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Quantum control of reactive systems has enabled microscopic probes of un-

derlying interaction potentials, the opening of novel reaction pathways, and the

alteration of reaction rates using quantum statistics. However, extending such

control to the quantum states of reaction outcomes remains challenging. In this

work, we realize this goal through the nuclear spin degree of freedom, a result

which relies on the conservation of nuclear spins throughout the reaction. Us-

ing resonance-enhanced multiphoton ionization spectroscopy to investigate the

products formed in bimolecular reactions between ultracold KRb molecules,

we find that the system retains a near-perfect memory of the reactants nuclear

spins, manifested as a strong parity preference for the rotational states of the

products. We leverage this effect to alter the occupation of these product states

by changing the superposition of initial nuclear spin states with an external

magnetic field. The techniques demonstrated here open up the possibility to

study ultracold reaction dynamics at the state-to-state level as well as quantum

entanglement between reaction products.
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Controlling reactions between molecules at the level of individual quantum states is a

long-standing goal in chemistry and physics [1]. Recent advancements in cold and ultracold

techniques granted control over all molecular degrees of freedom, including electronic, ro-

tation, vibration, nuclear spin, and partial waves of scattering [2, 3]. This has enabled the

understanding and manipulation of chemical reactions free from thermal ensemble averaging

[4–6]. In particular, the preparation of cold reactants in single quantum states has facilitated

studies of scattering resonances which probe interaction potentials with exceptional resolu-

tion [7–10], efficient steering of reactive pathways to form selected product species [11, 12],

and modification of long-range interactions to dramatically alter the overall rates of reac-

tions [13–17]. While these results have improved our fundamental understanding of chemical

processes, gaining control over the quantum states in which reaction products are formed is

a next milestone [18]. Despite much experimental effort, the ability to detect, let alone exert

control over, the quantum states of product species in these cold and ultracold reactions has

remained challenging.

A fundamental factor standing in the way of product control in low-temperature reactions is

the fact that they are typically barrierless, and proceed through the formation of intermediate

complexes [19], which can live for a duration significantly longer than the characteristic

rovibrational timescale of the system. As a result, the energy of the complex is expected

to be well-mixed into its various degrees of freedom, leading to a statistical distribution

of the reaction products in which the effect of the reactant state preparation is strongly

suppressed [20]. One notable exception to this behavior, however, is that spins of the nuclei

involved tend to remain unchanged throughout reactions [21, 22]. This phenomenon has

been observed in both complex-forming [23–25] and direct [26] bimolecular reactions, as well

as in photodissociations [27–29], and was attributed to weak coupling between nuclear spins

and other degrees of freedom. As such, nuclear spins provide a promising handle via which

control over ultracold reactions can be exerted.

Previous studies on the behavior of nuclear spins have focused on reactions involving

hydrogen-containing species, due largely to their relevance in astrochemical processes. The

results of these studies helped establish the well-accepted rule of nuclear spin conservation

in chemical reactions [22]. Ultracold reactions, on the other hand, display unique charac-

teristics that may challenge the robustness of this rule. Specifically, nuclei involved in these

reactions can possess spins many times higher than those found in prior works, which were

protons with spin of 1/2. This can result in stronger couplings between the spins and other
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FIG. 1. Testing the conservation of nuclear spins in bimolecular reactions between ultracold KRb

molecules using REMPI spectroscopy. (a) Schematic illustration of the conservation of nuclear spin throughout

the reaction KRb + KRb → K2Rb∗2 → K2 + Rb2 at B = 30 G. In this case, the initial reactant nuclear spin states

mK
i = −4 and mRb

i = 1/2 are inherited by the product nuclei, resulting in symmetric product nuclear spin states.

Due to the exchange symmetry of the identical bosonic (fermionic) nuclei of K2 (Rb2), their rotational states are

restricted to even (odd) parity. (b) The REMPI scheme used to identify rovibrational states of products. K2 and Rb2

molecules are state-selectively photoionized from the initial quantum state, X1Σ+
g (v = 0, N), via an intermediate

state, B1Πu(v′, N ′). Here, v and v′ are vibrational quantum numbers; N and N ′ are rotational quantum numbers.

