
HAL Id: hal-02619398
https://hal.science/hal-02619398

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Use of patterns for know-how reuse in a model-based
systems engineering framework

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau

To cite this version:
Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in
a model-based systems engineering framework. IEEE Systems Journal, 2020, 14 (4), pp.4765-4776.
�10.1109/JSYST.2020.2975116�. �hal-02619398�

https://hal.science/hal-02619398
https://hal.archives-ouvertes.fr

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

1


Abstract—The increasing complexity of systems being

developed requires engineers to review their practices to improve
engineering efficiency and meet the needs of a competitive market.
To answer these challenges, engineers have always reused their
know-how. However, facing today's rising complexity, reuse has to
be much more performant. That is why models supported by
formal or semiformal languages are preferred to avoid the
variability of natural languages interpretation. In this context,
Model-Based Systems Engineering (MBSE) made it possible to
change the engineering paradigm by proposing a unique, shared
system model. To promote and ease MBSE adoption, reuse should
be fostered to respect the engineer’s working method. A promising
method for reusing models is based on the pattern concept. Thus,
this paper aims to review and evaluate the pattern concept as a
means of transferring know-how and fostering reuse in an MBSE
approach.

Index Terms—Model-Based Systems Engineering (MBSE),
Pattern, Reuse in Systems Engineering, Systems Modeling

I. INTRODUCTION

ystems tend to incorporate an ever-increasing number of
functionalities and operate in a constrained environment.
The design of these increasingly complex systems implies

longer engineering phases and greater costs during the design
lifecycle of a project. These negative impacts are emphasized
by the current document-centered application of Systems
Engineering (SE) processes in companies [1]. That is why the
SE community has developed Model-Based Systems
Engineering (MBSE) [2]. This paradigm promotes a SE
methodology that focuses on creating and exploiting system
models as the primary means of information exchange between
engineers, rather than in documents written in natural language.
Popularized by the International Council on Systems
Engineering (INCOSE) with the MBSE Initiative1, it is defined
as “the formalized application of modeling to support system
requirements, design, analysis, verification and validation
activities beginning in the conceptual design phase and
continuing throughout development and later lifecycle phases”.
Vogelsang et al. report that its application has been successful
in several cases [3] but underlines the fact that companies still
struggle with the adoption of MBSE, as many inhibitors remain,
such as cultural resistance to change and the lack of support to

 Quentin Wu is with Safran Electrical & Power, Montreuil, 93100, France,

and also with the Université de Lorraine, Nancy, 54000, France (e-mail:
quentin.wu@safrangroup.com).

David Gouyon is with the Université de Lorraine, Nancy, 54000, France (e-
mail: david.gouyon@univ-lorraine.fr).

efficiently implement MBSE (training, maturity of
methodologies, clear and committed leadership).

For wider MBSE adoption, several advances seem to be
necessary concerning organizational, methodological, and tool
perspectives. In particular, from a methodological point of
view, it is necessary to construct a means for improving the
adoption of MBSE for engineers. As the act of reuse is one of
the main enablers of engineering activities, it constitutes a
principle that is essential for allowing engineers to use the
MBSE methodology. However, the expected benefits include
the assumption that the reused modeling artifacts satisfy
maturity criteria that guarantee that they have reached a level of
quality compatible with the reuse objectives. To formalize reuse
activities within an MBSE framework and to benefit from a
sufficient maturity level, it appears that the pattern concept is
promising, as it is generic and method agnostic [4].

This article focuses on engineering practices that intend to
capitalize on know-how by using the pattern concept, especially
in an MBSE framework. These approaches propose
transforming know-how – which is usually static information
(concerning only one individual) – into dynamic information
(concerning many individuals) to foster reuse as an enabler of
engineering practices. Section II presents an overview of reuse
in SE by describing current types of reuse activities by showing
associated limitations that justify the reuse of models for
efficiently transferring know-how between engineers. As
patterns appear to be a promising method for reusing models,
section III presents a short history of patterns. Then, section IV
reviews the current characteristics, values and limits of patterns
for SE, which are also evaluated for MBSE in section V.

II. BACKGROUND AND CONTEXT ON KNOW-HOW REUSE IN

ENGINEERING ACTIVITIES

Traditionally, engineers’ know-how is constructed from
knowledge gained from their experiences [5]. As people
become experienced, reuse can be applied faster and
automatically to help them to be more efficient in their tasks.

A. Diversity of reuse activities for systems engineering

Reuse – by taking, but not reprocessing, previously used
engineering know-how – helps to save time, money, energy and
resources. As research has already been conducted for reuse in
systems engineering [5]–[13], it appears that there are many

 Éric Levrat is with the Université de Lorraine, Nancy, 54000, France (e-
mail: eric.levrat@univ-lorraine.fr).

Sophie Boudau is with Safran Electrical & Power, Montreuil, 93100, France
(e-mail: sophie.boudau@safrangroup.com).

1 http://www.omgwiki.org/MBSE/doku.php (visited on 18/10/2019)

Use of Patterns for Know-how Reuse in a
Model-Based Systems Engineering Framework

Quentin Wu, David Gouyon, Éric Levrat, Sophie Boudau

S

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

2

different methods for capitalizing on know-how . These
approaches belong to the process of "knowledge transfer" [14]
and can be categorized into three different approaches:

 Opportunistic reuse (OR): when the first project was
not developed with reusable capacity. It is the lowest
incidence of reuse [15] because the act of reuse is the
responsibility of the engineer's goodwill;

 Planned reuse (PR): when the first project was
developed with reusable capacity. In this case, reuse
has been integrated into the development process to
highlight and foster reusable contents [16];

 Variance (V): use of something already developed
during previous work in a slightly different form. For
example, on a product line, there is a common core
model, but there are different options [17].

In addition, it is necessary to determine the artifacts that will
be reused [18]. Indeed, reuse activities concern:

 System of Interest (SOI): this is the system in which
the lifecycle is considered;

 Systems Engineering Activities (SEA): activities

geared towards the development of the SOI.

1) Opportunistic reuse (OR)
“Opportunistic reuse” describes a situation where the "reuse

tasks are not performed in any sequence, rather as opportunities
arise" [19]. As this approach cannot predict when reuse occurs,
it implies that the act of reuse is the responsibility of the
engineer's goodwill. This thesis has a considerable implication:
in this case, reuse cannot be determined a priori, which means
that reuse may not occur. It also means that if reuse is
performed, benefits are not clear [16].

For example, opportunistic reuse often consists of “copy &
paste”. Engineers copy a particular type of artifact (e.g., system
requirements), which are next adapted to the features of the
current project under development [20]. In the software
community, it corresponds to an equivalent action, which
consists of “extending software with functionality from a third-
party software supplier that wasn’t originally intended to be
integrated and reused” [21]. Even though the authors present
this approach as an enabler to rapid development, they
acknowledge the fact that the quality of the product, when
released, is not as high as with other reuse methods. In the same
way, the authors of [22] used this approach on abandoned
projects and called it “scrapheap software development”. They
also acknowledged the fact that identifying reusable assets is
the “burden” of the developer and that no safeguards exist to
inform them that they might reuse content inappropriately.

The authors in [23] investigated the reasons behind these
issues and described different levels of knowledge from the
point of view of an engineer to underline the cognitive issues
that occur during reuse (Fig. 1). This description explains the
reasons that can encourage engineers to start a reuse process, or
on the contrary, to prevent them from starting one. Indeed, in
the entire information space (global), each individual has
his/her own information space (local). Inside each individual
information space, different layers exist and correspond to

graduation from what is well known (L1) to what is only
expected to exist (L3) and worse, what is expected to exist but
actually does not (L4-L3). In this way, it is more likely that
engineers will reuse information included in L1 than in L3 since
risks are managed, as they are better understood.

