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Abstract. This short note studies a multiple source extension of
categorical mass functions in the sense of Shafer’s evidence theory. Each
subset of possible worlds is associated with a subset of information
sources and represents a tentative description of what is known. Analogs
of belief, plausibility, commonality functions, valued in terms of sub-
sets of agents or sources, are defined, replacing summation by set union.
Set-valued plausibility is nothing but set-valued possibility because it is
union-decomposable with respect to the union of events. In a special case
where each source refers to a single information item, set-valued belief
functions decompose with respect to intersection and are thus multiple
source necessity-like function. Connections with Belnap epistemic truth-
values for handling multiple source inconsistent information are shown.
A formal counterpart of Dempster rule of combination is defined and
discussed as to its merits for information fusion.

1 Introduction

Qualitative settings (e.g., [4,6]) often refer to approaches where maximum and 
minimum operations replace sum-product structures. But other kinds of qualita-
tive frameworks exist, in particular where set functions become set-valued rather 
than being numerical or taking their values on an ordinal scale. An example of 
such a set-valued counterpart is given in possibility theory by the semantical 
counterpart of multiple agent logic [2].

In this short paper, we study a set-valued framework that seems to mimic 
Shafer’s evidence theory [7]. We first introduce a multiple source extension of 
a categorical basic assignment and its intended meaning, from which set-valued 
belief, plausibility, commonality functions are defined. Actually, these set-valued 
functions are quite close to the ones of set-valued possibility theory. Then the 
interest of this setting in information fusion is advocated, and a counterpart 
of Dempster rule of combination can be defined. Lastly, directions for further 
research are briefly mentioned.

2 An Evidential Set-Valued Framework

In Shafer’s evidence theory, information is represented by a mass function m, 
originally called ‘basic probability assignment’, from the power set of a frame of
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discernment Ω to the unit interval. Then the mass function is supposed to be
such that ∀A ⊆ Ω,m(A) ≥ 0 and

∑
A⊆Ω m(A) = 1 [7].

Set-Valued Mass Function. In the set-valued counterpart we propose here,
we start with a set of sources of information (that could be agents) named ALL.
In the most elementary setting, each source a proposes a certain view of the real
world in the form of a non-empty set Γ (a) = E of Ω. Then, the analog of a
basic assignment function associates to each set E ∈ 2Ω the subset of sources
M(E) ⊆ ALL such that Γ (a) = E. As usual, the focal sets E are non-empty
subsets of Ω, such that M(E) �= ∅, forming a collection F . Total ignorance is
represented by M(Ω) = ALL and ∀E �= Ω,M(E) = ∅, i.e., no source provide
information. We assume no inconsistent source, i.e. M(∅) = ∅. Since each source
in ALL is supposed provide some information, we should have

⋃

E∈F
M(E) = ALL

This understanding supposes that the piece of information provided by each
source is precisely known. Namely,

∀E1, E2 ∈ F , if E1 �= E2 then M(E1) ∩ M(E2) = ∅ (∗)

This assumption is not compulsory for the definitions given in the following. In
fact, we may extend the setting by assigning to each source a a collection Γ̃ (a)
of subsets of Ω. Intuitively, it means that the receiver is unsure about what
message the source conveys. In this case M(E) is the set of sources that possibly
forward information item E (i.e., M(E) = {a : E ∈ Γ̃ (a)}). In that case, it is a
higher-order model of information source, more similar to a usual mass function.
Conversely, Γ̃ (a) = {E : a ∈ M(E)}.

Moreover, it is worth mentioning that, provided that condition (∗) holds, a
regular probability assignment m can be associated in a natural way with a set-
valued basic assignment by replacing the subset of sources by their cardinality,
namely mM(A) = |M(A)|

|ALL| since then
∑

A mM(A) = 1.

The Four Set-Valued Set Functions. The multiple source counterpart of
a numerical belief function Bel(A) =

∑
∅�=B⊆A m(B) is BEL(A), the set of all

sources that support A according to the information they convey:

BEL(A) =
⋃

E s.t. ∅�=E⊆A

M(E)

The idea of attaching to propositions sets of sources that support them was
already discussed in [1]. Note that BEL will not change if one adds in Γ̃ (a) a
set E′ containing some set E ∈ Γ̃ (a). So we can modify M(E) by restricting,
for each agent a ∈ All to minimal subsets for inclusion in Γ̃ (a), which leaves
BEL(A) unchanged.



The counterpart PL(A) of plausibility is the set of sources providing infor-
mation not inconsistent with A. Namely, we have (without assuming M(∅) = ∅):

PL(A) =
⋃

E∩A�=∅
M(E).

