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AFFINE CONES OVER FANO-MUKAI FOURFOLDS OF GENUS 10
ARE FLEXIBLE

YURI PROKHOROV AND MIKHAIL ZAIDENBERG

Abstract. We show that the affine cones over any Fano–Mukai fourfold of genus 10
are flexible in the sense of [AFK+13]. In particular, the automorphism group of such a
cone acts highly transitively outside the vertex. Furthermore, any Fano–Mukai fourfold
of genus 10, with one exception, admits a covering by open charts isomorphic to A4.
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Introduction

Our base field is the complex number field C. We use the notation of [PZ18]. Let V18 be
a Fano-Mukai fourfold of genus 10 and degree 18 half-anticanonically embedded in P12.
Recall ([KR13], [PZ18, Remark 13.4]) that the moduli space of these fourfolds is one-
dimensional. It contains two special members, namely, V a

18 with Aut0(V a
18) = Ga × Gm

and V s
18 with Aut0(V ) = GL2(C) [PZ18, Theorem 1.3.a,b]. For the general member

V g
18 /∈ {V a

18, V
s

18} one has Aut0(V g
18) = G2

m [PZ18, Theorem 1.3.c].
Let X be an affine variety. Consider the subgroup SAut(X) of the automorphism group

Aut(X) generated by all the one-parameter unipotent subgroups of Aut(X). The variety
X is called flexible if SAut(X) acts highly transitively on the smooth locus reg(X), that
is, m-transitively for any natural number m [AFK+13]. There are many examples of
flexible affine varieties, see, e.g., [AZK12, AFK+13, MPS18]; studies on this subject are
in an active phase. For a projective variety, the flexibility of the affine cones might depend
on the choice of an ample polarization. If the affine cone over a smooth projective variety
V with Picard number one is flexible, then V is a Fano variety. For a pluri-anticanonical
polarization of a Fano variety V , the flexibility of the affine cone X over V is a nontrivial
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new invariant of V . Among del Pezzo surfaces with their pluri-anticanonical polarizations,
only the surfaces of degree ≥ 4 have flexible affine cones, see [Per13, PW16]. Moreover,
the group SAut(X) of the affine cone X over (V,−mKV ), m > 0, is trivial for del
Pezzo surfaces of degree at most 3, see [CPW16]. The affine cones over flag varieties of
dimension ≥ 2 are flexible [AZK12]. The secant varieties of the Segre-Veronese varieties
provide another class of examples [MPS18]. There are many examples of Fano threefolds
with flexible affine cones, see, e.g., [MPS18]. However, we know just two examples of
such Fano fourfolds, and one of these is V s

18, see [PZ18, Theorem 14.3]. In the following
theorem we extend the latter result to all the Fano-Mukai fourfolds of genus 10.

0.1. Theorem. Let V = V18 be a Fano-Mukai fourfold of genus 10. Then the affine cone
over V is flexible for any ample polarization of V .

The proof exploits the known criteria of the flexibility of affine cones. To formulate
these criteria, we need the following notions.

0.2. Definition ([Per13, Definitions 3–4]). An open covering (Ui)i∈I of a projective variety
V by the A1-cylinders Ui ∼= A1 × Zi is called transversal if it does not admit any proper
invariant subset. A subset Y ⊂ V is proper if it is nonempty and different from V . It
is called invariant with respect to this covering if for any cylinder Ui → Zi, i ∈ I, the
intersection Y ∩ Ui is filled with the fibers of Ui → Zi.

0.3. Theorem. Let (V,H) be a polarized smooth projective variety. Then the affine cone
over (V,H) is flexible if one of the following holds:

(i) ([Per13, Theorem 5]) V admits a transversal covering by a family of A1-cylinders
Ui = V \ Supp(Di) ∼= A1 × Zi, where Zi is a smooth affine variety, i ∈ I;

(ii) ([MPS18, Theorem 1.4]) V admits a covering by a family of flexible Zariski open
subsets Ui = V \ Supp(Di), i ∈ I,

where in the both cases the Di are effective Q-divisors on V with Di ∼Q H, i ∈ I.

For instance, the affine cone over (V,H) is flexible provided one can find an open
covering {Ui}i∈I of V by toric affine varieties Ui = V \ Supp(Di) with no torus factor,
that is, non-decomposable as a product Ui = Wi× (A1 \{0}). Indeed, any such variety Ui
is flexible [AZK12, Theorem 2.1]. In the simplest case where Pic(V ) = Z and V admits
an open covering by the affine spaces, the affine cone X over (V,H) is flexible whatever
is an ample polarization H of V . This occurs to be the case in the setting of the next
Theorem 0.4(a),(b). In the setting of (c) of this theorem, we apply a slightly modified
version of the above flexibility criteria, see Proposition 3.5.

Any Fano-Mukai fourfold V = V18 can be represented, at least in two ways, as an
Aut0(V )-equivariant compactification of the affine space A4 [PZ18, Theorem 1.1]. More
precisely, there exists at least two different Aut0(V )-invariant hyperplane sections A1, A2

of V such that Ui := V \ Ai is isomorphic to A4, i = 1, 2. Statement (a) of the following
theorem is proven in [PZ18, Theorem 13.5(f)].

0.4. Theorem. For the Fano-Mukai fourfolds V = V18 of genus 10 the following hold.

(a) If Aut0(V ) = GL2(C) then V admits a covering by a one-parameter family of
Zariski open subsets Ut isomorphic to A4, where each Ut is the complement of a
hyperplane section of V . Exactly two of these sets are Aut0(V )-invariant;

(b) if Aut0(V ) = G2
m then V is covered by six Aut0(V )-invariant subsets Ui ∼= A4 as

in (a), i = 1, . . . , 6;
(c) if Aut0(V ) = Ga×Gm then there exist in V four Aut0(V )-invariant affine charts

Ui ∼= A4, i = 1, . . . , 4 such that V \
⋃4
i=1 Ui is a projective line covered by a
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one-parameter family of A2-cylinders Ut ∼= A2 × Zt, where Zt is a smooth affine
surface, t ∈ P1.

