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SEMICLASSICAL EVOLUTION WITH LOW REGULARITY

FRANCOIS GOLSE AND THIERRY PAUL

ABSTRACT. We prove semiclassical estimates for the Schrédinger-von Neumann evolution with C! potentials and density
matrices whose square root have either Wigner functions with low regularity independent of the dimension, or matrix
elements between Hermite functions having long range decay. The estimates are settled in different weak topologies and
apply to initial density operators whose square root have Wigner functions 7 times differentiable, independently of the
dimension. They also apply to the N body quantum dynamics uniformly in N. In a appendix, we finally estimate the
dependence in the dimension of the constant appearing on the Calderon-Vaillancourt Theorem.
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The semiclassical approximation links the quantum dynamics of Hamiltonian, say,
2
H = —%A + V(z) on L*(R% dz), to the underlying classical one, namely the flow
generated by the Hamiltonian h(p, q) = %pQ +V(q) on R?** ~ T*R?. This quite indirect
1



2 F. GOLSE AND T. PAUL

link, particularly efficient when the Planck constant takes small values, relies on the
presence of fast oscillations in the initial data whose speed diverges linearly in A~! as
h — 0.

To our knowledge, all results in semiclassical approximations are subjects to the
following alternative:

e cither no specific ansatz is made for the initial data of the quantum dynamics. In
that case, under some tightness conditions of the initial data, revealing the size
of oscillations, and along subsequences of values of A tending to 0, the Wigner
function (or equivalently the Husimi one) of the solution of the quantum evolution
is shown to tend to a solution of the Liouville classical equation, with no estimate
of the rate of convergence provided (see, e.g., [8, 9, 16], and also [1, 6] for an
extension to potentials whose gradient has only BV regularity)).

Let us recall that, by quantum and classical evolution, we mean the content of
the following table:

ihopp = Hy, € L*(RY,) Schrodinger

quantum { %R = %[Ha R], R>0, trace R =1, von Neumann
P\ _ (—9h(p,q) rad .

classical (q) = ( O,h(p,q) ) (p,q) € T"R Hamilton

%p - {h7 p}7 p >0, fdep =1 Liouville

e or very precise estimates of the rate of convergence are obtained after some ansatz
is made on the initial quantum data (WKB, coherent states for the Schrodinger
equation; various type of quantization (pseudodifferential, Weyl, Téplitz calculus)
for the von Neumann equation). In this case a “quasimode” is constructed, e.g.
a solution of an approximate equation, and the unitarity of the quantum flow
(supposed a priori) provides a remainder estimate of order /2 or i in L?(R%) or
L(L*(RY)) topology. Let us remark that, although the quasimode is constructed
trough the solution of the equations of the classical paradigm, the estimate of the
rate of convergence is settled in the topology of the quantum one.

Let us mention also that the accuracy of the results for the von Neumann equation
in the second case of the preceding alternative degrades quite rapidly when the space
dimension or the number of particles involved get large. This for two reasons. First,
estimating the remainder is done through the so-called Calderon-Vaillancourt Theorem,
a result very regularity consuming when the total dimension, namely d = 3N in the
case of N particle in three dimensions, increases. Basically C[%]—differentiability for
both the potential and the initial data is required. In addition, the O(h) size of
the remainder is degraded by the multiplicative constant v, appearing in Calderon-
Vaillancourt Theorem. We give an estimate of 74 in Appendix C (Theorem C.4), as we

couldn’t find it elsewhere. Certainly not sharp, the result we obtain is log v, ~ %d log d,
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and a value of v,; larger than the inverse of the Planck constant h = 27h ~ 6.626 x 10734
already for NV = 4 in three dimensions.

Recently we found a way of somehow estimating directly the “distance” between
quantum and classical objects. Given R(t) and p(t), solutions of the von Neumann
and Liouville equations respectively, we defined in [12] a positive number Ej,(p(t), R(t))
satisfying for all time ¢ a “Gronwall type” estimate

(1) Eﬁ(p(t)v R(t))2 < emax(1,4Lz’p(VV))tEh(p(0)7 R(O))27

where Lip(VV') denotes the Lipschitz constant of VV'. The definition of E}, is given in
Definition 3.2 below, and is a generalization of a quantum analog of the Wasserstein
distance of exponent 2 introduced in [11].

Let us remark immediately that (1) is uniform in & and doesn’t contain any extra
semiclassical error term as appearing in estimates involving quasimodes. e.g. O(h>).
Consistently Ej(R(0), p(0)) cannot vanish. In fact

(2) Ey > %dh.

On the other side, the smallness of Ej(R,p) has a true meaning thanks to the fact
that it almost dominates a distance between p and the Husimi function of R: the
following bound holds true for any R, p > 0 with trace R = fRQd pdpdq = 1, proven in
[12] Theorem 2.4 2 and recalled in Theorem 3.3 of the present paper,

(3) diStMK,Q(W[R]7 p)2 S Eﬁ(R7 /0)2 + %dh

The inequality (3) was proven in [12] Theorem 2.4 2 and is recalled in Theorem 3.3 of
the present paper, the definition of the Wasserstein distance distyk 2 is recalled in (21)
and W[R], the Husimi function of R, in (10).

Moreover, Ej shares with the notion of distance the following type of triangle inequality,
valid for any R > 0,trace R = 1 and probability measures f, f’, see Lemma 3.5 in
Section 3,

(4) Ey(f', Rp) < distyk2(f', f) + En(f, Rn).

Since the correspondence between R and W[R] is one-to-one (see Section 2), formula
(1) together with (2) will give an estimate for the semiclassical evolution of R(¢) solution
of the von Neumann equation, estimate expressed this time in the classical paradigm
at the contrary of the quasimode ones. More precisely, we will get this estimates if we
are able to find a probability measure p such that

(5) En(p™, R(0)) = o(1) as h — 0.
This task was achieved in the case where R(0) is a Toplitz operator whose symbol p

is any probability measure on R?? (see Definition in Section 2 below): for all t € R,
Theorem 2.7 in [12] (see also Section 3 of the present article) leads to

—_—

1 PR
(6) distark 2 (p(t), WIR(H)])? < §(1 + emax (LALP(VV)IN) g,
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Note that this result, being valid for any probability measure type symbol p and there-
fore not requiring any regularity condition, is, at our knowledge, unreachable by usual
Toplitz calculus proof.

The goal of the present paper is:

(1) to get rid of the Toplitz ansatz we just mentioned

(2) to find practical efficient conditions for quantum initial data to be semiclassically
evolved by the von Neumann equation, without any need of concrete ansatz

(3) to obtain propagation estimates of the form (6) for initial density matrices, the
Wigner function of the square root of them having low regularity C, indepen-
dently of the dimension and the number of particles.

(4) to estimate the semiclassical propagation in some “direct” weak distances instead
of in the Wasserstein-Husimi formulation of [12], namely a distance & between
Wigner functions generated by the dual of a space of test functions, or likewise
a distance d between density operators associated to the trace duality of a set of
test operators (see definition above in this section).

(5) to get semiclassical estimates uniform in the number of particles involved.

Our results will be developed on three nested levels of generality. The most general
one involves the existence of a probability density, linked to the initial condition R™
of the von Neumann equation, satisfying explicit conditions. The second one gives a
concrete realization of such a density under explicit conditions on the size of the matrix
elements of \/R(0) between (semiclassically scaled) Hermite functions. The third one
shows that such conditions are satisfied by operators whose Wigner function satisfies
low regularity conditions.

Each of these results will be expressed in different forms, using the distance distyk 2 or
in terms of the following ones, introduced in [10] Appendix B and studied in Appendix
B.2 on the present paper.

We recall the definition for two Hilbert-Schmidt (in particular density) operators R
and S and M > 0.

one (Wil R], Wi[S]) = sup /(Wh[R](I,f) — Wi[SI(z,€)) f(x, §)dxdE],
omax (10307 flzo <1
du(R,S) = sup | trace (F(R — )| Do 1]
o T8 P PEF <1

The different “distances” used in this article are nested in the following chain of
inequalities (see Propositions B.7 and 3.4) valid for R, S density operators

. o 2 —
doja/aj+2(R, S) < 2%6014/4112(Wi[R], Wi[S]) < distux,2(Wa[R], Wn[S])vL%\/ﬁ < En(Wi[R],S)+ (%}j +4Hvh
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dajajas2(R,S) < 29094/4112(Wh[R], Wi[S])

N N 2d N
< distyk 2(Wh[R], Wi[S]) + %\/73 < Ew(Wi[R],S) + (322 + $)Vh
where 7, is the constant that appears in the Calderon-Vaillancourt Theorem C.4 below.
We will use finally a last distance § whose definition, independent of the dimension
and involving L? test functions is the following (once again R and S are Hilbert-Schmidt
operators).

S(Wh[R), Wa[S)]) = sup | / (WilR] — Wi[S))f (. €)dard].
Lip(f)<1
Hf”LQ(RQd)a vaHL?(R?d)Sl

The series of nested links between 9, distyx 2 and Ej, this time independent of the

dimension, is the following (see Section B.1 in Appendix B below), for R, S density
operators.

S(Wi[R], W[S]) < distark 2(Wi[R], Wy[S]) + VA|Wi[R — S]||2 < V2Ex(Wi[R], S) + VR|Wi[R — S]|| 2.

In our last main result, Theorem 8.2, the distance ¢ will provide a topology for the
N-body semiclassical propagation of factorized (e.g. bosonic) initial data which will
be uniform in N as N — oo.

The three type of results mentioned earlier are expressed in Section 2 by Theorems
2.1, 2.2 and 2.3 respectively, in reverse order of nesting for pedagogical purposes. Their
proofs are given in Section 4 by showing that they are mostly corollaries of the three
items of Theorem 4.1 proven in Sections 5, 6 and 7 respectively. Section 3 is devoted to
the quantum analogue of the Wasserstein distance of exponent two and its properties.
Semiclassical uniform in N estimates for the N-body quantum propagation are stated
and proved in Section 8 and the three appendices A, B and C are devoted respectively
to the proof of the triangle type inequality for E} just mentioned, the comparison of
E}, with weak topologies and an estimation of the Calderon-Vaillancourt constant.

2. MAIN RESULTS

For any real function V of class C*! on R? such that the operator —3h?A + V is
essentially self-adjoint on L?(R?), we consider the von Neumann equation

(7 i Ry(1) = [~ SHA £ V. Ry(0)], Rif0) = R

where the initial condition R™ is a density matriz, that is that R™ is positive and
trace R = 1.
Obviously

(8) R™ = A%, A being a positive Hilbert-Schmidt operator.
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Let us recall the definition of the Wigner and Husimi transforms of a density operator
on $) (see e.g. [16] or [11] Appendix B for a short review). If R is the density matrix
of integral kernel r, its Wigner transform at scale # is the function on R? x R? defined
by the formula

9) WilR|(x, &) == (271r)d /Rd e S (x + %hy, T — %hy)dy.

The Husimi transform of R is
(10) Wi[R] := e"+</*W,[R]

and we recall that

WilR] >0, /R L WlR(w dede = [ WilRl(z, dede = 1.

In particular, Wj[R] is a probability density on R? x R? for each R € D(L*(R?)).
Moreover, by Remark 2.3. in [12], W}[R] determines R uniquely.

We denote by p(t) the solution of the following Liouville equation on R?? with initial
condition W[R™]:

(11) p=138+V(2).p}, p(0)=WI[R"]
We denote also by @' the Hamiltonian flow of Hamiltonian $p* + V/(¢) so that
(12) p(t) = p(0) o @7,

Moreover we define

1+ max(4Lip(VV)? 1)

= > ,

Finally we define R(t) as the operator whose Wigner function is p(¢):

(13) WalR(1)] := p(t).

A

In the sequel we will denote
o by z = (x,€) a point in T*RY,
e by P(R??) the set of probability densities on T*R?
e by Py(R?¥) the set of probability densities on 7*R? with finite second moments
e by D(L*(R%)) the set of density matrices on L*(RY)
e by Dy(L*(RY)) the set of density matrices R on L*(RY) satisfying

trace(—h*A + %) R < oo.
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For k = (ki,...,kq) € 7 we define: the Fourier coefficients ap(z) of a function
CL(Zl, cee Zd), 2z € T*R by
(14) ap(z) = / a(zleiklalw'7Zdeikd9d)eik.9d9 ::/ a(ewz)eu{ed&

Td d

Definition. For K, M € RT, N € N, we define on L'(R??) the norm

(15) llallrmy = sup sup [ [zl + DM ([l +d)"  sup \H(\/_Dzm) ar(2)],

keZ zeR?? 7 ], |ea| <N 2004

Theorem 2.1. Let R(t) be the solution of the von Neumann equation (7) with initial
condition R™ and R(t) the operator whose Wigner function solves the Liouville equa-
tion (11) with initial data the Husimi function of R™. Let § the distance defined in
Definition B.1.

