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Abstract

In “Solution Property Reconstruction for Finite Volume scheme: a BVD+MOOD framework”,

Int. J. Numer. Methods Fluids, 2020, we have designed a novel solution property preserving

reconstruction, so-called multi-stage BVD-MOOD scheme. The scheme is able to maintain a

high accuracy in smooth profile, eliminate the oscillations in the vicinity of discontinuity, capture

sharply discontinuity and preserve some physical properties like the positivity of density and

pressure for the Euler equations of compressible gas dynamics. In this paper, we present an

extension of this approach for the compressible Euler equations supplemented with source terms

(e.g., gravity, chemical reaction). One of the main challenges when simulating these models is the

occurrence of negative density or pressure during the time evolution, which leads to a blow-up of

the computation. General compressible Euler equations with different type of source terms are

considered as models for physical situations such as detonation waves. Then, we illustrate the

performance of the proposed scheme via a numerical test suite including genuinely demanding

numerical tests. We observe that the present scheme is able to preserve the physical properties

of the numerical solution still ensuring robustness and accuracy when and where appropriate.
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terms

1. Introduction

The finite volume method has been developed and employed to solve CFD problems in

wide range of applications for many decades. The first order finite volume method, known as

Godunov scheme [29, 59], possesses interesting properties such as conservativeness, monotonic-

ity, positivity-preserving and extreme robustness. Nonetheless, it generates excessive numerical

dissipation and tends to smear out the flow structures. In order to reduce the numerical dis-

sipation and to capture shocks exempt from spurious oscillation, high-resolution conservative

schemes have been developed over the last half century. A class of non-linear schemes can effec-

tively eliminate numerical oscillations by introducing flux or slope limiters, for instance, Flux

Corrected Transport (FCT) scheme [5, 71], Total Variation Diminishing (TVD) scheme [31, 54],

and Monotone Upstream-centered Scheme for Conservative Laws (MUSCL) [40, 41], which reach

a nominal 2nd order accuracy, but still suffer from important numerical dissipation with a ten-

dency to smear out flow structures, such as vortices and contact discontinuities. Consecutively,

methods using reconstructions of higher order polynomials for smooth solutions, such as in the

Piecewise Parabolic Method (PPM) [13, 33], Essential Non-oscillatory (ENO) scheme [49, 50],

Weighted Essential Non-oscillatory (WENO) schemes [34, 46, 25, 1], have been proposed to

achieve higher order of accuracy, and, suppress the spurious numerical oscillations by limiting

procedures based on smoothness indicators. Nevertheless, high order schemes with conventional

limiting procedure may still generate non-physical fluid properties such as negative density or

pressure, which lead to blow-up of the computation and subsequent code crash. Most of high

order schemes fail to preserve positivity because of interpolation errors when near vacuum states

occur or in the presence of strong shocks. Recently, some positivity-preserving techniques for

high order schemes were developed by Zhang and Shu as in [73, 74, 76, 45, 69] for homogeneous

compressible Euler equations, and, in [75, 62, 77] for compressible Euler equations with several

types of source terms, like the energetic reactive products in gaseous detonations for example.

A new guideline for high-resolution schemes, see [53, 17], was designed to capture shocks with

low numerical dissipation: the so-called Boundary Variation Diminishing (BVD) method under
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the finite volume framework. A hybrid reconstruction scheme [53] coupling WENO and THINC

(Tangent of Hyperbola for INterface Capturing) reconstructions is employed using the BVD

algorithm which automatically selects the appropriate reconstruction. For instance, THINC

method [66, 67, 51], originally devised as a volume of fluid (VOF) scheme, reconstructs appro-

priately jump-like solution and is then employed to capture the discontinuous solutions. As the

result, the BVD algorithm is capable to resolve both smooth and discontinuous profiles with

high-fidelity, see [53, 17, 14]. Furthermore, new limiter-free BVD strategies have been proposed

[15, 16] by introducing multi-stages. These so-called PnTm-BVD methods employ unlimited

high order polynomials and THINC reconstructions. PnTm-BVD stands for unlimited polyno-

mial of nth degree and THINC function of mth level reconstruction relies on BVD algorithm.

According to numerical experiments in [15], the PnTm-BVD schemes can achieve very high or-

der accuracy (up to 11th order) for smooth solution, and sharply capture discontinuous solution

without spurious numerical oscillations.

Different from classical a priori limiting schemes, the Multi-dimensional Optimal Order

Detection (MOOD), also known as a posteriori limiting scheme, was proposed in [10, 19, 21], and

has been employed in various numerical formulations [7, 20, 6] and applications [11, 22, 8, 36, 4,

24, 61, 56] and more recently [23, 57, 27]. In MOOD algorithm, some criterions or detectors were

designed based on the computational stability and physical properties. The MOOD algorithm

is performed after computing a candidate solution, i.e. a solution at the next time level, then

MOOD split the cells into valid/accepted/good and invalid/troubled/bad ones. For a valid cell,

the criteria of physical admissible detection (PAD) and numerical admissible detection (NAD)

are both satisfied, the candidate solution is then accepted for next time step. Otherwise, if a

cell does not satisfy the criterion, the solution in this cell is recomputed by decrementing the

degree of the local reconstructed polynomial. This process continues and stops when the cell is

detected as valid or when the lowest possible polynomial degree is reached (piecewise constant,

that is no-reconstruction).

In this paper, we extend the novel high-fidelity positivity-preserving numerical scheme pro-

posed in [55] for the perfect gas Euler equations with source terms. For instance, we couple the

BVD and MOOD techniques to get and maintain the high order accuracy, a shock capturing
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and positivity preserving property. For the BVD strategy, the candidate reconstructions are:

the linear 4th degree polynomial (P4) for smooth solutions, and THINC functions to get an

oscillation-free and sharp shock capturing scheme. In addition, a MOOD method detects the

obtained candidate solution at the next time level by the physical admissible detection (PAD).

The multi-stage BVD-MOOD scheme is able to resolve smooth solutions, effectively eliminate

spurious oscillations, sharply capture discontinuous solutions, and, preserve the positivity. In the

present work, we simulate several demanding numerical tests for compressible Euler equations

with various source terms modelling gravity or detonation waves.

This paper is organized as follows. In Section 2, we briefly introduce the numerical methods

as well as the general finite volume method. We present in Section 3 the details of solution prop-

erty preserving reconstruction ensuring high-order accuracy (HO), essentially non-oscillatory

(ENO) behaviour, sharp capture of discontinuities and robustness for extreme situations. We

then extend the numerical scheme into two-dimensions in Section 4. In the numerical Section 5,

we present the results on some benchmark tests for homogeneous Euler equations and then with

various source terms. This will testify that the present scheme is able to capture both smooth

and discontinuous solutions and preserve their physical validity for various problems with source

terms. We end the paper with a brief summary and future plans in Section 6.

2. Numerical Methods for one dimensional space

2.1. Governing Equations

We consider the general form of one dimensional Euler equations with source terms, which

is defined as
∂U

∂t
+
∂F (U)

∂x
= S(U); t ≥ 0, x ∈ R (1)

where U(x, t) = (ρ, ρu,E)T , F (U) = [ρu, ρu2 +p, (E+p)u]T and ρ, u, p are the density, velocity

and pressure, respectively. E is the total energy expressed as E = e+
1

2
ρu2 and e is the internal

energy, they are linked to the pressure through an equation of state (EOS) p ≡ p(ρ, e) from which

we can define the sound speed a > 0. The homogeneous system is the hyperbolic hydrodynamics

system of conservation laws. In this paper, we consider two types of source terms S(U), i.e.

gravity acceleration and detonation models of premixed reactive gases, which are detailed later.
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The source terms are possibly becoming stiff compared to the local time and space scales, and

usually their main effect is to drastically modify the behavior of the solution.

2.2. Operator splitting

To solve the above model system, the numerical solution at each time step interval [t, t+ ∆t]

is computed in a split way: First the homogeneous conservation law (convection step) and,

second the ODE system (source term step or reaction step). We describe in the following the

fractional step approach [59] for gravity source terms, and, the second order Strang-splitting

method [52] for the more complex chemical reaction source terms.

The Euler equations with gravity-like source terms. The numerical solution at time level t+ ∆t

is approximated by

U(t+ ∆t) = C(∆t)R(∆t)U(t). (2)

The convection operator C(∆t) approximates the solution on the time interval U(t+ ∆t) from

the approximate solution U(t), solving

∂U

∂t
+
∂F (U)

∂x
= 0, t ≤ t′ ≤ t+ ∆t. (3)

Different numerical schemes for hyperbolic conservation laws can be used at this stage. In this

paper, we use the third-order TVD Runge-Kutta method [30] for time integration and the multi-

stage BVD-MOOD scheme for spatial discretization [55] supplemented with HLLCM Riemann

solver [48] to prevent the carbuncle phenomenon or shock instability. Other approximate Rie-

mann solvers could be also employed for most cases.