Fig. 1 Different levels of knowledge about a high-functionality application

(HFA) extracted from [23]

An opportunistic approach might help for rapid development,
but it does not ensure good quality reuse or that performing
reuse will be viable in the future. As presented, the information
space of each stakeholder of the project has to be considered to
ensure mature, viable and efficient reuse, which is expected to
achieve clear benefits.

2) Planned reuse (PR)

As presented in the previous subsection, engineering can
benefit from reuse, but to be efficient, it needs to be planned as
it requires proper documentation and design [24]. It is,
therefore, important to ensure that future development cycles
incorporate a reuse approach that is planned and formalized.
The “planned reuse” approach is expected to provide a greater
and clearer benefit than the “opportunistic approach” since risks
are managed upstream. Several research works have studied
and developed processes compliant with a “planned reuse”
approach. Whether on the SOI, SEA or both, the goal of each
work was to provide a framework for reuse that is well defined
and that guides the engineers in their work.

One of the trends is to shift the engineering paradigm from
“problem solving” towards “decision making”. Currently,
many development teams are spending a long time solving
problems from one "point" solution to another one that is more
mature and closer to customer needs (“point-based design”)
[25]. The authors of [26] emphasize that an inversion of the
paradigm is needed, and from their point of view, it is feasible
to transfer the workload towards the "front" phases of
engineering activities. Indeed, by accumulating knowledge
upstream, it is possible for the development team to define a set
of possible designs (Fig. 2). As a result, "set-based design" aims
to reduce rework and improve decision making by maturation
before making key decisions.

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

3

Fig. 2 (a) Point-based design, (b) Set-based design extracted from [26]

Thus, it seems necessary to breakdown the problem into
subproblems where it is possible to make decisions easier. The
commercial off-the-shelf (COTS) approach provides this
capability, as it is a "divide and conquer" design paradigm that
consists of breaking down a problem into solvable subproblems
by already existing components. Consequently, the authors of
[27] noted that COTS may be selected and implemented for
technical (shorter development time), business and
organizational (reduce overall system development costs), or
strategic reasons (access a technology that cannot be developed
internally). However, in systemic thinking, the "whole" is
greater than the sum of its "parts". For this reason, the
advantages of COTS are accompanied by integration issues,
earlier identified by the authors of [28], which are functionality
and performance (what it is expected to do), interoperability (no
standard exists), product evolution (risk of no longer meeting
the need) and vendor behavior (false promises). Beyond these
concerns, it appears that the key to using COTS is the need for
an efficient selection method, which understands companies'
needs and situations for improving integration.

Research also targets processes where reuse can take place to
define reuse activities. These activities can, therefore, take
place throughout the development cycle. For example, the
authors of [14] started in the innovation process. Over the six
case studies they analyzed, the authors identified a "six-stage
reuse-for-innovation process". Their study emphasizes the need
for engineers to look for other's works and evaluate them to
create situations where they are more likely to innovate. Thus,
organizational structures need to adapt to allow innovative
engineers to be aware of both traditional and nontraditional
approaches to reuse and create new roles that become part of a
community that fosters reuse inside organizations. The work
conducted by the authors of [29] involved an organizational
change. Indeed, they proposed adapting the requirement
engineering process by creating a local reuse library for each
engineer and a shared reuse library managed by a reuse manager
(RM). Many examples are also available in the software
community [30], such as the PABRE framework [31]. The
authors propose the use of software requirements patterns
(SRP) as a means to capture and reuse requirements knowledge
validated by experts. To produce software requirement
specification of better quality, their framework is composed of
a metamodel of SRP, a method of reuse through SRP, a catalog
of 111 SRP, and a software system that supports the
management and use of the catalog. The pattern concept allows
showing the different forms to achieve and serves as a basis to
improve the set of requirements.

As previously mentioned, reuse activities can take place
throughout the development cycle. It is possible, for example,
to mention the work on COSYSMO [32], an extension of the
constructive cost model (COCOMO) [33]. Indeed, the latter has
been extended to include the reuse capacity legacy from older
systems by defining reuse categories and weights for each of
the categories [13].

Planned reuse requires significant effort in addition to the
constraints of a project. However, it appears that greater
benefits are expected compared to opportunistic reuse in terms
of quality, time development and communication between
engineers.

3) Variance (V)

Beyond opportunistic and planned reuse, another method for
reusing artifacts from previous works occurs through the
concept of “variability”, which can be defined as the “capacity
of a characteristic to vary” [20]. Therefore, these variabilities
define the perimeter of the reuse domain. This concept appears
to be adapted towards product line engineering, which does not
concern only the system but also the global context in which
several aspects matter, such as products, processes, enterprise
management and organization. In the context of reuse in
engineering activities, it is necessary to detail products and
processes. Indeed, products of a product line are made of a
generic product (the result of a capitalization process) and their
applications (the result of a reuse process). Thus, it appears that
it is necessary to define processes for capitalization and reuse
to develop applications from a generic product and vice versa.
This implies the need to model variability, which can be done
using MBSE modeling methods, which are currently advancing
in systems engineering.

In that sense, many research works appear to leverage
modeling techniques for variance [34] to model the scope of
architecture options or, in other words, the modeling of product
variabilities. Indeed, on the one hand, it is necessary to capture
the model of the system (requirements, functions, etc.) and, on
the other hand, it is necessary to capture system characteristics
(common, variant), to represent the dependency between
artifacts (constraints, variabilities) and to determine an
achievable combination of elements [20]. That is why modeling
techniques are relevant to reducing complexity due to the high
number of variabilities and dependencies, to make explicit
achievable combinations, to ease impact analysis and to
capitalize on already explored combinations to avoid
“reinventing the wheel”. To leverage these modeling
techniques, several languages have been proposed, such as
FORE (family-oriented requirements engineering), FODA
(feature-oriented domain analysis), OVM (orthogonal
variability models), and CVL (common variability language)
[35], [36].

Variance embeds the advantages of previous reuse
approaches (standardization, time saving, efficiency, and
quality improvement) but also eases the trade-off analysis [37]
by allowing the analysis of design alternatives [38]. However,
challenges still remain concerning product lines:
implementation (maturity, cultural change, impact on
lifecycle), objectives (answer to a need, ROI is expected,
optimization of the industrial process), dependency between

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

4

systems engineering processes (configuration management,
capitalization and reuse, modeling).

Whereas reuse is a relatively well-documented practice in
software and manufacturing, the formalization of this practice
in the systems engineering domain is relatively new, and little
has been reported on actual industrial applications [39].

B. The necessary evolution of the method for reusing know-
how

Different approaches to reuse are presented (OR, PR, V). In
an SE context, it is necessary to link these approaches to the
different levels of complexity that can be encountered when
transferring know-how for reuse. These levels are not clear-cut
categories and are defined by the capability to allow efficient
reuse provided by means of sharing used (Table I).

For each method of sharing, there are two kinds of usage. On

the one hand, there is raw usage (white background) where the
use of know-how in a specific context is only possible once. On
the other hand, there is reuse usage (gray background) where
the intention is to transmit know-how more formally to enable
reuse in a different context. The question mark on the last line
of Table I shows that even if modeling techniques are being
deployed, work still must be done to formalize a reuse approach
for models to increase engineering efficiency.

1) Level 1: "low" complexity

At this level of complexity, the artifact transmission is oral,
and the transfer is usually performed through discussions,
interviews, drawings, or returns of experiences. However, oral
transfer is not sufficient for transferring a large amount of
know-how, as it takes time and implies a strong involvement of
both instructors and apprentices.

2) Level 2: "intermediate" complexity

Contrary to oral transmission, the advantage of text and
documents is that it remains and does not leave with people

when they retire so that the human is not the weak link.
Moreover, once a document is written, the involvement of
instructors decreases. However, problems can occur concerning
the variability of natural language interpretation and document
size explosion.