Let us suppose that there exist two functions p(h), v(h) satisfying
Vhu(h) = o(1), uw(h)v(h) = o(1) as h — 0,
such that, for some € €]0,1],
(1) Wil VR34 e 11305 < (2mh) 2 pu(h)
(2) B[ Wil VR |3 54500 < (20) 20 (h)
Then, for allt € R,
distark 2 (W[RA(1)], p(t)) < DM max (vVi, Vhu(h), /u(h)v(h)).
Moreover, if W[Rm] € LI(RZd) for each h €]0, 1], we have
2 Ydofap43 (R(E), R(E)) < Gojajars (WalR(1))], Wi[R™] 0 @)
< Dy maX(\/_, Vhu(h), v/ u(R)v(R)) + VR + e HP WL R™) | 11 o))

Here Dy is given in (90).

Using (23) and taking p(h) = 1, v(h) = h2 so that /u(R)v(h) = hi, we derive easily
the following (maybe more tractable) corollary.
Corollary Let Ry, be a family of density matrices of L(R?). Let us assume that the

Wigner function Wy[v R"|(x, &) of vV R™ has derivatives up to order % + 3¢ bounded
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by C(2rh) 2 (€2 + 22) +d) "5 %,C > 0, i.e.

[N]ISH

C(2mh)~
D Rin
WlLSlj/[B)dK? ﬂ]{_Il ]<$ 5)‘ — ((€2+x2)2+d)1z0+36

Then there exist D, D" such that, for all t € R,
distarca (W[Rn(1)], p(t)) < Dhie.

Moreover, if, in addition, |[W,[R™]||11ge2e) < C" < 00, for each h € [0, 1], we have

V(z, &) € R*,

Oatasa 3 (WalR(®))], Wi[R™] 0 &) < D'hte?M,

Let us make a few remarks concerning Theorem 2.1.

The factor (27rh)_% in Theorem 2.1 and its corollary might seem strange, but it is in
fact natural, if we think that the Wigner function of (v/R™)? has to be the one of R™,
a density operator.

Indeed if we think that the Wigner function of an operator is the quotient of its Weyl
symbol by (27h)?, we have, using the Moyal product *Moyal, that

2 h) Wi[R™] = (27R) WiV R™| %proyar (27R) WiV R
so that
WilR™] = ((20h) W[V R7]) xagoya (2000 W[V R).

In order to directly implement semiclassical approximation in weak sense, other than
the results presented in the introduction obtained by compactness methods without
rate of convergence, one should work with Wigner or Husimi functions. But then one
faces the difficulty of the non positiveness of the Wigner function. Of course, one can
cure this default by using instead the Husimi function, but the Husimi function follows
an evolution equation involving analyticity regularity (see [2]).

Therefore it seems to us that the only way of obtaining precise weak semiclassical
results by “standard” methods consists in constructing quasimodes in strong topology,
a way obviously very regularity consuming. On the contrary, the results in the present
paper uses weak topology from the beginning, and allows us to obtain results requiring
little regularity independent of the dimension.

Let us mention finally that we studied in [13], section 5, the pertinence of weak versus
strong topologies concerning the transition between quantum and classical paradigms.

Actually the content of Theorem 2.1 is a particular case of the following more general
result.
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Let us define the Hermite orthonormal basis of L*(R?) as {H;,j € N%}, i.e., for

j = (jla"'ajd)a
2

d
(16) Hj = hjl K& hjd where (_hQE + $2)hk = (Qk + 1)hk, ||thL2(R) = 1.

We will denote by (-, -) the scalar product in L*(R%).

Theorem 2.2. Let us suppose that there ezist two functions u'(h), V' (k) satisfying
VI (B) = o(1), W () (B) = o(1) as h — 0,
such that, for some € €]0,1],
(1) |(Hy, VR H;)| < (2xh)ep/(B) T b+ 5175 (i — il + D72,

1<i<d

(2) sup |(H;, [0, VR H;)| < (2rh)ev/ () TT |+ 372 (i — ji| + 1),
OIS 1<i<d

where O = {y;, £hd,, on L*(R%, dy), j=1,...,d}.
Then, for allt € R,
distark 2 (W[RA(®)], p(t)) < DrreN max (Va, Vi (R), /1 (B)v' (h)).
Moreover, if W[R"| € LY(R*?) for each h €]0,1], we have

2™ dypaya+3(R(1), R(1)) < Sapajayes(WalR(1))], Wi[R™] 0 @7)
< DyreN max (Vh, Vhg! (B), /i (R)Y (). + V(22 4 TP VDD W R | 1y o)
Here Dy is given in (50).

Remark
Here also the factor (2wh)? is natural. For example, thanks to it, estimate (1) gives
that trace R 1is finite.

Once again, Theorem 2.2 is also a particular case of a more general one. Let us first
set up the following definition (see [11], Appendix B for further details).

Definition [Téplitz operators] For each z = x +i& € C?, we denote
(17) 2, h) ¢y e ()~ RSO 2 ) gy = 1,

and we designate by |z, h){(z, h| the orthogonal projection on the line Cl|z,h) in $). For
each Borel probability density 1 on R? x R?, we define the Téplitz operator of symbol
1 as the operator defined weakly on L*(RY) by the formula

1

O (1) = 5 /R et B € Bl €)dnds
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One easily shows that

(18) trace Op; ((2rh)% ) =
so that Op? ((2mh)%u) is trace class and admits an L? spectral decomposition
(19) Opy ((2h)"m) = pilibi)(bil, ¥y € L*(RY).

1eN

When F > 0, Op} ((27h)?F) is injective, as any element 1 of its kernel would satisfy
(z, &) = 0 for almost all (z,¢) € R?*? which would imply ¥ = 0 by completeness of
discrete families of coherent states (see [3]). So Opj ((27h)?u] /2 exists as a unbounded
operator on L?(R?) as defined by the spectral theorem

(20) Opf (2rh) F) ™2 = > i i) i
1N
on the domain D = {¢ € L2 (RY), 3 p; [{w|9)|? < oo}
ieEN

Theorem 2.3. Let RI" = R™ be a family of density matrices on L*(RY) satisfying the
following hypothesis

(1) (tightness)
there exists a probability density F > 0 on R*® satisfying [(|z|+|¢|)F (dx, d€) < oo

such that, for each h € (0,1],
Op?{((%h)dF)‘l/?v Rin +/ Rin Op%((?ﬂ'ﬁ)dF)_l/2 have bounded extensions to L?(R?)

(we will denote by the same symbols the operators and their bounded extensions).
(2) (semiclassical hypothesis)
there exists T(h) = o(1) as h — 0 such that

sup | Opy. ((2rh)?F)~'/2V Rin[O, vV Ri" Opf ((2wh)“F) /|| = 7(h),
S
where Q = {—=R*Ay + |y|%, y;, £h0,, on L*(R%,dy), j=1,...,d}.

Let Ry(t) the solution of the von Neumann equation (7) and p(t) the solution of the
Liowwville equation (11) on R with initial condition W[R™).

Then, for allt € R,
Ev(p(t), R(t)) < %ew max (V, /7 (%)

and therefore

distyg 2 (Wi[R(1)], p(t)) < DrrreMmax (Vi, /7(h)),
with Dy given by (28).
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Remark 2.4.
Hypothesis (1) is not empty as Ry, := Op} ((27h)*F) satisfies obviously (1).
When the tightness bound in (1) is uniform in h, (2) can be replaced by
1/2 _
sup [[[0, Ry” Opf () F) 21| = o(1)

Remark 2.5.
The condition (1) implies that Opy, ((2mh)*EF) /2Ry, Opt (2w h)*F) /2 is bounded. There-
fore, writing the spectral decomposition Opi. ((2mh)1F) = > A7) (],
jEN
(4| Bnlj) = O(X;) so that (j|Rplj) = 0 as j — oo,

since Opj, ((2nR)1F) is trace class so that \j — 0 as j — 0o.

Moreover, since F and therefore Opi ((2rh)F) have finite moments, the eigenstates
|7) must be phase-space localized at infinity as j — oo and condition (1) reflects the
lack of concentration of Ry at infinity.

3. SEMICLASSICAL WASSERSTEIN

Let us start this section by recalling the definition of the second order Wasserstein
distance distyk 2 (see [19, 20]).

The Wasserstein distance of order two between two probability measures u, 7 on R
with finite second moments is defined as

(21) distyi2(i, v)? = inf / 2 — y|*v(dx, dy)

’)/GF(ILL,I/) RmxR™
where I'(u, ) is the set of probability measures on R™ x R™ whose marginals on the
two factors are y and v, i.e., for ny test function a,

/RmXRma(st:)V(dx,dy) — /ma(x),u(dx), /Rmem a(y)y(dz, dy) = /ma(y)y(dy)_

Let us define now the notion of coupling between classical and quantum densities.

Definition 3.1. Let p = p(x, &) be a probability density on RYx R?, and let R € D($).
A coupling of p and R is a measurable function @Q : (x,§) — Q(x,&) defined a.e. on
R? x R and with values in L($) s.t. Q(z,€) € D(H) for a.e. (z,€) € R x RY, and

trace(Q(z,&)) = p(x, &) for a.e. (z,€) € RT x R?,

//Rded (z,&)dxdé = R.

The set of all such functions is denoted by C(p, R).

Mimicking the definition of Monge-Kantorovich distances, we next define the pseudo-
distance between Rj and f in terms of an appropriate “cost function” analogous to the
quadratic cost function used in optimal transport.
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Definition 3.2. For each probability density p = p(z, &) on RYxR? and each p € D(9),
we set

QeC(p,R)

where the transport cost ¢y is the function of (z,&) with values in the set of unbounded
operators on §) = LQ(RZI) defined by the formula

cn(x, &) = 3|z — y|* + [£ +ihV, %)

Immediate properties of Ej are stated in the following result.

1/2
En(p, R) := ( inf /Rd y trace(ch(a:,f)Q(x,f))dmdf) € [0, +oo],

Theorem 3.3. [from Theorem 2.4 in [12]]
(1) For each probability density p on R*xXR? such that [, ga(|7]*+€?)p(z, £)dadE < oo
and each R € D($), one has

Ey(p, R)* > 3dh.

(2) Let Ry, = Opi ((2rh)? ), where v is a Borel probability measure on R x RY. Then
En(p, Ry)? < distyi2(p, p)* + %dh.

(3) For each R € D($)), one has

distark 2(p, Wa[R))? < En(p, R)? + 3dh < 2E3(p, R)* .
Corollary 3.4. Let R be a Toplitz operator of symbol (2wh)%u. Then

Bi(p, R = .
and an optimal coupling s
Qo(,8) = p(x, &)z, &) (x, ]

Proof. the first equality follows from the items (1) and (2) in Theorem 3.3 and the
second from the easy computation

/ trace(cp(z, £)Qo(x, §))drdE = %dh.
R4xR4

We will also need the following “triangle inequality” proven in Appendix A.

Theorem 3.5. Let f, g be two probability densities on R* and R be a density operator
on L*(RY) satisfying

/ (P* + ) (f(p,q) + g(p,q))dpdg < oo and trace(—h*A + 2*)R < oc.
R2d

The following inequality holds true:
Ey(f, R1) < distuk 2(f, 9) + En(g, Ba).
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The proofs of Theorems 2.1, 2.2 and 2.3 will rely extensively on Theorem 2.7 in [10],
a slight improvement of Theorem 2.7 in [12] in the special case N = 1, that we recall
NOW.

Theorem 3.6 (Theorem 2.7 in [10]). Let p™ be a probability density on R*? satisfying

(22) / §9+q%ﬁquMwm<cm
R2

and let R(t) and p(t) the solutions of the von Neumann equation (7) and the Liouville
equation (11) with initial conditions R"™ and p™ respectively. then, for allt € R,

Eh(p(t), R(t))Q < Eh(pin7Rin)2€(1—|—max(1,4Lip(VV)2))|t|.

Using the right inequality in item (3) of Theorem 3.3 we get the following corollary.

Corollary 3.7. Let Rp(t) and p(t) solve (7) and (11) respectively with initial data R™
and W|Ry] respectively. Let R™ satisfies

/}ﬁ+¥ﬁ@%@@@@<w,
R2

Then
distyr 2 (W [Ri(1)], p(t)) < V2Ex(W[Ry], R™)eM.

4. PROOFS OF THEOREMS 2.1, 2.2 AND 2.3

The conclusions of the Theorems 2.1, 2.2 and 2.3 are consequences of the following
theorem which is the heart of this article and whose proof will occupy Section 5, 6 and

7.
Theorem 4.1. Let R™ satisfy the hypothesis of Theorems 2.1, 2.2 or 2.53. Then

—

(1) Eh(/I/K[Rm],Rm) < %max(\/ﬁ, Vau(h), /() (h)) [case of Theorem 2.1]

(II) EH(Y[R"”],RZ'”) < %max(\/ﬁ, Vhi' (B), /i (B (k) [case of Theorem 2.2]
(IlT) E,(W[R™], R™) < %max(\/ﬁ, V7(h)) [case of Theorem 2.5]
Here Dy, Di1,Dyrr are given in (90), (50), (28) respectively.