The source term operator R(∆t) approximates the solution on a time step of the ODE system

dU

dt
= S(U), t ≤ t′ ≤ t+ ∆t. (4)

Any ODE solver can be used to deal with such source terms.

The reactive Euler equations. The numerical solution at time level t + ∆t is approximated

generically by

U(t+ ∆t) = C

(
∆t

2

)
R

(
∆t

Nr

)
· · ·R

(
∆t

Nr

)
C

(
∆t

2

)
U(t) (5)
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Similarly, C is the convection operator acting over time ∆t/2 and R is the reaction operator

acting for Nr successive sub-steps. We use Nr = 2 sub-steps in this work. Any ODE solver

can be used for the reaction operator providing that the discontinuities are sharply dealt with

during the convective step.

2.3. Finite Volume Method

In this section, we briefly describe the fundamental algorithm under the finite volume context

for the convection step. Let us consider the computational domain in space as Ω = [xL, xR]

divided into N non-overlapping cells with Ii = [xi−1/2, xi+1/2], for i = 1, 2, ..., N . The cell size

is denoted by ∆x = xi+1/2− xi−1/2 and is uniform over the computation domain. Furthermore,

the time variable is denoted by t and 0 < t < tfinal, where tfinal > 0 is the terminal time for the

computation. The time is split into Nt non-uniform time steps paving the interval [0, tfinal]. The

time step is denoted as ∆t = tn+1 − tn > 0, where tn is the time at nth step, likewise for tn+1.

The time-step will be restricted by a CFL condition later.

We employ the volume integrated-average (VIA) of the solution U(x, t) using a standard

finite volume semi-discretization, over a mesh cell Ii at time t as

Ui(t) =
1

∆x

xi+1/2∫
xi−1/2

U(x, t) dx where i = 1, 2, . . . , N. (6)

The VIA Ui(t) for each cell Ii is updated by

dUi(t)

dt
= − 1

∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
, (7)

where Fi+1/2(t) and Fi−1/2(t) are the numerical fluxes at cell boundaries, calculated by a (ap-

proximated) Riemann solver

Fi+1/2(t) = FRiemann
i+1/2 (ULi+1/2, U

R
i+1/2, t), (8)

where ULi+1/2 and URi+1/2 are the left-side and right-side values of U at xi+1/2 respectively. They

are computed by a so-called reconstruction procedure over left and right potential stencils. The

approximate flux in (9) can be written for a wide range of Riemann solvers into the general form

FRiemann
i+1/2 (ULi+1/2, U

R
i+1/2, t) =

1

2

(
F (ULi+1/2) + F (URi+1/2)

)
−
|ai+1/2|

2
(URi+1/2 − U

L
i+1/2) (9)
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where ai+1/2 varies among different Riemann solvers. As already mentioned we use the HLLCM

approximate Riemann solver, the details of which can be found in [48].

2.4. Time Integration

In order to achieve high-order numerical accuracy in time, the discretization in time is made

by the third-order TVD Runge-Kutta method (RK3, see [49, 30]). More precisely, defining

L(U) = − 1

∆x

(
Fi+1/2(t)− Fi−1/2(t)

)
, (10)

as the spatial operator, then the time integration corresponds to a convex combination of three

explicit steps as

U (1) = Un + ∆tL(Un), U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL(U (1)),

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL(U (2)).

(11)

This time integration scheme is restricted by the CFL condition

∆t ≤ CFL
∆x

maxi(|ui|, |ui ± ai|)
, (12)

where CFL < 1 is a safety constant.

The remaining main task (detailed in the next section) is the calculation of states ULi+1/2 and

URi+1/2 at given time t through a reconstruction procedure. In this work, we introduce a blending

of high/low order polynomial and hyperbolic tangent reconstructions. The blending serves the

purpose of preserving some of the properties of the solution. Moreover, the reconstructions

are performed on the characteristics variables and each variable of the same cell employs the

same reconstruction type. Because we employ high order polynomials and non-linear hyperbolic

tangent as reconstruction types, the limiting procedure, mandatory to avoid Gibbs phenomenon

and damp spurious oscillations, is handled in a non-classical way. Indeed following [55] we split

the numerical solution into three parts: a large part of the domain welcomes a smooth solution,

relatively small area suffer from the presence of discontinuous solutions, and, extremely small

area present extreme physical situations (close to vacuum states for instance).
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3. Reconstruction schemes for Solution Property Preserving

The numerical solution for the hyperbolic system of partial differential equations (PDEs)

is split into three regions: ‘smooth’ (large), ‘discontinuous’ (few) and ‘demanding’ enduring

physics violation (almost zero). An unlimited piece-wise high order polynomial reconstruction

is employed for the smooth profile, while a shock-capturing THINC reconstruction deals with

discontinuous profiles in a sharp and essentially non-oscillatory manner. At last, the demanding

regions in the flow where non-admissible physical state may be computed are dealt with the

monotonic, dissipative and robust first order Godunov scheme.

The numerical scheme should preserve some properties of the numerical solution related to

those regions, for instance, a high accurate description of smooth profiles, an essentially non-

oscillatory behavior in the vicinity of steep gradients, a sharp capture of discontinuity (contact,

material interface), and, robustness for extreme situations. In order to fulfill these properties,

we design a chain of different reconstruction operators via a multi-stage BVD-MOOD algo-

rithm [55]. We denote them as RHO, RENO, RSHARP and RLO standing for High Order

polynomial, Essentially Non-Oscillatory, Sharp and Low Order polynomial reconstructions, re-

spectively. The main tool is the so-called BVD which acts as a selector which chooses the

most suitable reconstruction. For instance, for a smooth profile, the selector should choose the

high-order reconstruction RHO, while the sharp one RSHARP should be selected for the steep

gradient or step-like profile/shock.

In this work, the BVD ’selector’ is operating on two reconstructed candidates in the same cell,

and, chooses the most suitable one. Since we consider of three possible reconstructions, RHO,

RENO or RSHARP , then the BVD algorithm acts in 2 stages leading to a so-called multi-stage

BVD, see figure 1. This BVD algorithm is exhaustively described in section 3.4.

3.1. Unlimited polynomial reconstruction P4, RHO

For finite volume schemes, piece-wise polynomial were developed for years to achieve high

accuracy in space. The piece-wise parabolic method (PPM) was developed in [13, 33, 43], for

which second-order polynomials (P2) are implemented to obtain third-order accuracy. Further-

more, the piece-wise quartic method (PQM) was developed for instance in [64], it is a fifth-order
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Figure 1: Sketch of Reconstruction schemes for Solution Property Preserving and BVD algorithm for a given

cell. At stage 1, the BVD algorithm selects between RHO and RENO reconstructions to get the most suitable

of the two, say R1. Then, At stage 2, BVD chooses either reconstruction R1 or RSHARP to get R2 as the final

reconstruction to be used to update the current cell.

accuracy scheme based on the piece-wise polynomial of degree four (P4) which we will use.

Hence, the reconstructed values at the left and right cell boundaries, denoted as UL,P4
i+1/2 and

UR,P4
i−1/2 respectively, are given by

UL,P4
i+1/2 =

1

60
(2Ui−2 − 13Ui−1 + 47Ui + 27Ui+1 − 3Ui+2) ,

UR,P4
i−1/2 =

1

60
(−3Ui−2 + 27Ui−1 + 47Ui − 13Ui+1 + 2Ui+2) .

(13)

This reconstruction can achieve 5th order accuracy on smooth enough profiles; unfortunately, it

induces oscillatory when steep gradients are encountered. The stencil Si is made of two neighbor

cells to the left and right of Ii.

3.2. THINC reconstruction with β ≤ 1.2, (RENO) or β ≥ 1.6, (RSHARP)

One of the algebraic type VOF (volume of fluid) schemes built to capture moving inter-

faces in multi-phase flows, is known as THINC (Tangent of Hyperbola for INterface Capturing)

method which employs hyperbolic tangent functions for spatial reconstruction [66, 67, 51]. The

hyperbolic tangent function is a differentiable and monotone sigmoid function that mimics a

step-like discontinuity. It has been shown in recent studies that with a properly chosen steep-

ness factor, a THINC scheme performs well as an advection scheme with a competitive accuracy

compared to classical TVD schemes [17]. The THINC reconstruction function can be expressed

for a monotonically increasing or decreasing set of successive mean values (Ui−1, Ui, Ui+1) as

[66, 53]

Ui(x) = Umin +
Umax

2

[
1 + Γ tanh

(
β

(
x− xi−1/2

xi+1/2 − xi−1/2
− x̃i

))]
, (14)
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where Umin = min(Ui−1, Ui+1), Umax = max(Ui−1, Ui+1) − Umin, Γ = sgn(Ui+1 − Ui−1). The

user-given parameter β is used for the control of the steepness and, consequently the jump

thickness. In (14), the only remaining unknown is x̃i. It represents the location of the jump

center and is determined by solving Ui = 1
∆x

∫
Ii
Ui(x)dx, which is a volume-integrated average.

