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Abstract10

SARS-Cov-2 virus has spread over the world creating one of the fastest pandemics ever. The

absence of immunity, asymptomatic transmission, and the relatively high level of virulence of

the COVID-19 infection it causes led to a massive flow of patients in intensive care units (ICU).

This unprecedented situation calls for rapid and accurate mathematical models to best inform

public health policies. We develop an original parsimonious model that accounts for the effect15

of the age of infection on the natural history of the disease. Analysing the ongoing COVID-

19 in France, we estimate the value of the key epidemiological parameters, such as the basic

reproduction number (R0), and the efficiency of the national control strategy. We then use our

deterministic model to explore several scenarios posterior to lock-down lifting and compare the

efficiency of non pharmaceutical interventions (NPI) described in the literature.20

Keywords: COVID-19, epidemiology, public health, non-pharmaceutical interventions,

memory effects, discrete time modelling, reproduction number
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1 Introduction

1.1 The COVID-19 pandemic

In Dec 2019, a rapidly increasing number of ‘pneumonia of unknown etiology’ cases in Wuhan,25

China, triggered a specific surveillance mechanism implemented by China’s Center for Disease

Control (CDC) in the wake of the 2003 SARS-CoV pandemic (Li et al., 2020a). In Jan 2020,

China CDC identified the new inter-human transmitted pathogen as a coronavirus, which was

later named SARS-CoV-2 after its phylogenetically close predecessor (Coronaviridae Study

Group of the ICTV, 2020). Meanwhile, the respiratory disease for which it is responsible, called30

COVID-19, was better described from the clinical point of view, especially by identifying age and

co-morbidities as risk factors of symptomatic aggravation and fatality (Chen et al., 2020; Huang

et al., 2020). Because of its relatively high basic reproduction number (R0 ≈ 2.2) in the Wuhan

outbreak (Li et al., 2020a) and the high transimissibility of asymptomatic/undocumented cases

(Nishiura et al., 2020a; Li et al., 2020b), as well as the intensity of international travel, the35

virus rapidly spread in mainland China and then all over the world.

On Mar 11, 2020, the WHO announced that the COVID-19 outbreak had reached pandemic

stage. To date, no pharmaceutical treatment has proven to be efficient, neither prophylactically

nor therapeutically.

1.2 The French situation40

The documented importation of SARS-CoV-2 on the French metropolitan territory dates back

to Jan 24, 2020 with the detection of three cases with a travel history to Wuhan (Stoecklin et

al., 2020). These were also the first COVID-19 cases detected in Europe.

From Feb 27, the daily incidence of detected cases started to increase exponentially, followed

on Mar 8 by the daily hospital mortality. On Feb 29, the government announced that France45

had moved to stage 2 of the epidemics with isolated cases, and reminded that masks should

only be worn based on medical advice. On Mar 7, the government advocated for basic measures

(hand washing, avoiding handshakes) but announced the elections on Mar 15 were not cancelled.

On Mar 12, a scientific council was set up and the president announced that from Mar 16, all

schools and universities would be closed, before implementing a lock-down for the whole country50
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from Mar 17. 55 days later, on May 11, the lock-down was lifted.

1.3 COVID-19 epidemic modelling

Mathematical modelling was involved early on to estimate the magnitude of the COVID-19

epidemic in Wuhan. Estimates of the serial interval were obtained rapidly allowing to estimate

the basic reproduction number (Li et al., 2020a). Later on, analyses on the number of travelers55

from Wuhan to Europe and infected by COVID-19 allowed to estimate the magnitude of the

epidemics in Wuhan (Imai et al., 2020) or the incubation time of the infection (Backer et

al., 2020). Furthermore, stochastic models allowed to better assess the probability to control

initial outbreaks (Hellewell et al., 2020). Early models also stressed the importance of detecting

infections early on to control the epidemics (Ferretti et al., 2020).60

It quickly became clear that the epidemic had reached a large enough size to escape stochas-

tic forces in Wuhan and that, in spite of a full lock down and travel restrictions, it had spread

all over the world, making deterministic models more appropriate. This also led to an increase

in modelling efforts because deterministic compartmental models based on ordinary differen-

tial equations are more commonly used in epidemiological modelling. However, although these65

models have useful analytical properties when analysed over a long time period, they are per-

form poorly on short time scales. One reason for this is that they are essentially Markovian

or ‘memoryless’. This means for instance that an individual that has been infected for 10 days

has the same probability to clear the infection that someone infected for less than a day. Over

a long time period this effect averages out but on a shorter time scale, even if the dynamics are70

deterministic, this Markovian assumption makes it difficult to reconcile the model with data.

Focusing on the French epidemic, Di Domenico et al. (2020) developed a variant of an SEIR

model with multiple levels of infection severity and estimated the R0 to 3.0 (with a 95% CI

of 2.8-3.2). Using an SIR model, Magal and Webb (2020) estimated it to 4.5 (no confidence

interval computed). Using a meta-population model, Roux et al. (2020) estimated it in various75

regions of France and found values between 1.7 and 4.2 with a median value of 2.8. Using

a simpler SIR model but a more robust statistical framework Roques et al. (2020), found an

R0 between 3.1 and 3.3, but also estimated a temporal reproduction number (Rt) after the

lock-down of 0.47 (with a 95% CI of 0.45-0.50). Hoertel et al. (2020) developed a detailed
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agent-based simulation model with 194 parameters, which allows them to estimate R0 to 3.180

(no confidence interval computed) and investigate the effect of different types of interventions

on the spread of the epidemics. Finally, Salje et al. (2020), with priority access to restricted

ICU patient data, developed a detailed SEIR model with explicit ICU admissions tailored to

the French epidemics. Using a detailed statistical inference model, they estimated the R0 to 2.9

(with a 95% CI of 2.8-2.99) and an Rt after the lock-down of 0.67 (with a 95% CI of 0.65-0.68).85

The model we introduce is inspired by an earlier optimal control model (Djidjou-Demasse et

al., 2020). Taking advantage from its two key qualities, namely being simultaneously determin-

istic and tailored for non-exponentially distributed transition times, accurately follow the main

properties of COVID-19 epidemic, while limiting the number of compartments and parameters.

In this study, by using the French COVID-19 epidemics as an example, we introduce a more90

mechanistic compartmental model, which explicitly features two categories of critically ill pa-

tients. This allows us not only to describe the past state of the epidemic but also to explore

the effect of original and ea control strategies.

1.4 A non-markovian discrete-time model

Unlike the majority of deterministic models used in epidemiology (Keeling and Rohani, 2008),95

ours runs in discrete time, with a time step equal to one day. This choice implies a formalism

of numerical sequences that is closer to algorithmic syntax, less compact and less intuitive

than that of ordinary differential equations. However, discrete-time models have the great

advantage of implementing process memory. Indeed, the usual continuous-time models are said

to be memory-less because the probability for an individual to leave a certain compartment,100

for instance to recover, is independent of the time already spent in this compartment.

The absence of memory does not alter the qualitative properties of the model when an

asymptotic behaviour is studied. It can however become extremely oversimplifying when study-

ing phenomena over short time scales, that is in the transient regime of the system. Indeed,

failing to account for the past may buffer sudden changes in the system. In the case of COVID-105

19 infections, it is very rare for symptoms to appear the day after contamination. On the

contrary, clinical signs appear mostly at the turn of the week following the contamination.

Failure to take this into account affects the short-term dynamics and, as we show, make it
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impossible to interpret the incidence data.

Although there are ways to correct ordinary differential equation models to deal with each of110

the above-mentioned situations (e.g. delays, impulses, non-autonomous equations), the discrete-

time approach makes it possible to easily accumulate all of these options. It also approaches

the very format of the data collected, monitored, and communicated during epidemics on a

daily basis.

While accounting for non-Markovian transition times between clinical-epidemiological com-115

partments, our model remains deterministic. This means that contrarily to agent-based models,

it can explore a variety of scenarios in a computationally efficient way. It thus combines the

advantages from both stochastic modelling (namely simulating non-exponential-like waiting

times) and law of large numbers (namely capturing the general trend of the system by aver-

aging). Moreover, the deterministic nature of the model makes it quite parsimonious, allowing120

unknown parameter values to be estimated, thereby preventing arbitrary choices. Likewise, its

simple formulation opens ways to a variety of extensions and facilitates broad applications to

health authorities.

1.5 Peak dynamics and epidemic control

By calibrating our model using French data, we show that epidemiological dynamics can be125

accurately captured. More precisely, we estimate the R0 of the French epidemics to be between

2.59 and 3.39, a number that decreased to between 21.3 and 27.1% of its value after the lock-

down (95% likelihood interval).

By comparing our calibrated model to one without memory, we show the importance of

allowing model parameters to depend on the age of the infection to accurately capture short-130

term dynamics. We also investigate the effect of earlier or later implementation of a national

lock-down on epidemic peak intensity and timing.

Finally, we use our flexible and statistically robust framework to compare 3 main types of

non-pharmaceutical interventions (NPI) that have been proposed in the literature: focusing the

control on sub-populations who are more at risk, implementing periodic control, and deploying135

an adaptive lock-down (also known as ‘stop and go’). We show that these differ in terms of

cumulative mortality but also in terms of the cumulative number of people undergoing strict
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control. This opens new perspectives for NPI, which are essential until pharmaceutical options

become available.
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2 Methods140

2.1 Model structure and dynamics

Following classical epidemiological models (Kermack and McKendrick, 1927; Keeling and Ro-

hani, 2008), we group individuals with the same contribution to the dynamics into compart-

ments whose densities are tracked over time. We consider age structured dynamics, by splitting

each compartment into an arbitrary number of age groups, which are hereafter denoted by an145

index i. This enhances the model with two key features. First, many COVID-19 clinical pa-

rameters are age-dependent, especially the infection fatality rate (Verity et al., 2020a). With

this age structure, we can adjust nationwide averages and capture demographic effects by

matching demographic data to age-stratified medical data. Second, we can investigate age-

differentiated non-pharmaceutical interventions (NPI). Note that this model can be extended150

to formally take into account any kind of finer stratification, e.g. age, sex and comorbidities

simultaneously. Furtermore, adding a discrete implicit spatial (also known as meta-population)

structure is straightforward.