Proof of Theorem 2.1. Ttem I and Corollary 3.7 give immediately the first result in
Theorem 2.1. The second result is a corollary of the first thanks to Theorem B.8. [

Proof of Theorem 2.2. ITtem II and Corollary 3.7 give again the first result in Theo-
rem 4.1. The second result is a a corollary of the first thanks to Theorem B.8 and
Proposition B.7. l

Proof of Theorem 2.3. Finally, item III, Corollary 3.7 and Theorem B.8 gives the
statement. [
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Proof of the corollary of Theorem 2.1.
For v € R let us define {v} as the smallest integer greater or equal to v.

Lemma 4.2. For any M, K, N > 0, there exist C; > 0 such that

lallaxny < Ch sup (g + +d)M+{ }| HDﬁm z,6)|
(z,6)eR> et
‘61| aaaa |/6d|§N+K

Proof. Let us first remark that, with the defintion (14),
(23) Dimag(z) = /D?ja(e L) P(t)e*dt

for a certain trigonometric polynomial P.
We have, for K even,

(k7 + 1)§D§‘n’jak(z) = /D‘)‘n’ja(e“z)P(t)(@2 + 1)zt

= [emorita-o

Therefore, since (|k|+ 1)% < (k7 + 1),

sup (|k‘l| —+ d)K’ H D?;nnak(z)l
|O¢1|7...,|O[d‘SN m=1

d
< sup  |(k7 + 1)% H Dfmay(2)|

m=1

d d
< CT[0aP+0f s [IT] Diratetae o
e jalyfaa <N+EK ST
d
(24) < 2nC(|z]* + d)% sup | H D%ma(e'z)|
la ||| <KNHK m—1
t€[0,27]

Since the family of norms || - ||a,x~ is non decreasing in K, we conclude by noticing

that|| - |[mxn < || - HMQ%},N, plugging (24) in the definition (15) and define C4

21 C.

Using Lemma 4.2, one sees easily that when W[V R™"] satisfies the hypothesis of the
Corollary of Theorem 2.1, the two hypothesis (1) and (2) of Theorem 2.1 are satisfied

for pu(h) = 1 and v(h) = v/h and the conclusion follows.

5. PROOF OF THEOREM 4.1 1TEM (III)

Let us start by a lemma, interesting per se.
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Lemma 5.1. Let f be a probability density on R?* and R be a density operator on
L*(RY) satisfying

/ (p* + ¢*) f(p, q)dpdg < oo and trace(—h*A + z*)R < oo.
R2d

The following inequality holds true:

o~

(25) En(WI[R],R) < \/Eh(f, R)? + % + Ex(f, R) < (V2+ 1)Eu(f, R).

Corollary 5.2. For any density operator satisfying trace(—h*A + 2°)R < oo,
EnWIRLR) < (V2+1) _inf| Eilg. R)

g€ )
Proof. By Theorem 3.3 (3),

) —~ dh
dlStMK,2<W[R7 f)2 S Eﬁ(f: R)2 + 7

and (25) follows by Theorem 3.5 and Theorem 3.3 (1). O

Remark 5.3. The meaning of Corollary 5.2 is the following: thought /W/h[R] might not
be the classical density “closets” to R, it belongs to a “ball” of radius (\/§—|— 1) around
it.

Let us come back tp the proof of Theorem 4.1 item (III) and suppose satisfied Hy-
pothesis 1 and 2 in Theorem 2.3 .
Let F' be given by Hypothesis 1 and let us define, for each 0 < e <1

Fo(z,€) = (e(2® + &) + 1) F(z,¢)

so that F, has finite second moments.

Let Qo(z,&) := Fu(z,&)|x, &) (x,&|. By Corollary 3.4, )y is a minimal coupling of F,
and OP} ((2rh)?F,).

Let us denote A := v R™ and Ty, := OPLI((2rh)?F.), and let

Q(x,€) = AT, *Qo(x, €)T, P A.

By the hypothesis of boundedness of ATZ;E Y2 and % Y QA, Q is a coupling between R
and fa(z,€) = FE(:L‘,5)(.%,§\T1;€1/2A2T£1/2|x,§>. Therefore, by Lemma 5.1,

—~

(26) Er(W Ry, Rp) < \/Eh(fA, Ryp)? + ? + En(fa, Ry).

So the problem of estimating Eh(W;—L[Rm, R™) reduces to estimating Ej(fa, Rp).

Lemma 5.4.

(e, €)Qu(,€) = T Q. 6).
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Proof. Denoting by Thf,a: ¢ € R? the Weyl operators acting on any function ¢ €
L*(R?) by TP b(y) = ¢(y — x)e"©W=2/2) (see e.g. [13], Section 1) , we have

o(2,8)Qo(x,&) = T(x,€)c(0,0)T(x,&) ' Qo(x, &)
= T(2,£)c(0,0)Q0(0,0)T (z, &)
(z,§

QO(: ) (:L‘,f)

Using Lemma 5.4, we get
Ex(fa R < [ dud€ trace (2, )Q(,6))
_ / dadg trace (e(x, §) AT, *Qolx, €)T;;*A)
_ / dzde trace (AT V2002, €)Qo(, €)Th 1/2A)
+ / dxde trace ([c(x, &), AT 1 Qo(w, ) T3 Y QA)
— %1 / dude trace Q(z, )

+ / dzdé trace (TE”?A[zg.y + 22V, + 12 + Ay, AT, Qo (x, g))

dh
< —
- 2
+ / drde| Ty, P A€y + 22V, + 32 + A, ATy, %[ trace Qo(, €)
dh _ _
= 5+ / dudg || Ty * A28y + 22V, + 2 + A, AT )| F (2, )
dh _ _
< G [ bl 41D Edn,d) 31T A0, AT )|
0ef)
dh
(21) = i) [+ Jal + gD (d.do)

We conclude by using (27) and (26):

Ey(WI[Ry), Ry) < 2\/7'(h) /( + |z| + |€)) F.(dx, d€) + dh < 2D;p1(F) max (Vh, \/7(h)).
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with, since F, < F,

(28) l%u@3=2mwiJ/@+ﬂﬁ+Hﬂ%ﬂﬂﬁﬂﬂ)

6. PROOF OF THEOREM 4.1 1TEM (II)

We first notice the following elementary result.

Lemma 6.1. Let p(h), 7'(h) be two functions such that p(h)7'(h) = o(1) as h — 0, and
let vV R™ satisfy the two following hypothesis

’ —1/2 mn in—1/2
(1) 7 AVRR IVRITE| < o)
(2) sup [0, VET, | < 7/(h).
Then (1) and (2) in Theorem 2.3 hold true with

7(h) = p(R)7'(h).

By Lemma 6.1, Theorem 4.1 item (II) is a consequence of the following result.

Proposition 6.2. Let us suppose that Ry satisfies the hypothesis of Theorem 2.2
for some u',v' e. Then Ry satisfies (1°) and (2°) for any function F of the form
F(z1,...,2q0) = f(23+ &) ... f(2%+ &) with f satisfying (33) below and p and 7' are
given respectively by (42) and (48).

Proof. The proof of Proposition 6.2 is split in three steps. In Section 6.1 we will first

realize Tj, 2, for F satisfying (33) below, as a diagonal operator on the Hermite basis.
This will simplify the computation of the matrix elements and therefore the norms of
the operators arising in the hypothesis (1)” and (2)’ in Lemma 6.1 out of the estimates
of the matrix elements provided by hypothesis (1) and (2) in Theorem 2.2.This is done
in Sections 6.2 and 6.3 respectively.

1

6.1. Construction of T, ?. Let us take F in the form F = f(z3+&3) ... f(22+&3). In
other words, calling ho(z, &) = (£2+22)/2 defined on T*(R), F' = f(ho)®?. It is easy to
see that, since |z, £)(x, £| evolves by conjugation by the quantum flow of the harmonic
oscillator by the action of the classical underlying flow on (z,&), Op: ((27h)?F) is
invariant by conjugation by the quantum flow of one dimensional harmonic oscillators
Hy as soon as F'is invariant by the action of the corresponding classical flow.
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Therefore Op;} ((27h)*F) = G(Hy)®? for some G and, by (16) and after denoting
I=(1,...,1) e N,

OPF((2rh)'F) = (27h)" Y GEN(j+3 DM H,)(Hj| = (D (2nh)G((+5)R)|h) (hyl) ™
jeNd JEN
When there is no confusion we will drop the notation I and write for any j € N¢,
j+3l=j+3.
The function GG can be evaluated on the spectrum of Hy by the following argument:

let 2/ € C, j € N and |7/, k) be defined by (17). By a simple computation using the
generating function of the Hermite polynomials (see Section 7.1) we easily find that

Ny % _|z2’\2
(29) (z'|h;) = —j!hﬂ'e "
so that
(30) <Z/|Z> = Z<Z/‘h]><h]|z> = e%e_lglh e_lzz)i ,
jEN
Then

G((j +1/2R)('|hy) = (2'|G(Ho)|hy) = (|OP (f(ho))[Ry)

by ) = [CUCA e Fazaz/(onn

\/]!hj
= /f 2Z) e_%dzdz/@ﬂh)
(by (30)) = h \/Tu / F 2
Oy (29) again) = (I} [ FR) e oy
so that
Y
(31) GG+1/2m = [ 1 L g,
Rt j!h

In particular, since 0 # f > 0, G((j + 1/2)h) > 0. Therefore OP7 (F)~'/2 can be
defined as an unbounded operator by

(32)  OPL((2rh)'F)~|hy) = ((2xh)G) )% ((j + 1/2))|hy), ¥j € N°.

Remark 6.3. Note that, when f € C*(R), the stationary phase lemma gives that
G(A) ~ f(A) as j — 00,h = 0,(j +1/2)h - A < 0o. Moreover, (31) can be inverted
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by
Ry GG +1/2h) (1 =AY =L(H)H(N),
jEN
where 1L 1s the Laplace transform.
Note also that G is bounded since (p*/h)e " /" < jie=7 < j\ and f is integrable, in
fact G < 1/h.
Note finally that the Gaussian case is explicitly computable.

Lemma 6.4. Let us suppose there exist v > 3 5, and C1,Cy > 0 such that,

{—2Co(p ==t < fi(p?) <0

(33) Ci(p*+1)7" < f(p)

Then, for all A € RT

(34) C'(A+1)"" < G(A)
where C" is given by (36) below.
Moreover
2/71 T
G +1/20) = GG +3/20) = = [ 1) e o
(35) < 4" RCy(jh + 1 /2)) (1),

Note that the condition on v is compatible with the finiteness of [(|x|+|¢])F(dx, df).
Proof. We first remark that Cy(p? + 1) implies that, for all & > 0 and C' = Cy (2.

Cp™ < f(p*), P 2a
Ci < f(p*). p<a
Since f > 0 we have, for j > v, by (33)

G((G +bn) > / I p/h eI [2)

C (p2/h)j_ye—p2/ﬁ 2
2/a WG -1 G- D) (- ) /2

xI Ve~

o )V(1—/O — dz)
R (1 = (a/B) (7)€ /000 e "dx) (by Stirling)

j'(1+log j%))

>R

Vv
<
St

v
Q

j=j-v

v
Q
<D
=
<
~—~
—_
|
@

1
— —) for jh > e*a + vh.

AVARRAY
Q Q
‘ﬂ“ -
P
<
+ =
DO
=
_|_
=
L
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For 7 = 0 we have that

1 d\ Cy

1
G2 = 5 [ FetG - % /0 FA)e A > S =

For 0 < A := jh < e®a + vh, we get, since j! < Kv/2mj/y/je for some K > 1,

6% A—Alog (%) d )\
> [ e
2K\21vVA Jr+ vh
A A+3vVRA _A-Ale(3) d)

er
2kvardA Ja i TV Vi

1
1 [T

2K/ 271 J_

1
inf A+ VhA /
2KN21 —i<p<+3 A 2 _

1
Che 8

KA/ 27

G((j+1/2)h) = G(A+ 1/2) >

Vv

(since log (1 4 z) — z > —1a2?) > F(A+ VhAp)e = du

N[

3 e
e 2du

Vv

N[

> =C">0

Therefore (34) holds true if we define
(36) C' = inf (C,C",C") = C, /2mes.