After solving for x̃i, the reconstructed values at the left and right ends of cell Ii boundary can

be defined by

UL,Thβi+1/2 =UL,Thβi (xi+1/2) = Umin +
Umax

2

(
1 + Γ

tanh(β) +A

1 +A tanh(β)

)
,

UR,Thβi−1/2 =UR,Thβi (xi−1/2) = Umin +
Umax

2
(1 + ΓA),

(15)

where A = 1
tanh(β)

B
cosh(β)−1 , B = eΓβ(2C−1) and C =

Ui − Umin + ε

Umax + ε
with ε = 10−20 to avoid

division by zero. UL,Thβi+1/2 and UR,Thβi−1/2 are the reconstructed values for THINC candidate function

using β parameter on the current cell boundaries.

Remark 1. The THINC reconstruction is in-bounds by construction since its stencil Si

considers only its direct neighbor cells Ii−1 and Ii+1.

Remark 2. If Ui is a local extremum, we naturally set Ui(x) = Ui for all x ∈ Ii. We could

improve this further by the use of one TVD reconstruction for instance.

THINC reconstruction with β ≤ 1.2: RENO. In order to avoid oscillatory behavior we employ a

THINC reconstruction with small values of parameter β. The operators are respectively denoted

by RENO2 with β = 1.2 and RENO1 with β = 1.1. These values, β = 1.2 and β = 1.1, are small

enough and correspond more or less, to the same dissipation than a second order TVD scheme

with either the (slightly compressive) Van Leer slope limiter or the (dissipative) Minmod one,

respectively, see [17, 16, 55].

THINC reconstruction with β ≥ 1.6: RSHARP. The last THINC reconstruction operator in

this paper employs β = 1.6 to capture sharper discontinuities or shocks by using the stair-

case/squaring behavior. The associated finite volume scheme using the reconstruction operator

RSHARP is then genuinely anti-dissipative, leading to staircase shapes even for smooth profiles,

so it must be employed only in the vicinity of discontinuity.
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3.3. Piecewise Constant/no reconstruction P0, RLO

The piece-wise constant “reconstruction” leads to a first-order finite volume method that

produces monotone and extremely robust numerical solutions, usually preserving the admissible

physical set (i.e positivity of density and specific energy for Euler equations). We denote the P0

reconstruction as UL,P0
i+1/2 = UR,P0

i−1/2 = Ui. It is employed as the last resort solution when dealing

with extreme phenomena or situations violating the physics, for instance, a lack of positivity,

an occurrence of NaN, etc. see section 3.5.

In table 1, the five candidate reconstructions are listed with their different behaviors; on

smooth solutions, to suppress spurious oscillations, on discontinuous solutions, and to handle

demanding situations.

Acronym Reconstruction Parameter Solution property

RHO Pk ⇒ unlimited polynomial k = 4 smooth profile

RENO2 THINC β = 1.2 (damp) spurious oscillations

RENO1 THINC β = 1.1 (kill) spurious oscillations

RSHARP THINC β = 1.6 steep profile

RLO Pk ⇒ no reconstruction k = 0 ensure admissible solution

(i.e positivity issue, NaN)

Table 1: Table of reconstructions and their associated target property.

3.4. A 3-stage BVD algorithm: local reconstruction selector

As already mentioned the selector determining which reconstruction operator to use in each

cell is based on the Boundary Variation Diminishing (BVD) algorithm [53, 17, 15, 16]. In this

work, the selection algorithm in the P4-THINC-BVD-MOOD scheme designed in [55] is re-used.

It determines the candidate interpolant with three-stages cascade BVD process which minimizes

the total boundary variation (TBV) in the desired cell. More precisely the TBV of cell Ii is

defined by the sum of the jumps generated by the reconstructed values using reconstruction

operator R at cell interfaces, that is

TBVRi (U) =
∣∣∣UL,Ri−1/2 − U

R,R
i−1/2

∣∣∣+
∣∣∣UL,Ri+1/2 − U

R,R
i+1/2

∣∣∣ ≥ 0. (16)
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Each term of the right hand side represents the amount of dissipation introduced by the nu-

merical flux (9) for one edge of cell Ii. Thus TBVRi scales like the numerical dissipation in

the cell. For simplicity of exposition, we denote by RST1 , RST2 , and RST3 the reconstruction

operators in cell Ii after the first, second and third stage, respectively. For instance, when two

reconstructions R1 and R2 of the same data U are available then we compute, compare TBVR1
i

and TBVR2
i , and choose the least dissipative one. The BVD algorithm automatically exploits

this matter.

The 3-stage BVD algorithm is implemented in the spirit of [15, 16, 55]. Let us denote by ri

the actual reconstruction employed in cell Ii which can be HO, ENO1, ENO2, or SHARP.

Stage 1. Selection between RHO and RENO2 → RST1

Compute the TBVi values for the cell Ii by RHO and RENO2 as

TBVRHO
i =

∣∣∣UL,RHO

i−1/2 − U
R,RHO

i−1/2

∣∣∣+
∣∣∣UL,RHO

i+1/2 − U
R,RHO

i+1/2

∣∣∣
TBV

RENO2
i =

∣∣∣UL,RENO2

i−1/2 − UR,RENO2

i−1/2

∣∣∣+
∣∣∣UL,RENO2

i+1/2 − UR,RENO2

i+1/2

∣∣∣ (17)

For cell i, if TBVRHO
i > TBV

RENO2
i then (ri−1, ri, ri+1) = ENO2, else ri = HO.

RST1 = {ri, i = 1, . . . , N}

Stage 2. Selection between RST1 and RENO1 → RST2

Compute the TBVi values for the cell Ii by RST1 and RENO1 as

TBV
RST1
i =

∣∣∣UL,RST1

i−1/2 − UR,RST1

i−1/2

∣∣∣+
∣∣∣UL,RST1

i+1/2 − UR,RST1

i+1/2

∣∣∣
TBV

RENO1
i =

∣∣∣UL,RENO1

i−1/2 − UR,RENO1

i−1/2

∣∣∣+
∣∣∣UL,RENO1

i+1/2 − UR,RENO1

i+1/2

∣∣∣ (18)

Similar to stage 1, for cell i, if TBV
RST1
i > TBV

RENO1
i then (ri−1, ri, ri+1) = ENO1.

RST2 = {ri, i = 1, . . . , N}

Stage 3. Selection between RST2 and RSHARP → RST3

Compute the TBVi values for the cell Ii by RST2 and RSHARP as

TBV
RST2
i =

∣∣∣UL,RST2

i−1/2 − UR,RST2

i−1/2

∣∣∣+
∣∣∣UL,RST2

i+1/2 − UR,RST2

i+1/2

∣∣∣
TBVRSHARP

i =
∣∣∣UL,RSHARP

i−1/2 − UR,RSHARP

i−1/2

∣∣∣+
∣∣∣UL,RSHARP

i+1/2 − UR,RSHARP

i+1/2

∣∣∣ (19)

For cell i, if TBV
RST2
i > TBVRSHARP

i then ri = SHARP.

RST3 = {ri, i = 1, . . . , N}

12



Remark 1. According to the formulation of this method, the essentially oscillation-free

solution is obtained after stage 1 and 2. In addition, the numerical dissipation at discontinu-

ous/steep gradients is reduced after stage 3, if needed. It means that the desired properties are

reinforced respectively at different stages by the multi-stage BVD algorithm.

Remark 2. In this paper, we employ the BVD algorithm independently for each character-

istic variables [15, 16], however, one could also consider the implementation of BVD algorithm

with a dependency among the reconstructed variables such as in [55]. Our numerical experi-

ments reveal that our approach can achieve optimal high order, however, it may produce slightly

noisy and diffusive results in some cases.

Remark 3. In the multi-stage BVD the THINC reconstruction with small β values (ENO)

as β = 1.1 or β = 1.2 could be replaced by another TVD scheme. Contrarily, the unlimited high

order polynomial reconstruction (HO) and THINC with high β value (SHARP) as β = 1.6 are

mandatory operators. The HO one ensures the highest possible accuracy for smooth profiles,

while the SHARP one is efficient, robust scheme and steepens discontinuous profiles.