(c) Timing diagram for product ionization and detection. The optical trap confining the reactant KRb molecules is

square-wave modulated at 7 kHz. During the dark phase of the modulation, K2 and Rb2 products are generated by

the reaction, ionized using REMPI, and detected by ion mass spectrometry. The sequence is repeated for a duration

of 1 s, until all reactants in the trap are depleted.

degrees of freedom. Furthermore, the intermediate complex involved in these reactions can

be exceptionally long-lived [30, 31], which provides more time for these couplings to alter

the spins. Thus, the behavior of nuclear spins in ultracold reactions is an open question

and remains to be experimentally examined. In prior studies, such examinations were car-

ried out in systems involving cascaded reactions, using reactants with statistically mixed

nuclear spins. Ultracold molecules, in contrast, can be prepared in single nuclear spin states,

and react via single collisions. Hence, they provide a unique platform to cleanly test the
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conservation of nuclear spins.

In this study, we show that nuclear spins are conserved throughout the ultracold reaction

40K87Rb+40K87Rb → K2Rb∗2 → 40K2+
87Rb2 (Fig. 1(a)), where the K and Rb nuclei have

high nuclear spins of 4 and 3/2, respectively, and the intermediate complex K2Rb∗2 has a long

lifetime of 360(30) ns [32]. Because the products are homonuclear diatomic molecules, by

the exchange symmetry of identical particles, their rotational states are correlated to their

nuclear spin states [33]. Using resonance-enhanced multiphoton ionization (REMPI) spec-

troscopy to probe the rotational states of the products, we find K2 molecules predominantly

in even-parity rotational states (NK2 = 0, 2, · · · , 12) and Rb2 in odd (NRb2 = 1, 3, · · · , 19),

consistent with nuclear spin conservation. Utilizing this conservation, we demonstrate a

technique to continuously alter the state distributions of the products by changing the su-

perposition state of the reactant nuclear spins with an applied magnetic field. We model

this behavior as a projection of the spin state of the reactant nuclei onto the symmetric or

antisymmetric spin states of the product nuclei.

Our experiment begins with a trapped gas of X1Σ+(v = 0, NKRb = 0) ground-state KRb

molecules prepared in a single hyperfine state. Here v and N are vibrational and rota-

tional quantum numbers, respectively. In each experimental cycle, we typically prepare 104

molecules in a crossed optical dipole trap with a temperature of 500 nK and a peak density of

1012 cm−3. Details of the apparatus regarding the production and detection of the gas were

reported elsewhere [34]. In the presence of a sufficiently large magnetic bias field (B > 20

G), the spins of the K and Rb nuclei are decoupled from one another, and the hyperfine

state of the molecules can be written as |iK = 4, iRb = 3/2,mK
i = −4,mRb

i = 1/2〉, where i

and mi are the nuclear spins and their projections along the bias field, respectively [35, 36].

Once prepared, the molecules undergo the exchange reaction

2KRb(v = 0, NKRb = 0)→ 40K2(v = 0, NK2) + 87Rb2(v = 0, NRb2), (1)

for which the product species were previously confirmed by combining single-photon ioniza-

tion and ion mass spectrometry [37]. Here, using state-controlled reactants at B = 30 G, we

investigate the conservation of nuclear spins throughout this reaction.

While directly probing the nuclear spin states of products is challenging due to their small

energy splitting, we can infer this information from the parity of their rotational states.

For homonuclear diatomic molecules such as K2 and Rb2, nuclear spin and rotation are

linked by the exchange symmetry of identical particles [33]. In 40K2, where the nuclei are

bosonic, spin states that are symmetric under the exchange of nuclei require rotational states
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FIG. 2. REMPI spectrum for 40K2 product molecules. By scanning the 648 nm laser frequency to search for

rotational lines within the X1Σ+
g (v = 0, NK2)→ B1Πu(v′ = 1, N ′K2

) vibronic band, we observe strong K+
2 signals at

frequencies corresponding to rotational states with even values of NK2 , and highly suppressed signals for odd values.