The subset of sources that find A plausible includes the subset of sources that
are certain about A, i.e., PL(A) ⊇ BEL(A). PL(A) does not exhibit the usual
duality with respect to BEL, that is, PL(A) �= ALL\(BEL(A) ∪ M(∅)) where
A = Ω\A, except if condition (∗) holds. Indeed, if E1 �= E2 ∈ Γ̃ (a), then there
is an event A such that a ∈ PL(A) ∩ BEL(A) (e.g. E2 ∩ A �= ∅, while E1 ⊆ A).
These set-valued set-functions are monotonic in the sense that if A ⊆ B, then
BEL(A) ⊆ BEL(B) and PL(A) ⊆ PL(B).

The counterpart of commonality Q(A) =
∑

E⊇A m(E) is the set of sources
whose information is possibly not more specific than A:

Q(A) =
⋃

E⊇A

M(E).

If M(Ω) = ∅, letting M(E) = M(E), we can see that QM(A) = BELM(A).
The dual is

Q

(A) =
⋃

E∪A�=Ω M(E), generally not equal to ALL\Q(A), except
if condition (∗) holds. Q and

Q

are anti-monotonic with respect to set inclusion.

Non Unicity of the Function M in the General Case. Let Ω =
{ω1, ω2, ω3}, ALL = {a, b}. The table below shows four functions M0, M1,
M2 and M3, the associated belief functions of the first three BEL0, BEL1 and
BEL2 being equal.

{ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}
M0 {a} ∅ {b} ∅ ∅ ∅ ∅
M1 {a} ∅ {b} ∅ ∅ ∅ {a, b}
M2 {a} ∅ {b} {a} {b} {b} ∅
M3 ∅ ∅ ∅ ∅ ∅ ∅ {a, b}

BEL0 = BEL1 = BEL2 {a} ∅ {b} {a} {a, b} {b} {a, b}
BEL3 ∅ ∅ ∅ ∅ ∅ ∅ {a, b}
PL0 {a} ∅ {b} {a} {a, b} {b} {a, b}

PL1 = PL3 {a, b} {a, b} {a, b} {a, b} {a, b} {a, b} {a, b}
PL2 {a, b} {a, b} {b} {a, b} {a, b} {a, b} {a, b}

M0 describes the case when each source a and b supply precise information.
But M1 and M2 violate condition (∗) on mass functions. According to M1,
information provided by sources is either precise or vacuous, while for M2, the
receiver has a much more blurred view of source information. It is not always
possible to recover M from BEL if some focal sets are nested as for M1 and M2

that yield the same BEL. But note that plausibility functions differ. Actually
given a basic assignment M and the belief function BEL, then the same belief
function is obtained by restricting each set Γ (a) to its minimal elements for
inclusion. When, ∀a ∈ All, no two focal sets in Γ̃ (a) are nested (in particular if
condition (∗) holds), it can be shown that M(E) = BEL(E) if BEL(E) �= ∅ and
BEL(E\{ω}) = ∅,∀ω ∈ E. This is like focal sets of qualitative capacities [4].



Link with Belnap Epistemic Truth-Values. Belnap logic [3] deals with a
set of conflicting sources and assigns to any atomic proposition B an epistemic
truth-value in {T,F,U,C}, where T means that B is supported by one source
and negated by none, F means that B is negated by one source and supported
by none, U means that B receives no support, and C means that B and its
negation receive support from some source. It is clear that these assignments
can be generalised to any proposition B in terms of set-valued belief functions:
T if BEL(B) �= ∅ and BEL(B) = ∅, F if BEL(B) = ∅ and BEL(B) �= ∅, U if
BEL(B) = BEL(B) = ∅, C if BEL(B) �= ∅ and BEL(B) �= ∅.

Behavior with Respect to Combinations of Events. It is worth noticing
that if condition (∗) holds,

BEL(A ∩ B) = BEL(A) ∩ BEL(B) (1)

Indeed, ∀a ∈ All, a ∈ BEL(A ∩ B) if and only if Γ (a) ⊆ A ∩ B if and only
if a ∈ BEL(A) ∩ BEL(B). However, in general (if some agent is associated to
several focal subsets), this equality does not hold, and we only have inclusion due
to monotonicity. This is very similar to the graded qualitative capacity setting
[4,6] where the union in BEL is replaced by the max, and only Belq(A ∩ B) ≤
min(Belq(A), Belq(B)) holds in general, since the maximum over focal sets in
A ∩ B may be smaller than the minimum of the maxima over A and over B.

A situation when (1) holds without satisfying condition (∗) is when the focal
sets are singletons. It means that information provided by sources is precise,
but each source can propose several information items. Then, ∀A,BEL(A) =
PL(A) =

⋃
ω∈A M({ω}). If, on top, condition (∗) holds, we are in a probabilistic-

like situation (one Dirac function per agent), and the numerical mass function
mM induced by counting the proportion of sources supporting a focal set is a
probability distribution.

In contrast with (1), we always have

PL(A ∪ B) = PL(A) ∪ PL(B).