Moreover, by integration by part,

Gl 1/2m = - [ d{,%(f(pz)e—f/h)pdp
[
—/0 F G rome "

N U A0 LA
— /0 hf(ﬂz)mep pdp

pdp

This proves the first part of (35).
For 0 < 1 < oo we decompose the middle term in (35) in two parts. Since by the
inequality of (33), —f'(p*) < 2C), we first compute

Vi ( Q/h)j“ ) n/h </\)j+1
| R ()L g <h0/ “2d\ < hC
;e = 1 [ e <
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Using the first inequality of (33) we get that

00 2 h)j+1 , 1 [ e_w
_ Bt QL—p/hd - _ - () —— d\

)\j+1

_ b f'(RX) e M\

2 Jum (7+1)!

> —(v+1 >\ —
iw@A Qh+1)(+%717ﬁeﬁm

< p—(w+1) v VAR
o [ min (GGG )
hCymin ((A(j — (v — 1)))_(”+1), 1)
hCo2 M (h(j — (v — 1)) + 1)~ Y
4 hCy(jh+ )Y,

IA

e M\

IA

IAIA A

[

Let us summarize what has been done in this section: out of any F = f®¢ where f
satisfies condition (33), we have defined OP} ((2wh)F)~1/? by the formula
OPF((2mh) )12 = (2rh)~"2 > g™U((j + 1/2)h)| H,)(H,],
jENd
in the sense that
(37) (H,| Opy, ((2mh)'F) "2 Hy) = (21h)~"28,;9°%((j + 1/2)h)
where ¢ satisfies, for all A € R™*,
(38) 9(4) < (C)FHA+ DY,
(39) g G+ B =g (G + D) < 4HRCH(A + 5)” Y
for C, Cy defined in (33) and C’ in (36).
From now on, we will suppose that f satisfies (33) for some v > %

6.2. Hypothesis (1) in Theorem 2.2 = (1’) in Lemma 6.1.

Condition (1°) is easily checkable by the control of the decay of (H; |V R™|H;) as
both j and |k| — oo.

Let us recall that, [5] Chapter VI, Paragraph 9, Exercise 54, the operator norm of
any operator B on a separable Hilbert space H, satisfies, for any orthonormal basis

{17)} of H,
(40) |B]| < max (Slj}pz \(j’\B\jH,Sl}pZ (5" B13)1)

J

In our case B = v R"OPT ((2rh)?F)~1/2 so that, after taking v = 342, 0<e<l,
(say) in (37),

(j + k|Blj) = 2mh)~"2(j + k|VR"|j)g®((j + 1/2)h)
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with v R self-adjoint and ¢ satisfying (38).
Therefore, one has, under the condition (1) in Theorem 2.2,

(' IVRROP((2nh)'F)~ 1) < (C) 75 (h) [T (=il + 1) 7+

1<i<d
Since
S T . T
=g+ =) (a—gl+1) 2 <1,
j;=0 J1=0
and C’' = Cy/(2mes), (40) gives
_d
(41) |V RmOPY(F)™12| < (2m)2etoCy 21 (R)
Therefore, the tightness condition (1’) in Proposition 6.2 is satisfied with
d
(42) p(h) = (2m)2ei6Cy 24l (h).

6.3. Hypothesis (1) and (2) in Theorem 2.2 =—> (2’) in Lemma 6.1.
In order to prove the semiclassical condition (2’), we first remark that

(43) 0, VR"T;"*] = VR0, T, + [0, VR T '/*.

The second term of the right hand side is treated exactly the same way as for (1’):
- for O = H; = —h*V7? + x# we first note that

'1HG VR = (= )R IV R ),
so that, by (1) in Theorem 2.2,
|G [H, VRN T2 )| < gl () 1T (=il + )77

1<i<d
Since [T (|ji —jil +1)7'7¢ < 2/e and €’ = Cy/(2e5), we get, by (40),
1<1<d
(44) |, VRT3 < (2m)2et8(Che®) 2 (R).
- for O # H,, (2) in Theorem 2.2 gives precisely by the same argument
(45) IO, VR 2| < (2m)2eis (Crc®) 50/ (h).

For the first term in the right hand-side of (43), let us start with O; = x; + h0,,, [ =
1,...,d, and let us remember that O;H; = /(ji + 1)hH; 11, and O/ H; = \/jihH;_4,,
as is easily checked.
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Defining 1; € N by (1), = 04, k,l = 1,...,d, one has, with A := VR™,
(Hi|A[O, T~ Hj)
= (6% + ) — ¢°((G + L+ )M (VUi + DA(H| Al Hjy,)
so that (remember g = G~ 2)
(46)
[(Hj | A[O), T~ Hj)| <
|G((jz +3)h) 7 — G((j +3)h

)~
(1) [T l9Gin + 3)PN(Gin + )R+ D727 (| +1) 72
m#l
- the second factor in the right hand-side of (46), namely

CTTIG G + DRI(G + D+ 12 (] + 1)
m#l

will gives again, aa for the derivation of (41) by Lemma 40, a contribution to || A[O, T'/?]||

bounded by y/(h)(2r)?les Oy Y,
- for the estimate of the first factor in the right hand-side of (46),
l—e
GG+ D)2 = GG+ 5B 2DV G+ DRI+ R+ 172 (k= 1] + 1)
GG+ 3)m) 2 = GG+ )R DG+ R+ 1) (k= 1+ 1)

we first remark that, since f* < 0 and (35) holds true, one can extend G to R" with

G'(r) <0, x € R*. Therefore,
GG+ 5)B) Y2 = GG+ 3)m) 7|

_ 2\/ G/((+ Yk + NG + Dh+ ) 2dN
)IG(( +3)h = G((j + 3)h)
— % sup (g((j+%)h+>\)3)|G((J+%)ﬁ—G((j+%)h)\

(by (34) and (35)) < 4"'ACy(2mesCy) 73 (jh+1/2)5 "

M\w

(since G <0< G) < Lsup (G((G+ DR+ A"

Recalling that v = 2 + 2¢ we get that the first factor in the right hand-side of (43) is

bounded by
RO (k= 1|+ 1) = 4P RCy (2mes CD) 2 (|G + k) — i — 1] + 1) 7!

Therefore, it gives a contribution to ||A[O, T~?]||, by (40) again, bounded by 8hCj.
Putting together the two contributions of (46), we get that

(47) |A[O, T~V2]|| < 47F1Cy(2mesCy) 2 hyd ().
The term with Of = z; — 0, = (z; + 0y,) is done the same way.

1
DRV Jz +DA[((i+ Hh+ 1) 727k — 1|+ 1)

—2—¢
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Putting together (44), (45) and (47), we get the semiclassical condition (2’) in Propo-
sition 6.2 with

(48) 7(h) = (2mesCy) 2 (4 T1Cy + 2mesCye ) sup (hyd (R), V' ().
so that, by (42), Theorem 4.1 item (II) is a consequence of item (III) with

7(h) = p(h)T'(h) = (2mesCy)~ 1 (4" Cy + 2mesCre ) sup (bt (B)2, V' (B) 1 (R))
Taking f(p?) = C1(1 + p?) 272 with 2resCy < 1 leads to

(49) T(h) < (4°(2 + €) + ) sup (' (R)?, v/ (h)ud' (R))
Therefore item I7) is proven for
(50) D][ = (46<2 + E) -+ E_d)D]]]

7. PROOF OF THEOREM 4.1 1TEM (I)

In order to prove Theorem 4.1 item (I) as a corollary of item (II), we need to estimate,
under the hypothesis (1) and (2) of Theorem 2.1, the matrix elements of v R" and
O, \/W], O € (), between semiclassical Hermite functions, uniformly in A. We will
carry out this computation out of their Wigner transform, or equivalently their Weyl
symbols (which we recall to be their Wigner functions multiplied by (27h)?).

Of course no exact formula for these matrix elements exists, and WKB expansions
involve unsatisfactory (for our purpose) remainder terms. Nevertheless, there exist
explicit formulas for H; expressed in terms of coherent states, which, together with a
formulation of Weyl calculus involving Wigner operators (see below), will allow us to
conclude. The proof is a bit involved, and we split it in several steps.

7.1. Hermite as exact Gaussian quasimodes. We first take d = 1.
From the formula for the generating function of the Hermite polynomials {i?}, .,
namely

0 n
4 2 1
n=0 )

valid for all z € C, we get easily that the normalized eigenfunctions of the harmonic
oscillator hj,j =0, ... satisfy

_ 2272\/§zm+12 _ ‘Z|2
2h h

(51) Zhj(a:)— = (7h) ie e 7 = g°(x).

Note th&t HQZHL2(R,dz) = 1.
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We get that, for any choice of z € C, z #£ 0,

2T ﬁ ‘je—¥ 27-(-%
Z .
-1/ ‘ / thdt ( h) j' h h]

| 27
hj — ]'2 / etz —z]tdt
(\zIQ) —EE \zl2
27
- _ zq/ EL ™ oo

for all z # 0 € C. In particular, taking now |z|? = (j + 1/2)A,

_ |
C; = C( (j+1/2)h):1/\/%j]e]<1and ~1asj— oo,

since \/2m(j + 1/2)(j+1/2) e U2 > /2w jjie-) and /27 (j + 1/2)(j+1/2) e U2 ~
V271jjle7I as j — oo.
The same way,

OJ

so that

>J>\C»J

2w » y »
hy = Cp(V/(' +1/2))(2m) (5" + 1/2)V0 [ g VIR 04g,

0

2r : »
but also  hy = Cy(\/(j+ 1/2))(277)—3/4(]' + 1/2)1/4 9619\/(3—1—1/2)716—@] 000,
0

| o, 2 . : »
Therefore  hj ~ 4 /‘%’(2@3/4(]' +1/2)7 +1/4 ¢ "V G+1/2)h ~ig 9d0,
J: 0

since \/2mjjle ™ ~ \/27r +1/2)j7e” G+1/2) a5 j — oo.
Therefore, for any bounded operator A,

./ . C C )’ 1/4 1/4 o o 's'—js) (€ /TR e's
Al = o )3(j+1/2> (' +1/2) ds' dse’U's' =i (¢° L Ageviny,
T )e
but also
L C;C i+ 1/2)h) . 2m I Iy
<]/‘A‘]> _ J ]( (2(;1)3 / ) )(]+1/2)1/2/ dS// dsez(js—js)(ge M’Age ]h).
e 0 0

Here we have used the Dirac notation, and (j'|A[j) is meant for (hj, Ah;j) 2R, dz)-
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In particular,

(53)
' 1/4( 51 1/4
) < SV [ ggagetrd0 g VIR, age VI
(2m)2 T2
but also

(Al < (%)3\/ %(j +1/2)i-0+1

/ds’dseﬂS js( VD) h Ay )
T2

G—i"?
T (§ 4 1/2)1/2 o ST 4 \/GI IR
(54) S et (] +3/ ) / dS/dSB (j's' jS( +3 Ag (j+3) )
(271')5 T2
Indeed, if ;' = j 4+ k,k > 0 (the case k < 0 is done the same way),
i (G124 k) k 2
—(+1/2)77 < . < (1+ - < et
j!(] U (j+1/2)k < g+1/2) = ¢

. N2
G=i"?

We'll estimate later |(j'|A|j)| by (54) for S Er < 1 and by (53) for e > 1.

The extension to the d-dimensional case is straightforward, by tensorial factorization.

7.2. Weyl calculus through Wigner operators. Let us suppose now that A is a
Hilbert-Schmidt operator of Wigner function a € L?(R?). Note that this is to say that,
in a weak sense,

(55) A= / d?za(2)W (=2)IW (z) := Wig(a)
Cd
where the Wigner operators W (z) are the unitary operators on L?(R?) defined through
(denoting = = (g, ))
W(g.p)f() = flz—qe " "e ™ and If(x) := f(~2),

Indeed the integral kernel of W(—2)IW (z) is 6(—x —2g—y)e' 2l so that the integral

kernel of A = [, d*za(z)W (—2)IW (z) is

patey) = [ a2 e T e

2

which is the well-known Weyl quantization formula expressed on the Wigner function
(let us recall that the latter is nothing but the Weyl symbol divided by (27h)%).
We get easily that

/ zzg—Fz  Z(z4V2z9)  |Z)] |z +v2zl

(¢° W (=20)IW (20)g") = e vir e * e 2Zme 2

e |27| |27‘ZO| 7&7[220"‘220
= € 2h 2h h
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so that
' 20 20 N N 7 R e e
(gz,W(——)[W(—)gz) — e 2n 3R 2 R R
V2 V2
Note that
|2

§R(|Z + |Z| + |Z°| + 22+ 27+ 27) = 12/ 4+ 2 + 2> > 0.
For d = 1 we get that (53) becomes

(j + 1/2)1/4(j’ +1/2)Y*

56) 1A < B,
¢ /(2299) o any
(57) By = / do’ (/ d2 / an B — )GZ(J —)0
st R2 51
+4 +1 |
58) om0 = U TS W Y

(j+5 he’9+z\/ he ’9+23h9 0.

and (54) becomes

2
e(§+1/2 ( + 1/2)1/2

;(2,,0,0)) L o
/ do’ ( / d* / d9a(i)6_ z )e’“ e
Sl R2 Sl

(61) ¢j(27z7979,) = (]+ )h-{———l—@ )h€(9 0')

+24/(G + $)he” + 24/ (j + 3)he” W4 iih(6 — 6.

