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Abstract. 27 

There has been an upsurge of interest in trait-based approaches to zooplankton, modelling 28 

the seasonal changes in the feeding modes of zooplankton in relation to phytoplankton traits 29 

such as size or motility. We examined this link at two English Channel plankton monitoring 30 

sites south of Plymouth (L4 and E1). At L4 there was a general transition from diatoms in 31 

spring to motile microplankton in summer and autumn, but this was not mirrored in the 32 

succession of copepod feeding traits; for example the ambushing Oithona similis dominated 33 

during the spring diatom bloom. At nearby E1 we measured seasonality of food and grazers, 34 

finding strong variation between 2014 and 2015 but overall low mesozooplankton biomass 35 

(median 4.5 mg C m-3). We also made a seasonal grazing study of five copepods with 36 

contrasting feeding modes (Calanus helgolandicus, Centropages typicus, Acartia clausi, 37 

Pseudocalanus elongatus and Oithona similis), counting the larger prey items from the 38 

natural seston. All species of copepod fed on all food types and differences between their 39 

diets were only subtle; the overriding driver of diet was the composition of the prey field. 40 

Even the smaller copepods fed on copepod nauplii at significant rates, supporting previous 41 

suggestions of the importance of intra-guild predation. All copepods, including O. similis, 42 

were capable of tackling extremely long (>500 µm) diatom chains at clearance rates 43 

comparable to those on ciliates. Maximum observed prey:predator length ratios ranged from 44 

0.12 (C. helgolandicus) up to 0.52 (O. similis). Unselective feeding behaviour and the ability 45 

to remove highly elongated cells have implications for how copepod feeding is represented in 46 

ecological and biogeochemical models. 47 

 48 

 49 

 50 
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 51 

1. Introduction 52 

Copepods play a central role in pelagic food webs. They form the link between 53 

microplankton and fish, and their feeding activities contribute to global biogeochemical 54 

cycles. Copepods can feed on a wide variety of food items, including phytoplankton, 55 

microzooplankton (Stoecker and Capuzzo, 1990; Calbet and Saiz, 2005), copepod eggs and 56 

nauplii (Boersma et al., 2014) and detritus (Roman, 1984; Iversen and Poulsen, 2007). Prey 57 

selection by copepods has been studied for decades (Brooks and Dodson, 1965; Steele and 58 

Frost, 1977) and recent studies (Kiørboe, 2011, 2016) have emphasised two broad types of 59 

feeding mechanisms: 1) ambush feeding, which is more effective on motile prey that alert 60 

predators to their presence via hydrodynamic disturbance; 2) more active feeding modes, 61 

such as cruise- and feeding-current feeding, thought to be more effective against non-motile 62 

prey that cannot detect and escape from the movement created by the copepod. The 63 

distinction between these modes is increasingly emphasised in “trait-based” modelling 64 

approaches (Kiørboe, 2011; Mariani et al., 2013; Litchman et al., 2013; Sailley et al., 2015; 65 

Kenitz et al., 2017), with implications for ecosystem function.  66 

Alongside prey motility, prey size is considered to be a “master trait” for understanding 67 

food web dynamics, and an increasing number of studies are exploring the inter-relationships 68 

between size and feeding modes in predator-prey interactions (e.g. Fuchs and Franks, 2010; 69 

Wirtz, 2012; Visser and Fiksen, 2013; Kiørboe, 2016; Stamiesszkin et al., 2017). The 70 

component of the available prey size spectrum that is accessible to a predator, and the rate 71 

at which it can be ingested, can be represented numerically by a kernel function (Fuchs and 72 

Franks, 2010; Wirtz, 2014). These are important for modelling, but quantifying them is 73 

problematic, particularly when using data from grazing experiments in which predators are 74 

fed artificial prey assemblages that do not reflect the diversity of their normal prey (Wirtz, 75 

2014). Furthermore the size-based view of feeding is confounded by the other factors such 76 

as food motility, nutritional quality (e.g. essential fatty acid content), or stoichiometry, all of 77 
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which influence selection and in turn growth and egg production (Koski et al., 2010). 78 

These interacting factors affecting selectivity are one reason for seemingly 79 

contradictory findings on the prey preferences of individual species derived from field 80 

experiments. For example, ecologically important copepods such as Oithona similis and 81 

Calanus spp. have been reported to select motile prey (Castellani et al., 2008; Zamora-Terol 82 

et al., 2013), non-motile prey (Hopkins, 1987; Atkinson, 1996), or show no clear feeding 83 

preference (Mayor et al., 2006, 2009). Differences in experimental methods further confuse 84 

the picture, making it problematic to parameterise zooplankton feeding in models (Mitra et al., 85 

2014). This highlights the need for methodologically consistent studies that compare 86 

copepods with ambush and active feeding modes across the naturally occurring spectrum of 87 

food types.  88 

Here we present data from copepod grazing experiments in which five biomass-89 

dominant copepod taxa were fed natural prey assemblages. These species contrast both in 90 

size and feeding mode (Benedetti et al., 2016) and are well studied; Table 1 summarises 91 

some of the more recent work. We performed food removal experiments throughout one year 92 

from a stratifying shelf site to assess how copepod feeding behaviour differs according to 93 

feeding mode and the prey assemblage offered. Recent work near the site (Sailley et al., 94 

2015; Kenitz et al., 2017) provides a central hypothesis: that seasonal changes in prey 95 

motility influence the feeding traits displayed by copepods. We examine firstly whether the 96 

classic pattern of succession from non-motile towards motile protists exists in our study area, 97 

and secondly, whether this leads to a seasonal pattern in copepods with feeding types that 98 

reflect their optimum prey motility, and thirdly, whether selectivity differs substantially between 99 

species. We focused attention on the large food items which also allowed us to examine 100 

maximum prey:predator ratios and the incidence of feeding on copepod nauplii.  101 

2. Material and Methods 102 

2.1 Western Channel Observatory study location 103 
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This study was made at a pair of neighbouring sites in the English Channel forming 104 

the “Western Channel Observatory” http://www.westernchannelobservatory.org.uk/ (Smyth et 105 

al., 2015, Fig. 1). These seasonally stratifying sites have been sampled intermittently since 106 

1903 (Southward et al., 2005) and have comparable spring and autumn bloom dynamics. 107 

