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Appendix A. Proof and definitions 

 

In our study, we compared indices that either used a matrix of dissimilarity among species 

directly or functional data transformed into a functional tree. We did not consider methods 

that use ordination approaches to position species into Euclidean space (Magnusson et al., 

2009; Faith, 2015). Further studies on the need to use such approaches and how they compare 

to tree-based or distance-based approaches are still very much required. Connections exist 

among these alternative approaches: Qb can also be derived from an ordination method 

(Pavoine et al., 2005). 

 

Definitions 

 

For any real (n×n) symmetric matrix A, there exists a unitary matrix U with n rows (i.e. 

U
t
U=In, the n×n identity matrix) such that U

t
AU=Λ, where Λ is a diagonal matrix of the 

eigenvalues of A. Eigenvalues are real and eigenvectors, columns of U, can be taken to be real 

(e.g. Seber 2008).  

 

Proof that the first eigenvector of a dissimilarity matrix can be taken to be positive 

Let D=(dij)1≤i≤N,1≤j≤N be a matrix of pairwise dissimilarities with dij=dji for any i,j, dij>0 for any 

i≠j, and dii=0 for any i.  

 

It is shown below that the first eigenvector of D has values of same sign, which can be taken 

to be positive.  

 

According to Noutsos (2006, definition 2.2), a matrix ,N NA  possesses the strong Perron-

Frobenius property (in reference to the Perron-Frobenius theorem) if its dominant eigenvalue 

λ1 is positive, the only one in the circle |λ1| (λ1 > |λi |, i =2, 3, . . . , N) and the corresponding 

eigenvector x
(1)

 is positive (which means that it has only positive values). 

 

 

According to Noutsos (2006, definition 2.3), a matrix ,N NA  is said to be eventually 

positive if there exists a positive integer k0 such that A
k 
> 0 (=A

k
 only has positive values) for 

all k ≥ k0. The demonstration that D is eventually positive stems from the fact that dij>0 for 

any i≠j, and dii=0 for any i. With the latter conditions for the values of D, D
k 
> 0 for all k ≥ 2. 

 

 

According to Noutsos (2006, theorem 2.1), given that D is eventually positive and symmetric 

(dij=dji for any i,j), then D possesses the strong Perron-Frobenius property. 
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□ 

 

Proof that the unique maximizing vector of R is the squared, first eigenvector of the 

matrix of dissimilarities  

 
1 1

,
N N

i j iji j
R p p d

 
 p D  

Consider i iu p  and u=(u1,...,uN).  

 
1 1

,
N N

i j iji j
R u u d

 
 u D  

It is well known that the maximum of R, given that 2

1
1

N

ii
u


  is the first eigenvalue of D 

that is reached when u is the first eigenvector of D. The fact that this eigenvector has positive 

values has been proved above so that the maximum of   max ,R
p

p D  is the first eigenvalue 

of D that is reached for the squared, first eigenvector of D. 

 

□ 

 

Details on Rao's Q 

 

As above, we begin by considering a matrix D=(dij)1≤i≤N,1≤j≤N of dissimilarities among N 

species with N the number of species such that the dissimilarities are symmetric: dij=dji for 

any i,j, dij>0 for any i≠j, and dii=0 for each i. We also consider p=(p1, ..., pi, ..., pN) a vector of 

species' relative abundance (
1

1
N

ii
p


 ). The average dissimilarity among individuals from 

an assemblage is then an established measure of diversity, based on Rao’s (1982) quadratic 

diversity or entropy (QE): 

 

 ,
N N

i j iji j
Q p p d p D .  

 

If dij = 1 for all i ≠ j, then the measure of diversity (Q) reduces to  

  2

2 1
N

ii
T p p ,  

which is the Gini-Simpson index and is a special case (when q=2) of a more generalized 

measure of entropy (the Tsallis entropy: Tq): 

 
1

,  0,  1
1

N q

ii
q

p
T q q

q


  




p  

When q→1,    
11

ln
N

q i iiq
T p p


p   and this is the Shannon entropy.  
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The use of quadratic entropy (Q) is then a generalization of the Tsallis entropy when q=2 that 

includes distances among species and can be used to measure functional and phylogenetic 

diversity. In the particular case where the dij's are defined in the range [0,1], then Q ≤ T2. The 

maximum of T2 is obtained when species' abundances are even (pk=1/N for all i): 

2max( ) ( 1) /T N N  .  