Performing in (57) and (60) first the change of variable z — ze” and then the one
6 — 0+ 0" we get easily that, after definition (14)

(59) (Al <

(60) A,

N

[ j/(z,E,G)
(62) BjJ/ = /;{2 d2 /S1 dQCLJ j h
fb (2,2,0)
(63) Ajj = /R A /S b ( T
+3)h (F
_ B j + )h 2z , , ;
(64) with @;,(2,%,0) = -|— 2 T T \/(] +3) (' + 3)he”

(j/+ 3)h+ijho

(65) and  ®j(2,%,0) = <1>“(z,z,9) (]+;)h+§+(]+§)h6i9

(J+3) Vel + 24/ (7 (j+ 3)h+ijhe.
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Let us recall that

(66) RD; (2, 2,0) = |1/ (G + 2R + 1/ (j/ + DA+ 2> > 0

SO that, since (I)J = (I)j,ja
(27)3A
(67) Ajj, By < TH@j—jfllLoo<R2d>-

Since CID;{ 1 asum of one dimensional contributions, we will treat the one dimensional
case. The (straightforward) extension to d dimensions will be done in the next section.

7.3. The case d = 1.
Note that for d =1, (15) reads, for any K, M € R*, N € N

lal _ _
(68) sup |z D2ap(2)|, < llallargn (2> + 1)~ (k] +1)78

0<|a|<N

7.3.1. Matrixz elements estimates. In this section we prove the following crucial result.

Proposition 7.1. Let A by a Hilbert-Schmidt operator (say).
Then for all M, o, 7, p,mn > 0,

: . 2mh||[Wh|A M1+e+7,n
(69) 114G < Dyttt e
15" = Jl + 3l D+ h e

where D, ,, is given below by (84).

Proof. The desired estimates of |(j'|A|7)|, expressed as in (53), that is (56) or (59), will
be obtained by different methods, depending on the size of |j/ — j|.

(1) for |5 = j|* > j + 5, we will use (57) and (62), together with (67), to estimate
{71 AL7)
(2) for |j'—j|* < j+3, we will use (60) and (63): we will perform a smooth partition
of the domain of integration in |z| in the integral present in the expression Aj ;
in (63).
(a) for |z| > g\ [(j+ %)h, the decay given by the negative imaginary part of the
phase will be enough.
(b) for 1/ (j + 3)h < |z] < 34/(j + 3)h, we will have two cases:
(i) [/ — j| > 0, the desired estimates will be obtained by a brutal estimate
of the integral of |a;_;| on the domain.
(ii) j + j', the stationary phase lemma applied to the integral on the domain
will give the needed estimate.

(c) for |z| < 24/(j + )h, the non stationary phase Lemma will apply and give
the result.
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Note that since A is self-adjoint, one can restrict to the case 5 < j without loss of
generality.

(1) Suppose |7 — j|* > j. By (57), (62) and (67) we get for any «

1AL < CDG 4+ DA+ DY eyl e
< Bl ren G+ DA+ DY — 7+ 1)
< g G+ DY — 7+ D) D)
< O e ([ — ]+ 1) 4 1) a2
(70) < P hlallarsren (1 = 71+ 170G + D+ e

(2) We now consider the case |j’ — j|> < j + 3. We will use (60) which becomes
(G +1/2)'2
(2mz

We first perform a change of variable z — ((j + 3)h)
the definition of A; ; in (60). We get

(71) [{7'AI <

122 in the integral inside

(zz@)
Ajy = / d*z / dfa; j( ;
R? St
' (+3)h 2(z:2.0)
(72) = (j+3)h /R sz/Sl deaj_j,( Dt )em D) _
with
3 B(2,7,0) = 1+ = + ¢’ + 2 + 2 + if.
( 2
We first perform a smooth decomposition of the identity 1 = x= + x= + x=,
such that,
(supx= = {2,]2] < 3}
(74) < supx~ = {z, 1< |2] <3}

_ 5
L supx® = {z,]2] >3}

and decompose a;_; in three terms aj_;, o € {<,=>}h
1
° ( +_))hz ° (j+5))hz
a; (A ) = xR (—F )
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Note that, since the x* are smooth and constant for |z| > 3,

(j+3)h \/ ))hz
(75) D25 (5= < Cugar D D2y (22!
181<la|

with

(76) Cotal =2 D IDIX |-
ec{<,=>}
|BI<la
Of course, C, o = 1.
(a) @ = >.
By (66), R®(z,20,6') > 1 for z in the support of a— 1, the latter gives a

contribution to A; j (Whlch is linear in a) in (63) equal to

<202+ )hllar e me) / e~ D R g gz ag e

5.
2125

2(27T) (] + )hHCLJ -7 HL°° R2d) A

M\»—A

IA

)/4/ e T ) 022046
2123

IA

220 + a5yl 0D [ oA D dzazapy

2|

Y

5
2

IA

2(27m)%(5 + $)hl|aj_j || Lo (meae VT2 4 (27)? /C se 22 q2dz

2(27)56§(j + Dhllallsasesr (i — 51+ 1)_1_6_76_(j+%)/4.
so that, by (68) again,

IA

P— : Loih S ey - 3 _ith
(7' Wig(a=)|7)] < 22m)2eshllallaivernn(|f — 5]+ 17777 +5)2e
71 g ety 3_
(77) < 202m)zes(EV Rllallairernn (3 =1+ DTG+ B+ )
for all u > %
(b) o= =
We will use the stationary phase Lemma for estimating A7, given by (63).
We get
0,8(2,%,0) = §+1
0:9(z,2,0) = §+ei9//
OP(2,2,0) = i(e' + ze +1),

so that the critical point of ® is at # = 0,z = —2 and, at the critical point,
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0 1/2 0
d=0, d*®=[1/2 0 1| and det(d*®) = —1/4.
0 1 1

The stationary phase Lemma (with quadratic phase) gives immediately that,
as j — oo (independently of A),

e < 2GR (laj/_,-( T

3 = g(j+%)3/2

1 1 (+3)h
+— sup |Dfas_.(\/ —=2)| |,
16] 4 % =2 J J( 2 )
1<]2|<3
2 Cy s o —e—rry _
< S+ =) allvarernn (i =71+ D)7 TG+ PR+ DT

3
T2

since, by (75),

1
| D2 ay, j( (J+2)hz)‘

2
))hz
< Cylal Z |D aj—j’ \/7)|
181<lal
1 1
2 IBI (j+35))hz
< Cuial D ( 2 ((VRD.) aj-y) ()]
181<lal
o1 o1
lal o] (G+3)\ 18] (j+35))hz
< Cua2?(G+3% Y (@) (VRD) ;) (L)
B<lal
o lol S ey _
(78) < Cyja27 (J +1)2Ila!|M1+e+TN(\J—J’|+1) TG+ Rl )T
lal la] —r - _
< Cypa22 (G +3) 2 lallairern (i =51+ DTG+ A+ DY, 2] > 1.

Here we have use the fact that 4/j + <2(j + %),j =0.1,....
Therefore, by (68),

I 12 ol o .

GIWin(a ) < G Sl (3 =314 D77 G + b )
]_ + CX2 . N —]—e—71 . 1 —-M

(19 < e lallanrsenan( - I+ DG+ D)

(C).:S
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Finally, we will estimate the contribution given by ajg_ i by first estimating the

integral fd2zaij, ((j%%)hz)e—(ﬂé)@(z’zﬂ) pointwise in # by the non-stationary
phase method. Indeed,
(80) 0.0 = §+e""”
(81) 0 = ~+c.
Therefore, for z € sup aj% i
- <|D,®| < g

Using now that

e—(j-&-%)(l)(z,iﬂ) _ 1 1 D.® - Dze—(j—i-%)fl)(z,é,e)

- jtg|DeP
Let
Dg := D, - (D.®)|D.®|* = (|D.®|°D.®- D.)".
We get by integration by part that, for any n € N,
/ 1 h o1 -
Ajjp < (G+hG+35)™" /D&i as (M)> e~ U220 2. g0

V2

2 Ly 1 o
< G i s (o (o7, (0GR )| [etrimesone,

J=J'

B G+3)" |ass
(0,0")eT?
One has
1
n (j+35)hz
sup ‘D@ <aj<j,( \/52 )>|
|2|<3
(0,0")eT?

< 2" sup  sup |Dﬂ(|D:I)<1§2)|2)k‘Z

|2|[<3  [Bl+k<n

(6,0)€T?
1
n a +3)hz
< 2l X | (o, (08
|a|<n

< 2"CoCyn2%(j + 5)2 lallaversn(li — 51+ )77
by (78).
We have used (j 4+ 3)* <2"(j +1)", 7=0,1,..., 0 <k < n and define

(82) Cp= sup sup \Dﬂ(%m-

2|<3  |Bl+k<n
(0,0"eT?



LOW REGULARITY SEMICLASSICAL EVOLUTION 33

Therefore

3
Ajy < 22"CoCyp

l—e—71

272
——whllallviserrn (g =51+ 1)7 )
(7 +3)2
so that, for by (59)

(83) |5 Wig(aj_;)15)]

2 2" il (=71 +1)
(0] ;xn_f_____Z_T a M 1+e+1,N J _']
el Y T
- o
CoCyn 1 —hllallviterr (7 — 371+ 1)

(7+3)7

xX,n

l—e—1

IA

[\
Pl
7
—

—1l—e—71

IA

<

R (PR E S

Adding the estimates given by (70), (77), (79) and (83), we get (69) with

Cy 2
(27T)3/2 | 1 X

84 2nD,, = 2(2m)zes (4p)te
8 20— T aenidurer +

l\J\\I

+ 270@0}( n-

7.3.2. Hypothesis 1 in Theorem 2.1 = Condition 1 in Theorem 2.2.
By Proposition 7.1 v R™ satisfies the hypothesis (1 ) in Theorem 2.2 as soon as

min (1+a+el+e+7)=2+¢ min(T9L, -3, M, 2 =3 4 ¢

2
that is
a=1, T:%—I—QE, u:%+e,M—f’1+e, n=23
and
L ' (h) !
(85) WiV R[5 114505 < (27h) 72 = (2mh) "2 p(h)

%+g3
7.3.3. Hypothesis 2 in Theorem 2.1 = Condition 2 in Theorem 2.2.
Since

Willz, VR"])(q.p) = ihd,Ws[VR"(q,p)
Wil[=ihV,VR™|(q,p) = —ihd,Wi[VR™"](q.p).

we get by Proposition 7.1, that the hypothesis (2) in Theorem 2.2 is satisfied as soon
as

(36) BV WALY B3 1 3100 < (27) 42

24¢€,3
It is easy to check that, by the definition (15) of ||a|/rrx N

_1
IVallyrxn < B 225 ||allprx v
Indeed, let us do the computation in the z, z variables. We have

|(0:0)1| = |0zar41]
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so that, since |k — 1| +1 < |k| +2=2(|k|/2+1) < 2(|k| + 1),
l0-alvmn = sup (|27 + DY (k| + DX sup |(VAD)* a1l

zeR2d 0<]a|<N

< sup (|2 + DM (k= 1]+ D* sup \(\/ﬁD)O‘azak(zﬂ

zeR2d 0<]a|<N
< oK p—3 sup (|z]* + 1)M(|k| + 1)K sup |(\/71D)aak(z)|.
zeR2d 0<|a|<N+1

The term 0sa is obtained the same way.
Therefore (86) is satisfied as soon as

V'(h)

————— = (27h “2y(h
2D, (2mh) " 2v(h)

(87) hEHWh[ v Rm]”%—i—e,%—l—i’)c,él S (271—7;6)_§

7.4. The case of any dimension d. Let us perform the change of variable
2= ((i+h)2z, 1=1,....d,
and decompose a = Y a®*F o € {<,=,>}, [ =1,...,d, where
1 d 1
+e,,..., Lo (J+5)hzy . : : : (j+3))hz
a o (=) = | I Goxn (G = 307 = a5 (2),
=1

where x* is defined in (74), xn is the characteristic function on N and, by abuse of

notation,
VU + 3Dz = (/G + ke, (a + 5))hza).
(j\Wig(a;t_';,’””i'd)|j’> will involve d integrations in the variable z1, ..., 2q4.

(1) For each [ such that the sign of e; is positive, we will have (j; — j/)> > 7, so

that the argument of the case (1) in the proceeding section apply (after a inverse
change of variable z; — ((j; + %)h)_%zl.

(2) For each of the other variables zj, the integral will be reduced to the domain of
Xx** and can be treated as in the cases (a), (b), (c) of the preceding section.

(3) Combining in each dimension the different points (1), (2) (a), (2) (b) and (2)
(c) of the proof of Proposition 7.1 in Section 7.3.1, we realize easily that (69)
becomes in dimension d

(7' [Wig(aj—y17)] < (Dy,h) 201
. . — mi € e+T . i T—a—1 , 3 n—1
< llaj—jllatasernalli’ — g] 4 3| 7R OFAFETED (G4 Sy 4 )T TR,

Therefore, v R™ satisfies the hypothesis (1) in Theorem 2.2 as soon as

(88) IWAVE s 2100 < (i) 2L o))

9
Z+6’3
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By the same argument, hypothesis (2) in Theorem 2.2 is satisfied as soon as
/
s V(h)

d
VY (onh)"tu(h
2§+3€D§+€’4 ( ) ( )

(89) RE(|WalV RT3 45484 < (27R)7

7.5. End of the proof of item (I) in Theorem 4.1.
We just proved that hypothesis (1) and (2) in Theorem 2.1 imply conditions(62) and
(63) in Theorem 2.2 for

B) = Dy an(R), ¥/ () = Dy w(h).
Therefore, by item (I7), item (I) holds true for
(90) Dy = Ds..Dis

Slnce D%+674 > D%+6,3 > ]_.