The ion count for each data point is normalized by the corresponding number of experimental cycles (∼ 16); the error

bars denote shot noise. For NK2 > 0 we drive transitions with N ′K2
−NK2 = 0 (Q branch), whereas for NK2 = 0, we

drive the only allowed transition, with N ′K2
−NK2 = 1 (R branch). Blue dashed lines indicate the predicted transition

frequencies. The relatively strong asymmetric signal associated with NK2 = 5 is due to a nearby NK2 = 2→ N ′K2
= 1

(P branch) transition at 462925.68 GHz. We do not observe any signals at frequencies corresponding to states with

NK2 > 12. Gaussian fits (red curves) are applied to each signal peak, yielding a typical spectral linewidth (1σ) of

∼ 50 MHz. (Inset) Lineshape for the transition NK2 = 6→ N ′K2
= 6; the Gaussian width is σ = 46± 4 MHz.

with even parity, while those that are antisymmetric require odd parity. In 87Rb2, where

the nuclei are fermionic, this symmetry-parity correspondence is switched. Therefore, if

nuclear spins are conserved over the reaction, K2 and Rb2 will have symmetric spin states

|iK = 4, iK = 4,mK
i = −4,mK

i = −4〉 and |iRb = 3/2, iRb = 3/2,mRb
i = 1/2,mRb

i = 1/2〉,
respectively, allowing only even rotational states of K2 and odd rotational states of Rb2 to

be occupied. This outcome is easily distinguishable from that where the nuclear spin states

are statistically occupied. In this case, the population ratio between even and odd rotational

states would be 5/4 for K2 and 3/5 for Rb2, as determined by the numbers of symmetric

and antisymmetric spin states in each molecule [33].

To detect the product rotational states, we use a 1 + 1′ REMPI technique, which con-
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sists of an initial single-photon bound-to-bound transition from the electronic and vi-

brational ground-state X1Σ+
g (v = 0, N) to an electronically excited intermediate-state

B1Πu(v′, N ′), followed by a single-photon bound-to-continuum transition that ionizes the

molecules (Fig. 1(b)). We drive the bound-to-bound transition using a frequency-tunable

laser operating around 648 nm for the detection of K2 and 674 nm for Rb2. The bound-to-

continuum transition is excited by a 532 nm pulsed laser for both product species. Figure

1(c) shows the timing diagram for product ionization and detection. Because the trap light

can alter the outcome of the reaction [32], we apply a 7 kHz square wave modulation to its

intensity, and probe the products during the dark phases of the modulation using REMPI

pulses and ion mass spectrometry. In each cycle, ion signals are recorded until all the KRb

reactants in the sample are depleted (∼ 1 s). To avoid photoexcitation of the KRb molecules

by the REMPI lasers [38, 39], we shape the beams to have dark spots centered on the

trapped sample (Fig. S1). Products, on the other hand, escape the trap because of their

significant translational energies, and a reasonable portion (∼ 30%) of them are illuminated

by the REMPI beams before they leave the detection region.

To identify the occupied rotational states of the products, we scan the 648/674 nm laser

frequency to search for resonances around the ∆N = N ′ − N = 0 (Q branch) transitions,

and compare our measurements with theoretical calculations based on molecular potentials

fitted by prior spectroscopic data [40–44]. The results are shown in Fig. 2 for K2 and Fig. 3

for Rb2. We observe resonant signals corresponding to the states N = 0 − 12 for K2 and

0 − 19 for Rb2, at frequencies that match the predicted values to within our measurement

precision. The spectral widths of these resonances (insets) arise from the natural linewidth,

the laser frequency uncertainty, and the Doppler width (see SM). We also search for states

beyond NK2 = 12 and NRb2 = 19, which are energetically forbidden based on the calculated

reaction exothermicity of 9.54 cm−1 [45], and find their populations to be consistent with

zero. Among those that are energetically accessible, we find populations predominantly in the

even states of K2 and odd states of Rb2. This significantly deviates from statistical behavior,

and provides direct evidence for the conservation of nuclear spins in a reaction involving

high-spin nuclei and a long-lived intermediate complex. We note that the amplitudes of

the resonances in Figs. 2 and 3 are not yet sufficient to directly reconstruct the intrinsic

product state distribution governed by the reaction dynamics, due to uncertainties in the

state-dependent ionization efficiencies.