The most intensively sampled is L4, which is closest inshore (13 km from Plymouth) in ~54 m 108 

water depth. It has been visited weekly (weather permitting) since 1988 and is subject to a 109 

comprehensive suite of planktonic measurements.  110 

The offshore site, E1, is 27 km further out in ~75 m water depth and sampled less 111 

regularly. This was selected as the main location for the present experimental study because, 112 

being further offshore and less subject to coastal influences, it forms a clearer comparison to 113 

the dynamics of other open shelf sites described within this Special Issue (Giering et al., in 114 

review). However, to test our hypothesis on seasonal succession we have used the much 115 

longer time series from nearby L4, which comprises sufficient sampling time points to provide 116 

robust generalisations.  117 

2.2 Micro- and mesozooplankton seasonality at E1 and L4 118 

The seasonal plankton cycle at site E1 has been estimated with near-monthly 119 

sampling during 2014 and 2015 (Fig. 2), while longer-term context has been provided by 120 

weekly sampling at site L4 from 1988—2015 (Fig. 3). Microplankton biomass data from both 121 

sites is based on CTD Niskin bottle water samples from 10m depth. This is within the upper 122 

mixed layer when a thermocline is present; typically from May to September.  123 

At each sampling time-point from E1 and L4, an unfiltered 200 mL water sample was 124 

immediately preserved in acid Lugol’s iodine (2 % final concentration) for the subsequent 125 

enumeration of phyto- and microzooplankton species. A second 200 mL subsample was also 126 

preserved in neutral formaldehyde (1 % final concentration) for the enumeration of 127 

coccolithophore species. Cell counts were conducted following the European Standard 128 

protocol (EN 15204) “Water quality – Guidance standard on the enumeration of 129 

http://www.westernchannelobservatory.org.uk/
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phytoplankton using inverted microscopy” (Utermöhl, 1958) technique. Specifically, between 130 

50 mL and 100 mL sub-samples were settled and on average 897 cells were identified and 131 

enumerated in each weekly sample from L4; similar numbers of cells were counted from E1. 132 

This exceeds the abovementioned (EN 15204) protocol’s recommended limit of 400 cells to 133 

be counted for mixed natural samples to obtain a 95% confidence limit. Because of the high 134 

diversity in natural populations it is not possible (or recommended) to count 400 individuals 135 

for each species. Median abundance values for diatoms, dinoflagellates, ciliates, 136 

coccolithophores, flagellates from L4 were 17 mL-1, 17  mL-1, 5 mL-1, 10 mL-1, 1993 mL-1 137 

respectively. Further details of the light microscopy are provided in Widdicombe et al., 138 

(2010). Cell biovolumes for each taxon were calculated assuming appropriate geometric 139 

shapes according to Kovala and Larrance (1966) using average cell length, width and depth 140 

measurements of 10-50 individual cells. Carbon conversions were made using the 141 

conversions of Menden-Deuer and Lessard (2000). Median biomass values for diatoms, 142 

dinoflagellates, ciliates, coccolithophores, flagellates were 2.33 mgC m-3, 5.95 mgC m-3, 3.18 143 

mgC m-3, 0.18 mgC m-3, 11.48 mgC m-3 respectively. Nauplii were under-sampled by the 200 144 

µm net and too rare in the Lugols volumes settled. Their biomass was derived from larger 145 

volume (2 L) water samples from 4 depths (surface, 10m, 25m and 50m) with the CTD. 146 

These were first pre-screened through 300 µm mesh, concentrated by reverse filtration and 147 

analysed on flowCAM to determine naupliar abundances and lengths. These lengths were 148 

then converted to biomass via the length-mass relationships in Supplementary Table 1. 149 

Mesozooplankton were collected using a series of vertical net hauls with a UNESCO 150 

(1968) standard WP2 nets (57 cm diameter, 200 µm mesh) from either 70 m (E1)  or from 50 151 

m depth (L4) to the surface at 0.2 m sec-1. Two net hauls from each site were preserved in 4 152 

% formalin for microscopic analysis, and one additional haul from E1 was filtered onto a 10 153 

cm square of 200 µm gauze and frozen on board for bulk zooplankton biomass estimates. 154 

Mesozooplankton from the formalin-preserved vertical net hauls were enumerated and 155 

identified by microscopy as detailed in Atkinson et al. (2015). Two sub-samples of different 156 
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size were analysed per sample. The smaller one was extracted with a Stempel pipette for the 157 

numerous taxa (including the 5 copepod species examined in this study). Typical subsamples 158 

ranged from 1-10ml from the 300 ml original sample. A second, larger aliquot was analysed 159 

for rarer and large taxa, typically either 12.5%, 25% or 50%. The number of copepods 160 

(excluding nauplii) counted in each weekly sub-sample ranged from 70 to 300 individuals, 161 

with a median of 194.  Abundances across the two hauls were averaged and numbers 162 

expressed as individuals per m3 allowing for a 95% net efficiency (UNESCO, 1968). 163 

To estimate mesozooplankton carbon biomass from the abundance data we 164 

measured 3780 individuals of the more common taxa collected from L4 throughout the 2015 165 

season. Taxon-specific length-mass conversion factors obtained from the literature were 166 

applied to the seasonal lengths derived separately for the periods spring (March to May), 167 

summer (June to August), autumn (September to November) and winter (December to 168 

February). Supplementary Table 1 lists the source references for these conversion factors. 169 

We also obtained dry mass and carbon masses directly from bulk net catches from E1 during 170 

2014 and 2015. This provided an independent check on the method based on length-mass 171 

conversions described above. Frozen samples were defrosted, dried for 5 days at 60˚C until 172 

reaching constant weight, removed from the oven and placed in a desiccator to weigh for dry 173 

mass, prior to CHN analysis of subsamples. For each sample the plankton was removed 174 

from the gauze, homogenised and four replicates weighed out for analysis using a 175 

Thermoquest FlashEA 1112 elemental analyser. 176 

2.3 Feeding experiments 177 

In total 11 experiments were run at E1, spanning March 2014 to March 2015. The 178 

complete experimental setup is summarised in Table 2 and the environmental conditions in 179 

Table 3. Sampling was conducted between mid-morning and midday on each visit, and 180 

comprised of first a CTD profile and collection of incubation water. This was collected from 10 181 

m depth and was gently drained from the 10m Niskin bottles into a large acid washed and 182 
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rinsed carboy via silicon tubing through a submerged 200 µm mesh bag, to exclude larger 183 

grazers. This water was kept cool and in darkness until return to the Plymouth laboratory 184 

within 3 hours of collection. It was then left overnight in the dark at ambient E1 surface 185 

temperature.  186 

After the water collection, 0-70 m WP2 net hauls were used to collect zooplankton. 187 