Since hospital admissions and critical cases are less frequent than non-severe infections, we

assume that all transmission events occur in the community. A specific extension of the model155

could be to focus on nosocomial transmission.

The structure of the system is shown in Figure 1. Initially, all individuals in group i belong

to the susceptible compartment, the density of which is denoted Si. These individuals can be

infected with a probability Λi called the force of infection (the i subscript indicates that not all

ages are equally susceptible to infection).160

Upon infection, a fraction 1 − θi of the individuals will develop non critical infections and

move to the Ji,⋅ compartment, where the second subscript indicates the age of the infection (in

days). At each time step, an individual in the compartment Ji,k moves to the compartment

Ji,k+1 and after g days of infection it moves to the recovered (and assumed lastingly immunized)

compartment Ri.165

A fraction θi of infections will lead to critical complications (typically acute respiratory

distress syndrome (Bouadma et al., 2020)), and move to the Yi,1 compartment. Every day k,

individuals in the Yi,k subgroup have a probability ηk to be hospitalized and a complementary
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Figure 1: COVID-19 epidemic discrete time model structure.
Each square represents a group of individuals who share the same clinical kinetics and who
contribute equally to the epidemic dynamics. Contiguous squares form a compartment, in
which each individual progresses day after day, therefore allowing to capture memory effects of
the infection age. Pink boxes correspond to infected individuals in the community (depicted
by the yellow area). Light blue boxes represent the hospitalized critical cases (the light blue
area depicting the hospital). The purple-grey area corresponds to removed compartments that
do not contribute to the epidemic. Arrows between boxes correspond to the daily flow of
individuals from one compartment to the other. Dotted arrows depict transitions that occur
with probability 1. The i subscript indicates the age group. For the sake of simplicity, only
one group is depicted here and only one of the two probabilities is shown for each bifurcating
transition (the other being its complementary to 1). Details about the compartments, flows
and notations are provided in the main text.

probability 1 − ηk to move to the Yi,k+1 subgroup. No individual of a cohort of critical cases

remains in the Yi,⋅ compartment after h days.170

As detailed in Appendix S2.5, two groups of hospitalized critical patients are considered.

Those who have a substantial chance of recovering and who will benefit from a long stay (at least

greater than one day) in an intensive care unit (ICU), are denoted by Hi,⋅. Those who will die,

either after a short stay in ICU or in another ward are denoted by Wi,⋅. Upon hospitalization,

a proportion of the incoming Yi,⋅ moves to Hi,⋅ while the remaining part moves to Wi,⋅. Time175

to death for the latter compartment is captured by the sequence of υk. For the former, ICU

discharge occurs with probability ρk, k being the number of days after hospitalization, and only

a fraction 1 − µi of individuals survive.
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2.2 Forces of infection

In the SIR-like modelling framework, the force of infection refers to the infection rate per180

capita of susceptibles, often expressed as λ ∶= βI (Keeling and Rohani, 2008). Equivalently, the

instantaneous incidence is βIS = λS, which is the translation of the mass action law implied

by the mean-field approximation made by such spatially unstructured models.

In our discrete time model, the force of infection Λi is not a rate but a daily probability

of infection (per capita of susceptibles from group i) that saturates with the prevalence. Indi-185

vidual contributions of infected individuals are not additive when prevalence is high because

a susceptible host surrounded by infected individuals can be infected by several of them the

same day. When prevalence is low, the probability of contamination by multiple infectors the

same a day is low and the force of infection is well approximated by the sum of contributions

of each infected individual. Λi is therefore a monotonically increasing function of prevalence,190

bounded by 1 and with a positive initial slope.

As we show in Appendix S2.2, deriving an expression for the force of infection is far from

trivial for two reasons. First, we do not have a single class of infected individuals I as in most

simple models. We therefore need to define and calculate an effective infectious density at

time t (denoted I(t)), which can be seen as the number of individuals in the J and Y classes,195

weighted by both the level of per-capita contact ratio c (t) and the generation time distribution,

here approximated by the serial interval.

As detailed in Appendix S2.2, we find that the force of infection can be written as

Λi (t) =
ci (t) I (t)

S0
R0

+ ci (t) I (t)
, (1)

where ci denotes the relative contact rate per capita of i-individuals (i.e. the current contact

rate divided by the pre-epidemic baseline), I the effective infectious density, S0 the initial200

population size and R0 the basic reproduction number. In Appendix S2.2, we also demonstrate

the origin of the saturation parameter in the Michaelis-Menten equation, namely S0/R0.
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2.3 Data

This model can be applied to any population where COVID-19 incidence data can be collected.

However, it also requires additional details, such as the time spent in ICU or the mortality,205

which is why we apply it to France where at least part of the data is available.

All the model parameters are detailed in Appendix S1. We attempted to calibrate the

models to the best of our ability based on the data available at the time of writing this report.

For instance, the calculation of µi is based on reports from Santé Publique France. The age

structure of the population is based on the data from the French National Institute of Statistics210

and Economic Studies (Institut National de la Statistique et des Études Économiques, 2020).

Due to the lack of accessible public health data from France, we had to combine it with data

from other countries. We therefore approximated the generation time using the serial interval

inferred by Nishiura et al. (2020a) on transmission pairs from multiple countries, as well as the

Infection Fatality Ratio (IFR) computed by Verity et al. (2020a).215

Further details about the time series data can be found in Appendix S2.4.

2.4 Memory effects

For several key processes in the model, the probability for an event to occur depends on the

elapsed time. This is the case for the interval between contamination and hospitalization,

through the probability distributions that underlie the ηk sets of parameters. This is motivated220

by the fact that, as early noticed by clinicians (Bouadma et al., 2020), respiratory complications

of COVID-19 arise in a quite narrow time window approximately a week after symptom onset.

Memory is also involved in the transmission term. As one can notice, there is no incubation

period per se in the model. This is implicitly accounted for in the infectiousness term ζk used

to calculate the force of infection (see Appendix 2.2 for details). Indeed, the compartments225

that transmit the virus (J and Y ) do so following weights, which we refer to as the discretized

generation time, i.e. the daily probability of transmitting the virus each day following the day

of infection. Based on empirical data, e.g. the serial interval derived by Nishiura et al. (2020a),

the first day these values are very low, then they increase rapidly before decreasing slowly.

This modelling approach eventually recovers a classical SIR model for the non-critical cases,230

capturing the empirical and effective non-homogeneous infectiosity period without recourse to

10

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2020. .https://doi.org/10.1101/2020.05.22.20110593doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.22.20110593


additional compartments (such as a latent/exposed E, and convalescent densities) and their

corresponding parameters.

We use two parameters to describe non-exponential distribution, which we assume to be

Weibull distributions with a shape parameter greater than 1 (which captures the ’ageing’ prop-235

erty) and a scale parameter. Other components of the model could also, in theory, accommodate

memory processes, namely the time distribution from hospitalization to ICU discharge or death

(ρk and υk). However, preliminary fitting attempts reveal that an exponential (memory-less)

distribution is more parsimonious. In Appendix S2.6, we explain in further details how the

distributions for the various waiting times were defined and estimated from the data.240

For comparison purposes, we also considered the continuous-time memory-less translation

of this model (detailed in Appendix S2.9), which proved to be less adequate to capture the

dynamics of the French epidemic in France, as shown by Fig.3.

2.5 Parameter estimation and simulation confidence intervals

Parameter estimation is required prior to analyzing the outcome of the model when i) strong245

simplifying assumptions about the phenomenon under study are made, and ii) some parameter

values are not known with sufficient certainty.

First, the strongest assumption of the present model is the mean-field approximation: the

population is supposed to be well-mixed, which is obviously not the case at the country scale.

Nonetheless, earlier works have shown that non spatially structured models produce conserva-250

tive estimates from a public health viewpoint, while their parsimony and tractability outweighs

the greater precision provided by finer models (Keeling, 1999; Trapman et al., 2016).

Second, the value of the basic reproduction number, of the day of onset of the epidemic wave,

or of the lock-down effect have only been estimated in recent modelling works (ETE Modelling

Team, 2020b; Danesh et al., 2020; Salje et al., 2020). Those values might not directly apply255

to our model and corrections might be needed. Likewise, known COVID-19 generation time

distributions (Nishiura et al., 2020b) or IFR (Verity et al., 2020b) originate from field studies

outside France. Besides, the estimated distribution of the ICU admission to death interval does

not capture reporting delays (note that deaths and ICU admission are not coming up through

the same channels). Parameter fitting is thus used to account for the uncertainty in initial260
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parameter values, thereby improving predictions by re-calibrating their value.

Parameter inference was performed using nationwide daily ICU admissions, current ICU

bed occupancy, as well as the cumulative number of deaths, all published by Santé Publique

France and available on the French government data repository (Santé Publique France, 2020b).

We first located the region of highest likelihood using initial parameter values estimated265

from data or compatible with the literature. Then, the maximum likelihood estimates (MLE)

and associated 95%-intervals were calculated stepwise with respect to daily ICU admissions,

ICU discharges, and finally daily mortality time series.

Confidence intervals for the simulation outputs are based on a collection of parameter sets

assumed to be equally likely. These parameter sets originate from random draws according270

to a multivariate Gaussian distribution (centered around the maximum likelihood parameter

set and variances based on the confidence interval of each parameter) and only the resulting

parameter sets whose likelihoods are not significantly different from that of the MLE are kept.