Given the strong rotational parity preference exhibited by a simple hyperfine state of the
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FIG. 3. REMPI spectrum for 87Rb2 product molecules. The frequency of the 674 nm laser is scanned within

the X1Σ+
g (v = 0, NRb2) → B1Πu(v′ = 4, N ′Rb2

) vibronic band. We observe strong Rb+
2 signals for transitions from

odd rotational states, and highly suppressed signals from even ones. The ion count for each data point is normalized

by the corresponding number of experimental cycles (∼ 16); the error bars denote shot noise. We drive Q branch

transitions for NRb2 > 0, and R branch for NRb2 = 0. Blue dashed lines indicate the predicted transition frequencies.

The relatively strong asymmetric signal associated with NRb2 = 6 is due to a nearby NRb2 = 15 → N ′Rb2
= 16 (R

branch) transition at 445032.31 GHz, while that with NRb2 = 2 is due to a NRb2 = 13 → N ′Rb2
= 14 (R branch)

transition at 445035.30 GHz. We do not observe any signals at frequencies corresponding to states with NRb2 > 19.

Gaussian fits (black curves) are applied to each signal peak, yielding a typical spectral linewidth (1σ) of ∼ 40 MHz.

(Inset) Lineshape for the transition NRb2 = 13→ N ′Rb2
= 13; the Gaussian width is σ = 43± 3 MHz.

reactants, one can consider how such conservation manifests itself for a more general form of

the state. To explore this, we adjust the spin superposition of the KRb reactants by tuning

the bias field. After initializing the molecules in the state |4, 3/2,−4, 1/2〉, we adiabatically

ramp the field to a final value B, where the nuclear spin state of reactants takes the form,

ψKRb = α

∣∣∣∣4, 3

2
,−4,

1

2

〉
+ β

∣∣∣∣4, 3

2
,−3,−1

2

〉
+ γ

∣∣∣∣4, 3

2
,−2,−3

2

〉
. (2)

The admixture probabilities, |α|2, |β|2, and |γ|2, are calculated by diagonalizing the hyperfine

Hamiltonian of KRb [35, 36] as a function of B, as shown in Fig. 4(a). For B & 20 G, one has

|α|2 ≈ 1, and the reactant state is dominated by |4, 3/2,−4, 1/2〉. For B . 20 G, the state

becomes significantly mixed with the other two spin components. With this form of the input

state, we probe the outcome of the reaction for values of B in the range 5− 50 G. Without
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FIG. 4. Controlling the occupation of product rotational states using an external magnetic field. (a)

Calculated admixture probabilities |α|2, |β|2, and |γ|2 for the reactant spin superposition (Eq. 2) as a function of

magnetic field. (b) Probabilities for scattering into the symmetric (PS) and antisymmetric (PA) nuclear spin states

of K2 or Rb2 based on the conservation of nuclear spins. (c,d) Product ion counts associated with the rotational

states N = 6, 7 for K2 (c) and N = 4, 5, 13, 14 for Rb2 (d) obtained at different magnetic field values between 5 and

50 G. For each data set, the 648/674 nm laser frequency is fixed to be resonant with the corresponding transition, as

identified from the spectra in Figs. 2 and 3. The ion count for each data point is normalized by the corresponding

number of experimental cycles (∼ 20). Error bars include shot noise and 10% ion number fluctuation due to the

REMPI laser frequency uncertainty (∼ 25 MHz). Red (blue) curves are fits to the function a · PS(A) + b, where a

and b are fit parameters representing the state-dependent proportionality constant and the offset arising from the

detection noise floor, respectively. The typical root-mean-square error (RMSE) for the fit is 0.35.

loss of generality, we measure changes in the amplitudes of the resonances corresponding to

the rotational states N = 6, 7 for K2 and N = 4, 5, 13, 14 for Rb2 (Fig. 4(c,d)). We observe

that the odd (even) states of K2 (Rb2), which are unoccupied at higher magnetic fields,

acquire significant population as B decreases, while the population in the even (odd) states

are suppressed. This result shows that the relative occupation of odd and even parity states

of the products can be altered experimentally by controlling the nuclear spins of reactants

via an external field.
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We model this behavior using a selection rule based on angular momentum algebra, which

is derived in accordance with the conservation of nuclear spins throughout the reaction

(SM). Given the form of the reactant input state (Eq. 2), the probabilities for scattering

into the antisymmetric (A) and symmetric (S) spin states of K2 or Rb2 are found to be

PA = |αβ|2 + |αγ|2 + |βγ|2 and PS = 1 − PA, respectively. The magnetic field dependence

of these probabilities, shown in Fig. 4(b), derives from that of the admixture coefficients

(Fig. 4(a)). Because of the exchange symmetry of identical nuclei, the detected populations

of even (odd) rotational states are proportional to PS (PA) for K2 and PA (PS) for Rb2.