3.5. Positivity-preserving and physical admissibility via an a posteriori MOOD algorithm

The last property of paramount importance is the ability to handle or deal with extreme

physical and numerical situations such as the lack of positivity for density or pressure for gas

flows or the occurrence of un-representable digit values (NaN, Inf). The positivity-preserving or

a fail-safe behavior is usually difficult to ensure a priori by the reconstruction operators which

are employed in the multi-stage BVD algorithm. Here we use the so-called a posteriori Multi-

dimensional Optimal Order Detection (MOOD) algorithm [10, 19, 21]. In a MOOD procedure,

the non-oscillatory behavior and physics admissibility are ensured via a list of criteria detecting

the problematic or troubled cells. Being an a posteriori limiting procedure, it is performed after

the computation of a candidate solution at tn+1. The detection procedure checks whether the

candidate solution Un+1,∗
i satisfies the criteria for each cell. The cells where they are satisfied,

are marked as ‘valid’ cells, and, the numerical solution is accepted: Un+1
i = Un+1,∗

i . Contrarily

the cells which do not pass the criteria are marked as ‘troubled’. A troubled cell is locally recom-

puted starting again at time tn but using the first-order Godunov scheme (piecewise constant

reconstruction), see in figure 2. This first-order finite volume scheme produces an excessive
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numerical viscosity and tends to smear out the flow structures. However, it is conservative,

monotone, robust and positivity-preserving.

In addition, the detection is split into a Physical Admissible Detection (PAD) and Numerical

Admissible Detection (NAD). The PAD is based on the physical properties to ensure that a

solution is admissible. For Euler system of equations the physical admissibility is related to

the positivity of density ρ and pressure p. More precisely, a cell is PAD troubled if ρn+1,∗
i ≤ 0

or pn+1,∗
i ≤ 0. In addition, for the reacting Euler equations, a cell may be PAD troubled if

αn+1,∗
i < 0, where α is the mass fraction, otherwise the cell is eligible. The NAD checks if a cell

is such that Un+1,∗
i = NaN then it is flagged as NAD troubled, otherwise the cell is valid.

Once a cell Ii is troubled, then, as already mentioned, it is locally recomputed by the first-

order Godunov scheme. Its direct neighbors are also marked as troubled cells for safety reason.

Figure 2: Sketch of FV method with an a posteriori MOOD algorithm. If the positivity is violated or a NaN

is occurring, the Detection procedure (PAD or NAD) marks the troubled cells. Then, those troubled cells and

their direct neighbors are sent back to tn for a re-computation by the first order Godunov scheme (using P0

reconstruction). Otherwise, the valid cells are accepted as the final solution.

4. Extensions to multi-space dimensions

We have implemented and extended the previous numerical scheme in two-dimensions on

structured grids. The scheme in 1D has been designed to be genuinely efficient, accurate and

limiter-free, to sharply capture the shocks and steep gradients, and, to be robust when extreme
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events occur (near-vacuum states for instance). Our aim is to maintain these properties for the

two-dimensional extension.

The two dimensional Euler equations with source terms are given by

∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= S(U); t ≥ 0, x, y ∈ R (20)

where U = (ρ, ρu, ρv, E)T , F (U) = [ρu, ρu2 + p, ρuv, (E + p)u]T , G(U) = [ρu, ρuv, ρv2 + p, (E +

p)v]T and ρ, u,v, p are the density, velocity in x and y directions and pressure, respectively. E

is the total energy and e is the internal energy. The pressure is linked to two thermodynamic

variables via the perfect gas equation of state with adiabatic gas constant γ. Also, S(U) are the

source terms which are detailed in the next section: gravity, or two chemical state reaction.

Similar to 1D case, we employ the fractional step approach for gravity and second order

Strang-splitting method [52] for chemical reaction source terms. For instance, the numeri-

cal solution at each time step level is computed in two steps: The homogeneous conservation

law (convection step) and ODE system (source term or reaction step), successively. The two

dimensional convection operator C approximates the solution of the homogeneous system on

the time interval [tn, tn+1]. For the convection step, we consider the computational domain

in space as a rectangular box Ω = [xL, xR] × [yL, yR] divided into rectangular uniform cells

Ii,j = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2]. We denote the cell center by (xi, yj) and the cell sizes

∆x = xi+1/2− xi−1/2 and ∆y = yj+1/2− yj−1/2. For standard finite volume semi-discretization,

we employ the volume integrated-average (VIA) of the numerical solution U(x, y, t) over a mesh

cell Ii,j at time t by a piece-wise constant value

Ui,j(t) =
1

∆x∆y

∫
Ii,j

U(x, y, t) dx dy where i = 1, 2, . . . ,M, j = 1, 2, . . . , N. (21)

Similar to 1D, the VIA Ui,j(t) for each mesh cell Ii,j is updated by

dUi,j(t)

dt
= − 1

∆x
(Fi+1/2,j(t)− Fi−1/2,j(t))−

1

∆y
(Gi,j+1/2(t)−Gi,j−1/2(t)), (22)

where Fi±1/2,j(t) and Gi,j±1/2(t) are the two-point fluxes in x and y direction, respectively. They

are computed like their 1D counterparts, that is a Riemann solver is further used to get

Fi+1/2,j(t) = FRiemann
i+1/2,j

(
ULi+1/2,j , U

R
i+1/2,j , t

)
. (23)
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where ULi+1/2,j and URi+1/2,j are the left-side and right-side values of Ui,j(x, y, t) at cell boundary

in x direction respectively. The same procedure is employed in y-direction to compute the fluxes

Gi,j+1/2(t). In this work, the HLLCM Riemann solver [48] is employed. Similar to 1D section,

the third-order TVD Runge-Kutta method (RK3, see [49, 30]) is used for high accurate time

integration.

In 2D the reconstructions are performed direction by direction. In other words, the same P4

reconstructions as described in (13) are first made for data aligned in x direction: Ui−2,j , Ui−1,j ,

Ui,j , Ui+1,j , Ui+2,j , to get the edge centered values ULi+1/2,j and URi−1/2,j for cell Ii,j . Then, the

1D reconstructions in y direction consider y-aligned data Ui,j−2, Ui,j−1, Ui,j , Ui,j+1, Ui,j+2 to

get values ULi,j+1/2 and URi,j−1/2 in cell Ii,j .

The THINC reconstructions are exactly the same as in 1D, their stencils are thus restricted to

two aligned neighbor cells only. The a posteriori MOOD loop operates also alike. The local

selection of reconstruction operator follows the same algorithm as in 1D and the selection of

reconstruction operator is independent in x and y directions.

In the present work, the 2D scheme is constructed via a simple but efficient direction-by-direction

extension. Indeed the flux integration along the edges is calculated using only one integration

point at the edge center. So, the 2D scheme is formally of maximal second order accuracy.

Recall that the goal in this work is not to build a genuine 5th order accurate numerical method.

On the contrary, we aim at building a genuine simple, efficient, robust and accurate enough

scheme emphasizing that an appropriate mixing of linear and non-linear reconstruction operators

may replace classical limiting techniques (such as slope/flux limiters, artificial viscosity, WENO,

etc.). In previous works [16, 35], it has been observed that the present BVD scheme can maintain

a high order of accuracy on smooth profiles of the advection equation in 1D and 2D. Moreover the

comparison of dispersion and dissipation relations with respect to other schemes (TVD, WENO,

WENO-Z) have been conducted and it was shown that the current scheme has comparable

behaviors. Extensive numerical tests have been conducted in previous works such as [16, 35, 17,

55] to assess the appropriate behavior of this BVD scheme on classical 1D and 2D test cases.

One can find the tables of convergence rate for the present scheme as well as the simulation

of the standard 2D isentropic vortex problem and simpler advection tests in 2D in references
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[16, 35]. Moreover some classical numerical results for the homogeneous Euler equations are

reported in [55]: Sod, Lax, Le Blanc shock tubes, 2D Sedov blastwave, Double Mach reflection

problem, shock-vortex interaction, shock/diffraction problem. The following numerical section

provides some numerical evidences mainly in the non homogeneous case.

5. Numerical Experiments

In this section, we test the performance of the numerical scheme on some benchmark test

problems of Euler system of PDEs with perfect gas EOS (γ = 7/5 or 5/3) without or with

various source terms. The finite volume numerical scheme is built under the following key tools:

the reconstruction process is conducted in terms of characteristic decomposition, the HLLCM

Riemann solver [48] is employed for the flux computation, a TVD-RK3 of third order for time

integration, the BVD algorithm is used for the selector of space reconstructions, and, at last,

an a posteriori MOOD loop is implemented for physical admissibility. For homogeneous Euler

equations it consists of a the PAD criterion, that is the positivity preservation, while for the

reactive Euler equations we must add the positivity of the mass fraction αni ≥ 0.

5.1. Homogeneous Euler Equations

5.1.1. 2D explosion test

An axi-symmetric two dimensional explosion problem described in [58, 72] is first simulated.