The 95% confidence intervals of the model’s output are then calculated as the daily sample

quantiles across all runs.275

Further details about the procedure used for parameter estimation can be found in Appendix

S2.7. The methods used to obtain predictions of the dynamics are shown in Appendix S2.8.
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3 Results

3.1 Epidemic parameter values estimation

By analysing nationwide hospital data, publicly provided by Santé Publique France (Santé280

Publique France, 2020b), we obtain maximum likelihood estimates for all parameters except

those determining the generation time distribution, that was kept fixed following Nishiura et

al. (2020a).

The estimates and their likelihood intervals are summarised in Table S-5. The basic repro-

duction number is 2.99 (95% likelihood interval: [2.59-3.39]), consistent with most estimates for285

the French epidemics. The effect of the lock-down is estimated to a 75.9% (72.9-78.7) reduction

of the reproduction number. The estimates for the other parameters are all in line with official

reports of average values (we cannot have access the exact distributions yet). The epidemic

wave is estimated to have originated around Jan 20, in agreement with early phylogenetic

analyses on sequence data (Danesh et al., 2020).290

The fitted non-markovian discrete time model accurately captures the dynamics of both

the daily hospital mortality and the daily number of ICU admissions since most of the data

points fall into the 95% confidence intervals. As can be observed in Figure 2(top), the model

correctly approaches the number of daily admissions in the vicinity of the peak, which is crucial

for hospital management at the local but also national level.295
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Figure 2: COVID-19 epidemic wave in France as fitted by a non-markovian discrete
time model
Top panel. The blue and pink curves respectively represent the median daily ICU admissions
and the median daily (hospital) mortality as generated by the fitted model.Turquoise triangles
and red circles are the (rolling 7-day average) data counterparts. The black curve shows the
median daily temporal reproduction number calculated from the simulated epidemic. The dot-
ted horizontal line shows the reproduction number threshold value, i.e. 1.
Bottom panel. The blue and pink curves respectively represent the median number of oc-
cupied beds in ICU nationwide and the median cumulative (hospital) mortality as generated
by the fitted model. The turquoise triangles and red circles are the (rolling 7-day average)
data counterparts. The purple dotted horizontal line shows the initial French ICU capacity, ca.
5,000 beds. The green curve shows the median proportion of the population that has recovered
(and is assumed to be immune). The green dotted horizontal line corresponds to the median
herd immunity threshold.
The two vertical lines show respectively (from left to right) the beginning and the end of the
French national lock-down. Shaded areas correspond to 95% confidence intervals.
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We also present the temporal reproduction number (Rt), which rapidly drops below unity

following the onset of the national lock-down and was equal to 0.71 [0.69,0.74] by May 11

according to the model. Notice that Rt started to decrease before the lock-down onset, due

to density dependent effects. In a model with strong host heterogeneity and so-called ‘super-

spreaders’, this effect would be even more pronounced. Other explanations include local satu-300

ration, staggered implementation of pre-containment measures, such as health communication

campaigns, or improved patient management as diagnosis and therapy became more effective.

However, neither the structure of the model nor the level of detail in the available data makes

it possible to identify the isolated impact of each measure on epidemiological dynamics.

Figure 2(bottom) illustrates that the model also accurately captures the post-ICU admission305

dynamics (though with a slight tendency to overestimate the declining ICU bed occupancy),

which is essential in assessing the risk of a saturation of such hospital units, which would

lead to an excess-mortality. The fitting of these data points could be improved with access to

non-aggregated patient data or distributions of ICU residency time. The cumulative mortality

curve is fitted with great accuracy, which allows us to use it as a comparison criteria between310

control strategies in further analyses. Finally, the figure also shows that the level of population

immunisation, the median of which we estimate at 2.37% ([2.27,2.48]% 95%-CI) by May 11,

which is far below the classical group immunity threshold.

We also performed the parameter value inference by censoring the data to the right in order

to assess the relevance of estimates obtained earlier in the epidemics. As shown in Appendix315

S3.2, estimates with a censoring on Apr 15, that is one month before the final data point shown

in Figure 2, were already accurate. Estimates with an earlier censoring are qualitatively correct

but the confidence intervals larger.

To illustrate the ability of our discrete model to capture COVID-19 short-term dynamics,

we show in Figure 3 the best outcome of parameter inference for a Markovian (memory-less)320

model. In spite of one additional degree of freedom compared to the focal model (see Appendix

S2.9 for more details), the best fitted curves with the memory-less model (respectively in blue

and pink) fail to capture the timing and amplitude of the peaks, while their decline is slower

than the data.
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Figure 3: Predicted (plain line) and observed (dots) dynamics with (classical)
memory-less processes.
The continuous-time memory-less analog of the focal model poorly reproduces the observed
trends in daily ICU admissions (turquoise triangles) and daily mortality (red circles).

3.2 Response date impact325

Using our estimated parameters, we then explored the effects of implementing the national

lock-down a week earlier or a week later. As shown in Figure 4, the peak was reached on Apr

8, with 7019 ICU beds occupied (the model estimates it to Apr 12 and 6920 beds). Enforcing

the lock-down a week earlier (in green) would have led to an earlier and smaller epidemic peak

with less than 1,500 ICU beds occupied on Apr 5. Conversely, another week of delay (in red)330

would have led to a peak above 32,000 beds occupied in ICU on Apr 18, which is largely above

the ICU capacity at the time (approximately 5,000 beds). Overall, in the range studied, each

elapsed week multiplies ICU occupancy peak by more than 4.5, while delaying it by 3 weeks.

These differences also translate in terms of mortality. Implementing the lock-down a week

earlier could have led, according to the model, to 13,300 [12,900-13,700] less deaths, while335

waiting for an additional week could have claimed 52,800 [45,800-61,500] more lives (Figure S-

6).
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Figure 4: Lock-down implementation date effect and ICU bed occupancy
Each curve represents the median current ICU bed occupancy as generated by the model
according to a given lock-down scenario, while their surrounding shaded areas correspond to
the their 95% confidence interval. From bottom to top: the green scenario simulates an early
national lock-down (on Mar 10th); the purple scenario is the realised one (lock-down beginning
on Mar 17); the pink scenario simulates a late lock-down (on Mar 24th). Vertical lines indicate
lock-down implementation dates. Crosses indicates the median ICU peak activity. Triangles
represent the data and the dotted line the maximum ICU bed capacity in France.

3.3 Predicting future dynamics

This model cannot estimate the effects of the end of the national lock-down in France on May 11,

as it relies on data notifying events that occur on average two (ICU admission) to four (death)340

weeks after contamination. However, assuming our estimated value hold after the lock-down

is ended, we can explore the future dynamics as a function of the post-lock-down reproduction

number. The aim is not to make predictions, since there is no data to test them, but rather to

highlight the interplay between the post-lock-down reproduction number and NPI-enforcement

timing with respect to a potential epidemic rebound. For illustration purposes, the chronicles345

of four scenarios are provided in Appendix S3.4.

We also provide a graphical online interface (provided as a supplementary data) to maximise

the reach of the model.

Following a more systematic approach of end of the national lock-down, we investigated
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the effect of the NPI reinforcement delay on the ICU peak height and timing. The results are350

shown in Figure 5. As expected, a reproduction number less or equal to 1 (in green) does not

require any control reinforcement. Conversely, higher values of Rt trigger an epidemic rebound,

that can saturate France’s ICU capacity (ca. 5,000 regular beds) with values as low as 1.2 [1.1,

1.3] if an appropriate control response is not implemented before mid-July. For Rt ≥ 1.3, we

find that a reinforcement as early as mid-June is necessary to preserve the national health355

system (Figure 5, top panel). Additionally, Figure 5 (bottom panel) shows that if a massive

peak is to occur (Rt ≥ 1.7), it will likely be in the second part of July, even if an appropriate

response in mounted in mid-June or later. For lower peaks (Rt < 1.5), the height of which

can be substantially reduced by timely reinforcement of control, occur within one month (early

responses) to two weeks (late responses) after NPI implementation.360

18

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2020. .https://doi.org/10.1101/2020.05.22.20110593doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.22.20110593


Figure 5: Effect of reproduction number and NPI response on ICU peak dynamics.
Colors indicate post-lock-down reproduction number, which ranges from 1 (green) to 2.1
(brown) (see the legend with the 95%-CI). The abscissa indicate the date of implementation of
renewed NPI that bring the reproduction number to Rt = 0.91 [0.85,0.98]. Each dot represents
the median highest number of ICU occupied beds (top panel) and the median date at which
the peak is reached (bottom) (the bars indicate the 95% CI). Dots at the bottom of each panel
correspond to an absence of epidemic rebound (therefore the peak is artificially considered to
be on May 12). The vicinity with the threshold value 1 for Rt explains the large CI of the peak
dates for the green and turquoise scenarios.

3.4 Comparing intervention strategies

In this section we use the model previously fitted on the data available as of May 12 to explore

control strategies that belong to three main classes of non-pharmaceutical interventions (NPI):

adaptive (indicator-triggered) lock-down, periodic alternation of lock-down and release phases

(not indicator-triggered), and age-differential control.365

19

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2020. .https://doi.org/10.1101/2020.05.22.20110593doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.22.20110593


We compare scenarios using the predicted cumulative hospital mortality on Dec 31 2020.

The choice of this criterion is motivated by three reasons. First, the mortality time series is the

one captured with the greatest accuracy by the model. Second, in the absence of pharmaceutical

solutions, deaths are a more stable indicator of the state of the epidemic (e.g. the timing of

hospitalizations may change as knowledge of the disease accumulates). Third, peak ICU activity370

and concern is more likely to vary among countries, which makes it less generic.