The constant of proportionality depends on the rotational state distribution resulting from

the reaction dynamics, as well as the state-dependent ionization efficiency, and is therefore

unique for each rotational state. As a result, we fit each data set in Fig. 4(c,d) to the

function a · PS/A + b, with free parameters a and b. Here, a represents the aforementioned

proportionality constant, and b is an offset arising from the noise floor of the detection. The

fitted curves (Fig. 4(c,d)) show that our model for PS/A describes well the magnetic field

dependence of the rotational state populations.

While this model was derived for a specific input state, Eq. (2), the methodology does not

depend on the particular form of this state, and can be generalized to account for arbitrary

states of the reactant nuclear spins. Experimentally, such states may be realized using a

combination of external magnetic fields and microwave control techniques [35, 46–48]. With

this capability, the product state control demonstrated here can be used to establish selected

parity correlations between products originating from the same reaction. Such correlations

will allow for the generation of quantum entanglement between reaction products [49, 50].
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Supplementary Material

S1. 1+1′ REMPI SPECTROSCOPY

Our REMPI scheme for the state-selective detections of K2 (Rb2) utilizes two lasers:

a continuous-wave external cavity diode laser operating at 648 (674) nm, and a pulsed

Nd:YVO4 laser with a frequency-doubled output wavelength of 532 nm and a pulse duration

of ∼ 10 ns. During an experiment, temporally-overlapping light pulses derived from these

lasers are repeatedly applied to ionize reaction products. The duration of the 648 (674) nm

pulse is controlled by an acoustic-optical modulator (AOM) to be ∼ 40 ns, and the relative

delay between the two pulses is scanned to maximize the resulting ion signals. The optical

power in the 648 and 674 nm beams is 8 and 15 mW, respectively, sufficient to saturate the
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targeted transitions. The pulse energy (optical power) of the 532 nm laser is set to be 50 µJ

(350 mW), resulting in the ionization of > 80% of the electronically-excited molecules. The

frequencies of the diode lasers are stablized to an accuracy of 25 MHz through locking to a

laser wavelength meter (Bristol 771A).

To avoid excitation of the reactant KRb molecules by the REMPI lasers, we generate

dark spots in the centers of the beams using the optical setup illustrated in Fig. S1. The

648/674 nm and 532 nm beams are first combined on a dichroic mirror, and are then sent

through a dark mask (Thorlabs R1DF100). The mask is located in the object plane of an

achromatic lens (f = 300 mm), and is projected onto the image plane coinciding with the

molecular cloud location, resulting in the beam profiles shown in the insets. The dark spot

size is chosen based on the KRb cloud size, which is up to 80 µm (4σ width) in its longest

direction. The length of the dark region along the direction of propagation is approximately

7 mm on either side of the image plane (defined as when the optical intensity inside the dark

spot increases to half of the maximal value measured in the image plane).

For 40K2, the bound-to-bound transition lines we target are from the X1Σ+
g (v = 0, N)→

B1Πu(v′ = 1, N ′) vibronic band. The transition dipole moment for these lines is calculated

to be (1.6 e · a0)
√
SP,Q,R
N . Here, e is the electron charge, a0 is the Bohr radius, and SP,Q,R

N

is the Hönl-London factor which takes different forms for P , Q, and R branch rotational

transitions. For Σ → Π electronic transitions, they are given by SP
N = N−1

2N+1
, SQ

N = 1, and

SR
N = N+2

2N+1
[51]. We calculate the linewidth (lifetime) of the excited state to be 14.5 MHz

(11 ns), close to the measured value of 13 MHz (12.2 ns) reported in Ref. [52]. An additional

contribution to the experimentally measured linewidth is Doppler broadening arising from

the large translational energy of K2 products. For K2 molecules moving at the maximum

velocity allowed by the reaction exothermicity, the Doppler contribution to the linewidth is

σD ∼ 40 MHz. The REMPI spectroscopy in this work requires knowing transition frequencies

better than 0.001 cm−1 (or 30 MHz), which is not available from the literature. To identify

them, our initial search of the transition lines is guided by frequencies that are calculated

using molecular potentials from Ref. [40, 41].