 The Tsallis entropy is a function of Hill numbers (Hill 1973): 

   
1

1
,  0, 1

N q qq

ii
D p q q

   
 p  

Indeed, 

 
 

1

1
,  0,  1

1

q
q

q

D
T q q

q



     


p
p  

    
1 1

lim ln lim q

q
q q

T D
 

      p p    

 21/ 1 T  p  thus is Hill number of order 2. It is an effective number of species: it is equal to 

the number of equally abundant species needed to obtain the same value of diversity. If the 

the dij's are defined in the range [0,1],  1/ 1 Q  p  can then be interpreted as an effective 

number of evenly abundant and maximally dissimilar species (Ricotta & Szeidl 2009). Using 

 1/ 1 Q  p , abundant species are given high weight compared to rare species.  

 Pavoine et al. (2005) introduced the vector of species' abundances that maximizes Q, 

varying p and fixing D, as an index of species' originality (named QE-based index). However, 

this vector can contain null values (zeros) and several distinct vectors can simultaneously 

maximize Q for a given matrix D. To avoid this, Pavoine et al. (2005) proposed the restricted 

use of their index of species' originality to distances that have ultrametric properties (i.e. 

dij≤max(dik,djk) for all i,j,k) including distances obtained from trees with constant tip-to-root 

distance (distances = half the sum of branch lengths on the shortest path that connects two tips 

in a tree).  

 

Details on the new index of biodiversity, R 

 

 In the main text, we decreased the importance given to the most abundant species in Q 

as follows: 

 

 
1 1

,
N N

i j iji j
R p p d

 
 p D  
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The rest of the reasoning below follows exactly the same steps as for the QE-based index.  

For dij = 1 for all i ≠ j, R reduces to  

   
2

2 1
N

ii
S p p ,  

S2 is an established statistical metric (Behara & Chawla 1974) and physical quantity (Yamano 

2014) as a special case of the generalized γ-entropy with γ=2: 

 
 

1/

1

1
,  0,  1

1 2

N

ii
p

S




 
 



 
   




p  

When γ→1,    211
log

N

i ii
S p p

 
p . R is thus a generalization of the γ-entropy when γ=2 

that includes distances among species and thus eventually measures functional and 

phylogenetic diversity. In the particular case where the dij's are defined in the range [0,1], then 

R ≤ S2. The maximum of S2 is obtained when species' abundances are even (pk=1/N for all i): 

2max( ) 1S N  . 

 

 The generalized γ-entropy has been underexplored in ecology when analyzing 

biodiversity. As for Tsallis entropy, the generalized γ-entropy is a function of Hill numbers 

(Hill 1973). Indeed, considering q=1/γ, 

 
   

1/
(1 )/

(1 )/ (1 )/

1 1
,  1/ ,  1

1 2 1 2

q
N q q q

q
ii

q q q q

p D
S q  



 

         
 

 p
p  

    
1 1

lim ln lim / ln(2)q

q
S D

  
      p p   

As a particular case,    0.5

2 1S D p p . 
2 1S   thus is Hill number of order 0.5. If the dij's 

are defined in the range [0,1], R+1 can thus be interpreted as an equivalent number of evenly 

abundant and maximally dissimilar species. In R and R+1, rare species are given significant 

weight compared to Q and 1/[1-Q].  

If the dissimilarities vary in the range [0,1] and if both the distances among species and the 

abundances of species vary, the maximum of R is N-1. In contrast, if the distances among 

species are fixed (with the only conditions that dij=dji for any i,j, dij>0 for any i≠j, and dii=0 

for any i) and only the abundances of the species vary, the maximum of R is the first 

eigenvalue of matrix D and the unique maximizing vector is its first eigenvector and has 

positive values (proof above). This maximizing vector was used by Champely and Chessel 

(2002) to rescale Q between 0 and 1.  
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The contribution of species to biodiversity 

 

We provide in Fig. A.1 an illustration of the fact that increasing the abundance of original 

species compared to redundant species to a certain extent increases the diversity of the set of 

species. 

 

 

 

Fig. A.1. Theoretical example illustrating the increase in diversity when increasing the 

frequency of the most original species. Here species are symbolized by flowers and sets of 

species by fields of flowers. Each species numbered from 1 to 10 is associated with a color. 

We selected the CMYK color model used in color printing to define the color of the 10 

flowers. The CMYK model is based on three elementary colors (C=cyan, M=magenta, 

Y=yellow), and on the black color (K). The percentage of each color used to define each 

flower is indicated in a). Species#1 is by far the most original, having only the cyan color, 

while others were created by mixing magenta and yellow. In b) each species is represented by 

10 flowers. In c) the species with the most original color (species#1) is represented by 42 

flowers, species#2 to #4 and species#7 and #8 by 6 flowers each and species#5, #6, #9, #10 

by 7 flowers each. To obtain the number of flowers per species in c) we calculating 

Manhattan distance between the color profiles of species (given in a) and applied Rb to this 

inter-specific distance matrix. 
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