dimension N = 11 is an open problem, even for the nonlinearity f (u) = u p , p large. However, the positive cylindrical solution mentioned in Remark 9 shows that Theorem 10 fails in dimension N ≥ 12. Working similarly with the exponential nonlinearity, Theorem 10 also fails in dimension N ≥ 11 under the weaker lower-bound (3).