The cod end contents were placed in lidded 5 L containers, topped up with surface seawater 188 

and maintained in a flowing water bath while in transit to the laboratory. Immediately on 189 

return to the laboratory, actively swimming representatives of the most common copepods 190 

were picked out. They were transferred to 0.2 µm filtered seawater and then left overnight to 191 

acclimate. In total, adult females of six species were incubated; Oithona similis, Acartia 192 

clausi, Pseudocalanus elongatus, Centropages typicus, Calanus helgolandicus, and C. 193 

finmarchicus, as well as Calanus spp. CV.  Most of these Calanus incubations were with the 194 

dominant species C. helgolandicus (Table 2). However, all results for this genus are 195 

presented together simply as “Calanus spp”. because the two species and stages are of 196 

similar size and feeding types,  197 

On the morning after sampling the incubation water was gently mixed and used to fill 198 

3 glass control bottles of 1.2 L and between 1 and 3 bottles of 0.6 L or 1.2 L, according to 199 

copepod size and availability (Table 2). The experimental animals were then checked and 200 

those that were intact and actively swimming were added to the bottles. Each bottle was 201 

spiked with ammonium chloride (15 µmol L-1  NH4Cl) and disodium hydrogen phosphate (1 202 

µmol  L-1 Na2HPO4) , in order to counter potential artefacts arising from grazer excretion 203 

enhancing specific rates of prey growth in the grazed bottles (Båmstedt et al., 2000). All 204 

bottles were then filled to the top with mixed incubation water and sealed with Parafilm to 205 

exclude air bubbles. At Tzero, between 1 and 3 (according to the remaining E1 water volume) 206 

500 mL sub-samples were taken from the remaining incubation water and fixed in acid 207 

Lugol’s iodine solution (2% final concentration). All experimental bottles were then incubated 208 

for 24 h on a plankton wheel (0.5 revolutions min-1) in the laboratory maintained at ambient 209 
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E1 temperature and light conditions. Lighting was at estimated average ambient E1 10 m 210 

intensity and switched off at dusk and on at dawn.  211 

After 24 h the copepods were first checked for mortality and then 450-500 mL from 212 

each bottle was fixed in acid Lugol’s solution (2% final concentration) for microplankton 213 

community analysis. As an ongoing check on particle removal during the experiments (in 214 

order to adjust stocking densities if necessary between experiments) an additional 150 ml 215 

subsample from each bottle was filtered onto a GF/F filter and extracted in 90% aqueous 216 

acetone. This allowed fluorometric analysis to determine chlorophyll a (chl a) concentrations 217 

and the reduction in chl a due to grazing (Table 2). Removal of the copepods from the 218 

incubations for species verification was either by pipette from the abovementioned water 219 

sub-samples or by sieving them out of the remaining incubation water. 220 

2.4 Analysis of feeding experiments 221 

Copepod feeding-induced changes within the microplankton community were 222 

estimated by comparing the abundance of large phytoplankton and microzooplankton among 223 

the treatments with and without added copepods. Because direct microscope counting of 224 

prey taxa is time consuming, we have channelled our resources into the larger end of their 225 

food size spectrum. This is because firstly, the rarity of these cells means that they are 226 

seldom enumerated in feeding studies, raising questions on the upper size limit of ingestable 227 

food (Kiørboe, 2016). Second, large prey are less prone to bottle incubation-induced “food 228 

chain effects” than the smaller cells (Båmstedt et al., 2000). These large cells are rarer so the 229 

lugols-preserved 450-500 ml sub-samples were concentrated by first passing the sample 230 

through a 63 µm mesh. The particles collected on the mesh were then washed into a 231 

counting chamber and examined and counted at x200 magnification using an Olympus IMT-2 232 

inverted microscope.  233 

All ciliates, dinoflagellates, diatoms and nauplii > 32 µm in length were enumerated. 234 

Four taxonomic groups of prey were identified: diatoms, ciliates, dinoflagellates and nauplii. 235 
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Five size classes were used: 32 - 95 µm, 95 - 220 µm, 220 - 346 µm, 346 - 472 µm and 472 - 236 

598 µm. Nauplii sizes ranged from 50 - 390 µm but were not sufficiently numerous to be 237 

divided into different size classes. We acknowledge that the counted abundances of the 238 

larger and smaller end of this range are likely underestimates of their natural abundances 239 

because we screened the pre- and post-experimental seawater through 200 and 63 µm 240 

meshes, respectively. Our calculated total ingestion rates within the above size range are 241 

thus minimum estimates. However, we contend that since identical 63 µm screening methods 242 

were used for all bottles, our clearance rate values on the 32-95 µm spectrum are robust, 243 

with particles smaller than the screen size being retained due to their elongation. 244 

2.5 Calculation of feeding rates 245 

For consistency with previous studies of grazing in the Western English Chanel 246 

(Fileman et al., 2010, 2014), clearance rates (ml copepod-1 d-1) for diatoms, ciliates and 247 

dinoflagellates were calculated according to Frost’s (1972) equations incorporating the prey 248 

growth term: 249 

F = [ln(Ccont / C0) – ln(Cexp / C0)] x (V / (n x t))                 (1) 250 

where Cexp, Ccont and C0, are respectively, the concentration (prey. mL-1) in the final 251 

experimental bottles, in the final control bottles and in the initial bottles. V is the volume of 252 

experimental bottles (ml), n the number of copepods in the incubation and t is the incubation 253 

duration in days. Following Fileman et al. (2014), we chose a threshold mean of 25 food 254 

items for each counted category (i.e. based on taxa and size-class), based on mean 255 

numbers counted in each of the final control bottles. If values for a food item were below this, 256 

then the results are not presented for the experiment. Rare instances where no cells were 257 

counted in the grazed bottles were likewise excluded, as these would provide infinite 258 

clearance rates.  259 

Concentrations of nauplii tended to be low in the initial samples and higher in the final 260 

controls, likely due to hatching of eggs and the absence of predators in the control bottles. 261 
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Because low count numbers in the initial samples would introduce imprecision into the 262 

clearance rate calculations, we used the clearance rate equation in Båmstedt et al. (2000).: 263 

F = ln(Ccont / Cexp) x (V / (n x t))                (2) 264 

To calculate ingestion rates, the carbon contents for protistan preys were first 265 

calculated from the conversion factors given by Menden-Deuer and Lessard (2000) 266 

assuming appropriate geometric shapes (Kovala and Larrance, 1966). For nauplii the lengths 267 

were measured and carbon contents were estimated from morphometric relationships.  268 

Average food concentrations in each bottle [C] were calculated according to the equation of 269 