The computational domain is Ω = [−1, 1]× [−1, 1] and the initial condition is given by

(ρ0, u0, v0, p0) =


(1, 0, 0, 1) if r ≤ R,

(0.125, 0, 0, 0.1) otherwise,

(24)

where r =
√
x2 + y2 is the distance to the center of computational domain and R = 0.5. The

fluid with high density and pressure inside the circle R = 0.5 spreads out into three circular

waves: a diverging shock, followed by a diverging contact discontinuity and a converging rar-

efaction wave. The simulation runs up to tfinal = 0.2 with a uniform grid made of 400 × 400

cells. In figure 3, we show the bird’s eye view of density distribution and the cross-section profile
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Figure 3: Numerical results for 2D explosion test – Density variable — Left: bird’s eye view of density distribution

computed by present scheme; Right: Cut-off profile along the radial direction.

along the radial direction. From the results, we observe that the present scheme captures the

contact discontinuity and the shock wave without spurious oscillations and maintain the cylin-

drical symmetry. Moreover, compared to the reference WENO-JS scheme [34] (right panel), the

present scheme captures a slightly sharper contact discontinuity.

5.1.2. 2D Riemann problems

In order to test the multi-stage BVD-MOOD scheme (accuracy, oscillatory-free and robust-

ness), we simulate a set of two-dimensional Riemann problems (RP) which have been introduced

and extensively studied in [38, 39, 47]. The computational domain is Ω = [−0.5, 0.5]× [−0.5, 0.5]

and the initial conditions made of 2× 2 constant states are given by

U(x, y, t = 0) =



U1 if x > 0 ∧ y > 0,

U2 if x ≤ 0 ∧ y > 0,

U3 if x ≤ 0 ∧ y ≤ 0,

U4 if x > 0 ∧ y ≤ 0.

(25)

The initial conditions and the final solution time tfinal for the four configurations are listed

in Table 2. The ratio of specific heats is set to γ = 1.4. The simulations are run with a uniform

grid made of 600×600 mesh cells with the CFL number 0.4 in all calculations. We compare our
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Figure 4: Numerical results for Riemann problems 1,2,3,4 – Density variable — Left: WENO-JS scheme; Right:

Present scheme.
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# ρ u v p ρ u v p
tfinal

x ≤ 0 x > 0
R
P
1 y > 0 2.0 -0.75 0.5 1.0 1.0 -0.75 -0.5 1.0

0.23
y ≤ 0 1.0 0.75 0 .5 1.0 3.0 0.75 -0.5 0.3

R
P
2 y > 0 0.5197 -0.6259 0.1 0.4 1.0 0.1 0.1 1.0

0.25
y ≤ 0 0.8 0.1 0.1 0.4 0.5197 0.1 -0.6259 0.4

R
P
3 y > 0 0.5313 0.8276 0.0 0.4 1.0 0.1 0.0 1.0

0.30
y ≤ 0 0.8 0.1 0.0 0.4 0.5313 0.1 0.7276 0.4

R
P
4 y > 0 2.0 0.0 -0.3 1.0 1.0 0.0 -0.4 1.0

0.30
y ≤ 0 1.0625 0.0 0.2145 0.4 0.5197 0.0 -1.1259 0.4

Table 2: Initial conditions for the 2D Riemann problems (RP) numbered from 1 to 4. These data correspond to

Configurations 5, 7, 11 and 17 in [38].

numerical solution against the reference scheme WENO-JS from [34]. The numerical results for

the density variable are shown in figure 4. In the left and right panels, we display the numerical

density at the final time with the same scale and color for the WENO-JS and BVD-MOOD

schemes respectively. A reference solution can be found for instance in [37]. In figure 4, we can

observe on the computational results of two schemes that they comparably capture the main

flow structures of all 2D RPs. Therefore, the multi-stage BVD-MOOD scheme seems to perform

well in shock capturing situation without spurious oscillations, and, in the smooth parts of flow

without excessive numerical dissipation. Furthermore, the present scheme does capture sharper

discontinuities, more pronounced small-scale structures, and, present the birth of the Kelvin-

Helmholtz instability on the shear waves compared to WENO-JS scheme. This is an evidence

of a lower dissipation.

5.1.3. Forward facing step (Mach 3 step tunnel)

We simulate the so-called forward facing step (FFS) benchmark test which was proposed by

Woodward and Collela in [65]. In this test a right-moving Mach 3 shock in a tunnel impacts a
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forward step. The initial condition contains a uniform gas with density ρ = 1.4, pressure p = 1,

velocity components u = 3, v = 0 and specific heat ratio γ = 1.4. The computational domain is

a wind tunnel Ω = [0, 3]× [0, 1] with a step of 0.2 units high located at 0.6 units away from the

entrance of the tunnel. The inflow and outflow boundary conditions are applied at the entrance

and the exit while reflective wall boundary conditions are imposed at the remaining boundaries.

The solution of this test involves complex flow structures, density disturbances and shear flows

due to the interactions among shocks with the boundaries. The simulation is run up to tfinal = 4

as a final time with CFL number is 0.4. For this test, the mesh is made of uniform cells with

mesh size ∆x = 1/160 and 1/240. In figure 5, we display the density variable at the final time

calculated by the proposed scheme. On the top panel, we plot the 3D bird’s eye view of density

field on 1/240 mesh size, which shows the adequately resolved shock waves, and the vortices

of the Kelvin-Helmholtz instabilities developing along the top shear wave. On the same figure,

the middle panels show the numerical results of 1/160 and 1/240 mesh size respectively. The

small scale flow structures are better captured with the finer grid results as expected, moreover

the discontinuities (shocks, contact) seem to be sharply captured by our approach. Notice that

there is no issue with positivity in this test.

5.2. Euler equations with gravity source terms

Let us consider Euler equations supplemented with standard gravity source terms in ver-

tical y-direction for the thermally ideal gas, which is expressed as system (20) with S(U) =

(0, 0, ρg, ρvg) where g is gravity source set to g = 1 for 2D Rayleigh-Taylor instability and

g = −1 for 2D double rarefaction waves with gravity.

5.2.1. Two-dimensional Rayleigh-Taylor Instability

The Rayleigh-Taylor instability contains both discontinuities and complex flow structures,

see [28, 70, 68, 26]. In this test, the instability occurs on an interface between two fluids of

different densities when an acceleration is directed from the heavier towards the lighter fluid.

The computational domain is Ω = [0, 0.25]× [0, 1] and the initial condition is given by

(ρ0, u0, v0, p0) =


(2, 0, −0.025 a cos(8πx), 1 + 2y) if 0 ≤ y ≤ 1/2,

(1, 0, −0.025 a cos(8πx), y + 3/2) if 1/2 ≤ y < 1,

(26)
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Figure 5: Numerical results for forward facing step problem at tfinal = 4 simulated by the present scheme –

Top-panel: Bird’s eye view of density (color and elevation) with mesh size 1/240; Left-panel: 2D view, mesh size

1/160; Right-panel: 2D view, mesh size 1/240.

where a =
√
γp/ρ is the sound speed and the ratio of specific heat is set to γ = 5/3. Reflective

boundary conditions are imposed for the left and right ends of the domain. On the upper bound-

ary, we assign the primitive variables (ρ, u, v, p) = (1, 0, 0, 2.5) and for the bottom boundary, we

assign (ρ, u, v, p) = (2, 0, 0, 1). The computational domain is discretized into a uniform 200×800

mesh. The fluid flow is simulated up to the final time tfinal = 1.95 with CFL number 0.4. In

figure 6, we display 15 uniform density contour lines spanning [0.8, 2.3] for the WENO-JS (left

panel) and the present scheme (right panel). We observe that the present scheme has resolved

much richer vorticity structures than WENO-JS scheme. While the present scheme has a clear

ability to resolve complex and small flow structures, however it induces some symmetry breaking

probably due to the order dependency of the BVD algorithm, see [26].

5.2.2. Two-dimensional double rarefaction waves with gravity

The double rarefaction waves problem is a 2D Riemann problem which presents near vacuum

state at the central zone as it involves two rarefaction fans moving in opposite directions [44, 73].
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Figure 6: Density profile with 15 iso-contour lines for the Rayleigh-Taylor instability problem at tfinal = 1.95.

Left panel: WENO-JS scheme; Right panel: Present scheme.

23



(a) (b) (c)

Figure 7: Numerical results for two-dimensional double rarefaction waves under gravity – (a) 60 equally spaced

contour lines of density from 0 to 60; (b) the cutting lines along y-direction which is y = 1.7875, the solid line is

the numerical solution fo 400× 400 mesh and the symbol is the numerical solution of 80× 80 mesh; (c) Bird’s eye

view for 3D density.