Importantly, the following simulations are in no way intended to be statistical forecasts

of the COVID-19-related death toll at the end of 2020 in France or elsewhere, but rather a

numerical illustration of the non-trivial interplay between the degrees of freedom in each of

the NPI strategies considered. For the sake of parsimony, we set the implementation of all375

further considered strategies by May 12, thus avoiding to consider multiple scenarios between

lock-down lifting and new NPI reinforcement (this aspect having been addressed above).

To facilitate the comparison in terms of control burden of the following strategy, we hereafter

reason in terms of per capita contact ratio (PCCR), denoted by c. This dimensionless number

aims to quantify the average potentially infectious contacts an individual has per unit of time,380

relative to the pre-epidemic baseline (see Appendixes S2.2 and S2.3 for more details about how

c is formally introduced in the model). This definition has the following consequences:

• the average PCCR before lock-down is cpre-lock = 1,

• under the proportionate mixing assumption, the encounter rate at date t of two individuals

belonging to age groups i and j respectively is proportional to ci (t) cj (t),385

• the average PCCR during the lock-down is clock =
√

1 − κ = 50% [48,52]%, where κ is the

lock-down control coefficient,

• the threshold PCCR value corresponding to a reduction of the reproduction number to

exactly 1 is ct = R
− 1

2
0 = 58% [56,60]%.

By standardizing the control parameters of the model on a relative scale, the PCCR allows us390

to perform comparisons of control strategies that are independent from the estimated (past)

or arbitrary (scenarios) values of both basic and temporal reproduction numbers. In addition,

it provides an easy way to picture the control burden of each strategy. Indeed, the average

PCCR c (t) ranges from clock (the strongest control implemented so far) to 1 (the fully relaxed,
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’pre-lock-down’, situation). Between these two extremes, the remarkable value ct demarcates395

the threshold above which an epidemic rebound is made possible.

Notice that this formalism caputres both reduction in contact rate (e.g. working from home)

and probability of transmission per contact (e.g. wearing a mask).

3.4.1 Adaptive lock-down

The adaptive lock-down popularised by Ferguson et al. (2020) consists in triggering a lock-400

down (or possibly other broad restrictive measures) if an epidemic rebound is detected by a

relevant indicator. This requires to carefully identify the threshold above which the lock-down

is triggered. Following Ferguson et al. (2020), we use ICU admissions to quantify this threshold

because they achieve a good balance between reflecting the epidemiological dynamics in the

general population (the sampling of newly infected individuals is more homogeneous than with405

testing) and limiting the delay between the data and the state of the epidemics (we estimate

this delay to be 2 weeks, while we estimate 4 weeks for mortality data).

Figure 6 shows that cumulative mortality is exponentially correlated with the daily ICU

admission threshold, over the investigated range. As a consequence, there is no remarkable

inflexion point that would justify a particular value, which would leave decision makers to410

coldly balance socio-economical costs (implied by low thresholds) with potentially saved lives

(endangered by higher thresholds). Such a question is once again out of the scope of the present

work.
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Figure 6: Adaptive lock-down threshold impact
Each dot represents a simulation of the model with adaptive lock-down implemented from May
12. The abscissa show the lock-down triggering threshold in terms of daily ICU admissions
nationwide. The ordinate represents the median final death toll by the end of the year, along
with their 95%-confidence intervals. Lock-down lifting threshold variation has negligible impact
on the results (not shown here).

Figure 7 illustrates the chronicles produced by an adaptive lock-down strategy triggered

by a threshold as low as 15 nationwide ICU admissions the same day. The epidemic can be415

efficiently controlled on the long run this way, at the cost of approximately 50 days of lock-down

to only 12 days of release per cycle, that is ca. 20% of full release time, which is less than the

proportion mentioned by Ferguson et al. (2020). This relaxation proportion could however be

increased if moderate measures are still implemented between lock-down phases.
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Figure 7: Adaptive lock-down waves.
For the sake of clarity, only three parameter sets, chosen at random among the pool, illustrate
here the dynamics generated by an adaptive lock-down strategy. In this scenario, the on and
off thresholds are set to 15 daily ICU admissions nationwide. Symbols as in Fig.2.

3.4.2 Periodic lock-down420

By definition, an epidemic remains under control if Rt is kept below 1. If control measures

alternate according to some periodic pattern, the instantaneous value of Rt is of little interest

and we consider instead its average value over one cycle of interventions, denoted by Rt. For

the sake of simplicity, we consider a NPI that alternates between a hard phase (typically, a

lock-down) and a relaxed (or release) phase, independently from any field indicator. Let us425

denote by cr and ch the average per capita contact ratio during the relaxed and hard phase

respectively and pr the time proportion of each NPI cycle allowed to the relaxed phase.

The epidemic is under control if

Rt = (prc
2
r + (1 − pr) c

2
h)R0 ≤ 1. (2)

The NPI cycle can contain more than two phases, but one can always pool them into those

favorable to social and economic life, represented by the couple (cr, pr), and those concentrating

the necessary public health restrictions, namely the couple (ch,1 − pr).430
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Assuming that hard phases have the same effect as the first lock-down, we can set c2
h = 1−κ

(see Appendix S2.3). Then, the maximum proportion of time allowed to the relaxed phase is

given by

pr,max =
R−1

0 + κ − 1
c2

r + κ − 1 , (3)

which is a decreasing function of cr. This expression captures the intuitive trade-off, shown in

Figure S-8, which is that the lower the control in the relaxed phases, the shorter they can be.

If there is no control in the relaxed phase (cr = 1), then, based on our estimates for R0 and κ

(Table S-5), controlling the epidemics requires that hard control be implemented 88% of the

time.435

Here, we maximize the product between intensity and duration (pr,maxcr) because it partly

captures the absolute degree of freedom for a fixed period of time (i.e. try to be the less

constrained as possible for the longest time period as possible). Noticing that d
dcr

(pr,maxcr) < 0

leads to the conclusion that the optimum is to seek for the lowest per capita contact ratio,

which is obtained by setting equation 3 equal to 1. This yields c⋆r = ct = R
− 1

2
0 (which equals440

approximately 58% for R0 = 3). Under these conditions, there is no need for any harder phase.

Importantly, the simple product pr,maxcr does not need to be the objective quantity to

maximize and parametrizations of pαr,maxc
β
r , with α,β > 0, based on socio-economical arguments,

should be investigated. However, this question is out of the scope of the present work.
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Figure 8: Effect of NPI cycle duration on cumulative mortality.
We show the cumulative mortality by the end of the year 2020 if a periodic control is imple-
mented from May 12. For each of the four NPI cycle durations, the model is run for four
values for cr shown in different colors, with a proportion of time satisfying eq. 3 (truncated to
an integer number of days). For example, in the red scenario, pr,max (0.59) = 88%, so for the
weekly cycle the relaxed phase was set to floor (0.88 ⋅ 7) = 6 days.

Up to now we only investigated the proportion of the time spent in a relaxed or hard control445

phase. However, a 0.5 proportion can correspond to a 1 week / 2 week periodicity or to a 1

month / 2 month periodicity. In fact, the trade-off relation shown in Figure S-8 theoretically

works for any time split where a proportion pr,max is spent in a relaxed phase with per capita

contact ratio cr and a proportion 1 − pr,max) corresponds to a strong control phase where per

capita contact ratio is restricted to κ. To be implemented, such periodic control should consider450

phases lasting at least several days. Furthermore, a periodicity greater than a month exposes

populations to a greater risk during the relaxed phase.

Figure 8 suggests that the duration of the overall cycle has an effect up to 5,000 deaths,

over the explored range. A weekly cycle yields the lowest death tolls, both in terms of median

and CI. Furthermore, if the period lasts a month or less, a lower control of the epidemic in455

the relaxed phase yields the lowest cumulative mortality. Morecisely, these results shows that

allowing 1 moderately relaxed (the average PCCR being equal to 80%) day per week within a

prolonged lock-down has a better mortality outcome than the adaptive lock-down set with 15
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daily ICU admission as a threshold (approx. 8,000 deaths less by the end of the year).

3.4.3 Age-differential control460

Age-group targeted control measures are motivated by the age dependent risk profile (Verity

et al., 2020a; Collaborative et al., 2020). However, this model could easily include other risk

factors such as heart disease, diabetes, or obesity. One of the simplest strategies is to incite

people at risk to stay at home. On the other side of the age pyramid, a finer age-specific

strategy could be to close schools and universities. More generally, political and economical465

incentives to telework could also be considered as age-specific control measures.

We divided the population into three groups according to the cut-off ages of 25 and 65 years

old. The first group is motivated by the control leverage represented by school and university

closure, while the third is motivated by preventing viral circulation within the age group having

the highest IFR. Each age group was assigned a fixed PCCR until the end of the year: 50, 58,470

62, 65 and 75%. This led to 125 scenarios that are shown in Figure 9. The ratio of daily

interaction between two individuals relative to the pre-epidemic baseline is the product of their

individual contact ratios.