Conover (1978), as presented in Båmstedt et al. (2000): 270 

[C] = C0 x (1 – eg) x (-g)             (3) 271 

where g = ln(Cexp / C0) for experimental bottles and Cexp, Ccont and C0, are respectively, 272 

the concentration in carbon mass (µg C mL-1) in the final experimental bottles, in the final 273 

control bottles and in the initial bottles. In some instances there were more cells counted in 274 

the final experimental bottles than in the final controls. Those data were set to zero for 275 

calculations of average concentration and thence ingestion rate but are shown as negative in 276 

all calculations of clearance rates. 277 

From these data ingestion rates (I) were estimated using: 278 

I = F x [C]       (4) 279 

Selective feeding was evaluated using the electivity index Ei* (Vanderploeg and 280 

Scavia, 1979) as follows: 281 

Ei* = [(Wi - 1) / k] / [(Wi + 1) / k]       (5) 282 

where k is the total number of prey types in a given experiment and Wi is defined as: 283 

Wi = Fi / Ʃ Fi                                         (6) 284 
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Fi is the clearance rate on the ith type of food and Ʃ Fi is the sum of clearance rates of all food 285 

types. The value of this index ranges from 1 to -1, positive values indicating selection and 286 

negative values indicating avoidance.  287 

 288 

3. Results 289 

3.1 Seasonality at E1 during 2015 and 2016 290 

Our experimental period at E1 spanned March 2014 to March 2015, while the nano-291 

microplankton seasonality was also sampled throughout the rest of 2015 (Fig. 2). The nano-292 

microplankton biomass at 10 m depth ranged from ~10 mg C m-3 in winter to ~250 mg C m-3 293 

in spring, and was typically dominated by small (2-6 µm) nanoflagellates.  Both 2014 and 294 

2015 (and particularly the latter) diverged from the long-term average (Fig. 3), which supports 295 

the hypothesised succession of diatoms in the spring to dinoflagellates after the onset of 296 

seasonal thermal stratification (Widdicombe et al., 2010). Three diatoms blooms occurred in 297 

2014, one in spring (April-May), the second two in autumn (September and October). By 298 

contrast 2015 had no clear spring bloom but instead showed major autumn blooms 299 

dominated by autotrophic dinoflagellates.  300 

Mesozooplankton abundance varied from 276 ind. m -3 to 3744 ind. m-3, with an 301 

average of 1490 ind. m-3. Our estimates of their seasonal median biomass based on length-302 

mass relationships was 4.5 mg.C m-3; similar to the value of 5.4 mg.C m-3 based on CHN 303 

analysis of the bulk samples (Table 3). However, maximum values from bulk CHN analysis 304 

are unrealistically high, due to clogging of the 200 µm nets with diatoms. Notwithstanding 305 

these uncertainties of determining biomass, either with length-mass relationships or with 306 

CHN, both methods agree that the values at E1 were noticeably less than at other English 307 

Channel/Celtic Sea sites sampled over the same time period (Table 4, see also Giering et al., 308 

in review, this volume). 309 
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Mesozooplankton biomass was dominated by copepods (mean of 75 % of the total; 310 

Fig. 2c), and was not correlated with microplankton biomass (Linear regression, p = 0.34). 311 

The 5 copepod taxa studied here represented, on average, 46 % of the total copepod 312 

biomass (Fig. 2d, Table 3). 313 

3.2 Average plankton seasonality at L4 314 

The long term average picture (Fig. 3) reveals the highest proportion of diatoms from 315 

March to June, with an increased proportion of motile cells thereafter. However, there is 316 

substantial inter-annual variation in plankton composition and phenology at this site (Atkinson 317 

et al., 2015). For example diatoms can bloom in autumn and ciliates also increase sharply in 318 

spring, and nanoflagellates persist at substantial levels throughout the season (Widdicombe 319 

et al., 2010; Atkinson et al., 2015).  320 

The L4 and E1 time series do not provide strong support for the hypothesis (Sailley et 321 

al., 2013; Kenitz et al., 2017) that the seasonality of copepods is congruent with their feeding 322 

traits (i.e. that suspension feeders appear during the time of diatom blooms and ambush 323 

feeders appear when motile cells are most abundant). In accordance with this hypothesis, 324 

Pseudocalanus elongatus peaks during the spring diatom bloom whereas the more 325 

carnivorous Centropages typicus peaks in September, when its preferred motile prey is most 326 

abundant. By contrast, both the elevated abundance of ambush Oithona similis in spring and 327 

the summer abundance maximum of Calanus spp. are counter to the hypothesised 328 

relationship between prey motility and the predominant copepod feeding mode. 329 

3.3 Copepod feeding experiments: prey composition and potential for artefacts 330 

The larger prey studied in our experiments (nauplii excluded) ranged from 0.32-46% 331 

(median 2.8%) of the total microplankton biomass (Table 3), so given these low values we 332 

have not expressed our results in terms of total daily ration estimates. Ciliates and 333 

dinoflagellates comprised the smaller end of this large food spectrum, with the majority of 334 

ciliates belonging to the genera Strombidium spp., Mesodinium sp, and Askenasia sp. and 335 
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dinoflagellates consisting mainly of Gyrodinium spp., Dinophysis spp. and Protoperidinium 336 

spp.  Some larger ciliates and dinoflagellates were observed (e.g. Ceratium spp.) but they 337 

were never above our counting threshold for inclusion in calculations. Diatoms were the only 338 

prey category occurring across all our size-classes. These were mainly composed of large, 339 

elongated chain-forming diatoms such as Rhizosolenia spp. Their size categories refer to the 340 

chains lengths, not the individual cells. The concentrations of prey items sufficiently 341 

numerous to provide clearance rates are presented in Supplementary Fig. 1. 342 

The percentage removal of total chl a in our incubations was relatively low overall 343 

(Table 2), possibly reflecting the finding that some of the chl a resides within cells that are too 344 

small to be eaten. However in two of the incubations (of Calanus and Oithona in experiment 345 

4) the removal exceeded 50%. These two incubations are not presented here, due to their 346 

potential for unrealistic indications of grazing dynamics (Båmstedt et al., 2000). The median 347 

reduction of other cells was substantially greater, ranging from 25-41% (Table 2) and 348 

reflecting the high rates of removal of the largest cells. 349 

3.4 Copepod feeding selectivity 350 

For the large particle fraction examined, Fig. 4 summarises the contribution of prey 351 

types to the available food and to the diets of the 5 copepod species. The available food 352 

varied greatly throughout the experiments with variable biomass dominance of long diatoms, 353 

ciliates or nauplii. The main feature of Fig. 4 is that the diet of the species broadly reflected 354 

the composition of the available food, in other words the seasonal variation in prey field had 355 

a much clearer effect on diet than the identity of the grazer. 356 

The estimated rates at which the five copepod species cleared each of the identified 357 

prey items are presented in detail in Supplementary Fig. 2. Maximal significant clearance 358 

rates varied from 31 mL cop-1 d-1 for Oithona similis to 523 mL cop-1 d-1 for Calanus spp. 359 