The initial condition on computational domain Ω = [0, 2]× [0, 2] is given by [75]

(ρ0, u0, v0, p0) =


(7, −1, 0, 2) if x ≤ 1,

(7, 1, 0, 2) otherwise

(27)

and the final time is set to tfinal = 0.6 with CFL number set to 0.4 and γ = 7/5. The reflective

boundary conditions are set on the top and bottom ends and outflow boundary conditions are

set to the left and right ends of the computational domain. A mesh made of 80 × 80 cells is

considered and a reference solution is obtained with 400×400 mesh cells. The numerical results

are shown in figure 7. Due to the gravity source term pointing in the negative y direction, the

numerical solution presents some expansion on the top part (y ≥ 1.6) and compression on the

bottom one (y ≤ 0.05). The numerical solution is genuinely smooth and has a good agreement

with the reference one. Moreover the obtained solution is comparable to the one in [75] without

presenting any spurious effects in the central near vacuum state for which the density drops

down to ρ ' 5.72E − 06.
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5.3. The reactive Euler equations – Detonation waves

In this section, we show the numerical benchmark tests suite used in 1D and 2D for the

reactive Euler equations. We set the CFL to 0.05 for WENO-JS scheme and to 0.1 for the

present BVD+MOOD for the following test cases.

5.3.1. 1D reactive Euler equations

We consider the time-dependent inviscid compressible flow with reaction between two chem-

ical states in one-dimensional space. The homogeneous Euler system (1) (i.e. with S(U) = 0) is

supplemented with an equation on the mass fraction of the unburnt gas α as

∂

∂t
(ρα) +

∂

∂x
((ρα)u) = K(T ) (ρα) (28)

where K(T ) is the chemical reaction rate. The pressure is obtained from an equation of state

like

p = (γ − 1)

(
E − 1

2
ρu2 + R

)
, (29)

where R = −q0 (ρα) models the heat released from the chemical reaction processes, and q0

denotes the chemical heat release. The temperature is computed by T = p
ρ and we set the γ to

1.4. The reaction rate K(T ) can be modeled with the so-called Arrhenius kinetics [60] as

K(T ) = K0 exp

(
−Tign
T

)
, (30)

where K0 the pre-exponential coefficient and Tign the ignition (or activation) temperature are

model parameters. When the source term becomes stiff, the reaction rate may be modeled by a

Heaviside kinetics as

K(T ) =


1
ξ if T ≥ Tign,

0 if T < Tign,

(31)

where ξ represents the reaction time.

Chapman-Jouguet (C-J) detonation wave with Arrhenius Law. In this test, the Arrhenius source

term (30) is employed, see [32, 60, 63, 18]. The initial condition consists of a completely burnt

gas (α = 0) on the left-hand side facing an un-burnt counterpart (α = 1) on the right. The
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density, velocity and pressure of the un-burnt state are given by (ρu = 1, uu = 0, pu = 1, αu = 1).

The heat release is set to q0 = 25, the ignition temperature to Tign = 25 and K0 = 16.418× 103.

We obtain the C-J initial state for the burnt state (ρCJ , uCJ , pCJ , αCJ = 0) following [9, 63].

The 1D computational domain is Ω = [0, 30] and the initial discontinuity is located at xd = 10.

The final time is tfinal = 1.8 for which the detonation wave has reached location xd = 22.8. The

simulation was performed by the standard 5th order WENO-JS scheme and the present multi-

stage BVD-MOOD scheme both using N = 300 cells. The reference solution is calculated by

WENO-JS scheme with 10000 cells and displayed in solid line in figure 8. In this figure we show

the numerical results for the density, mass fraction, pressure and temperature for both schemes.

We observe that the present scheme is able to capture the correct propagation speed of the

C-J detonation wave with a larger CFL number whereas WENO-JS scheme produces spurious

oscillations and errors linked to an extra dissipation (extra plateaus or wrong shock speed) in the

vicinity of the discontinuity. Moreover, the WENO-JS numerical scheme inaccurately locates

the discontinuity, and, as a consequence, produces a wrong physical solution. Contrarily the

BVD-MOOD scheme, being less diffusive is able to capture the correct chronometry of the wave

along with the expected numerical solution.

Chapman-Jouguet detonation wave with the Heaviside Model. In this example we consider the

C-J detonation model for which the chemical reaction is in its Heaviside form. The parameter

values of the model are taken from [12, 3, 63, 17] as 1
ξ = 0.5825 × 1010, q0 = 0.5196 × 1010,

Tign = 0.1155× 1010 and γ = 1.4. The 1D computational domain is Ω = [0, 0.05] and the initial

discontinuity is set at xd = 0.005. The density, velocity and pressure of the un-burnt state are

given by (ρu = 1.201 × 10−3, uu = 0, pu = 8.321 × 105, αu = 1). The totally burned gas is

located on the left side of the tube, where (ρCJ , uCJ , pCJ , αCJ = 0) are determined by the C-J

detonation model. The computation is run up to final time tfinal = 3×10−7 with a uniform mesh

made of N = 300 cells. The exact position of the detonation wave is at xd = 0.03764 at final

time. We plot the results of the density, mass fraction, pressure and temperature variables for

both schemes in figure 9 where the reference solution is computed by WENO-JS scheme with

10000 mesh cells. We observe that the detonation wave is correctly and sharply captured by

the proposed scheme, whereas WENO-JS scheme produces a wrong numerical solution (even if
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Figure 8: Numerical results for density, mass fraction, pressure and temperature of Arrhenius case at time

tfinal = 1.8 – Top: WENO-JS scheme (green symbols); Bottom: Present BVD-MOOD scheme (red symbols).

smaller time steps are used because the stiffness of detonation wave is emphasized by the spatial

errors rather than the temporal ones), as already reported in [63].

Interaction between a detonation wave and an oscillatory profile (Heaviside model). In this

section we consider the interaction between a detonation wave and an oscillatory profile which is

taken from [2, 63, 17]. The parameter of this test are γ = 1.2, q0 = 50, 1
ξ = 1000, and Tign = 3.

The computational domain is Ω = [0, 2π] with a uniform mesh made of N = 200 cells. The

initial condition is given by

(ρ0, u0, p0, α0) =


(1.79463, 3.0151, 21.53134, 0) if x ≤ π

2 ,

(1 + 0.5 sin(2x), 0, 1, 1) otherwise.

(32)

The numerical solution is calculated up to time tfinal = π
5 and the reference solution is computed

by WENO-JS scheme with 10000 mesh cells. In figure 10 we observe the occurrence of spuri-

ous waves produced by WENO-JS scheme. On the contrary the present BVD-MOOD scheme

prevents their appearance. Furthermore, the present scheme is able to resolve the flow field
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Figure 9: Same as figure 8, but for the Heaviside model at time tfinal = 3× 10−7.

produced after the interaction between the detonation wave and the oscillatory profile. At last

the shock is again sharply captured.

Collision of two detonation waves. The last 1D reactive Euler model test case consists in a

collision of detonation waves. It resembles the Woodward-Collela blastwave benchmark test

used for the homogeneous Euler equations [13]. This test presents three constant states. The

middle state is the un-burnt gas while the left and right high-density, high-pressure burnt gases

moves towards the fresh middle state. At t > 0 it generates left and right moving detonation

waves along with rarefaction fans and contacts after impinging on the burning fronts. After

some time we observe the collision between two detonation waves. The parameter of the model

are taken following [2], i.e γ = 1.2, q0 = 50, 1
ξ = 230.75, and Tign = 3. The computational

domain is Ω = [0, 100] meshed with uniform cells (N = 200). The initial condition is given by

(ρ0, u0, p0, α0) =


(1.79463, 3.0151, 30, 0) if x ≤ 10,

(1, 0, 1, 1) if 10 < x < 90,

(1.79463, −8, 21.53134, 0) if 90 ≤ x.

(33)

28



Figure 10: Numerical results for density, mass fraction, pressure and temperature of interaction between a det-

onation wave and an oscillatory profile at time tfinal = π
5

– Top: WENO-JS scheme (green symbols); Bottom:

Present BVD-MOOD scheme (red symbols).

The numerical solution is calculated up to time t1 = 4 (before collision) in figure 11, and, time

t2 = 6 (after collision) in figure 12, respectively. The reference solution is computed by WENO-

JS scheme with N = 10000 mesh cells. Density, mass fraction, pressure and temperature are

displayed in the figures. Before and after the collisions, the BVD-MOOD scheme correctly and

sharply captures the shocks, contacts and rarefaction waves in excellent agreement with the

reference solution. On the contrary the WENO-JS scheme produces spurious supernumerary

numerical waves which are unrelated to the model of PDEs. The embedded numerical diffusion

of WENO-JS scheme incorrectly triggers the reaction which then produces a wrong numerical

solution as can be seen: indeed, it can not capture the correct location of shock speed for

instance. Notice that the left-most contact discontinuity is captured on less than two cells

with BVD-MOOD scheme while WENO-JS demands about five cells. This extra numerical

dissipation is responsible for the observed inappropriate behaviors. From these 1D numerical

tests for reactive Euler equations, we can see that the BVD-MOOD scheme can accurately

reproduce the complex wave structure of this model, moreover it captures sharply the contact
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Figure 11: Numerical results for density, mass fraction, pressure and temperature of collision of two detonations

— Before collision at time t1 = 4 – Top: WENO-JS scheme (green symbols); Bottom: Present BVD-MOOD

scheme (red symbols).

and material interfaces (on one or two cells), and can handle the interactions between simple

waves: detonation waves, oscillatory smooth profiles, rarefactions and contacts.