8. THE CASE OF N PARTICLES

As it was already mentioned, a peculiar feature of Theorem 3.6 compared to usual
semiclassical /microlocal methods is the fact that it provides an upper bound of a quan-
tity at time ¢ linear in the same quantity at time ¢ = 0, without any extra remainder
term to estimate. We will use this fact in the case of an N-body problem with factorized
initial data through the use of the following result.

Lemma 8.1. Let Ry,..., Ry be N density matrices on L2(Rd) and let fi,..., fn be
N probability densities on R*?. Let us denote

R = Ri®:--®Ry
O1)  FX.Z) = flen&)... flaw &) X = (@n..s o) x = (1. &)

Then
En(f,R)* < Ex(fi,R1)’ + - + En(fn, Rn)>.
Proof. Let
(X, Z) =717 (21,&) @ - @78 (wN, EN),
where 77 is an optimal coupling of f; and R;. Then it is easy to see that II is a

N
coupling of f and R and therefore, writing cy(X,Z) = > ¢;(x;, &) where ¢;(z;, &) =

=1
Wi — yil> +1& + ihVy,|?) on LARN, dy, . . . dyw),

En(f,R)? < / trace e (X, 2)II(X, Z)dX d=

N N
— Z/trace (ci(wy, &) TP (w4, &) daidE; < ZEh(fi; R:)?.
=1 i=1
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Lemma 8.1 suggests to multiply Ex(f, R)* by % in the situation involving N particles.
Likewise we will divide diStMK,22 by N as is customary, and the square of the distance
0 as well.

We will consider, as in [12], Section 2.3, the quantum evolution of interacting N
particles through the following von Neumann equation.

(92) Zh%RN(t) = [—§h2AN + Vi, RN(t)], RN(O) = RN
with the factorized initial condition
(93) N = (RN

where R is a density matrix on L?(RY).
In (92), Ay is the Laplacien on L*(RY9) and

1
(94) Vn(z1,...,28) = ¥ Z V() —z;), VeCYRY, V even, V(0)=0.
i<j
Under these conditions on V', the N-body dynamics is well defined (see [12], Section
2.3).

We denote by py () the solution of the corresponding Liouville equation on R?? with
initial condition W[RY] = (W [R™"])®V

(95) %Z + 25 V(e —a), v}, p(0) = W[R™,

1<J
N
and @’ the Hamiltonian flow of Hamiltonian ; 2:1 P+~ > V(g — gj) so that
1= 1<j
(96) px(t) = p(0) 0 O

Moreover we define again
1 + max (4Lip(VV)?, 1)
5 :

Theorem 8.2. Let either W[V R™| satisfy the hypothesis of Theorem 2.1, or v R™
satisfy the hypothesis of Theorem 2.2 or Theorem 2.5. Let us suppose for simplicity
that w(h) = (/' (h) = 1, v(h) = V'(h) = h (the general case is straightforward to state).
Then

A=

L distari 2 (Wi[ R (£)], Wi[RI] 0 @3)? < CeMil,
where C' is independent of N.
Moreover, if ||Wy[R™]|| 122y < C" < 1, uniformly in h, that is to say [|[R™||; <
C'(2wh)?, then

1 ineN " Al 14+Lip (VV))[]) OV
\/—NCS(WFL[R( )], Wi R™] O) < C"Va(N 4 2e P \/_N)
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where C" is independent of N.

Proof. By Theorem 2.7 in [12] in the case n = N we know that, by Lemma 8.1,
FE(Wi[RY 0 @x(1)], Ry (1)) < ML E(Wi[RY], RY)? < MM EWA[R™), R™)?.
Theorem 3.3, (3) and Theorem 4.1, [ — I11, give then the first inequality of Theorem

8.2.

Theorem B.4 gives directly the second one. ]

APPENDIX A. PROOF OF THE TRIANGLE INEQUALITY

In this section, we prove Theorem 3.5.

The proof makes use of some inequalities between the (classical and/or quantum)
transportation cost operators. We begin with an elementary, but useful lemma, which
can be viewed as the Peter-Paul inequality for operators.

Lemma A.1. Let T, S be unbounded self-adjoint operators on $ = L*(R"), with do-
mains Dom(T") and Dom(S) respectively such that Dom(T) N Dom(S) is dense in $).
Then, for all o > 0, one has

(v|TS 4 ST|v) < av|T?v) + l(U‘SQ‘U> : for all v € Dom(T") N Dom(S) .
«

Proof. Indeed, for each o > 0 and each v € Dom(7") N Dom(S), one has
a(v|T?|v) + L(v|S?|v) — (v|T'S + ST |v)
= |vaTv|* + |\/LaSv\2 — <\/5Tv|%51)> — <%SU’\/&TU>

\/_TU——SU > 0.

Let us redefine the cost cj(z, &) that way
(97) c(x,& 2, hD,) == |v — z|* + |¢ — RD.|*.
Lemma A.2. For each z,&,y,m, 2 € R and each o > 0, one has
o, &2, hD:) < (1+a)(jz = y* + € =nf") + (1 + D)ely, m; 2, hD-),
|z — 2P+ 1€ = (> < (1 + a)e(x, &y, ADy) + (14 a)e(z, ¢y, hD,) .

These two inequalities are of the form A < B where A and B are unbounded self-
adjoint operators on L*(R") for some n > 1, with

W = {¢ € H'(R") s.t. |x[¢ € H} C Dom;(A) N Dom(B),
denoting by Dom¢(A) (resp. Domy(B)) the form-domain of A (resp. of B) — see

§VIIL.6 in [17] on pp. 276-277. The inequality A < B means that the bilinear form
associated to B — A is nonnegative, i.e. that

(w|Alw) < (w|Blw) , for all w e W.
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Proof. These two inequalities are proved in the same way. Let us prove for instance
the first inequality:

c(x,& 2, hD,) =z —y+y —2* + 1§ —n+n— hD.|
=[x —y[> + € = nl* + c(y, n; 2, hD.)
+2(z—y)-(y—2)+2({—n) (n—hD.).
By Lemma A.1 with T'= (z — y)I, and S =n — hD, we get
2@ —y)-(y—2)+2(§—n) (n—hD,)

1

_C(ya n; =, hDZ) )

o

which concludes the proof of the first inequality. ]

<allz -yl + € —n*)+

Finally we will need the following proposition whose proof is postponed to the end
of this section.

Proposition A.3. Let A = A* > 0 be an unbounded self-adjoint operator on H with
domain Dom(A), and let E be its spectral decomposition. Let T € LY($)) satisfy T =
T > 0, and let (e);>1 be a complete orthonormal system of eigenvectors of T with
Te; = Tjej and 7; € [0,400) for each j > 1.
Assume that
(98) ZTJ-/ Mej | E(dN)]e;) < o
i1 70
Let &, : Ry — R, be a sequence of continuous, bounded and nondecreasing functions
such that
0<Pi(r) < Dy(r) < ... <Pu(r) >r asn— .

Set N
d,(A) ::/ O, (N E(dN) € L(H).
0
Then ®,(A) = ®,(A)* > 0 for each n > 1 and the sequence T'/*®,(A)T? converges
weakly to TY?ATY? as n — co. Moreover
tracey (T®,(A)) — tracey (T2 ATY?) asn — oo.

Proof of Theorem 3.5.
We start by the following “disintegration” result.

Lemma A.4. Let f € P*“(RIxRY), let R € D($) and let Q € C(f, R). There exists a
o(LY($), L($)) weakly measurable function (z,€) — Qf(z,&) defined a.e. on R x RY
with values in L1($) such that

Q(x,8) = Qp(x,€) 20, trace(Qr(z,£)) =1, and Qz,§) = f(z,§)Q(x,§)
for a.e. (1,€) € R? x R%,
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Proof of the Lemma.

Let f; be a Borel measurable function defined on R? x R? and such that f(x,§) =
fi(z,€) for a.e. (7,€) € RYxR® Let N be the Borel measurable set defined as follows:
N = {(z,¢) e RYx R¥s.t. f(x,€) =0}, and let u € $ satisfy |u| = 1. Consider the

function
L Q(z,8) + 1y(z, §)|u)(ul
A T B T )

defined a.e. on R? x RY. The function f; + 1, > 0 is Borel measurable on R? x R?
while (z,€) — (¢|Q(x,€)[)) is measurable and defined a.e. on RY x R for each
o, € 9. Set A: L($) x (0,+00) > (T, \) = AT € L(H); since A is continuous, the
function Q; := A(Q + 1y @ |u)(u|, f1 + 1y) is weakly measurable on R? x RY. Since
fi+ 1y > 0, and since Q(z,§) = Q*(x,&) > 0, one has (Q(x,&) + 1y & |u){u|)* =
Q(z, &) + 1y @ |[u){u] > 0 for a.e. (z,€) € R x R%L On the other hand, for a.e.
(z,€) € R? x R?, one has trace(Q(x,€) + 1y ® |u){u]) = f(x,€) + Ly (x,€), so that
trace(Qs(x,€&)) = 1. Finally
f(2,§)Q(z, §)

_ _ d d
f(x,§)Qp(x, &) = ACGES G Q(x,&) for ae. (z,) € R" x R,

since f = f1 a.e. on R x R? and 1y(z,€) = 0 for ae. (z,€) € R x R? such that
f(z,&) > 0. Since Q; satisfies trace(Q(z,&)) = 1 for a.e. (z,£) € R? x R? and is
weakly measurable on RY x RY, it is o(L}($)), L($))) weakly measurable. []

By Theorem 2.12 in chapter 2 of [19], there exists an optimal coupling for Ws(f, g),
of the form f(z,£)0va( ¢ (dydn), where ® is a convex function on R? x R%. Let
Q € C(g, Ry) and set

P(x, & dydn) := f(z,£)0va@.e (dydn)Qy(y. ),
where (@), is the disintegration of () with respect to f obtained in Lemma A.4. Then
P is a nonnegative, self-adjoint operator-valued measure satisfying

traceg (P (z,&; dydn)) = f(x,§)0va (e (dydn),
while

/ Pdxd§ = (VO#f)(y,n)dydnQqy(y,n) = g(y,n)Qy(y, n)dydn = Q(y,n)dydn .
In particular
(99) | Plaidydn) = 1(2.0,(V0(z.) € Cf, Br).
Therefore

Ex(f R < [ traces(Qy(V(w, €))!2en(w, )y (VO (2. )1/ (2. €)dad.

By the first inequality in Lemma A.2, one has
c(a,&2,hD.) < (1 +a)l(z,€) = Vo(z,8) + (14 3)e(VO(,£); 2, hD.)
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for a.e. (x,€) € R x R and all a > 0. Since g € PS(R? x R?) and Ry € Dy($) and
Q S C(ga R1)7 then

/ traces(Q(y, m)2c(y, m)Qly, m) ) dydn

- / traces (Qy(VO(x, £)/2e(V(x, €))Qy (VO (x, £))V2) f (z, €)dird < 0.

For each € > 0, set
(z,&2,hD,) = (I +ec(x,& 2,hD.)) te(x, & 2,hD.) < c(z,€;2,hD..).
Then, for a.e. (z,¢) € R? x R? and each € > 0, one has
Qy(VO(2,8))?c(VO(x,£); 2, hD.)Q,(VO(x,))'/* € L!(9),
and
Qy(VP(z,£))" /¢ (2, & 2, AD.)Qy(VP(x, €)'/
<(1+a)|(z,€) = Vo(z,8)PQy(V(x,€))
(14 2)Qy(VE(x,6)) 2e(VO(x,§); 2, hD-)Qy (VO (x, )7

Integrating both sides of this inequality with respect to the probability distribution
f(x, &), one finds

[ traces(Qu(V (. €)1 210, Q) (V. )1/ (2. €)dad
< (+a) [ I(0.6) = Vol OP (v, €)dudg

(14 3) [ tracen(Qy(TO(z, ) 2e( V(2. €))Qu( V(2. €)1 (r, ) dd
< (1 + a)distyk2(f, 9)*

+H(1+1) / traces (Qy(y, 1) 2c(y, n)Qq(y. n)*)g(y, n)dydn

< (1 + o) distyra(f, 9)° + (1 + 1) /trace@(Q(y, ) 2e(y, n)Q(y, n)"?)dydn .

Minimizing the last right hand side of this inequality in @ € C(g, Ry) shows that

/ traces (Q, (V@ (z, £))/265 (2, )Q, (VO (z, €))V2) f (x, €)drdt

< (14 a)distuxa(f, 9)° + (1 4+ 2)E(g, Ry)*.