3) Level 3: "high" complexity

As complexity continues to increase, the use of models is
preferable, as models are more expressive and less ambiguous
than textual documents [40]. Indeed, at this level of complexity,
the size and number of documents require a considerable
amount of work to ensure information consistency across
engineering teams and throughout the various iterations of the
system lifecycle [41]. This is why disciplines such as MBSE are
emerging, where the model forms the heart of all the systems
engineering activities and is the basis of many of the project
artifacts to ensure consistency [42]. Indeed, architectural
elements or time-dependent dynamic behavioral simulations
allow a more complete examination and early exploration of the
logical and behavioral characteristics of the architecture [43].

Assuming that complexity is increasing over time and will

continue to increase – as well as data that engineers need to
manage – it implies that a new method for transferring know-
how needs to be defined and developed. If one considers level
3 of the system's complexity (Table I), this means that engineers
cannot answer complexity only through oral and text and that
they have to change their method of working by using models.

C. Towards the reuse of models to transfer know-how
between engineers

Human-centric information created by engineers is essential
but has the detrimental effect of being "static" as it remains
implicit and biased (engineer’s point of view). Indeed,
information is fixed in one engineer's mind, making it difficult
to transfer to someone else to foster reuse [44], [45]. "Dynamic"
information among engineering teams is a critical challenge for
many companies that need to manage complex systems, as
information must be shared, comprehensive, and coherent
among the projects [46]. This aspect is very important because
it allows a better comprehension of the SOI and SEA. For
example, in requirement engineering [29], at least 55% of
engineers use "copy & paste" to reuse requirements or groups
of requirements, and 50% duplicate the full specification.

These practices have little added value, as they do not convey
a strong understanding of the system, especially concerning its
behavior. This is why there is a need to promote an efficient
method for transferring know-how to facilitate its circulation
and reuse, and this is the reason that the current expectations are
to promote models rather than documents written in natural
language because of its variability of understanding. Indeed, the
format of the transfer has a prominent role (Table I). As
complex systems produce a considerable amount of information
and require efficient descriptions or specifications, reuse can
help to counter today's rising complexity [47].

The next step for improving engineering efficiency is to
focus on reusing know-how through models. One method that
looks particularly promising is through the adoption of patterns
by proposing generic guides to ease and systematize the
construction of complex systems [48]. As they can be used in

TABLE I
SYSTEM COMPLEXITY LEVELS AND MEANS OF SHARING (MOS)

Levels of complexity
MoS

Level
1

Level
2

Level
3

Oral

R
aw

 Discussion
Interview
Drawings

+ - - -

R
eu

se

Presentation
Lecture ++ ~ -

Text

R
aw

 Rationale
Comment

Email
+ + -

R
eu

se
 Manual

Book
Technical
Document

++ + ~

Model

R
aw

Individual (or
specific) Model ++ ++ +

R
eu

se

Model Reuse? ++ ++ ++

Efficiency: - - Very low + High
 - Low ++ Very high
 ~ Correct

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

5

all stages of the development cycle [10], reuse of patterns seems
to be the most suitable form of reuse for complex [49] systems
engineering on the condition that this concept can be formalized
in a modeling process.

III. A LITTLE HISTORY OF PATTERNS

Most people in the pattern community attribute the first
promoter of the value of the "pattern" to Alexander and his
coauthors in a book on architecture, urban design and
community livability [50]. The book formalizes a language
called a "pattern language", composed of a myriad of patterns
that helped the authors express design in terms of relationships
between the parts of a house and the rules for transforming these
relationships [51]. They began to identify patterns with the idea
that “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of
the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice” [50]. The same way engineers reuse their
knowledge based on their previous experience, the author of
[52] notes that the authors of [50] "did not invent these patterns,
they came from observation and testing; and only then were
they documented as patterns".

The pattern approach has been introduced in various
engineering fields, such as software, requirements,
telecommunications and control systems engineering [53]. The
authors of [54] were the first to propose object-oriented patterns
in the software community when engineers started to apply the
concepts developed by Alexander and his coauthors. The goal
was to improve quality and to facilitate code writing by
adopting good practices. The authors of [55], also known as the
"Gang of Four", described 23 software design patterns such as
composite, iterator, and command. A design pattern is a
general, reusable solution to a recurring problem in the design
of object-oriented applications; it describes a proven solution
for solving software architecture problems. Design patterns are
not a finished design (concrete algorithm) but a structured
description of computer programming. This means that they are
independent of programming languages. The use of design
patterns offers many advantages. First, it solves a design
problem due to a proven solution validated by experts.
Therefore, design speed and quality increase while costs
decrease. In addition, since design patterns are widely
documented and known to many developers, they also facilitate
communication because the awareness of design patterns by
software engineers makes it unnecessary to go into detail during
the design (UML diagram). Design patterns have been widely
accepted and encouraged in other software domains for writing
patterns to capture their experience. However, facing the
number of pattern collections, the authors of [56] proposed to
reduce the catalog of software patterns to reduce confusion and
promote cleaner reuse. They defined the syntax and semantics
of patterns for detecting and analyzing redundancies. Their
work led them to range patterns from identical patterns into
lower degrees of similarity, resulting in a smaller collection of
patterns.

2 http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

(visited on 18/10/2019)

 In the field of SE, the value of patterns appears essential
towards the growing complexity of systems and the difficulty
of capturing a large body of knowledge. That is why Barter, the
author of [6], proposed the creation of a systems engineering
pattern language. This language is a collection of patterns that,
when combined, address problems larger than the problems that
an individual pattern can address. This language can be
graphically represented by a pattern map, and Barter described
the generic elements that a "minimal" pattern should contain.
The author of [6] captured and managed the systems
engineering body of knowledge (SEBOK) information by using
patterns and pattern languages and proposed using concept
maps to represent relationships between individual patterns in a
pattern language.

Pursuing this direction, the author of [57] also proposed the
use of SE patterns to capture the information in the SEBOK.
However, unlike the author of [6], who considered a pattern
language as a collection of patterns, without mention of
relationship types between patterns, the author of [11] detailed
the relationships between patterns at different levels and
emphasized the need for a working group to describe these
links. Other works have used the pattern concept in systems
engineering, especially in the product information system field,
where the authors of [10] proposed a methodological
framework based on the reuse of patterns throughout the system
lifecycle. The authors of [58] proposed pattern libraries to
support a methodological framework for the conception of
product information systems.

The growing interest within the SE community towards
MBSE [2] and specific characteristics of patterns (generic,
various application method) led the INCOSE to start an "MBSE
Patterns Challenge Team" in 2013 as a part of the INCOSE
MBSE Initiative. In 2016, it became the "INCOSE MBSE
Patterns Working Group"2, which aims to "advance the
availability and awareness of practices and resources associated
with the impactful creation, application, and continuous
improvement of MBSE patterns over multiple system life
cycles".

After this short review of the history of patterns, a focus on
patterns in systems engineering is made in the next section to
understand the fundamental concepts needed to foster reuse in
systems engineering.

IV. PATTERNS FOR SYSTEMS ENGINEERING

As recalled in the previous section, the pattern concept and
its applicability in the field of systems engineering have already
been discussed. However, this concept has many facets, making
it difficult for a beginner to identify the target and the means to
use patterns. Although many characteristics of patterns are
recurrent in various research works, it requires synthesis work.
The purpose of this section is to improve the comprehension of
what is a pattern in systems engineering.

A. Recurrent characteristics of patterns

The study of previous research allows the identification of
recurrent characteristics of patterns. They are synthesized in
Table II and detailed in this subsection.