5.3.2. 2D reactive Euler equations

The two-dimensional version of the previous 1D system considers (20) with S(U) = 0 sup-

plemented with the 2D version of (28), i.e

∂

∂t
(ρα) +

∂

∂x
((ρα)u) +

∂

∂y
((ρα)v) = K(T ) (ρα). (34)

The source term is modeled as described in the one-dimensional case in section 5.3.1.

Numerical convergence study of discontinuous solutions. Here, we test the grid convergence

study of the proposed scheme [62, 77]. The computational domain is Ω = [0, 2]× [0, 2] and the

initial conditions consist of a circular burnt region as

(ρ0, u0, v0, p0, α0) =


(1, 0, 0, 80, 0) if x2 + y2 ≤ 0.36,

(1, 0, 0, 10−9, 1) otherwise,

(35)

30



Figure 12: Numerical results for density, mass fraction, pressure and temperature of collision of two detonations

— After collision at time t2 = 6 – Top: WENO-JS scheme (green symbols); Bottom: Present BVD-MOOD

scheme (red symbols).

with reflective boundary conditions on the left and on the bottom and outflow on top and

right ones. The final time is tfinal = 0.2 and the parameters are γ = 1.2, q = 50, Tign = 50,

K0 = 2566.4. The numerical simulations are performed over a uniform mesh made of Nx ×Ny

cells with Nx = Ny = 160 and Nx = Ny = 320 respectively. In figure 13 we illustrate the density

and pressure in color maps for the finer mesh. Furthermore, we observe that the results obtained

by the present scheme for the two meshes show a good convergence in this grid-refinement test,

and the results are comparable to those in [62, 77]. Even though the value of density is low, the

present scheme can simulate the test without any blow-up or code crash.

Detonation-diffraction problems. In this subsection, some detonation-diffraction problems are

simulated, see [76, 62, 42]. Physically, the test consists of the detonation-diffraction of a shock

wave emerging at a sharp convex corner with 90o angle or passing around an obstacle with

180o angle. There exists no general theory to completely analyze this situation. However, this

problem has been extensively numerically studied to understand the flow features produced by

detonation-diffraction of a shock wave. It became a popular challenging test case for numerical
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(a) (b) (c) (d)

Figure 13: Numerical results for numerical convergence study – (a) Color map of density; (b) Cut along the line

y = 0.25 for density; (c) Color map of pressure; (d) Cut along the line y = 0.25 for pressure.

methods because the density and pressure drop drastically towards zero, and positivity issues

are often encountered. The initial condition is given as

(ρ0, u0, v0, E0, α0) =


(11, 6.18, 0, 970, 1) if x < Ls,

(1, 0, 0, 55, 1) otherwise,

(36)

where Ls is the initial shock location. The parameters of the model are γ = 1.2, q = 50, Tign =

50,K0 = 2566.4.

90o corner test problem. The computational domain is the union of Ω1 = [0, 1]× [2, 5] and

Ω2 = [1, 5]× [0, 5]. A vertical shock is initially located at Ls = 0.5. The boundary conditions are

reflective everywhere, except that at the left-most boundary x = 0 where (ρin, uin, vin, Ein, αin) =

(11, 6.18, 0, 970, 1) is imposed as inflow boundary condition. The final time of the computation

is tfinal = 0.6. The color maps and iso-line contours of density and pressure computed by the

present BVD-MOOD scheme with Nx × Ny = 400 × 400 cells are plotted in figure 14. The

complex flow structures generated from the diffraction of the detonation wave at the corner is

in adequation with the results from [76, 62, 42]. Moreover, we can observe that the density and

pressure drop down to values 0.0077 and 0.00023, respectively, for our simulation.

180o corner test problem. The computational domain is Ω = [0, 6] × [0, 5] with a wall

type obstacle A = [0, 1.5]× [2, 2]. The initial vertical shock is located at Ls = 1. The boundary

conditions are reflective ones everywhere, except for the left-most boundary x = 0 and y > 2

where inflow is imposed like previously. The final time of the computation is tfinal = 0.68. The

color maps and iso-line contours for the density and pressure computed by the BVD-MOOD
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Figure 14: 2D Reactive Euler equations — Diffraction of detonation waves — Numerical results of a 90o corner

test case at time tfinal = 0.6 with 400 × 400 mesh cells simulated by the BVD-MOOD scheme – Top-left panel:

Density variable; Top-right panel: Pressure variable; Bottom-left panel: Temperature variable; Bottom-right

panel: Mass fraction variable.
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Figure 15: 2D Reactive Euler equations — Diffraction of detonation waves — Numerical results of 180o corner test

case at time tfinal = 0.68 with 480×400 mesh cells simulated by the BVD-MOOD scheme – Top-left panel: Density

variable; Top-right panel: Pressure variable; Bottom-left panel: Temperature variable; Bottom-right panel: Mass

fraction variable.

scheme with Nx ×Ny = 480× 400 cells are plotted in figure 15. Again the main flow structures

are well resolved and in good agreement with the ones in [42] without any trouble concerning the

positivity preservation or the out-of-bound mass fraction, or, any robustness problem in general.

In our simulations for these two demanding test cases, the MOOD loop appropriately handles

the occurrence of negative density/pressure as well as out-of-bound mass fraction, which are

cured by the ultimate use of first-order Godunov scheme when and where required.

Multiple obstacles problem. As the last test case, we simulate the detonation wave passing mul-

tiple rectangular obstacles [62, 42] which is a even more challenging test case for the positivity
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preservation property. The main reason is that spurious negative density and/or pressure may

occur below and on any of the sharp corners. The computational domain is Ω = [0, 8.3]× [0, 10]

with the first and second obstacle located at A1 = [1.3, 3.3]× [0, 2.6] and A2 = [5.1, 8.3]× [0, 4.3],

respectively. The boundary conditions are reflective everywhere including the surface of obsta-

cles. The related model parameters are set γ = 1.2, q0 = 50, Tign = 20, K0 = 2410.2. The initial

condition is

(ρ0, u0, v0, E0, α0) =


(7, 0, 0, 200, 0) if x2 + y2 ≤ 0.36,

(1, 0, 0, 55, 1) otherwise,

(37)

which corresponds to a cylindrical detonation wave separating the burnt from the un-burnt gas.

The final time is set to tfinal = 1.4. The numerical results are performed over the uniform mesh

made of Nx×Ny = 332×400 cells. The 30 colored contours of density and pressure are presented

in figure 16, which fit well with those in [62, 42]. Again, the BVD-MOOD scheme maintains the

positivity of the physical variables (density, pressure) and the in-bound property of the mass

fraction α.

6. Conclusion

In this paper we have presented a solution properties preserving reconstruction method called

multi-stage BVD-MOOD scheme which solves the compressible Euler equations supplemented

with three types of source terms. Different from the classical high order schemes based on

a a priori limited polynomial reconstructions, the present scheme employs limiter-free mixed

reconstructions. More precisely the algorithm relies on the Boundary Variation Diminishing

(BVD) algorithm to choose between (1) a 4th order unlimited polynomial interpolation for

smooth profiles, (2) non-linear monotone THINC (hyperbolic tangent) functions of different

smoothness to add dissipation and suppress spurious oscillations, (3) a sharp non-linear THINC

function to deal with discontinuity and steep gradients, and (4) no reconstruction (i.e piecewise-

constant leading to the 1st order Godunov FV scheme) for extreme situations as the last resort.

The BVD strategy consists in selecting the reconstruction in one cell which is producing

the smallest jumps at the cell boundaries because the numerical dissipation scales with those

jumps. The BVD algorithm automatically selects the highest possible polynomial interpolation
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Figure 16: 2D Reactive Euler equations — Diffraction of detonation waves — Numerical results of multiple

obstacles problem at time tfinal = 1.4 with 332× 400 mesh cells simulated by the BVD-MOOD scheme – Top-left

panel: Density; Top-right panel: Pressure; Bottom-left panel: Temperature; Bottom-right panel: Mass fraction.
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P4 for smooth solutions, the THINC reconstruction with a mild steepness on non-smooth area,

which provides an oscillation-free solution (similar to TVD-MUSCL), and the step-like THINC

shape to capture sharply the genuine discontinuous solution (contact, material interface, shock).