These species tended to clear diatoms at the highest rates, with the exception of 360 

Centropages typicus, whose maximal clearance rates were on ciliates. For Acartia clausi, 361 
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Oithona similis and Centropages typicus, clearance rates on diatoms tended to be higher 362 

when the prey was large.  363 

The feeding preferences of the 5 copepods are presented for each predator-prey 364 

combination in terms of electivity indices (Supplementary Fig. 3), and summarised by 365 

comparing the proportional contribution of available and ingested prey in each experiment 366 

(Fig. 5). The overall pattern was for predominantly unselective feeding, with copepod dietary 367 

composition tending to be proportional to prey availability. However, instances of significant, 368 

positive selection (t-test p<0.05) for both motile (dinoflagellates, ciliates or nauplii) and non-369 

motile (diatoms) prey were identified (Supplementary Fig. 3). Acartia clausi, Oithona similis 370 

and Centropages typicus all showed a preference for ciliates and their selectivity towards 371 

diatoms typically increased as a function of cell size (Supplementary Fig. 3). These 372 

tendencies were less apparent in Calanus spp. and Pseudocalanus elongatus, both of which 373 

displayed instances both of positive and negative selection towards ciliates and diatoms.  374 

Fig. 6 provides a summary overview of the differences in selectivity among the species. 375 

Overall, the contribution of non-motile cells (i.e. diatoms) to diets decreased from Calanus 376 

spp. (94%), Pseudocalanus elongatus (91 %), Acartia clausi (62 %), Oithona similis (57%), 377 

Centropages typicus (39 %) (Fig. 6a). However an ANOVA failed to identify significant (p < 378 

0.05) inter-species differences, supporting the view depicted in Fig. 4 of a degree of 379 

unselective feeding, such that the diet strongly reflected the food composition offered. Fig. 6b 380 

shows that, for the prey cells enumerated, the maximum prey/predator length ratio ranged 381 

from 0.14 to 0.51. The order of species along this spectrum was similar to the contribution of 382 

non- motile diatoms to the diet (Fig. 6a); for example the suspension feeders Pseudocalanus 383 

elongatus and Calanus spp. had the lower maximum prey/predator ratio and the ambushing 384 

Oithona similis the highest ratio. 385 

4. Discussion 386 
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In combination, our findings provide little support for a clear, predictable seasonal 387 

succession of traits displayed by copepods in relation to their microplankton prey. First, we 388 

found highly variable patterns of plankton succession between years, with no clear link 389 

between the seasonality of ambush or feeding current copepods and the respective motile or 390 

non-motile preys. Second, we found reduced selectivity but considerable dietary diversity, 391 

including very high maximum prey sizes and ingestion of copepod nauplii. In combination, 392 

these factors blur the hypothesised coupling between microplankton motility and copepod 393 

feeding selectivity (Mariani et al., 2013; Sailley et al., 2015; Kenitz et al., 2017). Below we 394 

discuss our main feeding results, namely reduced feeding selectivity of copepods, their ability 395 

to eat or fragment even very large diatoms and the role of intra-guild predation. 396 

4.1. Selection for motile and non-motile cells  397 

Ambush-feeding copepods such as Oithona similis locate their prey by detecting 398 

hydro mechanical signals, suggesting that they are best suited to catching motile prey 399 

(Paffenhöfer, 1993; Kiørboe, 2011). Conversely, those that can create feeding currents, such 400 

as Calanus helgolandicus, are considered to be more suited to catching the non-motile prey 401 

that cannot detect and escape from these currents. Our data broadly support these 402 

assertions, since the diet of Oithona similis contained the highest proportion of motile prey, 403 

and that of Calanus spp. contained the lowest (Fig. 6 a). However, both species also 404 

displayed statistically significant preference towards ciliates at times and conversely, all five 405 

species of copepods showed at least one significant instance of preference for diatoms in the 406 

experiments.  Overall the diets were diverse, reflecting the composition of the available food 407 

(Figs. 4, 5). Our results thus provide only partial support for the generalisation that ambush 408 

feeders select for motile cells while more active feeding modes select for non-motile cells, so 409 

we investigate this further using the example of Oithona similis. 410 

Previous studies have also reported the ingestion of diatoms by Oithona similis 411 

(Hopkins, 1987; Atkinson, 1996; Castellani et al., 2008), confirming that these ambush-412 
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feeders are indeed capable of detecting and ingesting non-motile cells. Their positive 413 

selection for diatoms >300 μm in length is consistent with the physics of fluid disturbance; 414 

Oithona similis is expected to be able to detect sinking, immobile phytoplankton cells ≥ 80 415 

μm in diameter (Kiørboe and Visser, 1999). We therefore speculate that small, ambush-416 

feeding copepods such as Oithona spp. have a bimodal distribution of clearance rates in 417 

relation to prey size, with the smaller peak reflecting the ingestion of motile prey that is not 418 

large enough to escape from the ambusher, and the larger peak occurring where larger, non-419 

motile cells become detectable (e.g. Experiment 5 in Supplementary Fig. 2). Notwithstanding 420 

the mechanisms involved, the example of Oithona removing large diatoms will contribute to a 421 

blurring of the selectivity and enhance the generalist feeding abilities of copepods. 422 

How does our suggestion of limited food selectivity fit with a multitude of studies 423 

showing clear selective abilities? Perhaps the method used is critical here, because the large 424 

majority of studies that find, like us, a degree of unselective feeding with respect to motility 425 

have all used the prey removal method in incubations with natural seston (e.g. Poulet, 1978; 426 

Huntley, 1981; Atkinson, 1995; Mayor et al., 2006; Castellani et al., 2008; Isari et al., 2013). 427 

This contrasts strongly with reductionist-type studies which, by offering formulated diets 428 

under controlled conditions, have indicated the presence of particle selection on the basis of  429 

motility, taste etc. (e.g. Marshall, 1973; Conover, 1978; Strickler, 1982). These conflicting 430 

findings may arise partly from differences in prey abundances; copepods feeding on highly 431 

diverse, but much diluted prey in the natural world cannot afford or do not need to be too 432 

selective.  433 

This discrepancy raises some important issues for modelling zooplankton feeding. 434 