Passing to the limit as ¢ — 07 in the left hand side and applying Proposition A.3 shows
that

En(f, R1)* < / traces (Q(VP(x, €)' e(w, )Qy(VP(x, ))?) f (2, &) dads

<(1+ @) distuik2(f, 9)° + (1 + 2)E(g, R1)*,
the first inequality being a consequence of the definition of Ej according to (99).
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Finally, minimizing the right hand side of this inequality as a > 0, i.e. choosing
a = Eu(f,9)/ distuk2(f, g) if f# g a.e. on R? x R?, or letting o — +o0 if f = g, we
arrive at the inequality

Ey(f, R1)? <distuk 2(f, 9)° + En(g, R1)* + 2E5(g, Ra) distuk 2(f, 9)

= (distumk 2(f, 9) + En(g, R1))*,
which is precisely the desired inequality. Theorem 3.5 is proven. ]

Proof of Proposition A.3. Since E is a resolution of the identity on [0, +00), and since
®,, is continuous, bounded and with values in [0, 400), the operators ®,(A) satisfy

0<d,(A)=9,(4) < (sg;o) @n(z)> Iy

and
0<P(A) <Py(A)<...<P,(A) < ...
Set R,, :== T1/2<I>n(A)T1/2; by definition 0 < R, = R’ € L}($) and one has
O<R <Ry <...<R,<...
together with

tracen(R) = Y7, /OOO BN e B@V]es) < 37 /OOO Mej | E(dN)]e;) < oo

by (98).
Therefore, since 0 < R,, € L1(H),

sup(z| Ry |z) < sup |||z) (||| z2) tracey (R,) = ||z||7, sup tracey (R,) < oo for all z € H .
n>1 n>1 n>1

Since the sequence (z|R,|z) € [0, +00) is nondecreasing for each x € H,

(x|Rp|x) — sup(z|R,|z) =: q(z) € [0,+00) forallxz e H
n>1

as n — oo. Hence

(2| Ruly) = (y|Rulz) — j(a(x +y) — gl — y) +ig(x — iy) —ig(z +iy)) = b(z,y) € C
as n — +00. By construction, b is a nonnegative sesquilinear form on H.
Consider, for each k£ > 0,

Fy. :={x € H s.t. (z|R,|x) <k for each n > 1}.

The set Fj, is closed for each & > 0, being the intersection of the closed sets defined by
the inequality (x|R,|z) < k asn > 1. Since the sequence (z|R,|x) is bounded for each

xr €H,
Ur=%.

k>0

Applying Baire’s theorem shows that there exists N > 0 such that Fy # . In other
words, there exists » > 0 and xy € ‘H such that

|z — x| <7 = |(z|Ry|z)| < N foralln >1.
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By linearity and positivity of R,,, this implies
[(z|Rn)2)| < 2(M + N)|z||* for all n > 1,  with M := sup(zo|Rn|zo) -
n>1

In particular

| DO

sup ¢(2) < H(M+N),  so that [b(z,y)] < —(M + N)[|z]lwlyllx

|2]<1

for each x,y € H by the Cauchy-Schwarz inequality. By the Riesz representation
theorem, there exists R € L(H) such that

R=FR >0, and b(z,y)=(z|Rly) = lim (z[R,[y),

so that R, — R € L(H) weakly as n — oo.
Observe now that R > R,, for each n > 1, so that

(100) sup tracey (R,) < tracey(R) .

n>1
In particular

sup tracey(R,) = +o00 = tracey(R) = +00.
n>1

Since the sequence tracey(R,) is nondecreasing,

tracey(R,) — suptracey(R,) asn — 0.
n>1

By the noncommutative variant of Fatou’s lemma (Theorem 2.7 (d) in [18]),

sup tracey(R,) < oo = R € L'(H) and tracey(R) < sup tracey(R,),
n>1 n>1

so that, by (100),
tracey (R) = sup tracey(R,).

n>1
Finally
T'PATY? — R, =} 7272 ( / (A — @n<A))<eij(dA)|ek>) le;) (ex]
jk>1 0
so that
T PATY — Bole) = [T 2,00 X e la)e BN 7 e
0 j>1 k>1
— A — O, NNTY2z|E(dN)|TV?2) > 0.
(
0
Hence
0 < TYV2ATY? — R, = (TY?ATY? — R,)" € LY(H)
so that

ITYV2ATY? — R, || :traceH(Tl/QATl/Q —R,)

_ZT]/ (A — Bu(\) ;| B(dN)e;) —

j>1
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as n — oo by monotone convergence. Hence R, — T"/2AT"/? in £'(H) and one has in
particular

tracey (T®,(A)) = tracey (T ?®,(A)TY?) — tracey (TV2ATY?) .

APPENDIX B. QUANTUM WASSERSTEIN AND WEAK TOPOLOGIES

It is well known that Wasserstein metrics dominate weak topologies. It is natural to
wonder whether the Ej does the same. The answer will be positive when considering,
for two density matrices S and R, the quantity FE(W3[S], R). Since, by Theorem
3.3,3),

Ep(Wi[S], R) > J5 distanc 2(Wy[S], Wa[R)),

the following results will give the answer.

Notation: unless the contrary is specified, we will define the norm of a vector as
the maximum value of the norm over all the components.

B.1. L? test functions. We will denote by Dgs($) the set of Hilbert-Schmidt oper-
ators on 9.

Definition B.1. Let R, S € Dys(9), with Wigner transforms Wy|R], W;[S]. We define

(101) d(R,S) = sup | trace (F(R — .9))|
IF 1, 155 [2,Fl, |5 =iV, Fl1<1
and
(102)  S(WHR], W[S)) = sup | [t - wils) s (e, )i
Lip(f)<1

[fllL2m2dys IVl 2@2d)<1

Note that, for R, S € Dys($)), we have d(R,S) < |R— S| < ||R — S|lgs < oo and
S(Wi[R], Wi[9)) < (2nh)~2||R — S|lms < oc.

Proposition B.2. Let h < %

Then the functions d(-,-),0(Wx[-], Wi[]) : Dus($) X Dus($) — [0,+00] are dis-
tances.

Moreover,

d('? ) < 2d5(Wﬁ[']7 Wh[])
Proof. We first prove the inequality. Let us recall the following elementary facts:
(103) trace (F(R — 5)) = (2nh)* / Wi F](Wy[R] — Wi[S])(, §)dadg

and W[z, F]] = V,W,[F], Wy[[—ihV, F]] = =V, W,[F].



44 F. GOLSE AND T. PAUL
By the part (b) of the proof of Proposition B.5 in [10] we know that, for || D]|; < oo,

D
wamms%%@

so that, for any F' € D($)),

1F Ny, Mgl Flll I [=iaV, Fllly < 1= [[(wh) Wi[F]||1~ and Lip((h)"Wi[F]) < 1.
Finally, a straightforward computation shows that, for ||D]|; < oo,

(104) (2rh)*||Wi[ D]z < [ID]3, < |1 DI,

so that, for %ﬁ <1,

_4a
ID|li < 1= ||D||2 < ()2 = ||(7h) " Wi[D]|| 2m2e) < 1.

Therefore,

1E N, 15[z, Flll, 15110V, Fllly < 1= [(rh) WhlF] |l z2gea); IV (wh) Wil F]l| 2meny < 1,
and, by (103) and the change of test function f — (wh)™W,[F], we get d(-,-) §

215 (Wi[-], Wi[])-

The symmetry in the argument and the triangle inequality for d and ¢ are obvious
by construction. Moreover 296(Wp[-], Wx[]) > d(-,-) = di(-,-) where d; is the distance
defined in (110) below. Therefore d(-,-) and d(Wp[-], Wi|-]) separate points. O

Proposition B.3. Let R, S € D2($)), with Wigner transforms W[ R], W3[S] and Husimi
transforms Wg[R], W[S]. Then

S(WalR,W[S]) < distanc2(Wa[R], WalS]) + VAIWA[R] — Wi[S] | 2
(105) = distMK,z(Wh[R], Wi[S ])-I—\/_Hgﬁh)S/H;

Proof. Using successively formulas (7.1) and formula (7.3) in chapter 7 of [19], we have
\ / £, &) (Wa[R] — Wi[S])(z, §)d:vd£‘ < Lip(f) distuk 2(Wa[R], Wa[S])
Since Wh = "2/ one find

' / f(x,e(vvhm]—Wh[sw,g)dxdg' _ Lip(f) distanc oW B, Wa(S])

IA

\ [ = 0@ R — Wils) (o s

< | hA/4—1)f|\L2 r2) [[WilB] = WilS][| 2 (moe)

by Cauchy-Schwarz.
By (e"/* —1)2 = (/22 — 1) — 2(e"/* — 1) and 1 — "/ < —RA/X, X > 0, one gets

(106) (" = 1) fll 2mee) < VRV Fll2re0)
which gives the desired inequality. ]
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Let R(t) solves the von Neumann equation (7) with initial condition R and let ®'
be the underlying Hamiltonian flow of Hamiltonian 3p? + V/(q) as defined by (12). Let
moreover R(t) be defined by

(107) WR(1)] = Wi[R™ o &~

Note that, since R™ is Hilbert-Schmidt and ®~' is symplectic, Wx[R(t)] is square
integrable on R?? so that R(t) is well defined as a Hilbert-Schmidt operator.
Moreover, at the contrary of W,[R(t)] which is, as R(t), not positive, Wy[R™"] o &~ is
a probability measure since R is positive (and ®~* symplectic).

Theorem B.4. Let V € CYY. Then
5(Wh[3(% Wh[R(Ql)
< dista 2 (Wi[R(®)], Wa[R™] 0 @71) + VR(1 + e VDI |17, [R) | 2
= distuk 2 (Wi[R(1)], Wa[R™] 0 @) + VA(1 + e+HR(VVIDY| Rin||, /(27 )42

Proof. One starts again with

' / (@, &) (WilR(t)] — Wa[R™] 0 @) (x, €)dwdg| < Lip(f) distaic2(Wi[R], Wi[S]o®™))

Since @' preserves the measure on phase space we get
[ H@ OWlR" 0 0 @, )dude = [ 10 @@ OWHR"(2,E)dudg
= [ (7 0 ) (@ WA o,
= [ 5@ ONIR 0 07) (2, dndg

T / g (z, Wi[R™] (x, €)dd
with
g'(z,6) = (M =1)(f o @")(x,¢)
Therefore

' / f(Wh[R(t)]—Wh[Ri”]o®‘t)da:d§‘ < Lip(f) distumg 2(Wi[R(t)], Wa[S] o &)

[ W) - ¢ WHlR") o e

< gl 2 [WalR@®)]] 22 + \|Qt\!L2\|Wh[Rm]|\L2
(108) = (9" 22 + llg" | L2) | WR[R™]]| 2
Since ¢'=0 = (e"/* — 1) f, the first term in the parenthesis in (108) can be estimated
by (106). The second one will be treated by the following result.
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Lemma B.5. Let ' the Hamiltonian flow associated to %pz + V(q) with V e CHL
Then, for allt € R and all f € W2, and all 1 < p < oo,

1|l < PV and [ V(f 0 @)|1r < HHHPTVIDT ]|

Proof. By the Lipschitz condition on V' we have, for all z, 2’ € R*,
t
B(:) ~ 0] = [l -2+ [ @) - @ ()ds
0

<l =1+ L+ Lip(VV)) [ [0°(:) = %)

so that, by the Gronwall Lemma, ® is Lipschitz for all ¢ with Lipschtz constant smaller
than eI+ (VI Therefore, dd®! exists a.e., ||[d®!|p~ < MRV Moreover
IV (f o @] < eIFHP (VY| (V f) 0 ®!| a.e. and we can perform the change of variable
z — ®U(z2) in ||(V[) o ®!|||z2. Since, being a symplectomorphism, ®' preserves the
Lebesgue measure on phase space, we get the second inequality in Lemma B.5. ]

The end of the proof of the first inequality in Theorem B.4 is achieved by (106) and
Lemma B.5. The second one follows from the first one by (104). O

B.2. L*° test functions.

Definition B.6. Let R, S € D(§) U{R € Dyus(9), Wi[R] € L'(R*Y)}, with Wigner
transforms Wi[R], Wy[S]. We define, for any integer M > 0,

(109) Su(WRLWAS) = sup | [ (WAlR) = WilS)(a.€)f (. )]
max (| 020; f|| Lo <1
lal,|B|<M
and
(110) dyu(R,S) = sup | trace (F(R — 9))|,
max ||D%,,¢ D} F|1<1
lal,|B]<M

where Dy = %[A, | for each (possibly unbounded) self-adjoint operator A on .

Note that when R € D($)), |trace FR| < ||F||«||R||1 < 1 and when R € Dygs($),
trace PR| < (F.Rys < | RInslIFllus < [Rls| Flh < [ Rlns < oc, 50 that d < o

Moreover, when M > [d/2] + 2, . ‘n‘anM ||aa6 fllz= < 1 implies by the Calderon-
<

Vaillancourt theorem that f is the Wigner function of a bounded operator F' such that
| F|| < va(2rh)?. Therefore, when R € D($)) [ Wi|[R]f(x,€)dzdé = (2mh)~? trace RF <
Y4 < 00, and when Wy[R] € LY R, [ [ Wy[R]f(x,&)dzdé < ||Wi[R]||1 < oo, so that
oy < oo, M > [d/Q] + 2.