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

6

Sometimes, similar designs are made entirely independently

by different engineers [59]. This phenomenon acknowledges
the fact that the same design elements exist in multiple designs,
and the study and documentation of such designs foster reuse
among projects. Indeed, it prevents "reinventing the wheel" and
provides a vocabulary for the design concepts that a project can
share. This is consistent with the notion that patterns "are not
created from a blank page; they are mined" [60]. It appears that
systems engineering patterns are embedded in existing designs
and that it is necessary to find a mechanism for identifying
them. These patterns are called "buried patterns" by the authors
of [61] and represent a scientific obstacle, as the mining
techniques differ depending on whether the design is
represented with formal or nonformal languages. As the process
of "mining" appears to be essential for creating pattern
languages, various approaches have been identified to write
patterns from mined elements. For example, the author of [62]
was interested in three processes of mining: mining by
interviewing, mining by teaching pattern writing, and mining
by borrowing (from the literature).

However, based on Delano’s classification [63], it is possible
to classify mining processes into three categories:

 Individual contributions: Writers of the pattern use
their own experiences or the experiences of their
colleagues. The contribution is based on their ability
to write good patterns.

 Second-hand contributions: Patterns are written based
on interviews with experts or by guiding another
person in the writing of patterns. However, it can also
come from borrowing patterns from the literature or
from companies in the same domain that can share
information.

 Workshops/meeting contributions: As in Haskins [62]
during an INCOSE tutorial, this approach consists of
grouping participants by groups of approximately ten
people to brainstorm the elements of a pattern, and a
moderator and facilitator can be included to keep the
discussion on track.

When mining a pattern, the next question is the format in

which it is captured. Despite the differences between formats
depending on the language used (textual or modeling), it
appears that a minimal set of information is always provided,
consisting of interdisciplinary generic attributes that

characterize a pattern. In addition to an evocative name that
constitutes its identification property, a pattern seems to possess
an inherent triptych composed of {context, problem, solution}.
The latter is mentioned by many research works [6], [64]. The
authors of [56] defined a "minimal triangle", where the triptych
defines the core meaning of a pattern (Fig. 3).

Fig. 3 The minimal triangle extracted from [56]

The minimal triangle summarizes the idea that a pattern
provides a solution to a recurring problem in a particular
context. Thus, if one element is missing, this pattern is called a
"trivial pattern". However, a general consensus enlarges the
minimal elements needed in a pattern, such as the generic
pattern with minimal elements that the authors of [6] described:
an evocative name, the triptych {context, problem, solution},
the forces (or tensions) that influence the application of a
pattern, and related patterns.

In different examples given by the authors of [11], [53], [61],
and [64], elements from the generic pattern appear or are at least
written in the text of the article. However, they can also be
broken down into smaller elements, such as the formalism of
design patterns described by the authors of [55], which refers to
a solution through different elements: application, structure,
advantages, code sample or utilizations (known uses). The
authors of [53] conducted a survey that allowed them to list a
recommended systems pattern form (Fig. 4) and demonstrate
that "systems engineers and architects are most interested in the
rationale for the pattern followed by an example of how to apply
the pattern and known uses of the pattern".

Fig. 4 Recommended systems pattern form extracted from [53]

The authors of [53] also emphasize the fact that concepts used
in systems engineering represent higher levels of complexity
and abstraction than the prevailing notions of Alexander in
architecture. For instance, the architecture of the underlying

TABLE II
RECURRENT CHARACTERISTICS OF PATTERNS IN THE LITERATURE

RC1.
A pattern does not appear out of the blue; patterns are "mined"
from the know-how.

RC2.
A pattern is represented in a static format that owns specific
attributes, one being the existence of a triptych of three elements
{Context, Problem, Solution}.

RC3.
A pattern objective is to efficiently transfer information between
stakeholders at the right level of abstraction to foster reuse.

RC4.
The applicability of a pattern is determined by certain conditions,
such as their perimeter and performance of the application, but
also their maturity level.

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

7

concepts of control command requires a more complex notation
than the sketch (Fig. 5) used by Alexander in [50].

Fig. 5. Pattern 37: House clusters extracted from [50]

Thus, the authors of [61] used the enhanced functional flow
block diagram (eFFBD) to represent the model of their control
command (Fig. 6). Such pattern descriptions rely on formal
conceptual foundations in the form of a metamodel, which can
be used for the management, application, and cataloging of
patterns specific to the field of systems engineering. Ultimately,
patterns are methodologically agnostic, so the most important
task is to know what to capture due to the mining process.

Fig. 6 A systems engineering pattern extracted from [61]

B. Value of patterns in SE

Therefore, these recurrent characteristics are not sufficient
for defining what a pattern is. Indeed, they miss an aspect that
is the value of patterns. As written in the introduction, the
fundamental idea behind the idea of "reuse" is the capacity to
set static motion information to make it dynamic. This way,
information has to be available to become an artifact that
engineers want to use. Like models, patterns are abstractions or
a set of abstractions of reality and not a magical solution. They
allow people to solve complex problems by leveraging
experience and know-how from their predecessors. The results
of a study conducted in the open source software community by
the author of [65] determined whether the 23 design patterns
introduced by the authors of [55] were used to document
changes in the code. The authors of [65] observed that 11.4%
of projects with one developer use patterns, approximately 20%

for projects with 2-9 developers, and 61.5% when the team size
exceeds 10 people (Fig. 7).

Fig. 7 Use of patterns depending on the team size extracted from [65]

These results seem to imply that explicit documentation of a
used pattern allows efficient communication in a development
team. Indeed, one of the main arguments in favor of using
patterns in SE is the capacity to improve communication
because with the current complexity of systems; it is almost
impossible for systems engineers to envision all the details of a
system. Thus, the capacity of patterns to deliver at each level of
the development the correct amount of information will allow
its quick adoption and most importantly its active use, as the
author of [65] concluded in his study: "design patterns are
adopted for documenting changes and thus for communication
in practice by many of the most active open source developers".

In terms of communication, patterns, therefore, offer the
possibility to create a common lexicon between systems
architects. This will help foster a common understanding of
systems architecture, validated by experts. This enables the
spread of common design features for reuse in different
projects, reducing cost and time to design a new system.
However, as patterns aim at converting static information into
dynamic information, the patterns themselves should not be
static. There is a critical need for patterns to evolve to become
mature. In this way, patterns will foster reuse and help to control
the complexity of a system.

As stated in the introduction concerning know-how, reuse is
fundamental for allowing engineers to increase their efficiency.
Thus, there should be patterns that address:

 The SOI by reusing sets of requirements, architectural
elements, etc., as illustrated for the architecture of a
Joint Emergency Services Control Center [66]

 SEA reuses methodological guidelines recursively at
various system levels, as illustrated in the system of
innovation patterns [8].

C. Limits of patterns in SE

Nevertheless, patterns are not "silver bullets", and some
limitations may be expressed. One of the criticisms is the
difficulty in creating and innovating by applying only the reuse
process. This criticism considers that it will be impossible to
make breakthroughs ("future") by combining patterns ("past").
However, this is not the only objection, as the author of [67]
described, other reasons to avoid patterns can be listed:

 When addressing new or unique requirements that
have not been solved before;

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

8

 When the requirements require a unique solution, e.g.,
aesthetics over function;

 When the pace of technological change does not
warrant the use of patterns.

Of course, the strict reuse of information by copy/paste

cannot allow innovation or emulate creativity. Thus, it is
necessary to find another way to achieve innovation through
reuse. The authors of [14] partially addressed this question by
mining a process pattern (Fig. 8) based on case studies from the
Jet Propulsion Laboratory. They proposed a six-stage process
for innovation in which the key action consists of searching and
evaluating others' works to exploit existing ideas and generate
new combinations. In this context, the perimeter should not be
restricted to the search for solutions to the current know-how
base, as the intended behavior is not about replicating but
integrating recombined ideas. This pattern may not be
necessary and sufficient, but it shows how patterns can help to
formalize know-how to foster innovation during the next
projects. Patterns also aim to reduce the engineering phase
length, reduce costs and provide more free time to innovate.