Trait-based models, for example, provide a mechanistic basis for understanding predator-435 

prey interactions. They can address mechanisms behind the succession of zooplankton 436 

feeding mode and prey motility (Mariani et al. 2013; Sailley et al. 2015; Kenitz et al. 2017), 437 

and have provided the central hypothesis for this present study. However zooplankton 438 

feeding can also be interpreted and modelled in other ways, for instance according to prey 439 
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size or stoichiometry (e.g. Fuchs and Franks, 2010;  Wirtz, 2012, 2014; Mitra et al., 2014; 440 

Stamieszkin et al., 2017). This makes it important to determine the degree of food selectivity 441 

that zooplankton show within natural food assemblages.  442 

4.2 Selection according to cell size 443 

In a meta-analysis of predator-prey ratios in plankton, Hansen et al. (1994) found an 444 

optimal ratio for copepods of 18:1. However, our study suggests that even small copepods 445 

can display near maximal clearance rates on prey that are much longer relative to their body 446 

size. Our equivalent upper predator:prey length ratios range from 6:1 to 2:1 (depending on 447 

species). The ability of copepods to tackle large prey has also been found in previous studies 448 

(Lampitt, 1978;  Atkinson, 1994; Calbet et al., 2007). The absolute maximum lengths of food 449 

items that the copepods can remove are likely to be even higher than those we present, 450 

because we only calculated values for prey items that decreased significantly in abundance 451 

over the experiments. Other, larger prey were present but were not sufficiently abundant to 452 

discern robustly the changes in their numbers. Our data add to the evidence (Kiørboe, 2016; 453 

Atkinson et al., 2014) that questions the use of single fixed predator:prey ratios. 454 

While our experiments demonstrate that small copepods are capable of removing 455 

diatoms colonies 600 μm long, it is unclear whether these are eaten intact or fragmented. For 456 

example, a brittle prey item, such as a diatom colony half of a copepod’s body length, could 457 

easily break up during handling. Previous observations of copepod feeding have revealed 458 

that, whilst they can successfully feed on large, elongated diatom colonies, most is ultimately 459 

lost because of handling difficulties (Vanderploeg et al., 1988). Svensen and Vernet (2016) 460 

recently showed that sloppy feeding of Oithona nana on a dinoflagellate released 6-15% of 461 

carbon egested as DOC, so DOC release could also be substantial when copepods tackle 462 

large diatoms.  463 

Overall, the capture and partial fragmentation of very large particles by copepods is 464 

increasingly becoming recognised for its consequences on nutrient fluxes (Noji et al., 1991, 465 
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Iversen and Poulsen, 2007; Mayor et al., 2014; Anderson et al., 2017). It seems likely that 466 

copepod feeding activities could also influence the size of phytoplankton colonies through 467 

fragmentation. Bergkvist et al. (2012) showed that diatom colonies tend to reduce their length 468 

when they are exposed to chemical cues derived from copepods, suggesting an evolutionary 469 

response to grazing pressure. Irrespective of the mechanisms involved, it is clear that large 470 

but rare food items can be important for copepods and represent an understudied aspect of 471 

their trophic ecology (Gifford, 1993).  472 

4.3 Importance of intraguild predation. 473 

The role of nauplii as prey items for copepods remains poorly understood, partly 474 

because few studies have quantified feeding rates on them and even fewer have offered 475 

them alongside the natural seston in feeding experiments (Sells et al., 2001; Bonnet et al., 476 

2004; Boersma et al., 2014). In our experiments significant positive selection for nauplii was 477 

only observed for Centropages typicus and only in experiment 6. Given the size and 478 

suggested weak escape responses, this apparent lack of clear selection for nauplii was 479 

surprising.  480 

All the copepod species investigated here were found to be capable of feeding on 481 

copepod nauplii, and in several experiments these formed important contributions to the 482 

large particle component of the diet. Given the biomass dominance of copepods (Fig 2c) 483 

these results support the view that copepods could be an important mortality agent for their 484 

own naupliar stages (Lampitt, 1978; Bonnet et al., 2004; Boersma et al. 2014). The fact that 485 

even the small copepods such as Oithona similis were feeding on nauplii emphasises that 486 

multiple trophic levels exist within relatively small increments of size.  487 

4.4 Concluding remarks 488 

 This diversity of food types and sizes ingested by copepods reflects their wide range 489 

of ecological and biogeochemical roles. Irrespective of the subsequent fate (fragmentation or 490 

ingestion), the removal of particles larger than their own faecal pellets adds to the evidence 491 
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that copepods do not simply repackage small particles into larger, faster sinking pellets 492 

(Iversen and Poulsen, 2007). Reduced selectivity has other, fundamental, ramifications. For 493 

the grazers, it would increase resilience to highly unpredictable seasonality of prey resources 494 

(Fig. 2, Mazzocchi et al., 2012). Coincidental ingestion of non-food items also has a series of 495 

implications. For example copepods also consume lithogenic sediment particles (Paffenhöfer 496 

and Van Sant, 1985; Arendt et al., 2011) and acidic digestion in the gut can mobilise the 497 

attached iron to enhance productivity (Schmidt et al., 2016). Some studies have found that 498 

inert particles are selected against compared to nutritious ones (e.g. Paffenhöfer and Van 499 

Sant, 1985) whereas interestingly, recent microplastic studies emphasise the fact that 500 

copepods can and do ingest these inert particles (Cole et al., 2013). Overall, the natural 501 

diversity of possible prey needs to be taken into account when interpreting copepod feeding. 502 

The variety of conclusions arising from zooplankton feeding studies over the last 503 

century raises some fundamental questions over how to incorporate this process into food-504 

web models. On one hand, evidence of copepods feeding unselectively seems contrary to 505 

models stressing selection based on optimal size, motility or nutritional quality (Litchman et 506 

al., 2013; Mitra et al. 2014; Kenitz et al. 2017). On the other hand, size-based models can 507 

have difficulties with the parametrization of their kernel function (Wirtz, 2014), often 508 

emphasizing an “optimal” size of prey by characterising a unimodal kernel function. Our 509 

study shows that copepods are able to process very large prey with high clearance rates, 510 

questioning the extent of the unimodal feeding kernels. We speculate that, when large 511 

enough prey cells are available, this function could be bimodal, particularly for ambush 512 

feeders. Overall this study adds to the evidence that we should encapsulate the natural 513 

diversity of particle types, sizes and trophic levels into what we count as copepod food. 514 

 515 
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Table1: Size, feeding mode, and prey according to the literature for the five copepod genera studied 741 

here. The third and fourth column are not an exhaustive reviews, but gives consensual findings for our 742 

particular study species and then, when available, some different findings. 743 

Genus Female 

length 

(mm)* 

Feeding mode Prey 

Calanus 2.4 - 3.9 Mainly feeding-current 

feeding? 