The results of the numerical investigation of 3-age group-differential controls are shown in

Figure 9. This scatter plot shows that cumulative mortality is well explained by demographic-475

averaged PCCR. Therefore, the variance in contact ratio among age groups (not shown on the

plot) has little impact on the long-term epidemic dynamics. This result suggests that there is

no easy way of taking advantage of the strong correlation between COVID-19 complication risk

and age, unless implementing an unrealistically restrictive quarantine for at-risk groups.
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Figure 9: Effect of age-differential control interventions on cumulative mortality by
the end of 2020
Each dot represents a simulation of the model with age-differential restrictions implemented
after May 11. The abscissa corresponds to the demographic-weighted average in PCCR and
the ordinates represent the median final death toll by the end of the year if no other solution is
implemented (bars indicante 95%-CI). The color of the dots shows the temporal reproduction
number by May 18: in green the epidemic is under control and the 97.5% quantile is less that 1,
in purple the median is below 1 but the 97.5% quantile is above 1, in pink the median is above 1
but the 2.5% quantile is below 1, and in grey the epidemic is out of control, the 2.5% quantile is
greater than 1. Vertical bars show the 95%-likelihood interval of the expected per capita contact
ratio threshold above which the reproduction number is above 1, in a homogeneously-controlled
population.
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4 Discussion480

COVID-19 is not an unusually lethal or contagious infectious disease. On the other hand, the

large proportion of transmission attributable to individuals with few or no symptoms makes it

redoubtably difficult to control compared to SARS (Fraser et al., 2004). In the absence of a

massive and homogeneous screening effort, the reflection of the epidemic dynamics of COVID-

19 is reduced to hospitalizations induced by complications, which are rare and occur on average485

two weeks after infection. The marginal, indirect and delayed nature of these events justifies

the use of statistical analyses and mathematical modelling in the short-term epidemiological

management of this unprecedented health crisis, that challenges all components of our societies.

However, given the magnitude of the risks at stake, the diversity of fields involved, and the

number of unknowns (such as climate effects, immunity duration), mathematical modelling490

predictions should be handled with caution in the decision process.

Informing decision making represents a challenge because most mathematical modelling in

epidemiology relies on continuous time deterministic models. These offer a wide palette of

analytical tools, but they also become less accurate on short time scales. Conversely, stochastic

models, whether agent based or not, offer a much more precise picture of the early stages of the495

epidemics. However, they become less necessary once the outbreak threshold has been crossed

and epidemic dynamics are essentially deterministic.

We therefore developed an original framework at the crossroads of individual-centered and

compartmental modelling approaches, tailored to the COVID-19 natural history, which has two

great advantages. First, its discrete time structure, shared with that of common epidemiological500

data, allows us to assume any distribution for model processes, therefore introducing what

is known in the literature as memory effects (or ‘non-Markovian’ processes), related to the

age of the infection. As a result, we obtain a much better fit than classical memory-less (or

‘Markovian’) models on intermediate timescales (weeks or months). Second, the deterministic

nature of the model allows us to perform extremely fast simulations, especially compared to505

agent-based modelling that requires the drawing of millions of random numbers for a single

simulation. The computational performance combined to the great parsimony, that still allows

it to accurately fit the observed epidemiological dynamics, makes this model a relevant tool

that can be easily transposed and deployed to other settings, countries or scales – even with
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data limited to those publicly available, as it is the case in the present work.510

First, we used our model to infer three key parameters of the epidemics. Our R0 is compa-

rable to that already computed in France based on their 95% confidence interval (Di Domenico

et al., 2020; Roques et al., 2020; Salje et al., 2020; Hoertel et al., 2020). We also estimate

the temporal reproduction number Rt after the lock-down to 0.71, which is higher than that

estimated by earlier studies (Salje et al., 2020; Hoertel et al., 2020), and the number of lives515

potentially saved (more than 50,000) compared to a lock-down implemented a week later.

Once the parameters estimated, we investigated potential scenarios for control, based on

the assumption that the major characteristics of the epidemics will not change, meaning for

instance that a seasonal effect would have a limited impact on transmission dynamics. Our

results suggest that, in the case of a rise of the reproduction number above the unit threshold520

value, a reinforcement needs to be implemented within 5 weeks after lock-down lifting to prevent

a massive second epidemic peak.

Then, we explore two types of cycling strategies. The first strategy, known as adaptive lock-

down and popularised as ‘stop-and-go’, consists in alternating strict lock-down and absence of

control (Ferguson et al., 2020), the shift between the two being based on the incidence of daily525

patient admission in ICU. We show that this requires a low threshold without a particular

value standing out. The second strategy explored is the fixed-period alternation between lock-

down and relaxed phases. Our work highlights that, for the adaptive lock-down to perform

better than the latter, both in terms of casualties and time spent under relaxed control, part

of the restrictions have to be maintained between lock-downs. Besides, we investigated age-530

differential control strategies and show that there is little public health benefit to be gained

from the variance of control restrictions between age groups, unless implementing measures

even more restrictive than the past lock-down. However, synergy between age differential and

periodic control strategies is left to be explored.

The model makes several strong assumptions. First, there is no spatial structure. This535

limitation can become strong if the epidemic grows in size to infect a large proportion of the

population. Second, there is no specification of the public health control measures implemented:

all the options (quarantine of confirmed cases, adoption of barrier measures, social distancing:

closing of schools and universities, banning of gatherings, etc.) are combined to reduce the
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contact rate. We also neglected fomite transmission (see Ferretti et al. (2020) for an example)540

and assumed perfect and lifelong immunity against reinfection due to currently insufficient data

on immunity. One simplifying assumption we made is that mortality probabilities do not vary

over time, whereas in practice hospital saturation could affect mortality, whether related to

COVID-19 or not.

In terms of outlook, this work lays the foundation for an online application soon to be545

released, as an update of the earlier version COVIDSIM-FR (ETE Modelling Team, 2020a).

Next challenges include taking to account for possible changes in parameter values with time,

mainly detecting and estimating seasonal effects. If these are of significant impact, model

fitting could be adapted, either by estimating parameters within defined time windows or by

left-censoring the data as time goes by. Lastly, the NPI analysis exposed in this work sets550

the ground for the exploration of finely tuned public health measures accounting for spatial

heterogeneity and combining advantages of adaptive, periodic and group-differential modalities,

with the aim of avoiding an epidemic rebound while minimizing its population burden.
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S1 Mathematical notations

Summary table with all the notations used in the study.

notation meaning
tracked densities of individuals

S susceptible
J non critical infectious
Y critical infectious
H long-stay ICU hospitalized
W other critical hospitalized patients
R recovered immunized
D dead (cumulative mortality)
E latent♯

derived densities or flows
C cumulative incidence
∆C daily incidence
I community infectious
A daily ICU admissions
L ICU discharges
M daily mortality

Table S-1: Density related notations.
♯: only applies to the Markovian continuous-time model.
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notation meaning value origin
infection related quantities

Λi force of infection calculated
Z, ζk generation time distribution Nishiura et al. (2020a)
I effective community infectious

density
calculated

R0 basic reproduction number estimated
S0 population size Institut National de la Statis-

tique et des Études Économiques
(2020); Muller and DREES
(2017)

k⋅ current per capita contact rate unknown♭
k⋅,0 pre-epidemic per capita contact

rate
unknown♭

c⋅ per capita contact ratio unknown♭
κ lock-down effect estimated

illness related quantities
IFR⋅ infection fatality rate Ferguson et al. (2020)
H, η⋅ contamination to hospitalization

interval distribution
Linton et al. (2020); Santé
Publique France (2020a)

P, ρ⋅ long stay ICU length distribution Santé Publique France (2020a)
and fitted

Υ, υ⋅ hospitalization to death outside
ICU interval distribution

Santé Publique France (2020a)
and fitted

θ critical illness frequency calculated and fitted
ψ long-stay ICU admission fre-

quency
calculated and fitted

µ long-stay ICU fatality rate Santé Publique France (2020a)
b long-stay ICU admission fre-

quency among hospitalized pa-
tients

Salje et al. (2020)

d fatality rate among hospitalized
patients

Salje et al. (2020)

ω−1 average latency period♯ fitted
γ−1 average infectious period♯ fitted

Table S-2: Main parameter notations.
♯: only applies to the Markovian continuous-time model. ♭: the calculation of these values are
bypassed by the estimation of κ, as shown in S2.3.
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notation meaning
derived output quantities

Rt temporal reproduction number
ι population immunization
ιh herd immunity threshold
qf final size proportion
π community prevalence

other estimated/fitted parameters
t0 epidemic initiation date
E [H] critical case contamination to hospitalization in-

terval expectation
V [H] critical case contamination to hospitalization in-

terval variance
E [P] long ICU stay length expectation
E [Υ] critical case hospitalization to death interval ex-

pectation (non long-stay ICU patients)
CF infection fatality rate correction factor
CM long-stay ICU fatality rate correction factor
CΨ long-stay ICU frequency correction factor

Table S-3: Output-related quantities and fitted accessory parameters.

notation meaning value origin
other notations

⋅i age group (average, density...) calculated
⋅̃ moving-averaged data Santé Publique France (2020b)
⋅̂ adjusted parameter fitted
f. demographic frequency Institut National de la Statis-

tique et des Études Économiques
(2020); Muller and DREES
(2017)

Table S-4: Other generic notations.
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S2 Model details

S2.1 Recurrence relation system30

Instead of classical ordinary differential equations (ODE), the dynamics of the model satisfy a

system of recurrence relations (one could as well write as finite difference equations (FDE)),

which is detailed below. For the sake of simplicity, we omit time dependence in the notations.

Instead, Xi denotes a density at a given time t and X ′
i the density at time t+ 1. The equations

are formally identical for all age groups i. Between-group dynamics are coupled through the35

forces of infection Λ⋅ defined in the next subsection.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′i = (1 −Λi)Si,

J ′i,1 = (1 − θi)ΛiSi, J ′i,k = Ji,k−1, 1 < k < g,

Y ′
i,1 = θiΛiSi, Y ′

i,k = (1 − ηk−1)Yi,k−1, 1 < k < g,

H ′
i,1 = ψi

h

∑
k=1
ηkYi,k, H ′

i,k = (1 − ρk−1)Hi,k−1, 1 < k < h,

W ′
i,1 = (1 − ψi)

h

∑
k=1
ηkYi,k, W ′

i,k = (1 − υk−1)Wi,k−1, 1 < k < h,

D′
i =Di +

u

∑
k=1
υkWi,k + µi

r

∑
k=1
ρkHi,k,

R′
i = Ri + Ji,g + (1 − µi)

r

∑
k=1
ρkHi,k.