In particular, ∀a ∈ All, a ∈ PL(A∪B) if and only if ∃E ∈ Γ̃ (a), E ∩ (A∪B) �= ∅
if and only if E ∩ A �= ∅ or E ∩ B �= ∅, if and only if a ∈ PL(A) or a ∈ PL(B).
Then, PL can be directly expressed from a set-valued distribution πF , from Ω
to 2ALL, namely the contour function πF (ω) = PL({ω}) =

⋃
E�ω M(E) as

PL(A) =
⋃

E∩A�=∅
M(E) =

⋃

ω∈A

πF (ω)

where πF (ω) = {a : ∃E,ω ∈ E ∈ Γ̃ (a)}. Thus, PL being ∪-decomposable is
nothing but a set-valued possibility measure Π. Its dual is N(A) = PL(A) is
a multiple-agent necessity measure that satisfies ∩-decomposability (1), hence
generally different from BEL. Function N is thus induced by a mass function
MPL obeying condition (∗), and associated to a set-valued mapping ΓPL such



that ΓPL(a) =
⋃{E ∈ Γ̃ (a)} (see mass function M3 in the previous table). It

can be checked that ω ∈ ΓPL(a) if and only if a ∈ πF (ω). In other words, each
agent a has epistemic state ΓPL(a). This is the setting of multiple agent logic
[2] briefly recalled below.

In this logic, constraints of the form N(A) ⊇ S where S ⊆ ALL express that
according to at least all sources in S the true state of the world is in A. Clearly,
N(A) ⊇ S is the semantical counterpart of a possibilistic logic-like formula
(A,S). This formula is associated with the multiple agent ma-distribution:

∀ω ∈ Ω,π{(A,S)}(ω) =
{

ALL if ω ∈ A
S if ω ∈ A.

Indeed the complement of S is the maximal subset of sources that may find
possible that the real world be outside A (since for all sources in S the true
state of the world is in A). More generally, the ma-distribution πΓ semantically
associated to a set of ma-formulas K = {(Ai,Si), i = 1,m} is given by

πK(ω) =
{

ALL if ∀(Ai,Si) ∈ Γ, ω ∈ Ai⋂{Si : (Ai,Si) ∈ Γ, ω ∈ Ai} otherwise.

Finally, taking advantage of the connection between BEL and Q, it is easy
to see that the property Q(A ∪ B) = Q(A) ∩ Q(B) holds under condition (∗),
while

Q

(A ∩ B) =

Q

(A) ∪ Q

(B) always holds.

3 Fusion Rules

Dempster rule of combination is central in the theory of evidence. Then, the
combination of two mass functions can be viewed as a (normalized) intersection
of the two random sets represented by these two basic probability assignments.
A kind of counterpart of this rule in the set-valued setting is as follows: ∀E �= ∅:

(M1 ⊗ M2)(E) = M12(E) =
⋃

A,B s.t. E=F∩G

M1(F ) ∪ M2(G)

It is especially meaningful to combine two disjoint sets of sources and refine their
information. It makes no sense to use M1(F ) ∩ M2(G) in the above expression
if ALL ∩ ALL′ = ∅, M1(F ) ⊆ ALL, M2(G) ⊆ ALL′ since then M1(F ) ∩
M2(G) = ∅. In the case where ALL = ALL′, it means that we have two versions
of the information provided by each source, and information items are combined
conjunctively. For instance, consider two sources a and b with epistemic states
Γ1(a) = Ea and Γ2(b) = Eb. The fusion rule gives Γ12(a) = Γ12(b) = Ea ∩ Eb,
i.e., M12(Ea ∩ Eb) = {a, b}, and M12(E) = ∅ otherwise. Just as Dempster rule
of combination amounts to performing the product of commonality functions [7],
the above rule corresponds to the union of the set-valued commonality functions,
as shown below.



Q12(D) =
⋃

C⊇D

M12(C) =
⋃

C⊇D

⋃

A,B s.t. C=A∩B

M1(A) ∪ M2(B)

=
⋃

A,B s.t. A∩B⊇D

M1(A) ∪ M2(B) =
⋃

A,B s.t. A⊇D,B⊇D

M1(A) ∪ M2(B)

= (
⋃

A⊇D

M1(A)) ∪ (
⋃

B⊇D

M2(B)) = Q1(D) ∪ Q2(D)

Hence, the combination rule is commutative, associative and idempotent.
Other combination rules make sense such as the generalized disjunction, replac-
ing A ∩ B by A ∪ B in the fusion rule. This rule boils down to the union of the
set-valued belief functions BEL1(A) ∪ BEL2(A),∀A ⊆ Ω.

4 Concluding Remarks

There are several lines for further research. First, this set-valued setting has
been presented in terms of knowledge, but it might apply as well to preference
modeling. Besides, the approach could be generalized by allowing the use of
weighted subsets of sources leading to fuzzy set-valued set functions. Moreover,
one may follow ideas expressed in [5,8] advocating the interest of a bipolar view
of information that can be represented in evidence or in possibility theory, for
introducing a similar bipolar setting in set-valued evidence theory. Lastly, the
set of sources that are the values of the set functions may be understood in terms
of arguments, following an idea already suggested in [1] in a different setting.
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