Fig. 8 Knowledge reuse process for innovation extracted from [14]

The second objection emphasizes the fact that patterns
should not be static but dynamic. As it has been written in many
places in this article, patterns, in order to be used, "should offer
the same comfortable learning experience as a conversation
with trusted colleagues" [11]. This means that there is an
organizational challenge for motivating engineers to contribute
to a pattern database: experts have to understand the importance
of performing documentation and validation of patterns to train
junior systems engineers. This also means that support must be
provided to enable engineering teams to find their bearings.
One can imagine, for example, that the pattern database could
take the form of a library, a concept that can be easily
understood and customized according to needs.

The third objection considers that patterns cannot evolve as
quickly as new technologies and are, therefore, quickly
obsolete. However, if this objection is relevant for low-level
patterns that address recurrent technological problems, more
abstract patterns – concerning high-level architecture, for
example – can remain accurate. Moreover, in long-term project
industries, such as aerospace, it appears that if senior engineers
know-how is not documented as patterns, the capacity of
recognizing a problem and applying a solution is no longer
available for junior engineers that have to relearn standard
designs, resulting in higher costs for developing a new system
[67]. Furthermore, this objection is mainly focused on the SOI,
as it does not consider SEA, which can be maintained over time

inside each company, independently from the evolution of the
market.

As the interest in MBSE increases, it is important to also
examine the work performed to integrate the pattern concept in
this framework. The integration of the OMG System Modeling
Language (OMG SysML) and its consequences on how to
define problems and describe solutions are particularly
interesting and will be examined in the next section.

V. PATTERNS FOR MODEL-BASED SYSTEMS ENGINEERING

Although research has been conducted to assess whether the
pattern concept can be applied in the systems engineering field,
such as [11], [52], and [61], the value of patterns in an MBSE
framework has not been fully explored. However, it appears
crucial to consider all the different needs, requirements and
constraints of the different stakeholders in the early design
stages. Perceived by many companies as a time loss, it appears
that introducing reuse capacity in MBSE methodologies allows
the design of a new project with much less human effort,
benefiting from the reuse of the already existing system models
[68]. The identification and capture of patterns in the existing
system models extend and increase reusability [69], which
benefits new projects by accelerating identical engineering
phases by quickly injecting these patterns into system models
during the design of a specific solution.

The purpose of this section is to show the usefulness of the
capitalization and reuse of system models by showing how the
pattern concept can be implemented in MBSE and thus favors
its adoption at a larger scale. First, presentations are made in
this section on the value of reuse and patterns in an MBSE
framework. Then, in a second step, the limits of the reuse with
patterns in MBSE are analyzed.

A. Value of reuse in an MBSE framework

Models are abstractions or a set of abstractions of reality (i.e.,
the reality can be represented under different consistent views),
which means that it can be easy to reuse a model in a new
project since there are no physical limitations. Moreover,
models can also support decision making by presenting needed
information [70].

However, the act of reuse requires capturing previous know-
how in an explicit format. However, depending on the type or
the set of modeling artifacts that will be reused, obstacles such
as the complexity of the system under design or the
heterogeneity of methodologies and tools appear. Indeed,
reusing existing modeling artifacts (even if their designs have
been made to be reusable) is harder than expected. As the author
of [12] states, the "biggest problem is to transfer and manage
the knowledge [of] what is actually available for reuse". The
emphasis is on the fact that it is necessary for systems engineers
to be aware of system and engineering assets that can be defined
and propagated among teams designing complex systems. The
author proposed extending the software-oriented Object
Management Group Reusable Asset Specification (OMG RAS)
standard definition to address SE assets in the OMG System
Modeling Language (OMG SysML). The definition of these
assets can use either a top-down or a bottom-up approach.
However, the creation of asset libraries is not enough, as the
purpose is to allow engineers to reuse these assets in their

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

9

ongoing projects. The author of [12] emphasizes the fact that
users should have the ability to search, publish, and reuse assets
in defined libraries and catalogs, without any specific technical
prerequisite. However, the update of assets is only handled
through notifications within a tool and does not address the
maturity scale concerning asset reuse. Contrary to the previous
work [12], the authors of [71] do not focus on the creation of
assets but propose an approach concerning the adaptation of
promising reusable assets during a model reuse process,
especially on the adaptation of OMG Unified Modeling
Language (OMG UML) activity diagrams to new use cases, in
the context of web engineering. This work proposes
semiautomatically creating an activity diagram from existing
activity diagrams according to the input use case diagram. It
aims to help engineers specify functional requirements by
reusing models of existing web applications. Even though this
approach is not presented in an MBSE framework, the fact that,
between OMG UML and OMG SysML, use case diagrams are
identical and that activity diagrams are close allows considering
a transposition in the SE field. In the case of variant modeling
in MBSE, the numerous perspectives and architectural levels
induce exponential information growth as well as greater
complexity due to the extra dimensionality of variants [72]. The
authors of [73] proposed an approach for building and
exploiting composable architectures applied to the design and
development of a product line of complex systems in the
aerospace and defense market. By leveraging reference
architectures that are inherently reusable, the authors sought
four benefits: aligning the team, starting fast, aligning the
resultant systems, and learning. They chose OMG SysML as
the core language to define descriptive models of the
composable system reference architecture and extended it to
define parametric models. This methodology allowed the
product line to evolve more readily as the propagation of
information by adding, updating or modifying new components
was done automatically. However, they observed that the
"initial learning curve was steep for the team". To ease adoption
of such methodologies, work is needed, whether it is in the
development of tools, interfaces or in the concepts used. As the
previous work concerns the physical layer, the authors of [72]
focused their attention on the development of a functional
architecture that can adapt according to changes made in the
logical layer of a system of systems (SoS). Indeed, in these
systems, it appears that the physical layer is constrained by the
fact that the interacting systems already exist. The results of
their study are an MBSE process that consists of the integration
of a system model before the consideration of the variants. It
requires that the system model should contain both the original
configuration and the variant configuration. This representation
is necessary in case old technologies have not been abandoned.
They also investigate the aspects of including variant modeling
into the OMG SysML, with a focus on extending an existing
and operating model to support a new variant in the case where
a similar technology is used. This tendency to reuse models in
an MBSE framework is growing, as proved by the current
request for proposal for the future version 2 of SysML that
seeks to provide the capacity to foster reuse of models [74].

B. Value of patterns in an MBSE framework

The introduction of a reuse capacity in MBSE frameworks
has proven to improve engineering efficiency in engineers'
work. However, there is still a steep learning curve for
organizations to adopt MBSE methodologies. Therefore, it is
necessary to help engineers to "quickly identify not only valid
architectural solutions but optimal value solutions for the
mission need" [73]. Thus, it appears that the pattern concept
could be an answer to this challenge. Indeed, work has been
performed to introduce patterns during various engineering
phases of the development cycles. For example, the author of
[75] describes behavioral construct patterns (Fig. 9) to facilitate
the modeling of the behavior of the system. Instead of thinking
at the level of atomic graphical elements, these constructs
defined a structured method for representing elementary
constructs of behavior. This approach is very useful for
structuring the thinking of engineers, and it also makes it
possible to overcome a big problem in modeling tools, which is
called the "connect policy" by the author of [75], which refers
to the aesthetic balance of diagrams that is irretrievably broken
when new elements are added. In this way, he advocated the use
of an "insert policy", such as in the construction of the
functional flow block diagram (FFBD), where the resizing of
the diagram is automatic when new elements are inserted. The
proposed behavioral construct patterns will allow engineers to
work in an algorithmic way of thinking, which implies a higher
modeling level to focus more on the expected behavior than on
the aesthetics of the diagrams.