(S-1)

S2.2 Force of infection

As indicated in the main text, our goal is to have the force of infection function follow the

well-known Michaelis-Menten (or Holling type II physiological response) function of the form

x ↦ x
a+x . However, we cannot use the prevalence as the argument of Λi here because all40

infected individuals, whether they are critically ill (Y ) or not (J), do not contribute equally to

transmission events. This heterogeneity in contagiosity originates from differences in infection

ages (individuals contaminated 6 days earlier are more contagious than those 10 days earlier)

and in contact rates.

To address this issue, we introduce the effective infectious density I (t),45

I (t) ∶= ∑
j

cj (t)∑
k

ζk (Jj,k (t) + Yj,k (t)) , (S-2)

5
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which is the sum over all infected community compartments weighted by both the generation

time ζk, which is the time between the infection of an ‘infector’ and the infection of his or her

‘infectee’, and the per-capita contact ratio ci (t). The latter is defined as the current contact

rate per-capita of individuals of age group i (ki (t)) relative to their pre-epidemic baseline

contact rate (ki,0),50

ci (t) ∶=
ki (t)

ki,0
. (S-3)

With I kept constant, Λi is expected to display a Michaelis-Menten behavior (i.e. positive

initial slope, increasing and upper-bounded) with respect to the current per-capita rate as well.

Consequently, the force of infection should satisfy

Λi (t) =
ki (t) I (t)

a + ki (t) I (t)
, (S-4)

as shown in Fig.S-1.

We then derive the expression of a using known parameters. To do so, we consider the55

probability for a given susceptible individual to be part of the first generation of cases, that

is, to have been infected by the index case. Let us denote Λi,index (t) the probability of being

infected by the index case on day t. By definition of the basic reproduction number, the index

case infects R0 secondary cases, on average, by the end of its contagious period. Under the

mean-field approximation, the probability of being part of these secondary cases is simplyR0/S060

(which is an extremely rare event). Summing over all possible days, we therefore have

∑
t≥1

Λi,index (t) = R0/S0 ≪ 1. (S-5)

For simplicity, we make the following three assumptions:

• the index case is not critically ill (less than 5% of cases are),

• the index case belongs to the same focal age group i (More generally, one should average

the per-capita contact rate of the index case weighted by the (unknown) probability65

of her or him belonging to each age group. This uncertainty was circumvented in the

numerical inferences and simulations by pooling all individuals within a single age group,

the parameters of which were weighted according to demography),

6
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• the index case has infected all his or her secondary cases before public health measures

are implemented.70

It follows from these assumptions that if we set the contamination day of the index case to

t = 0, the effective infectious density I restricted to the index case can simply be written as

I index (t) = ζt,

(note that ki (t) = ki,0 over the considered period of time, hence ci (t) = 1 and all densities are

equal to 0 except Ji,t = 1).

Applying these results to equation S-4, the daily probability of infection by the index case75

therefore becomes

Λi,index (t) =
ki,0ζt

a + ki,0ζt
.

Now, from the magnitude comparison (S-5), we have a≫ ki (t) ζt, and hence

∑
t≥1

Λi,index (t) ≈
ki,0
a
∑
t≥1
ζt,

In the limit of low prevalence (or low contact rates), the mass action law is recovered. Using

equation (S-5) and the fact that the sequence (ζt)t≥1 being a mass function, it sums up to 1,

we get80

a = ki,0
S0

R0
. (S-6)

Combining equations (S-4), (S-3) and (S-6) finally leads to the generic expression of the

force of infection:

Λi (t) =
ci (t) I (t)

S0
R0

+ ci (t) I (t)
. (S-7)

This is the equation indicated in the main text.

S2.3 Lock-down effect

In the special case where strong public health control measures such as lock-down are being

implemented, all individuals may exhibit similar per capita contact rates, ki (t) = klock. From

7
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Figure S-1: Daily force of infection as a function of the product of daily contact rate
and effective infectious density
Λi is the probability for one susceptible individual from group i to be infected a given day. The
initial non-zero slope comes from the law of mass action implied by the mean-field approxima-
tion. The derivation of Λi is based on the remarkable coordinates shown near the origin of the
graph (not to scale). When the effective infectious density is equal to 1 (i.e. as if the generation
time distribution were concentrated in a single day) and the contact rate is that in absence of
any health measure (denoted by k0,i), then, by definition of the basic reproduction number, Λi

equals R0/S0.

(S-4), it is then possible to express the force of infection in the following way:

Λi =
I

a
klock

+ I
,

=

∑
j

klock
ki,0
∑
k
ζk (Jj,k + Yj,k)

ki,0
klock

S0
R0

+∑
j

klock
ki,0
∑
k
ζk (Jj,k + Yj,k)

,

Λi =
I+

(
ki,0
klock

)
2
S0
R0

+ I+
, (S-8)

where I+ is the effective infectious density as if it were calculated in absence of health measures85

(i.e. with ci = 1). In equation (S-8), one can interpret the quantity c2
i,lock ∶= (

klock
ki,0

)
2
< 1 as a factor

lowering the basic reproduction number R0. The lock-down effect, defined as the reduction of

R0 due to this measure, can be calculated by averaging ci,lock over age groups (according to

demography). Hence,

κ ∶= 1 − clock
2. (S-9)

8
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S2.4 Times series90

The largest and most reliable nationwide data for the COVID-19 epidemic in France is that

of daily COVID-related death toll in hospitals, communicated daily since Feb 16 2020 by

the national public health agency (Santé Publique France). This is why our model neglects

COVID-related deaths occurring outside hospitals. In particular, we removed nursing homes

(or EHPAD) from calculations.95

Starting from Mar 18 2020, two additional time series are communicated: daily admissions

in intensive care units (ICU) and current ICU occupied beds. While the former capture the

dynamics from contamination to ICU admission, the latter captures moreover the kinetics of

ICU stay.

These time series are altered by week-ends and bank days: e.g. death tolls are notably lower100

on Sundays than previous days, while it increases the next Mondays. It has even been suggested

that reporting delays propagate also to Tuesdays. In order to smooth these artifactual weekly

oscillations, a right-shifted 7-days moving average was performed over all time series prior to

analysis. We will refer to these smoothed datasets as M̃ for daily hospital mortality, Ã for daily

ICU admissions and H̃ for current ICU occupied beds. Since H̃ contains part of the cumulative105

information of Ã, we also considered D̃, the cumulative counterpart of M̃ to equilibrate the

first step of the fitting procedure (see below).

S2.5 Criticality-related probabilities

Symptom severity of COVID-19 is increasingly classified into mild, moderate, severe and criti-

cal. Because we rely on hospital mortality and ICU flow data, we focus on critical cases, i.e. the110

ones concerned by intensive care and COVID fatality. In the absence of detailed large-scale

hospitalization data, we made the following assumptions:

• non-critical cases are not admitted into ICU (even though some do need hospitalization),

• all critical cases need hospitalization, and only survive if they go through intensive care.

For medical reasons not addressed here, in France not all critical cases are admitted soon115

enough into ICU. Part of them die in non-intensive care wards, while others die shortly after

entering the ICU, therefore not contributing to ICU bed occupancy. We therefore need to

9
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estimate two key criticality-related probabilities, namely θi, the proportion of critical cases

within age group i, and ψi, the proportion of critical cases in age group i that contribute to

ICU bed occupancy (i.e. their stay in the ward exceeds one day). Because these probabilities120

differ among age classes and improper averaging could lead to substantial bias (see below),

we first need to make calculations focused on the smallest age stratification unit (usually a

decade). In the following, θ (a) and ψ (a) are the age-specific critical case frequency and long-

stay admission given critical illness respectively. In addition, Pa [X1∣X2] reads as the probability

of event X1 given X2 has occurred for an individual of age a.125

Let us consider the four events needed to derive θ (a) and ψ (a) from available data:

• I, being infected by SARS-CoV-2,

• U, being hospitalized,

• B, occupying an ICU bed for more than a day,

• D, dying at the hospital from COVID-19.130

The interplay between these events is formally depicted by the tree diagram in Fig.S-2.

I

U

B

D

1 − P
a [D∣B ∩ U ∩ I]

D

B

D
µ (a)

D

Pa [B∣
U ∩ I]

P
a [U∣I]

U B D
11

Figure S-2: Tree diagram of critical COVID-19 related events. A fraction Pa [U∣I] of
infected (I) are hospitalized (U). Among these, a proportion Pa [B∣U ∩ I] are admitted into
ICU for a stay longer than a day B. The fatality ratio (D) equals µ (a) for these patients and
Pa [D∣B ∩ U ∩ I] for the others.

We need to find two independent equations involving probabilities related to these events for

which age-stratified data is known in order to solve θ (a) and ψ (a). First, we need to identify

such data:

10
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• Pa [D∣I] is the proportion of deaths among COVID-19 infected individuals, better known135

as the Infection Fatality Rate (IFR), which has been calculated using the Diamond

Princess data by Verity et al. and corrected for non-uniform attack rate by Ferguson

et al. and will be denoted by IFR (a) hereafter,

• Pa [D∣B ∩ U ∩ I] is the proportion of deaths among COVID+ ICU hospitalized patients;

this age stratified data has been communicated by Santé Publique France as a weekly140

epidemic report on May 7 2020 (Santé Publique France, 2020a), and will be denoted by

µ (a) hereafter

• Pa [B∣U ∩ I] and Pa [D∣U ∩ I] are respectively the proportions of hospitalized patients (whether

they are critical or not) admitted in ICU, and those that die (whether in ICU or not),

and hereafter denoted by b (a) and d (a). These data come from the SI-VIC database and145

made available by Salje et al. (2020). (Tables S1 and S2).