Diatoms selected or omnivorous (Irigoien et al., 

2000; Fileman et al., 2007, Leiknes et al., 2014), 

but some records of selection for large motile prey 

(Fileman et al., 2010). 

Pseudocalanus  0.93 - 1.77 Feeding-current 

feeding (Tiselius et al., 

2013 ) 

Generally opportunistic eating on the most abundant 

food (Cotonnec et al., 2001; Fileman et al., 2007; 

Cleary et al., 2016) 

Acartia 0.81 – 1.47 Feeding-current and 

ambush feeding 

(Kiørboe et al.,1996 ) 

Protozooplankton mainly (Wiadnyana and 

Rassoulzadegan, 1989; Fileman et al., 2010) but 

records of feeding on phytoplankton  (Cotonnec et 

al., 2001) 

Oithona 0.68 – 0.96 Strictly ambush feeding  

(Paffenhöfer, 1993 ) 

Ciliates mainly (Atkinson, 1995; Nakamura and 

Turner, 1997;  Castellani et al., 2005; Saiz et al., 

2007; Zamora-Terol et al., 2013) But records of 

feeding on diatoms (Hopkins 1987;  Atkinson, 1996) 

Centropages 1.6 – 2.0 Feeding-current and 

ambush feeding 

(Cowles and Strickler, 

1983) 

Omnivorous with a preference for large  and motile 

prey (Wiadnyana and Rassoulzadegan, 1989; 

Calbet et al., 2007) 

*Maximum total body length based on the species used for the present study: data from Conway (2012) 744 

 745 

 746 
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Table 2: Summary of the bottle volume used and the copepod density (number L-1) of each species that has been incubated in 

each experiment. The numbers in brackets are the number of replicates. For Calanus spp. no star: Calanus helgolandicus, one 

star: Calanus finmarchicus, two stars copepodites V of Calanus spp.. 

 

Species Volume 

incubated 

(L) 

 

Percentage 

depletion* 

Experiment number: copepod incubation L-1  (number of replicate grazer bottles) 

1 2 3 4 5 6 7 8 9 10 11 

Calanus spp. 1.2 37 (14) 4* (3) 6* (2) 6** (3) 6 (3)   6 (3) 6 (3)  5 (3) 5** (3) 

Pseudocalanus 

elongatus 

0.6 37 (9.6) 17 (3) 23 (2) 17 (3)      17 (3) 17 (3)  

Acartia clausi 0.6-1.2 25 (0.2)  96 (2)  12 (2) 12 (3) 12 (3) 13 (3) 13 (3) 13 (3)  10 (3) 

Oithona similis 0.6 41 (6.4)  83 (1) 83 (2) 83 (2) 83 (3) 83 (3) 83 (3)  75 (3)   

Centropages 

typicus 

1.2 39 (6.7)    9 (3) 9 (3) 9 (3) 9 (3) 9  (3)    

*Values refer to median percentage reduction in experimental bottles compared to final controls over all cell categories included in this analysis 

(Supplementary Figs 1-3). Values in brackets are percentage depletion of chl a.  
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Table 3: Environmental conditions at the site E1 at the time of our experiments.  

Experiment number 1 2 3 4 5 6 7 8 9 10 11 

Date 12/03/2014 24/04/2014 14/05/2014 17/06/2014 02/07/2014 22/07/2014 16/09/2014 14/10/2014 18/11/2014 10/02/2015 10/03/2015 

Temperature (°C) 9.73 10.78 11.34 16.34 17.69 18.72 16.09 15.31 13.66 9.97 9.65 

Biomass of 

microplankton 

*(mgC.m
-3

) 

14.1 45.76 246.49 28.91 44.09 18.61 105.28 14.45 5.58 10.14 21.2 

% of this biomass 

enumerated in the 

large food category 

N/A 0.32 0.87 3.36 14.32 2.76 0.18 0.19 N/A 46.22 29.25 

Biomass of 

mesozooplankton** 

(mgC.m
-3

) 

1.03 

(0.89) 

 

1.47 

(5.13) 

 

4.74 

(9.12) 

 

4.93 

(5.18) 

 

3.24 

(1.79) 

 

4.5 8.01 

(14.75) 

 

6.12 

13.99) 

 

0.75 

(5.62) 

 

4.01 

(3.89) 

7.26 

(31.16) 

% of this biomass 

represented in the 

experiments 

17 19.43 52.9 27.81 29.18 32.71 25.47 12.16 9.19 13.8 12.66 

Biomass copepods 

(mgC.m
-3

) 

0.92 0.66 4.29 2.61 1.07 2.71 7.29 5.23 0.57 3.19 6.24 

% of this biomass 

represented in the 

experiments 

19.12 43.05 58.5 52.49 88.06 54.27 27.98 14.23 11.96 17.33 14.74 

* Biomasses have been obtained from lugols cell counts and conversion factors. Cell dimensions were converted to volumes based on Kovala and 

Larrance (1966) and thence to carbon using Menden-Deuer and Lessard (2000). 

** Biomasses obtained mainly from seasonal length measurements and conversions using literature length – mass relationships. Values in brackets 

refer to values derived from dry mass and carbon mass determination on a separate net haul, often including phytoplankton as well as zooplankton. 
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Table 4. Mesozooplankton biomasses during this study, as compared to 2014-2015 values reported during parallel, near full-depth sampling in the 

Celtic sea reported by Giering et al. (this issue) 

Site Median 

mesozooplankton 

biomass (mg C m-3) 

Seasonal range of 

mesozooplankton 

biomass (mg C m-3) 

Sampling 

depth 

(m) 

Sampling period Method Notes 

E1 4.5 0.75-8.0 0-70 March2014-March 2015: see 

Table 3 

Use of length mass 

conversions derived for L4 

site* 

E1 5.4 0.89-32* 0-70 March2014-March 2015: see 

Table 3 

Weighing and C analysis of 

separate catches 

L4 9.9 2.2-53** 0-50 45 sampling time-points spanning 

March 2014-March 2015 

Use of length mass 

conversions derived for L4 

site* 

Central Celtic 

Sea: CCS 

site 

16 5.5-28 0-120 Sampling spanning August 2014 

to July 2015 

Literature regressions based 

on Zooscan images*** 

Outer Celtic 

sea: CS2 site 

6.7 1.2-14 0-120 Sampling spanning August 2014 

to July 2015 

Literature regressions based 

on Zooscan images*** 

 *High values represent clogging of WP2 with phytoplankton so are unrepresentative of mesozooplankton biomasses 

** Maximum value represents partly an exceptionally high abundance of Centropages typicus 

*** Full details of sampling and methods in Giering et al. (this issue)



33 
 

Figure captions : 

Fig 1 Sampling sites of the Western Channel Observatory. Samplings for feeding 

experiments were conducted at station E1 in 2014-2015. Station L4 provided context for 

seasonality with its long time series of microplankton and mesozooplankton.  