Fig. 9 Loop exit construct extracted from [75]

 To help engineers focus on what is important, patterns should
guide development to avoid deviation. For example, the authors
of [76] proposed a process for the development of mechatronic
systems based on a SysML design pattern. Their intent was to
demonstrate that adequate guidelines for modeling benefit the
development process by allowing traceability of all information
within the system model. This approach proves to be
particularly helpful for facilitating impact analysis in later
lifecycle phases and for reuse for future projects. Indeed, being
able to trace a change from the stakeholder's requirement to the
component's requirement helps engineers in the allocation of an
adequate physical part, and it also facilitates the integration of
a model in a new project at the same level of abstraction.
Further, helping engineers in their decision making can be
crucial, which is why the authors in [66] explore architecture
patterns to make trade-off analyses on SoS and provide
guidelines for the reuse of existing architectures in the
development of future architectures. Today, the analysis of
large-scale SoS is not easy to undertake. However, with the use

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

10

of patterns, expressed as OMG SysML models, this analysis
became possible even if all system details were not available.
The mining of patterns that represent the SOI can help to create
a model of the SoS and thus induce a better understanding of its
behavior. This approach permits changes in the system to
optimize a particular aspect of the SoS while ensuring that the
overall system is not compromised or that undesirable emergent
behaviors result.

Completing the work of [11] on patterns, the author of [77]
proposes an engineering paradigm where patterns are reusable
models that enables what he calls pattern-based systems
engineering (PBSE). With the advent of MBSE, this modeling
framework has led to patterns that can be configured or
specialized into product lines or into product systems by
following the definition of the MBSE pattern working group
(see Section III). In this context, the authors of [78] developed
their own approach, as they see "patterns as reusable models"
and applied them to requirements and design. At a high level,
they constitute a generic system pattern model that can be
customized for the needs, configuration, or use of an enterprise
so that engineers can benefit from the concepts of MBSE
without being an expert in modeling methodologies. The
previous approach has been applied in the V&V stage [8] and
in the pharmaceutical market [79].

C. Limits of patterns in an MBSE framework

Patterns in an MBSE framework have the same limitations as
in SE. However, since they are expressed graphically, it is
harder to hide intellectual property without losing consistency
and understanding, such as in a customer-supplier relationship.
It is one of the capacities that will be crucial to foster MBSE
adoption and, thus, the use of patterns for model reuse.

MBSE patterns also have specific limitations due to model
reuse. On the one hand, the interoperability between tools is
currently not mature, which means that it is very difficult to
transfer a model in a tool different from the one in which it was
made. On the other hand, currently available modeling
languages are not yet well defined in their syntax and semantics.
This has led many users to make choices and customize these
languages to meet their needs. This generated a strong
divergence in how to express patterns, thus reducing the
capability to reuse them as is. However, some research has
shown how the gap can be reduced by introducing more
formalization inside the SE design process via the definition of
an ontology to formalize concepts [80]. In accordance with this,
the current request for proposal for the future version 2 of
SysML (mentioned previously in section V.A.) also wants to
converge the different concepts towards a common
understanding.

Finally, whether for models or patterns, efficient reuse can
only occur when a sufficient level of maturity has been reached.
This level must provide the user with a sufficient level of
confidence to reuse a pattern without error and ambiguity. A
first step is to evaluate the maturity of such capitalized patterns,
as done in the automated production systems domain by the
authors of [81] on the maturity on control modules in libraries,
or by the authors of [82], who define model maturity metrics to
improve the ability to assess a model’s maturity for systems
engineering technical review (SETR). A second step is to
improve the general maturity of reuse approaches, as done in

the software domain by the authors of [83], who use metrics
inspired by the capability maturity model.

All of the above limitations are obstacles towards the creation
of an MBSE framework that will foster the use of patterns as a
guide for the development of complex systems. Once those
limitations are resolved in methodological terms, work will still
be necessary to implement these capabilities in a tool and make
them “user friendly” for end users.

VI. CONCLUSION & PERSPECTIVES

The introduction emphasized the fact that shortened
engineering cycle periods are the main issue for systems
engineers. This is the reason why system modeling is becoming
an increasingly important part of any systems engineering
project [42]. For a wider adoption of MBSE, in addition to
implementation in a software tool, this paper highlighted the
strong methodological need to capitalize on previous projects
to reuse know-how for new projects. For this purpose, this
article reviews current practices of reuse, focusing on the
pattern concept, to support the transition towards MBSE. This
concept offers the possibility to make information dynamic
between stakeholders during the development of complex
systems and to share it and foster its reuse for future projects.
Thus, several research works have been reported in the design
and application of reusing know-how within an MBSE
approach. Despite limitations concerning the management of
intellectual property or the interoperability of models, the
adoption of MBSE due to patterns was discussed, as patterns
appear to be a key element for allowing efficient systems
engineering.

From a methodological perspective, the pattern concept
allows us to abstract elementary constructs. This approach helps
to structure engineers’ way of thinking. In other words, it will
help engineers focus on what is important by guiding future
developments (guidelines for the reuse of existing architecture)
while benefiting from MBSE methodologies without being an
expert. However, it is first necessary to evaluate the maturity of
models as well as the maturity of the pattern reuse process.
Thus, our future work will also aim at developing maturity
scales that will provide maturity metrics for both SOI and SEA.
Indeed, it will then be possible to assess the amount of effort
required to improve one’s level of maturity. Our ongoing work
also aims to formalize an MBSE methodology for developing
complex systems by leveraging patterns (identification,
extraction) [84] and thus improving the maturity level of the
pattern reuse process. As patterns need to be mined, it appears
that the act of capitalization (by abstracting/extracting patterns)
is not self-evident and implies the ability to make know-how
explicit. Similarly, the reuse of patterns involves adapting the
prescribed solution to a given context. Since these processes
will surely be performed manually at first, the next step to
improving engineering effectiveness concerns the development
and adoption of MBSE software tools that integrate
capitalization, selection, reuse, and update capacities for
patterns in the form of libraries, for example. The latter will
make it possible to constitute a body of know-how that will be
shared among engineers.

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

11

REFERENCES
[1] E. R. Carroll and R. J. Malins, “Systematic Literature Review : How

is Model- Based Systems Engineering Justified ?,” Sandia Nat. Lab.,
Albuquerque, NM, USA, Tech Rep., 2016.

[2] J. A. Estefan, “Survey of Model-Based Systems Engineering (MBSE)
Methodologies,” INCOSE MBSE Initiat., 2008.

[3] A. Vogelsang, T. Amorim, F. Pudlitz, P. Gersing, and J. Philipps,
“Should I Stay or Should I Go? On Forces that Drive and Prevent
MBSE Adoption in the Embedded Systems Industry,” 2017.

[4] Q. Wu, D. Gouyon, P. Hubert, and É. Levrat, “Towards Model-Based
Systems Engineering (MBSE) Patterns To Efficiently Reuse Know-
How,” Insight, vol. 20, no. 4, pp. 31–33, 2017.

[5] L. A. Bollinger and R. Evins, “Facilitating model reuse and
integration in an Urban Energy Simulation platform,” Procedia
Comput. Sci., vol. 51, no. 1, pp. 2127–2136, 2015.

[6] R. H. Barter, “A Systems Engineering Pattern Language,” in INCOSE
International Symposium, 1998, pp. 350–353.

[7] R. J. Cloutier, “Model Driven Architecture for Systems Engineering,”
INCOSE Int. Work., no. September, 2008.

[8] D. Cook and W. Schindel, “Utilizing Mbse Patterns To Accelerate
System Verification,” Insight, vol. 20, no. 1, pp. 32–41, 2017.

[9] N. Gautam, R. B. Chinnam, and N. Singh, “Design reuse framework :
a perspective for lean development,” Int. J. Prod. Dev., vol. 4, no. 5,
pp. 485–507, 2007.