For 87Rb2, the bound-to-bound transition lines we target are from the X1Σ+
g (v =

0, N) → B1Πu(v′ = 4, N ′) vibronic band. We calculate the transition dipole moment

to be (1.4 e · a0)
√
SP,Q,R
N , and the natural linewidth (lifetime) of the excited state to be

13.9 MHz (11 ns). For Rb2 molecules moving at the maximum velocity, the Doppler contri-

bution to the linewidth is σD ∼ 30 MHz. Our initial search of the transition lines is guided
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Dichroic Achromat
(f = 300 mm)

Molecule location

600 mm 600 mm

Dark 
mask532 nm

648/674 nm

⌀1 mm

⌀100 µm

quartz

Cr

532 nm

100 μm

648/674 nm

100 μm

FIG. S1. The optical setup for generating the REMPI beams. The 648/674 nm and 532 nm lasers are

combined on a dichroic mirror, and are then sent through a dark mask (Thorlabs R1DF100) and an achromatic lens

(f = 300 mm). The resulting beam profiles in the image plane have a 1 mm outer diameter and a 100 µm inner

diameter.

by frequencies that are calculated using molecular potentials from Ref. [42–44].

S2. STATE-DECOMPOSITION CALCULATION FOR REACTANT MOLECULES

To obtain the coefficients α, β, and γ of the state-decomposition given in Eq. (2) of the main

text, we diagonalize the molecular Hamiltonian for the 40K87Rb reactants using the basis

of uncoupled hyperfine states. If we include the rotational degrees of freedom, we can label

these basis states by
∣∣N,mN , iK,m

K
i , iRb,m

Rb
i

〉
, where N represents the rotational angular

momentum quantum number, mN is its projection onto the z-axis, iK,Rb are the nuclear spins

of the K and Rb atoms, and mK,Rb
i are the corresponding projections onto the z-axis. The

direction of the z-axis here is defined by an externally applied magnetic field. In the electronic

ground state, X1Σ+, as well as the vibrational ground state, the molecular Hamiltonian in

the presence of external electric and magnetic fields can be expressed as [36, 53],

H = Hrot +HHF +HS +HZ. (S1)

Here,

Hrot = BrotN
2, (S2)

HHF = −e (∇E)K ·QK − e (∇E)Rb ·QRb + cKN · IK + cRbN · IRb + c4IK · IRb, (S3)
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HS = −µ ·E, (S4)

HZ = −grµNN ·B− gKµN (1− σK) IK ·B− gRbµN (1− σRb) IRb ·B, (S5)

where N is the rotational angular momentum operator, IK,Rb are the nuclear spin operators

for the K and Rb nuclei, respectively, (∇E)K,Rb are the intramolecular electric field gradients

at the K and Rb nuclei, respectively, eQK,Rb are the nuclear electric quadrupole moment

operators for K and Rb, respectively, µ is the molecular dipole moment, E is the external

electric field, B is the external magnetic field, and e is the charge of the electron.

In this molecular Hamiltonian, Eq. (S2) denotes the rotational contribution to the en-

ergy, with corresponding rotational constant Brot/h = 1.1139514 GHz [35, 54]. Eq. (S3)

represents the hyperfine energy, where −e (∇E)i ·Qi describes the interaction between the

intramolecular electric field gradient at nucleus i and the corresponding nuclear electric

quadrupole moment, which is characterized by the electric quadrupole coupling constants

(eqQ)K /h = 0.452 MHz and (eqQ)Rb /h = −1.308 MHz [54]. The remaining three terms in

Eq. (S3) describe the interactions of the individual nuclear spins with the magnetic field

associated with the rotation of the molecule, where the corresponding coupling constants

are given by cK/h = −24.1 Hz and cRb/h = 420.1 Hz [36], as well as the scalar nuclear

spin-spin interaction, with an associated coupling constant c4/h = −2030.4 Hz [36]. The

Stark Hamiltonian given by Eq. (S4) describes the interaction between the permanent elec-

tric dipole moment of KRb, µ = 0.574 Debye [55], and an external electric field. The Zeeman

contribution to the energy (Eq. (S5)), on the other hand, consists of three separate terms:

the interaction between the external magnetic field and the magnetic moment arising from

molecular rotation, with a corresponding rotational g-factor of gr = 0.014 [36], and the

interactions between the magnetic moments of the individual nuclei, whose g-factors are

given by gK = −0.324 and gRb = 1.834 [36], and the external magnetic field. The remain-

ing parameters in Eq. (S5), µN and σK,Rb, represent the nuclear magneton and the nuclear

shielding constants, respectively. For the K and Rb nuclei, the nuclear shielding constants

are σK = 1321 ppm and σRb = 3469 ppm [36].