By the same proof than the one of Lemma B2 in [10] one sees that dj; is a distance,
and by the same argument as for ¢ in the proof of Proposition B.2, together with the
first inequality in Proposition B.7 below, one sees that 95, considered as a functions
of Wigner functions is also a distance.
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In order to use the estimate of 74 proved in the next section, we will restrict ourselves
to the following restriction (because 2[d/4] + 2 < [d/2] + 2) of Proposition B5 in [10].

Proposition B.7. Let R, S € Dys($). Then
dojajaes( R, S) < 2%614/4105(Wi[R], Wi[S)).

Moreover, if R, S are density operators, then

Ogjasa+s(WalR), Wi[S]) < distri 2 (Wa[R], Wa[S]) + %\/ﬁ

where vq 1s the constant that appears in Theorem C.4 below.

Let us remark that d,; is decreasing with respect to M, so the second inequality is
valid for any 6y, M > 2[d/4] + 3.

Proof. The second inequality (for M = [d/2] + 2 but the proof is insensitive to M) is
contained in Proposition B5 in [10], together with the first one in the case of density
operators. It is easy to check that the proof of the latter extends verbatim to the
Hilbert-Schmidt case, as it use only the fact that W;[R — S| is square integrable. [

The following result is the analogue of Theorem B.4 in Section B.2 above.
Let R(t) solves the von Neumann equation (7) with initial condition R and let ®'
be the underlying Hamiltonian flow of Hamiltonian £p? + V(q) as defined by (12).

Theorem B.8. Let V € CH! and W;[R™] € L*(R*?). Then
Sataja+3(WalR()], W [R™ 0 ®') < distyica(Wa[R(t)], Wa[R™] 0 ")
+ VR (ya+ TRV W [R7) | 11 e

Proof. One again one starts with
' / / Fz, &) (WhR()] — Wh[R™ 0 ®")(x, §)d:cd§‘ < Lip(f) distag.o(Wa[R], Wh[S]o® ™))

The term involving [ fW[R(t)] is treated along the same lines as for the beginning of
the proof of theorem B.3 and we get that

(111) | / FWIR(t)]dzds — / SWIR()]|dzd¢ < \/ﬁ%
Indeed, by the definition (115), (116) and Theorem C.4 in Appendix C below,
[ £GTIR = WiRpasas| = | [ 1 pwiridsg
| trace(Opy ((¢"* — 1) f)R)|

| Opyy ("% — 1) f)]|| trace R|

max DDB (A _
Y 8 1P De )f|

d
R max \Dg‘D?f\
T |al|Bl<2[d/4)+3

IA A

IA
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. . o / I ¢t
For the second term we write, denoting z = (x, &), 2" + (2/,¢),

/ FWIR™ o @ 'dxde = (wh)™ / F(2)e” @@=V [ R (2 d2dz!

_ / ("4(f 0 @) ()W [R™)(")d=
_ /]fo¢t_%)@mqumzmz

(112) — / fW[R™ o @ " dxdé — / gW[R™|dxdé
with
gi(@,6) = fo®(z,6) =¥ (f o d!)(x,E)
= / (f o @'(x + Vhq,& + Vhp) — f o @' (x,€))e 1P dgdp/m.
By Lemma B.5,
(2. ) < VAl 1 Lip (). < Vhe TV

and therefore

| / FWIR™ o / fWIR™ o ®'|dzd¢ < |- / gW[R™)|dxdé
(113) < Vade VD Wi R™)| 11 m2a)-
We conclude by adding (111) and (113). O
Let us define finally
(114)
01,1 (WhlR], Wi[S]) = sup '/(WH[R](ZL“,&) — WilS)(,)) f (z,§)dxds)| .
fel?(R*)
omax 0208 flloe <1
vaHLl R2d)7

Theorem B.9. Let V € CH' and W;[R™] € L™®(R*). Then
Oatasa 3.1 (Wi[R(D)], W [R™ 0 @) < distyrico(Wh[R(1)], Wi[R™] o )
+ VR4 4 LR VDI [ R™|| o o))

Proof. The proof is quasi identical to the one of Theorem B.8. the only change consists
in estimating the last integral in (112) by

| [ W R dode] < W IR om0 s
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We estimate ||g¢||11gee) by

/ g0(ee, €)|dude. = / f 0@z, ) — MA(f 0 @) (x, &)\ drde

— / [(f 0 ®' (2 + Vhq, € + Vhip) — f o ®(x,€))e” W dgdpdade /7
< IV(f o @) pimea) < |[dP|ze ey |V f || 21 m20)-

And we conclude by Lemma B.5 in the L' version, [

APPENDIX C. AN ESTIMATION OF THE CALDERON-VAILLANCOURT CONSTANT

In this section we revisit the proof of the Caderon-Vaillancourt Theorem by keeping
track of the constants. We follow the proof by Hwang [14], as presented in [15].

Let us remind first the definition of the Weyl quantization (see [7] for extensive
details).
To a € S(R?) we associate the operator Op)’ (a) on L?*(R?) defined by its integral
kernel given by

W o - je—we  dE
(115) Onf (@) = [ alz 0 T o
A link with Wigner functions can be expressed by the (easily checkable) following
identity, valid e.g. for Op}’ (a) bounded and R trace class

(116) trace (Opy (a)E) = / a(x,  )Wi[R](z, &)dxdE.
R2d

Finally, defining ay(x,§) := a(x, hf) we immediatly get that

(117) Opy (a) = (Opy' (an) = ax(, D).

We first define, for K € N, k > [d/2], k even, that is k = 2[d/4] + 2, = € RY,
Py(z) = (14 |2[*)"?
and, for u € L?,

W, (r,€) = / u(y) Pula — y) e ¥edy

Obviously
(118) IWallze < llll2ll Py Ml ze = Chllullre.
Lemma C.1.
1 UOZ(Sdfl) 277%
Cr=[ ——dv<2 —
g /Rd (14 x2)* T=t0r—d ['(d/2 +1)(2k — d)
Note that C} < oo only for k£ > d/2.

Proof.

! Pd_l ! d—1 1 > Pd_l 1ok 1
—dps/p—dpzd—,/ —dps/ P2y — (2k — d)
/o L+ 2= ), e (2k=d)
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]

Moreover, for all a, |a| <k, and calling D := —iV,
(119) ID*P | < Cogee

Lemma C.2.
la|-1
Cak < Z K= (31a)™ el < oK (3]al/k) = |al(3]al).

Proof. One first remark that, for |8 =1,
B
; 1 X -1

D Pk(x) _k1+x2pk($)

Therefore the highest term in k in D*P, I will be

/

ol IR RN TR
gty (1”2)'&,'&;(9;) < koo

o/ |=lal

The preceding term will be

«

k|a|—1 Doz—o/x—/ Pk(a:)_l < k|a|_1‘a|d3‘6¥‘
|oﬂ%1 ( (1_|_x2)|a|)
since, for || =1,
o Dﬂ o o B
D | = g — 2l
At~ a1 a2 (11 a2l
o' —p3 o B
, T , x*x
) . — — <
5o (1 + z2)ll 2la ‘(1 + x2)|a’|+1‘ < 3lal,
due to,
=7 || ||
us - < s ml < M.
(L s TR o T
The next term will be
k,|a|—2 Z (Da—a/’m)Pk(x)—l < k\a|—2(|a’ o 2)dd23’&‘2 < k|a|_232|04’2‘04|d
||=]al-2
since, decomposing o — " = 5+ ', |5 = |5'| =1,
/ " , 0/’—6 / xa//xﬁ
pipfi— L | — ”Dﬁ——Q " DB
| (1_|_ )|o/’| ‘6 « (1_|_ )‘ o] |Oé | (1—|—$2)|O‘”+1|
’(5 . Oé”)(ﬁ/ . (Oé// _ ﬁ))ﬂ _ 2|O/’|B o xa//_ﬂ—i_ﬂ/
L+ 2 (1 + 22)T
O//-i-ﬁ—ﬁ/ xa//“r‘ﬂ"r‘ﬁ/

" / 1 x 1 1

< 9‘0//‘2 < 9|a’2 — 32‘&|2
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Obviously, for |G| =1, =1,...,m and |/| < |a],

O{l

(1 + )|a/|‘ —
and the mth preceding term will be estimated by
K= 3lal) .

|DﬁmD5m 1Dﬁ1 Sm‘a‘m

]

We turn now to the proof of the Calderon-Vaillancourt Theorem in the framework of
Weyl quantization. In order to lighten the fiormulas, we will perform the computation
in the homogeneous (non semiclassical) case h = 1 and get back to the semiclassical
situation thanks to (117).

Denoting now by ¢ = (2m)™ [p.v(y)e*Vdy the (renormalized and non unitary)
Fourier transform of u, we first note that

¢“Tv(x) = Pe(Dy) (Wil )e™™) .

We get, for a(x, ) k times differentiable,
(2m)" (i, a(x, D)v) = / (54, &)e =y (y)v()dedyde

a(ZL, P (v — y) Po(De)e™ "y (y)v(x)dedydé

1x€

/

= [ ([P @ = e O RUDYa(E, ) o)
/
/

Wqu(Dg)a(%g)(x’ g)Pk‘(Dw) (Wf}(€7 x)e’blf) dxdf

— /Pk(Da:) (Wqu(DE) = 2 (5,; 5)) W@(S,x)emfdxdg

since, by (119), P, ! is k times differentiable (as well as, let us recall, a(x, £)).
Therefore

(120)  (2m)"| (5, ale, Do) < NPUDW, i )l Il ) s
We know that, by (118),

(121) IWillzz < Cillol

Moreover, for [ € N,

(Di)l (Wqu(Dg) ( 5 ) Z aﬂ/ Pk Df ($+y g)DﬁPk(x y) 1€_iy§dy

2 la+8|<21
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Indeed

(D= 2 ((zl,..l.,zd)>ﬁDifi'

zl+---+zd—z

where the multinomial coefficient (( " ) is defined by

(Zd:xi)l_ Z:l ((zl,..l.,zd)>ﬁx?'

In particular

(122) Zl ((zl, . .l.,zd)) =d.

L+..1g
We have
21,
D ( wr Do ¢)
= D% [u) D (1) Pule — 9) ey
2L 2
=[50 (2 ) D D e = )ty
=1

so that

d 21
[ ) H zl: (2[,) 2 —m. + 1
= D2 P(De)a(3L, &) DI P (x — y)uly)e Vd;
/11+.-.+zd:z (b5 la) im1m—1 1
d
-/ I S DERDOaE-ODER o - wuty)e iy

a;+p6; even

> aﬁHD%Pk (22, ODLP o — uly)e iy
a+6|=21
a‘i—l-ﬂi'even

with
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[
l 21
Ca,B <2 ((041+5i Oéd+ﬁd))'
B TR

Proof. Just observe that (O‘EB ) < glatBl < 92
Therefore, developing P;(D,) and Py (D),

P(Dx) (Wupkwg) o 5))

Lemma C.3.

k/2

kN (k 1
=Y (1)) X o [ pacs opine - e a
LI'=1 |la+B]=21
a;+5; even
and, using (118),
(123 12D (W, 09 )
k/2 2 2
< X () Xl DracEoleIDie
LI'=1 la+B]=21
a;+05; even
k/2 I 2
< Wl 3 () (3) X Conmaxl 08 Dl
LI'=1 la+3|=2I la[<k
a;+08; even
= " ;g%\\(l??)l'l??al\mlUHLz-
lo|<E
with, by Lemma C.3 and Lemma C.2
k/2
kN (k
ko !
=2 (0)0) 2, e
LI'=1 |+ B]|=21
a;+p6; even
k/2
< 2> D cglBres”
LU=1 |a+p|=2
a;+8; even
k2 g k l
< 2'(3k) Y dy
la+3|=2I
a;+5; even
k2 k
< —2FE(3k) ko2 ( )
= Y ( ) k1+;€d L (l{l,...,kd)
k2 k223
< M43k = ——(3k) Fddr

4

53
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by (122).
Finally, by (120), (121) and (123),
(@, ale, DY) < Dy mas [[(D3! D i~ a2 o2

I'<k/2
|| <k
with, by (121),
2 fd/4k223k
(124) D{ .= (2m)~iCkCy, = (2m) ™1 v2n (3k)Fk2dF

4/T(d/2 +1)(2k — d)
for any integer k such that 2k > d.
Therefore, in particular,

d 2\ o
oo DI < Do, s 103 D2l
|| <2[d/4]+2

and, e.g., for d > 4 (so that 2[d/4] + 2 < d),

AP/ (192¢ i 5)d

dd 11/4.
" (d%)

Dsjqyq42 <

=

We just proved the following result

Theorem C.4 (Calderon-Vaillancourt).

a(z, D)|| < D’ D%l| .
la(z )Il_wﬁgrg[gfgw\! ¢ D3allr
|| <2[d/4]+2

with

Ya = Dijgra 1o

The semiclassical result is the same by (117): for h <1,

OpV < DD ;.
| Opy (a)l\_wwgg[gﬁm\l ¢ Dyallr
lo|<2[d/4]+2
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