[10] L. Gzara, D. Rieu, and M. Tollenaere, “Product information systems
engineering: An approach for building product models by reuse of
patterns,” Robot. Comput. Integr. Manuf., vol. 19, no. 3, pp. 239–261,
2003.

[11] C. Haskins, “Application of patterns and pattern languages to systems
engineering,” in INCOSE International Symposium, 2005, pp. 1619–
1627.

[12] A. Korff, “Re-using sysml system architectures,” in Proceedings of
the 4th International Conference on Complex Systems Design and
Management, 2013, pp. 257–266.

[13] G. Wang, R. Valerdi, and J. Fortune, “Reuse in systems engineering,”
IEEE Syst. J., vol. 4, no. 3, pp. 376–384, 2010.

[14] A. Majchrzak, L. P. Cooper, and O. E. Neece, “Knowledge Reuse for
Innovation,” Manage. Sci., vol. 50, no. 2, pp. 174–188, 2004.

[15] A. Rockley, P. Kostur, and S. Manning, Managing Enterprise
Content: A Unified Content Strategy. New Riders, 2003.

[16] D. C. Rine and R. M. Sonnemann, “Investments in reusable software.
A study of software reuse investment success factors,” J. Syst. Softw.,
vol. 41, no. 1, pp. 17–32, 1998.

[17] N. Niu, J. Savolainen, Z. Niu, M. Jin, and J.-R. C. Cheng, “A Systems
Approach to Product Line Requirements Reuse,” IEEE Syst. J., vol.
PP, no. 99, pp. 1–10, 2013.

[18] F. Pfister, V. Chapurlat, M. Huchard, C. Nebut, and J.-L. Wippler, “A
Proposed Meta-Model for Formalizing Systems Engineering
Knowledged, Based on Functional Architecture Patterns,” Syst. Eng.,
vol. 15, no. 3, 2012.

[19] A. Sen, “The Role of Opportunism in the Software Design Reuse
Process,” IEEE Trans. Softw. Eng., vol. 23, no. 7, pp. 418–436, 1997.

[20] A. Le Put, Systems Product Line Engineering Handbook, AFIS.
Éditions Cépaduès, 2016.

[21] S. Jansen, S. Brinkkemper, I. Hunink, and C. Demir, “Pragmatic and
Opportunistic Reuse in Innovative Start-up Companies,” IEEE
Softw., vol. 25, no. 6, pp. 42–49, 2008.

[22] G. Kotonya, S. Lock, and J. Mariani, “Scrapheap Software
Development: Lessons from an Experiment on Opportunistic Reuse,”
IEEE Softw., vol. 28, no. 2, pp. 68–74, 2010.

[23] Y. Ye and G. Fischer, “Supporting reuse by delivering task-relevant
and personalized information,” Proc. 24th Int. Conf. Softw. Eng. -
ICSE ’02, p. 513, 2002.

[24] S. Younoussi and O. Roudies, “Capability and maturity model for
Reuse: A comparative study,” 2016 2nd Int. Conf. Cloud Comput.
Technol. Appl., pp. 302–308, 2016.

[25] D. Sobek II, A. C. Ward, K. Liker, Jeffrey, D. Sobek, A. C. Ward,
and K. Liker, Jeffrey, “Toyota s Principles of Set-Based Concurrent
Engineering,” Sloan Manage. Rev., no. Winter, pp. 67–83, 1999.

[26] B. M. Kennedy et al., “Reducing Rework by Applying Set-Based
Practices Early in the Systems Engineering Process,” Syst. Eng., vol.
17, no. 3, pp. 278–296, 2014.

[27] J. Hedman and B. Andersson, “Selection method for COTS systems,”
Procedia Technol., vol. 16, pp. 301–309, 2014.

[28] B. W. Boehm and C. Abts, “COTS integration: plug and pray?,” IEEE
Comput., vol. 32, no. 1, pp. 135–138, 1999.

[29] R. Darimont, W. Zhao, C. Ponsard, and A. Michot, “Deploying a
Template and Pattern Library for Improved Reuse of Requirements
Across Projects,” Proc. - 2017 IEEE 25th Int. Requir. Eng. Conf. RE
2017, pp. 456–457, 2017.

[30] M. Irshad, K. Petersen, and S. Poulding, “A systematic literature
review of software requirements reuse approaches,” Inf. Softw.
Technol., vol. 93, no. September 2017, pp. 223–245, 2018.

[31] C. Palomares, C. Quer, and X. Franch, “Requirements Reuse with the
PABRE Framework,” Requirements Engineering Magazine, 2014.

[32] J. Fortune and R. Valerdi, “Considerations for Successful Reuse in
Systems Engineering,” AIAA Sp., pp. 1–8, 2008.

[33] B. W. Boehm, “Software Engineering Economics,” IEEE Trans.
Softw. Eng., vol. SE-10, no. 1, pp. 4–21, 1984.

[34] J. Ryan, S. Sarkani, and T. Mazzuchi, “Leveraging Variability
Modeling Techniques for Architecture Trade Studies and Analysis,”
Syst. Eng., vol. 17, no. 1, pp. 10–25, Mar. 2014.

[35] E. K. Budiardjo and E. M. Zamzami, “Feature Modeling and
Variability Modeling Syntactic Notation Comparison and Mapping,”
J. Comput. Commun., vol. 2, no. 02, p. 101, 2014.

[36] S. Nurcan, P. Soffer, M. Bajec, and J. Eder, Advanced Information
Systems Engineering: 28th International Conference, CAiSE 2016,
Ljubljana, Slovenia, June 13-17, 2016. Proceedings. Springer
International Publishing, 2016.

[37] T. Weilkiens, Variant Modeling with SysML. Tim Weilkiens, 2012.
[38] R. J. Malak, L. Tucker, and C. J. J. Paredis, “Composing Tradeoff

Models for Multi-Attribute System-Level Decision Making,” no.
May, pp. 993–1005, 2009.

[39] H. G. Chalé Góngora, M. Ferrogalini, and C. Moreau, “How to Boost
Product Line Engineering with MBSE – A Case Study of a Rolling
Stock Product Line,” in Proceedings of the 5th International
Conference on Complex Systems Design and Management, 2014, pp.
239–256.

[40] F. Mhenni, N. Nguyen, and J.-Y. Choley, “SafeSysE: A Safety
Analysis Integration in Systems Engineering Approach,” IEEE Syst.
J., vol. 12, no. 1, pp. 1–12, 2016.

[41] R. S. Kalawsky et al., “Bridging the gaps in a model-based system
engineering workflow by encompassing hardware-in-the-loop
simulation,” IEEE Syst. J., vol. 7, no. 4, pp. 593–605, 2013.

[42] J. Holt, S. Perry, R. Payne, J. Bryans, S. Hallerstede, and F. O.
Hansen, “A Model-Based Approach for Requirements Engineering
for Systems of Systems,” IEEE Syst. J., vol. 9, no. 1, pp. 252–262,
2015.

[43] B. Ge, K. W. Hipel, K. Yang, and Y. Chen, “A novel executable
modeling approach for system-of-systems architecture,” IEEE Syst.
J., vol. 8, no. 1, pp. 4–13, 2014.

[44] D. Mourtzis, M. Doukas, and C. Giannoulis, “An Inference-based
Knowledge Reuse Framework for Historical Product and Production
Information Retrieval,” Procedia CIRP, vol. 41, pp. 472–477, 2016.

[45] P. Demian and R. Fruchter, “An ethnographic study of design
knowledge reuse in the architecture, engineering, and construction
industry,” Res. Eng. Des., vol. 16, no. 4, pp. 184–195, 2006.

[46] A. Ben Miled, “Reusing knowledge based on ontology and
organizational model,” Procedia Comput. Sci., vol. 35, no. C, pp.
766–775, 2014.