For the reactant state-decomposition calculations shown in the main text (Fig. 4(a)),

we include rotational states up to Nmax = 1 when diagonalizing this Hamiltonian in

the basis of uncoupled hyperfine states,
∣∣N,mN , iK,m

K
i , iRb,m

Rb
i

〉
, where iK = 4 and

iRb = 3/2. We also make use of the fact that the ground-state molecules are initially

prepared at zero electric field and at a high magnetic field, B ≈ 544 G, where the un-
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coupled basis states are a good representation of the eigenstates of the molecular Hamil-

tonian (Eq. (S1)). In this configuration, the KRb molecules are produced in their ro-

tational, vibrational, and electronic ground state, and in the hyperfine state |ψi
KRb〉 ≡∣∣N = 0,mN = 0, iK = 4,mK

i = −4, iRb = 3/2,mRb
i = 1/2

〉
[34]. This corresponds to the sit-

uation where α ≈ 1 and β = γ ≈ 0 in Eq. (2) of the main text. As the electric and magnetic

fields are changed adiabatically following the initial preparation of the reactant molecules,

we obtain the coefficients α, β, and γ by diagonalizing the molecular Hamiltonian (Eq. (S1))

at the desired values of the electric and magnetic fields, and selecting the eigenstate which

is adiabatically connected to the initial hyperfine state, |ψi
KRb〉. The coefficients of the

expansion of this eigenstate in terms of the uncoupled basis states are then α, β, and γ.

For the calculations shown in Fig. 4(a) of the main text, we set E = 0 for simplicity, as

the small electric field used in the experiment, E = 18 V/cm, has a negligible effect on the

state-decomposition, and we numerically calculate α, β, and γ as a function of the magnetic

field.

S3. SELECTION RULES FOR NUCLEAR SPIN CONSERVATION IN ULTRACOLD

REACTIONS

Selection rules in chemical reactions arise when the S-matrix is is diagonalizable in a basis

made up of the eigenstates of some conserved quantity, also known as a collision constant [21].

Due to their weak couplings to other degrees of freedom, nuclear spins of molecules may be

conserved in chemical reactions [22] and so their eigenstates may be used to derive one such

selection rule. For ultracold reactions of bi-alkali molecules of the form, AB+AB→ A2+B2,

the nuclear spin states of the heteronuclear reactants can be described in the uncoupled basis,

{|iA1, iB1,mA1,mB1〉⊗|iA2, iB2,mA2,mB2〉}, while those of the homonuclear products are more

naturally expressed in the coupled basis, {|IA2 ,MA2 ; iA1, iA2〉⊗ |IB2 ,MB2 ; iB1, iB2〉}, in which

the states obey the exchange symmetry of identical nuclei. Here, A1 (A2) and B1 (B2) denote

atomic nuclei from the 1st (2nd) AB molecules in the reaction. The total spin is defined

as IA2(or B2) = iA1(or B1) + iA2(or B2) and its projection is MA2(or B2) = mA1(or B1) + mA2(or B2).

The coupled basis state |I,M ; i1, i2〉 is symmetric under interchange of particles 1 and 2 if

i1 + i2 − I is even, and antisymmetric if i1 + i2 − I is odd.

To obtain the probabilities for scattering into different channels, or product states, we can

transform the reactant nuclear spin state from the uncoupled basis into the coupled basis.

The coefficients of the reactant state in the coupled basis then provide the desired information
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regarding the branching into the different reaction channels. This basis transformation can

be performed using the general formula for the addition of angular momentum,

|i1, i2,m1,m2〉 =

i1+i2∑
I=|i1−i2|

〈I,M ; i1, i2|i1, i2,m1,m2〉|I,M ; i1, i2〉, (S6)

where M = m1+m2 and 〈I,M ; i1, i2|i1, i2,m1,m2〉 are the Clebsch-Gordan (CG) coefficients.