A first equation comes by noticing that the probability for an infected individual to die from

COVID-19 is the probability of developing critical illness if infected (namely θ (a)) times the

proportion of deaths among critical cases. The latter is the sum of critical cases that die in

ICU after a stay longer than one day (µ (a)ψ (a)) and the critical cases that are not lengthily150

admitted in ICU and cannot be saved (1 − ψ (a)):

IFR (a) = (µ (a)ψ (a) + 1 − ψ (a)) θ (a) ,

hence

θ (a) =
IFR (a)

1 − (1 − µ (a))ψ (a)
.

Now, to find ψ (a), let us notice that the proportion of deaths not occurring in ICU can be

expressed as
1 − ψ (a)

µ (a)ψ (a) + 1 − ψ (a)
= Pa [B∣D ∩ U ∩ I] ,

hence155

ψ (a) =
1 − Pa [B∣D ∩ U ∩ I]

1 − (1 − µ (a))Pa [B∣D ∩ U ∩ I]
.

11
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The unknown probability can be calculated as follows

Pa [B∣D ∩ U ∩ I] =
Pa [B ∩ D∣U ∩ I]
Pa [D∣U ∩ I]

,

=
Pa [D∣U ∩ I] − Pa [B ∩ D∣U ∩ I]

d (a)
,

=
d (a) − µ (a) b (a)

d (a)
.

After elementary calculations, we finally get

ψ (a) =
1

1 − µ (a) + d(a)
b(a)

,

hence both θ (a) and ψ (a) can be calculated from age-stratified available data.

The mean proportion of critical cases among a specific age group, θi, is simply the demographic-

weighted average of θ (a) over the considered ages, as infection samples uniformly the susceptible

compartment (NB: the IFR stratified data used here from (Ferguson et al., 2020) is already160

corrected for non-uniform attack rate). However, as the probability of the next events re-

lated to critical illness are not homogeneous with respect to age, the age group averages ψi

and µi cannot be weighted directly with relative demographic age frequencies. Instead, they

must be calculated by taking into account that ages with higher ψ (a) and then µ (a) will be

over-sampled in Yi →Hi and Hi →Di transitions respectively.165

To account for this bias and as well to allow adjusting the parameters to both the model

(for ψ (a) and µ (a)) and the French epidemic (for the IFR), we introduce a series of corrections

detailed hereafter in the calculation of the parameters used to run the model.

First, we account for the fact that the ICU fatality rate might mix both short and long-

stay patients, while our model splits these two flows. The corrected age-specific long-stay ICU170

fatality rate will be denoted by µ̂ (a) and calculated as the product of the corresponding data

and a correcting factor denoted by CM, i.e. µ̂ (a) ∶= CMµ (a). Likewise, the age-specific IFR

(which was not estimated from French data) will be corrected as ˆIFR (a) ∶= CFIFR (a). Now,

equations S2.5 and S2.5 rewrite as

ψ̂ (a) ∶=
CΨ

1 − µ̂ (a) + di

bi

and θ̂ (a) ∶=
ˆIFR (a)

1 − (1 − µ̂ (a)) ψ̂ (a)
.

12
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Note that there is no need for a fourth correction factor as CM, CF and CΨ already capture175

possible corrections for θ̂. These corrections are yet of unknown values but will be estimated by

the fitting procedure detailed below. As the corrected values are still probabilities, the correc-

tion factors are necessarily upper bounded, respectively by (maxaµ (a))
−1, (maxaIFR (a))

−1,

and (maxaψ (a))
−1.

The last step consists in age-group averaging as mentioned above. Let us denote by f (a) the180

frequency of individuals of age a in the French metropolitan population (after having removed

the ca 730,000 individuals living in nursing homes). We call the i-group relative frequency

of age a as the standardized age frequency fi (a) ∶= f (a)/ ∑
j∈Ai

f (j), where Ai is the set of ages

belonging to age group i. As previously implied, the frequency of critical cases in age group i

is the straightforward demographic weighted average185

θi = ∑
a∈Ai

fi (a) θ̂ (a) .

The frequency of long-stay ICU patients among hospitalized critical cases in age group i is

then weighted by both the relative age frequencies and the ratio of critical illness probability

to the group average, i.e.

ψi = ∑
a∈Ai

fi (a) ψ̂ (a)
θ̂ (a)

θi
.

Finally, as the last event to occur, the average fatality ratio for long-stay ICU patients

belonging to group imust be corrected by the ratio of the product of the two previous frequencies190

relative to the group average φi, i.e.

µi = ∑
a∈Ai

fi (a) µ̂ (a)
θ̂ (a) ψ̂ (a)

φi
,

where φi ∶= ∑
a∈Ai

fi (a) ψ̂ (a) θ̂ (a).

S2.6 Waiting times

Four time distributions underlie the dynamics: the generation time (or index-contamination-

to-secondary-contamination interval), the contamination-to-hospitalization interval of critical195

cases, the ICU length of stay and the hospitalization-to-outside-ICU death interval of critical

13
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cases. Each of these events can be seen as a random waiting time variable, denoted by Z○

(capital zeta), H○ (capital eta), P○ (capital rho) and Υ○ (capital upsilon) respectively.

Initially, all four random variables are assumed to follow Weibull distributions, with shape

parameters greater than one. Such distributions are widely used in the biomedical literature,200

along with Gamma and Lognormal distributions, for fitting the probability density function

(PDF) of ageing processes, for which the probability for the focal event to occur increases with

lapsed time (Bolker, 2008). Preliminary exploratory fittings of the model to daily mortality

data indicated that maximum likelihood estimates of the shape parameter of P○ and Υ○ were

close to unity. Because the computational procedures used for maximum likelihood estimation205

misbehave in the vicinity of parameter range boundaries, the shape parameter of these two

distributions was set to 1, turning them into exponential distributions by fitting (the exponential

distribution being a special case of Weibull distributions), though not by assumption.

Weibull distributions have a right-unbounded support [0,∞), which means that true dis-

tributions require truncation for obvious computational reasons. Let us introduce the generic210

notations Ξ ≡ Z,H,P,Υ and x ≡ g, h, r, u. We construct the right-truncated analogous distri-

butions by setting the finite upper boundary of their support x ∶= min {n ∈ N ∶ FΞ○ (n) ≥ 0.99},

i.e. the upper-integer-rounded 99%-quantile of the original distribution Ξ○, where F⋅ denotes

the cumulative distribution function (CDF). The truncated distributions Ξ are therefore such

that their CDF satisfy FΞ = FΞ○/FΞ○ (x), and having as their supports FΞ (Ω) = [0;x].215

Dynamics unfold in discrete time in our model, which means these continuous distributions

need to be discretized into sequences to be implemetend into the framework. The generation

time sequence is straigtforwardly defined as ζk ∶= FZ (k)−FZ (k − 1) for 1 ≤ k ≤ g. Indeed, trans-

mission events do not affect the progression of the infector within its compartment. However,

the three other sequences of parameters, ξk ≡ ηk, ρk, υk, represent the proportion of individuals220

that leave the compartment k days after having entered it. These parameters need to capture

the probability that the corresponding event occurs on day k but they also need to be stan-

dardized by the probability of not having left the compartment by that day. They are therefore

calculated as

ξk ∶=
FΞ (k) − FΞ (k − 1)

1 − FΞ (k − 1) for 1 ≤ k ≤ x.

14
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S2.7 Fitting and estimation procedure225

The fitting procedure was performed using the mle2 routine from the bbmle package (Bolker et

al., 2020) implemented in R (R Core Team, 2020). Starting from the initial parameter values

v0, an ordinary least square optimum v1 was found by minimizing the euclidean distance to

Ã, M̃ , H̃ and D̃ simultaneously, thus accounting for all events, from contamination to death

or recovery. Having great confidence in both ICU admissions and current ICU occupancy is230

especially valuable for forecasting hospital needs, while mortality predictions cannot be ignored

by decision makers. This first step is only used to locate the closest parameter region from v0

where likelihoods further calculated might reach their maximum value.

Maximum likelihood estimates (MLE) and 95%-likelihood intervals (LI) were calculated us-

ing the same routine. We assume observed data to be Gaussian-noised realizations of the model235

prediction, then considering each daily count to be distributed asXobs (t) ∼ N (Xsim (t) ,Xsim (t)),

where Xsim is the simulated daily count. The choice of the distribution is supported by the

large numbers involved and the Poissonian nature of count processes (NB: pre-lock-down mor-

tality data was ignored for the central limit to apply). Contrary to the first step, only one time

series was used for each estimation. MLE and LI of R0, t0, E [H], V [H] and κ were estimated240

with respect to Ã, while the other parameter values were set as in v0. The resulting MLE of

the free parameters replaced the corresponding values in v0, providing vector v1. This new

parameter set served as the starting point to estimate the MLE and LI for E [P], CM and CΨ

with respect to L̃, the derived time series of daily ICU discharges (calculated as the daily ICU

admission minus the daily difference in ICU bed occupancy). The resulting parameter set v2245

then initiated the estimation of the remaining parameters, E [Υ] and CF, with respect to M̃ ,

giving vector v3.

Using the fact that the maximum likelihood estimators are asymptotically normally dis-

tributed, we used the range of the LI as proxies for the standard deviation of the marginal

distribution of each MLE. Then, we randomly drew parameter sets in a multivariate Gaus-250

sian distribution with mean v3 and diagonal variance-covariance matrix. For each of them,

we calculated their likelihood with respect to M̃ and kept only those whose likelihood was

not significantly different from that of v3, according to Wilk’s theorem (Wilks, 1938). Sam-

pling stopped once 103 draws have satisfied the condition. Importantly, we considered all the

15
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retained parameters equivalent from the likelihood point of view, i.e. they are assumed to rep-255

resent equally likely versions of adjusted parameter sets. Their diversity thus allows to account

for uncertainty in the real parameter values.