Furthermore, the scheme is supplemented with an a posteriori MOOD loop to ensure that

the numerical solution remains in its admissible set. If the candidate solution at time tn+1

does not satisfy the Physical Admissible Detection (PAD) criterion, then the solution is locally

recomputed with a 1st order FV scheme. The a posteriori MOOD loop cures for instance the

lack of positivity for density or internal energy, the in-bound property of mass fraction and the

computer un-representable floating points Nan, Inf.

In our approach, among several reconstructions, the scheme is able to choose the most

appropriate one according to some goodness criteria; the a priori BVD (least dissipative recon-

struction), and, an a posteriori MOOD (robustness and fail-safe).

Based on the numerical experiments of benchmark test problems, it is demonstrated that

the present scheme can sharply capture the discontinuity, material interfaces, contacts, shocks

and detonation fronts in both 1D and 2D. Moreover due to the small but sufficient numerical

dissipation, the small-scale structures are well represented, simultaneously with the prevention

of the occurrence of spurious oscillations. The a posteriori detection loop renders the scheme

extremely robust to positivity issues. The comparison with the state of the art of high accu-

rate numerical schemes such as WENO-JS is generally in favor of our approach. Recall that

our approach is ’limiter-free’ in the sense that the mechanism of dissipation is brought by the

appropriate choice of the type of reconstruction (polynomial, smooth THINC, sharp THINC,

piecewise constant). In the future we plan to extend the approach to three dimensions and un-

structured grids to handle more complex geometrical configurations. Moreover the application

of our scheme to more complex PDEs such as multiphase flows is expected.
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[24] F. Fambri, M. Dumbser, S. Köppel, L. Rezzolla, and O. Zanotti. ADER discontinuous

Galerkin schemes for general-relativistic ideal magnetohydrodynamics. Mon. Not. R. As-

tron. Soc., 477(4):4543–4564, 03 2018.

[25] P. Fan, Y. Shen, B. Tian, and C. Yang. A new smoothness indicator for improving the

weighted essentially non-oscillatory scheme. J. Comput. Phys., 269:329 – 354, 2014.

[26] L. Fu, X.Y. Hu, and N.A. Adams. A family of high-order targeted ENO schemes for

compressible-fluid simulations. J. Comput. Phys., 305:333 – 359, 2016.

[27] Elena Gaburro, Walter Boscheri, Simone Chiocchetti, Christian Klingenberg, Volker

Springel, and Michael Dumbser. High order direct arbitrary-lagrangian-eulerian schemes

on moving voronoi meshes with topology changes. Journal of Computational Physics,

407:109167, 2020.

[28] C.L. Gardner, J. Glimm, O. McBryan, R. Menikoff, D.H. Sharp, and Q. Zhang. The

dynamics of bubble growth for Rayleigh-Taylor unstable interfaces. Phys. Fluids, 31(3):447–

465, 1988.

40



[29] S. K. Godunov. A difference scheme for numerical solution of discontinuous solution of

hydrodynamic equations. Mat. Sb., 47(3):271 – 306, 1959.

[30] S. Gottlieb. On high order strong stability preserving Runge-Kutta and multi step time

discretizations. J. Sci. Comput., 25:105–128, 2005.

[31] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys.,

49(3):357 – 393, 1983.

[32] C. Helzel, R.J. Leveque, and G. Warnecke. A modified fractional step method for the

accurate approximation of detonation waves. SIAM J. Sci. Comput., 22(4):1489–1510,

2000.

[33] H.T. Huynh. Schemes and constraints for advection time stepping method with flux recon-

struction view project. Art. Lec. Notes Phys., 1997.

[34] G.S. Jiang and C.W. Shu. Efficient implementation of weighted ENO schemes. J. Comput.

Phys., 126:202–228, 1996.

[35] Z.H. Jiang, X. Deng, F. Xiao, C. Yan, and J. Yu. A high order interpolation scheme of

finite volume method for compressible flow on curvilinear grids. Commun. Comput. Phys.

(in press), 2020.

[36] Z.H. Jiang, C. Yan, and J. Yu. Efficient methods with higher order interpolation and

MOOD strategy for compressible turbulence simulations. J. Comput. Phys., 371:528 – 550,

2018.

[37] C.Y. Jung and T.B. Nguyen. Fine structures for the solutions of the two-dimensional

Riemann problems by high-order WENO schemes. Adv. Comput. Math., 44(1):147–174,

Feb 2018.

[38] A. Kurganov and E. Tadmor. Solution of two-dimensional Riemann problems for gas dy-

namics without Riemann problem solvers. Numer Meth Part D E, 18:584–608, 2002.

[39] P.D. Lax and X.D. Liu. Solution of two-dimensional Riemann problems of gas dynamics

by positive schemes. SIAM J. Sci. Comput., 19(2):319–340, 1998.

41



[40] B. Van Leer. Towards the ultimate conservative difference scheme. iv. a new approach to

numerical convection. J. Comput. Phys., 23(3):276 – 299, 1977.

[41] B. Van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel

to Godunov’s method. J. Comput. Phys., 32(1):101 – 136, 1979.

[42] P. Li, W.S. Don, C. Wang, and Z. Gao. High order positivity- and bound-preserving

hybrid compact-WENO finite difference scheme for the compressible Euler equations. J.

Sci. Comput., 74(2):640–666, Feb 2018.

[43] Q. Li, P. Liu, and H. Zhang. Piecewise polynomial mapping method and corresponding

WENO scheme with improved resolution. Commun. Computat. Phys., 18(5):1417–1444,

2015.

[44] T. Linde and P.L. Roe. Robust Euler codes. in: Thirteenth Computational Fluid Dynamics

Conference, pages AIAA–97–2098, 1997.

[45] C. Lohmann and D. Kuzmin. Synchronized flux limiting for gas dynamics variables. J.

Comput. Phys., 326:973 – 990, 2016.

[46] Y.X. Ren, M. Liu, and H. Zhang. Efficient implementation of weighted ENO schemes. J.

Comput. Phys., 192:365–386, 2003.

[47] C.W. Schulz-Rinne. Classification of the Riemann problem for two-dimensional gas dynam-

ics. SIAM J. Math. Anal., 24:76–88, 1993.

[48] Z. Shen, W. Yan, and G. Yuan. A robust HLLC-type Riemann solver for strong shock. J.

Comput. Phys., 309:185 – 206, 2016.

[49] C.W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes. J. Comput. Phys., 77:439–471, 1988.

[50] C.W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes, ii. J. Comput. Phys., 83:32–78, 1989.

42



[51] K.M. Shyue and F. Xiao. An Eulerian interface sharpening algorithm for compressible

two-phase flow: The algebraic THINC approach. J. Comput. Phys., 268:326–354, 2014.

[52] G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer.

Anal., 5(3):506–517, 1968.

[53] Z. Sun, S. Inaba, and F. Xiao. Boundary variation diminishing (BVD) reconstruction: A

new approach to improve Godunov schemes. J. Comput. Phys., 322:309–325, 2016.

[54] P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws.

J. Comput. Phys., 21(5):995 – 1011, 1984.

[55] S. Tann, X. Deng, Y. Shimizu, R. Loubère, and F. Xiao. Solution property preserving re-

construction for finite volume scheme: a boundary variation diminishing+multidimensional

optimal order detection framework. Int. J. Numer. Methods Fluids, pages 1–32, 2019.

[56] Maurizio Tavelli and Michael Dumbser. A pressure-based semi-implicit space–time discon-

tinuous galerkin method on staggered unstructured meshes for the solution of the com-

pressible navier–stokes equations at all mach numbers. Journal of Computational Physics,

341:341 – 376, 2017.

[57] Maurizio Tavelli, Michael Dumbser, Dominic Etienne Charrier, Leonhard Rannabauer, To-

bias Weinzierl, and Michael Bader. A simple diffuse interface approach on adaptive cartesian

grids for the linear elastic wave equations with complex topography. Journal of Computa-

tional Physics, 386:158 – 189, 2019.

[58] V.A. Titarev and E.F. Toro. ADER schemes for three-dimensional non-linear hyperbolic

systems. J. Comput. Phys., 204(2):715 – 736, 2005.

[59] E.F. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical intro-

duction. Springer Verlag, 2009.

[60] L. Tosatto and L. Vigevano. Numerical solution of under-resolved detonations. J. Comput.

Phys., 227(4):2317 – 2343, 2008.

43



[61] R. Turpault and T. Nguyen-Bui. A high order MOOD method for compressible Navier-

Stokes equations: application to hypersonic viscous flows. Progress in Computational Fluid

Dynamics, an International Journal, 19(6):337–345, 2019.

[62] C. Wang, X. Zhang, C.W. Shu, and J. Ning. Robust high order discontinuous Galerkin

schemes for two-dimensional gaseous detonations. J. Comput. Phys., 231(2):653 – 665,

2012.

[63] W. Wang, C.W. Shu, H.C. Yee, and B. Sjögreen. High order finite difference methods
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