 

Fig. 2. Environmental conditions at E1 during the two year study including the times of the 11 

feeding experiments as denoted by red arrows on the axes. (a) Temperature (°C) (b), 

biomass of microplankton from March 2014 to October 2015, (c) biomass of 

mesozooplankton, plus nauplii as determined from flowCAM from water samples taken at 

10m depth denoted by red squares and red line ; (d) biomass of the copepod genera studied.  

 

Fig 3. L4 station medians, quartiles and ranges of variation in nano-microplankton biomass 

and abundance of the five studied copepod species based on the weekly sampling (1993-

2014 for nano-microplankton and 1988-2015 for copepods). Each box integrates 2 weeks 

(from the 1st to the 15th and from the 16th to the end of each month). Red line indicates the 

mean. 

 

Fig 4. Proportion in terms of percentage biomass of available large food (top panel) and the 

corresponding biomass contribution to the diets of the five copepod species (expressed as 

carbon ingestion rate as a percentage of body carbon). Hatching signifies the various size 

classes. Experiments 1, 2, 8 and 9, are not presented since these had either one or no prey 

categories above our threshold for inclusion in feeding rate estimates. 

   

Fig 5 Numerical contribution of food to the diet plotted against its numerical proportion of 

available food (mean ± S.D). Points near the y=x line indicate unselective behaviour. Points 

below the y=x line indicate avoidance of the prey. Points above the y=x line indicate selection 
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of the prey. Black stars indicate proportion in the available food significantly different from the 

proportion in the ingested food (t-test, p-value<0.05) Symbols are scaled according to the 

size of each food category, except for the nauplii. 

 

Fig. 6 Summary of copepod feeding selectivity across all available experiments. a: the 

“diatom index”, defined as the mean proportion of non-motile prey (diatoms) in the ingestion 

rate (number of prey cop-1 (mean ± CI 95%). b: Maximum Prey/predator ratio (length of the 

largest prey on which we found a significant positive clearance rate (t-test, p<0.05) divided by 

the length of the predator). Copepod lengths are from Conway (2012). 

 

Supplementary Fig 1 

Concentration of food items that were above the threshold for inclusion in feeding rate 

calculations. Points are means, with bars representing 95% confidence intervals. 

 

Supplementary Fig. 2 

 

Clearance rates (mL.cop-1.d-1, median ± range across the replicate experimental bottles) 

versus prey length (µm; horizontal bars show the range of the size-classes). Black stars 

indicate clearance rates significantly different from 0 (t-test p<0.05). In experiments 1 and 9 

none of our large food item categories reached the threshold so these experiments are 

omitted. Note that rarity of these large cells precludes precise estimates of the concentration 

in the incubation bottles, contributing to the sometimes large range in clearance rates 

between replicate bottles.  

 

Supplementary Fig 3 

Median and range values for Electivity index (Vanderploeg and Scavia 1979) versus prey 

sizes (length (µm), horizontal bars show the range of the size-classes). Black stars indicate 



35 
 

electivity index significantly different from 0 (t-test p<0.05). In experiments 1 and 9 none of 

our large food item categories reached the threshold so these experiments are omitted. 

 

 

Supplementary Table 1. Literature sources used to convert linear dimensions of zooplankton to 

carbon masses.  The characteristic lengths (e.g. copepod prosome lengths, medusa bell diameters) 

of 3780 individuals were measured, based on 25 daytime sampling time-points with the standard 57 

cm diameter 200µm WP2 net at L4, during 2015 and 2016, supplemented by 7 day and night 

sampling occasions throughout 2015 using a 1 m square-sided frame net of 500 µm mesh size. The 

formalin- preserved samples were measured with a calibrated eyepiece graticule under a binocular 

microscope, randomly selecting organisms to measure. We then applied length-mass regression 

based on the table below to estimate carbon mass of each individual. In the instances where several 

equations were available, we calculated the arithmetic mean carbon mass for each individual based 

on the available equations. For rarer taxa where we could not find taxon-specific relationships we 

measured characteristics lengths and applied volumetric appropriate conversions (Little and Copley 

2003) then used an overall median carbon mass:wet mass conversion from the supplementary 

appendix of McConville et al. (2017) from which to estimate carbon mass. 

 

 

 

Taxon References used 

Calanus spp. McLaren 1969, Bottrell and Robins 1984, Hay et al. 1991 Uye 1991,  
Pond et al. 1996 

Centropages spp. McLaren 1969, Uye 1991 
Temora spp. Klein Breteler et al. 1982 
Clausocalnus, Ctenocalanus, Pseudocalanus, Paracalanus  McLaren (1969), Uye 1991 
Acartia spp. Uye 1982, Cateleto and Fonda-Umani 1994, Landry 1978 
Oithona spp. Uye 1982, Uye and Sano 1998 
Oncaea spp. Satopoomin 1999 
Ditricocorycaeus spp. Satopoomin 1999 
Copepod nauplii Uye 1988, 1991, Liaing et al. 1996 
Other copepod copepodites McLaren (1969), Uye (1991) 
Chaeotognaths McLaren 1969, Uye 1982, Little and Copley 2003,  
Noctiluca scintillans Kiørboe and Titleman 1998 
Appendicularians Gorsky et al. 1988, Sato et al. 2001 
Cladocerans McLaren 1969, Uye 1982,  
Pteropods McConville et al. 2017 
Cirripede larvae Uye 1982, Berggeen et al. 1988, Sabatini and Kiørboe 1994,  

Hygum et al. 2000 
Polychaete larvae Uye 1982 
Decapod larvae Uye 1982 
Bivalve larvae Uye 1982 
Echinoderm larvae McConville et al. 2017 
Euphausiids Lindley 1978, Atkinson et al. 2006, 2012, Little and Copley 2003 
Amphipods, mysids, cumaceans Uye 1982 
Eggs (mainly of fish and chaetognaths) Conway (2012), McConville et al. 2017 
Fish larvae Uye 1982, Munk and Nielsen 1994 
Ctenophores and Cnidarians McLaren 1969, Larson 1986, Mizdalski 1988, Daan1989, Clarke et al. 1992,  

Mutlu and Bingel 1999, Gibson and Paffenhöfer 2000, Båmstedt et al. 2001,  
Persad et al. 2003, Bastian et al. 2014 

Other rarer, non-copepod taxa Little and Copley 2003, McConville et al. 2017 
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