For any further analysis of the model, system S-1 was run independently with each of the

103 parameter sets. The confidence intervals of simulated tracked densities (S (t), J (t)...) as

well as any derived quantity (R(t), ι (t)...) were then simply calculated for each time point as260

the unweighted 2.5% and 97.5% sample quantiles of the 103 outputs at the given time point.

The central estimations correspond to the median value of these distributions.

S2.8 Derived outputs

Tracked densities are the number of individuals in each clinical-epidemiological compartment

Xi,k, the dynamics of which satisfy S-1 and are thus directly provided by numerical iteration of265

the recurrence relations. However, several quantities of interest require additional calculations,

hereafter exposed.

Let us first introduce two notations for the sake of concision. Tracked densities without

indices will refer to sum over all groups, and, for multiple-days compartments, over all possible

days of progression as well: X ≡ ∑
i
∑
k
Xi,k (e.g. J (t) represents all individuals belonging to Ji,k270

for all groups i and all ages of infection k). The daily difference ∆X (t) ≡ X (t) −X (t − 1) is

straightforwardly used to extract the instantaneous dynamics from a cumulative time series.

The following three time series are crucial as they are used for likelihood calculations with

respect to their data counterpart:

• M (t) ∶= ∆D (t) is the daily mortality,275

• A (t) ∶= ∑
i
Hi,1 (t) is the daily ICU admissions number,

• L (t) ∶= A (t) −∆H (t) is the daily ICU discharge number.

The next times series are intermediate calculations required for further key quantities.

• I (t) ∶= J + Y is the community infectious density and represents all not hospitalized

infected individuals, which can be used to estimate the expected proportion of COVID280

PCR+ in the general population,
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• C (t) ∶= ∑
τ≤t
∑
i
(Ji,1 (τ) + Yi,1 (τ)) = S0 − S (t) and ∆C (t) are the cumulative and instanta-

neous incidence respectively.

The latter is used for the calculation of the most scrutinized indicator in epidemic monitor-

ing, namely the temporal (or effective) reproduction number, R(t), which we calculate here285

following Wallinga & Lipsitch, at the time of the infectees’ contamination:

R(t) ∶=
∆C (t)

∑
τ≥1

∆C (t − τ) ζτ
.

In this work, (population) immunization ι refers to the proportion of individuals that have

been infected by SARS-CoV-2. We assume waning immunity is negligible at this timescale. Its

calculation is simply

ι (t) ∶=
R −D

S0 −D
.

In absence of waning immunity from the host and antigenic drift from the virus, and assum-290

ing public health measures are fully relaxed, further epidemic can only be passively prevented

if the herd immunity threshold is reached, i.e. ι ≥ ιh where

ιh = 1 − 1
R0

.

A classical result from Kermack & McKendrick is that if the epidemic has started spreading,

the final cumulative relative incidence will not stop at the herd immunity threshold, but continue

to a greater value, known as the final size proportion, that has no close form solution, but can295

implicitly be defined as

qf ∶= {q ∈ (0,1) ∶ R0q + log (1 − q) = 0} .

Finally, current prevalence in the community is simply given by

π (t) =
I

S + I +R
.
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S2.9 Continuous time model

The Markovian continuous-time model analogous to S-1 corresponds to the following set of

ordinary differential equations300

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi

dt = −ΛiSi,

dEi

dt = ΛiSi − ωEi,

dJi

dt = (1 − θi)ωEi − γJi,

dYi

dt = θiωEi − ηYi,

dHi

dt = ψiηYi − ρHi,

dWi

dt = (1 − ψi) ηYi − υWi,

dRi

dt = (1 − µi)ρHi + γJi,

dDi

dt = µiρHi + υWi,

where the force of infection is given by

Λi (t) =
ci (t)γR0

S0
∑
j

cj (t) (Jj + Yj) .

Note that a latent compartment E has been added to account for a delay between contam-

ination time and the beginning of the infectious period. The average latency and infectious

period are equal to ω−1 and γ−1. By construction, all transition times are exponentially dis-

tributed.305

To compare this model to the focal non-Markovian discrete-time model introduced in this

work, the output of the numerical integration was sampled at integer-valued time points. Then

the fitting procedure used for the focal model was applied, though with a supplementary degree

of freedom. Indeed, in the one hand, H is here exponentially distributed, therefore V [H] is

determined by E [H] and, in the other hand, proper parameters ω and γ need to be fitted as

there is no one-way relationship from generation time to latency and contagious periods. For

information purposes, the maximum likelihood estimates and corresponding 95%-likelihood

intervals of R0, t0 and κ found by the estimation procedure applied to this Markovian model

were respectively 4.3 [2.9,5.8], 01 − 22 [01 − 20,01 − 23] and 26% [5,47]%.
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S3 Supplementary Results

S3.1 Maximum likelihood parameter estimates

main input parameter notation maximum
likelihood
estimates

95% - likelihood
interval

basic reproduction number R0 2.99 [2.59,3.39]
initiation day (YY-MM-DD) t0 20-01-20 [20-01-12, 20-01-28]
lock-down control (%) κ 75.9 [72.9,78.7]
critical case contamination to hospitalization
interval expectation (days)

E [H] 14.5 [13.6,15.4]

critical case contamination to hospitalization
interval variance (days2)

V [H] 20.0 [11.4,30.9]

long ICU stay length expectation (days) E [P] 16.7 [14.9,18.8]
critical case hospitalization to death inter-
val expectation (non long-stay ICU patients
(days)

E [Υ] 6.63 [6.19,7.10]

infection fatality rate correction factor (%) CF 87.2 [85.8,88.5]
long-stay ICU fatality rate correction factor CM 100.3 [100.2,100.5]
long-stay ICU frequency correction factor CΨ 93.8 [93.0,94.5]

Table S-5: Maximum likelihood estimates and associated 95% - likelihood intervals
for the ten input parameters. Details about the estimation procedure are provided in
section S2.7.
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S3.2 Data right censoring and parameter inference
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Figure S-3: Basic reproduction number estimates as a function of the date of cen-
soring
Each dot represents the maximum likelihood estimate of the basic reproduction number calcu-
lated from data truncated at the corresponding date on the x-axis. Bars shows 95% likelihood
intervals.
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Figure S-4: Successive initiation date estimates
Each dot represents the maximum likelihood estimate of the initiation date of the epidemic from
data truncated at the corresponding date on the x-axis. Bars shows 95% likelihood intervals.
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Figure S-5: Successive lock-down effect estimates
Each dot represents the maximum likelihood estimate of the lock-down effect from data trun-
cated at the corresponding date on the x-axis. Bars shows 95% likelihood intervals.
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S3.3 Lock-down implementation date and cumulative mortality
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Figure S-6: Estimated lock-down date effect on cumulative mortality.
Each curve represents the median cumulative (hospital) mortality as generated by the model
according to a given lock-down scenario, while their surrounding shaded areas correspond the
their 95% confidence intervals. The scenarios are as detailed in Fig 4. Dots represent the data.
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S3.4 Examples of post-May 11 scenarios310

Figure S-7: Examples of post-May 11 scenarios
Here are shown four runs of the model with distinct reproduction number after lock-down
lifting and control response timings. Importantly, these plots are not statistical predictions
of the future but only illustration-purpose qualitative explorations. The blue and pink curves
respectively represent the median number of occupied beds in ICU nationwide and the median
cumulative (hospital) mortality as generated by the fitted model. The turquoise triangles
and red circles are the (rolling 7-day average) data counterparts. The black curve shows the
median daily temporal reproduction number calculated from the simulated epidemic. The
dotted horizontal line shows the reproduction number threshold value, i.e. 1. The purple dotted
horizontal line shows the initial French ICU capacity, ca. 5,000 beds. The vertical corresponds
to the end of the French national lock-down (May 11). Shaded areas correspond to 95%
confidence intervals Note: the abscissa scales differ across panels. Top left panel. After lock-
down lifting, the reproduction numberRt = 0.91 ([0.85,0.98]), the epidemic is under control and
vanishes spontaneously. Top right panel. After lock-down lifting, the reproduction number
Rt = 0.91 ([0.85,0.98]), a second wave arises in absence of any control response. Bottom left
panel. As previously, but a reinforced set of NPIs is implemented by Jul 15, reducing the
reproduction number below 1. Bottom right panel. As previously, but a reinforced set of
NPIs is implemented earlier, by Jun 15.
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S3.5 Time vs intensity trade-off of the relaxed phase in the periodic

lock-down strategy

0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

relaxed per capita contact ratio

re
la

xe
d 

ph
as

e 
pr

op
or

tio
n

Figure S-8: Time spent in the relaxed phase a function of the corresponding per
capita contact ratio, in a periodic lock-down strategy
The maximum proportion of time possible to be spent in the relaxed phase of a NPI cycle
without triggering a new epidemic, denoted by pr,max, is governed by three quantities, following
eq.3: the basic reproduction number, R0, the per capita contact ratio during the hard phase of
the NPI cycle (here set to the same value as during lock-down, κ), and the per capita contact
ratio during the relaxed phase, cr. This figure illustrates the trade-off relation between pr,max
and cr: the central curve represents the median relation while the surrounding shaded areas
correspond to the 95% confidence interval. Vertical dashed bars indicate the 95% CI of the
average per capita contact ratio threshold associated to Rt = 1 (therefore applicable the whole
time, without need of any harder phase), this interval is [56,60]%. Horizontal dashed bars
indicate the 95% of the proportion of the relaxed phase in each NPI cycle that guarantees
associated to Rt = 1, this interval is [6.2,12]%.
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