[47] C. Trummer et al., “Searching extended IP-XACT components for
SoC design based on requirements similarity,” IEEE Syst. J., vol. 5,
no. 1, pp. 70–79, 2011.

[48] T. Cochard, “Contribution à la génération de séquences pour la
conduite de systèmes complexes critiques,” Université de Lorraine,
2017.

[49] D. May and P. Taylor, “Knowledge Management with patterns,”
Communications of the ACM, vol. 46, no. 7, pp. 94–99, 2003.

[50] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language.
1977.

[51] J. O. Coplien, “Idioms and patterns as architectural literature,” IEEE
Softw., vol. 14, no. 1, pp. 36–42, 1997.

[52] R. J. Cloutier, “Applicability of patterns to architecting complex
systems,” Stevens Institute of Technology, 2006.

[53] R. J. Cloutier and D. Verma, “Applying the concept of patterns to
systems architecture,” Syst. Eng., vol. 10, no. 2, pp. 138–154, 2007.

[54] K. Beck and W. Cunningham, “Using Pattern Languages for Object-
Oriented Programs,” OOPSLA-87 workshop on the Specification and
Design for Object-Oriented Programming, 1987. .

Quentin Wu, David Gouyon, Eric Levrat, Sophie Boudau. Use of patterns for know-how reuse in a model-based systems
engineering framework. IEEE Systems Journal, IEEE, 2020, 14 (4), pp.4765-4776.

12

[55] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[56] A. Gaffar and N. Moha, “Semantics of a Pattern System,” Proc. STEP
Int. Work. Des. Pattern Theory Pract. IWDPTP05, 2005.

[57] C. Haskins, “1.1.2 Using Patterns to Share Best Results - A proposal
to codify the SEBOK,” INCOSE Int. Symp., vol. 13, no. 1, pp. 15–23,
2003.

[58] A. Conte, M. Fredj, I. Hassine, J.-P. Giraudin, and D. Rieu, “A Tool
and a Formalism to Design and Apply Patterns,” in Object-Oriented
Information Systems, 2002, pp. 135–146.

[59] A. Gaffar and N. Moha, “Semantics of a Pattern System,” Proc. STEP
Int. Work. Des. Pattern Theory Pract. IWDPTP05, 2005.

[60] R. S. Hanmer and K. F. Kocan, “Documenting architectures with
patterns,” Bell Labs Tech. J., vol. 9, no. 1, pp. 143–163, 2004.

[61] F. Pfister, V. Chapurlat, M. Huchard, C. Nebut, and J.-L. Wippler, “A
Proposed Meta-Model for Formalizing Systems Engineering
Knowledge, Based on Functional Architecture Patterns,” Syst. Eng.,
vol. 15, no. 3, 2012.

[62] C. Haskins, “Using Patterns to Transition Systems Engineering from
a Technological to Social Context,” Syst. Eng., 2007.

[63] D. E. DeLano, “Patterns mining,” in The Pattern Handbook:
Techniques, Strategies, and Applications, 1998, pp. 87–96.

[64] C. Cauvet, D. Rieu, B. Espinasse, J.-P. Giraudin, and M. Tollenaere,
“Ingénierie des systèmes d’information produit : une approche
méthodologique centrée réutilisation de patrons,” Inforsid, pp. 71–90,
1998.

[65] M. Hahsler, “A quantitative study of the adoption of design patterns
by open source software developers,” in Free/Open Source Software
Development, Igi Global, 2005, pp. 103–124.

[66] R. S. Kalawsky, D. Joannou, Y. Tian, and A. Fayoumi, “Using
architecture patterns to architect and analyze systems of systems,”
Procedia Comput. Sci., vol. 16, no. March 2015, pp. 283–292, 2013.

[67] R. J. Cloutier, “Toward the Application of Patterns to Systems
Engineering,” Syst. Eng., no. January 2005, pp. 73–80, 2005.

[68] U. Shani and H. Broodney, “Reuse in model-based systems
engineering,” 9th Annu. IEEE Int. Syst. Conf. SysCon 2015 - Proc.,
pp. 77–83, 2015.

[69] S. C. Spangelo et al., “Applying model based systems engineering
(MBSE) to a standard CubeSat,” IEEE Aerosp. Conf. Proc., pp. 1–
20, 2012.

[70] M. Russell, “Using MBSE to Enhance System Design Decision
Making,” Procedia Comput. Sci., vol. 8, pp. 188–193, 2012.

[71] S. Paydar and M. Kahani, “A semi-automated approach to adapt
activity diagrams for new use cases,” Inf. Softw. Technol., vol. 57, no.
1, pp. 543–570, 2015.

[72] M. Di Maio, G. D. Kapos, N. Klusmann, and C. Allen, “Challenges
in the modelling of SoS design alternatives with MBSE,” 2016 11th
Syst. Syst. Eng. Conf. SoSE 2016, 2016.

[73] C. Oster, M. Kaiser, J. Kruse, J. Wade, and R. Cloutier, “Applying
Composable Architectures to the Design and Development of a
Product Line of Complex Systems,” Syst. Eng., vol. 19, no. 6, pp.
522–534, Nov. 2016.

[74] OMG, “Systems Modeling Language (SysML®) v2 Request For
Proposal (RFP),” 2017.

[75] L. Gasser, “Structuring activity diagrams,” in 14th IFAC Symposium
on Information Control Problems in Manufacturing, Bucharest,
Romania, 2012.

[76] G. Barbieri, K. Kernschmidt, C. Fantuzzi, and B. Vogel-Heuser, “A
SysML based design pattern for the high-level development of
mechatronic systems to enhance re-usability,” in IFAC Proceedings
Volumes (IFAC-PapersOnline), 2014, vol. 19, no. 3, pp. 3431–3437.

[77] W. Schindel, “Requirements Statements Are Transfer Functions: An
Insight from Model-Based Systems Engineering,” in INCOSE
International Symposium, 2005, pp. 1604–1618.

[78] W. Schindel and T. Peterson, “Introduction to Pattern-Based Systems
Engineering (PBSE): Leveraging MBSE Techniques,” INCOSE Int.
Symp., vol. 23, no. 1, p. 1639, 2013.

[79] J. L. Bradley, M. T. Hughes, and W. Schindel, “Optimizing delivery
of global pharmaceutical packaging solutions, using systems
engineering patterns,” 20th Annu. Int. Symp. Int. Counc. Syst. Eng.
INCOSE 2010, vol. 3, pp. 2441–2447, 2010.

[80] H. Chalé, O. Taofifenua, T. Gaudré, A. Topa, N. Lévy, and J.-L.
Boulanger, “Reducing the Gap Between Formal and Informal Worlds
in Automotive Safety-Critical Systems,” INCOSE Int. Symp., vol. 21,

no. 1, pp. 1306–1320, 2011.
[81] B. Vogel-Heuser, J. Fischer, E.-M. Neumann, and S. Diehm, “Key

maturity indicators for module libraries for PLC-based control
software in the domain of automated Production Systems,” in 16th
IFAC Symposium on Information Control Problems in
Manufacturing, 2018.

[82] J. D. Gaskell and C. N. Harrison, “Improved System Engineering
Technical Review’s Entrance/Exit Criteria with Model Maturity
Metrics,” in 5th IEEE International Symposium on Systems
Engineering, 2019.

[83] L. V. Manzoni and R. T. Price, “Identifying extensions required by
RUP (Rational Unified Process) to comply with CMM (Capability
Maturity Model) levels 2 and 3,” IEEE Trans. Softw. Eng., vol. 29,
no. 2, pp. 181–192, 2003.

[84] Q. Wu, S. Boudau, D. Gouyon, and É. Levrat, “Capitalization and
reuse with patterns in a Model- Based Systems Engineering (MBSE
) framework,” in 5th IEEE International Symposium on Systems
Engineering, 2019.