Take the reactant state

ψKRb = α

∣∣∣∣4, 3

2
,−4,

1

2

〉
+ β

∣∣∣∣4, 3

2
,−3,−1

2

〉
+ γ

∣∣∣∣4, 3

2
,−2,−3

2

〉
, (S7)

for example. Assuming that nuclear spins are spectators during the reaction, we can write
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the reactant nuclear spin state,

ψKRb ⊗ ψKRb = α2

∣∣∣∣4, 3

2
,−4,

1

2

〉
⊗
∣∣∣∣4, 3

2
,−4,

1

2

〉
+ β2

∣∣∣∣4, 3

2
,−3,−1

2

〉
⊗
∣∣∣∣4, 3

2
,−3,−1

2

〉

+γ2
∣∣∣∣4, 3

2
,−2,−3

2

〉
⊗
∣∣∣∣4, 3

2
,−2,−3

2

〉
+ {· · · }

= α2 |4, 4,−4,−4〉 ⊗
∣∣∣∣32 , 3

2
,
1

2
,
1

2

〉
+ β2 |4, 4,−3,−3〉 ⊗

∣∣∣∣32 , 3

2
,−1

2
,−1

2

〉

+γ2 |4, 4,−2,−2〉 ⊗
∣∣∣∣32 , 3

2
,−3

2
,−3

2

〉
+ {· · · }

= α2|8,−8〉 ⊗

(√
3

5
|3, 1〉 −

√
2

5
|1, 1〉

)
(S8)

+β2

(
−
√

7

15
|6,−6〉+

√
8

15
|8,−6〉

)
⊗

(√
3

5
|3,−1〉 −

√
2

5
|1,−1〉

)
(S9)

+γ2

(√
45

143
|4,−4〉 −

√
14

55
|6,−4〉+

√
28

65
|8,−4〉

)
⊗ |3,−3〉 (S10)

+αβ|8,−7〉 ⊗

(√
9

10
|3, 0〉 −

√
1

10
|1, 0〉

)
(S11)

+αγ

(√
8

15
|6,−6〉+

√
7

15
|8,−6〉

)
⊗

(√
3

5
|1,−1〉+

√
2

5
|3,−1〉

)
(S12)

+βγ

(
2√
5
|8,−5〉 − 1√

5
|6,−5〉

)
⊗ |3,−2〉 (S13)

+αβ|7,−7〉 ⊗
√

1

2
(|0, 0〉 − |2, 0〉) (S14)

−αγ|7,−6〉 ⊗ |2,−1〉 (S15)

+βγ

(√
9

13
|5,−5〉 −

√
4

13
|7,−5〉

)
⊗ |2,−2〉, (S16)

where we have used Eq. (S6) from the step two to the step three, and {· · · } represents all

additional terms. The last step gives the reactant state in the coupled basis, where we omit

values of iK and iRb for convenience. Each of the resulting tensor product states in Eqs. (S8-
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S16) corresponds to a possible scattered channel. Among them, the terms in Eqs. (S14-S16)

are antisymmetric under the exchange of identical nuclei, while all others are symmetric.

Therefore the total probability for scattering into an antisymmetric nuclear spin state of the

products is given by, PA = |αβ|2+ |αγ|2+ |βγ|2, whereas that for scattering into a symmetric

state is PS = 1−PA. Furthermore, based on the exchange symmetry of identical nuclei, the

populations of even (odd) rotational states of the products are thus proportional to PS (PA)

when the nuclei are bosonic, and are proportional to PA (PS) when the nuclei are fermionic.

While this result was derived for a specific input state Eq. (S7), the methodology does

not depend on the particular form of this state, so that the formulae for PA and PS can

be generalized to account for any initial states of the reactants. Additionally, as far as the

summed probabilities are concerned, it is not strictly necessary to consider the CG coefficients

of the dressed product states in the presence of a magnetic field. Instead, it is sufficient,

for the purposes of this work, to consider only the CG coefficients of the bare states in

the absence of a field. However, for a state-to-state measurement which resolves individual

nuclear spin states, it is, strictly speaking, necessary to consider the CG coefficients of the

dressed states. This will be reported in another work.
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