Some other families of Fano varieties demonstrate similar behavior of the automorphism
groups. For instance, this concerns the Fano threefolds of degree 22 and Picard number 1
[KP18, Pro90] and the Fano threefolds of degree 28 and Picard number 2 [PCS19, § 9].
Any member of the first family is a compactification of the affine 3-space. It is plausible
that the same is true for the second family. It would be interesting to investigate the
flexibility of the affine cones over these varieties.

The paper is organized as follows. In Sections 1 and 2 we gather necessary preliminaries,
in particular, some results from [KR13, PZ16, PZ18]; cf. also [PZ17]. Based on this, in
Section 2 we prove Theorems 0.1 and 0.4 in the case where Aut0(V ) = G2

m. In Section 3
we proceed with the proof of Theorem 0.4 in the case Aut0(V ) = Ga ×Gm. Besides, we
provide a criterion of flexibility related to the existence of a special family of A2-cylinders
on V . Such a family of cylinders is constructed in Section 4 for the smooth quadric
fourfold Q4 and for the del Pezzo quintic fourfold W5, and in Section 5 for any Fano-
Mukai fourfold V of genus 10. This enables us to complete the proofs of Theorems 0.1
and 0.4 in the remaining case where Aut(V ) = Ga ×Gm.

1. Cubic scrolls in the Fano-Mukai fourfolds V18

In this section we recall and extend some facts from of [PZ18] used in the sequel.
Throughout this paper we let V be a Fano-Mukai fourfold V = V18 of genus 10 half-
anticanonically embedded in P12. Following [KR13] we call a cubic scroll both a smooth
cubic surface scroll and a cone over a rational twisted cubic curve. The latter cones in
P4 will be called cubic cones for short.

1.1. Theorem ([KR13, Propositions 1 and 2 and the proof of Proposition 4]).

(a) Let Σ(V ) be the Hilbert scheme of lines in V . Then Σ(V ) is isomorphic to the
variety Fl(P2) of full flags on P2.

(b) Let S (V ) be the Hilbert scheme of cubic scrolls in V . Then S (V ) is isomorphic
to a disjoint union of two projective planes.

This theorem and the next lemma show that the cubic scrolls in V play the same role
as do the planes in a smooth quadric fourfold, cf. [Har92, Lecture 22].

1.2. Lemma ([PZ18, Proposition 9.6]). Let S1 and S2 be the connected components of
S (V ). Then for any Si ∈ Si and Sj ∈ Sj, i, j ∈ {1, 2} we have the following relation:
Si · Sj = δi,j in H∗(V,Z).

1.3. Lemma ([PZ18, Lemma 9.2, Corollary 4.5.2]).

(i) For any cubic scroll S on V there exists a unique hyperplane section AS of V
such that Sing(AS) = S. This hyperplane section coincides with the union of
lines on V meeting S, and any line contained in AS meets S.

(ii) For any point P ∈ AS \S there is exactly one line l ⊂ AS passing through P and
meeting S. Such a line meets S in a single point.

(iii) If S ⊂ V is a cubic cone, then V \ AS ∼= A4.

1.4. Lemma ([PZ18, Proposition 8.2, Lemmas 9.3, 9.4, 9.9(a), Corollaries 9.7.3, 9.7.4,
9.10.1]). Let v ∈ V be a point. There exists a divisor B ⊂ V such that the following hold:

(i) v /∈ B if and only if there are exactly three lines passing through v;
(ii) for v ∈ B the number of lines passing through v either is infinite, or equals 2

or 1;
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(iii) if the number of lines passing through v is infinite, then the union of these lines
is a cubic cone S with vertex v, and S ⊂ B;

(iv) any line on V can be contained in at most finite number of cubic scrolls, and in
at most two cubic cones;

(v) two cubic cones from different components of S (V ) either are disjoint, or share
a unique common ruling. Two cubic cones from the same component Si meet
transversally in a single point different from their vertices;

(vi) if two cubic cones S and S ′ are disjoint, then vS /∈ AS′, where vS stands for the
vertex of S;

(vii) if two cubic cones S and S ′ share a common ruling l, then S ∪ S ′ coincides with
the union of lines on V meeting l.

1.5. Lemma ([PZ18, Lemma 9.7.2, Corollary 9.7.3(i)]). In the notation of Theorem 1.1(a)
the Hilbert scheme of lines Σ(V ) = Fl(P2) is a divisor of type (1, 1) on P2 × (P2)∨. Let

(1.6) pr1 : Σ(V ) = Fl(P2) −→ P2 and pr2 : Σ(V ) = Fl(P2) −→ (P2)∨

be the natural projections. Any line l on V is the common ruling of exactly two cubic
scrolls, say, S1(l) ∈ S1 and S2(l) ∈ S2. Hence, there are well-defined morphisms

pri : Σ(V ) −−−→ Si = P2, l 7−−−→ Si(l), i ∈ {1, 2}

which coincide with the ones in (1.6). The fiber of pri over S ∈ Si is the line on Σ(V )
which parameterizes the rulings of S.

1.7. Lemma. Let Si
∼= P2 be a connected component of S (V ). Then the following hold.

(i) If Aut0(V ) = G2
m then Si contains exactly 3 cubic cones for i = 1, 2. The six

cubic cones in V form a cycle so that the neighbors have a common ruling and
belong to different components of S (V ), and the pairs of opposite vertices of the
cycle correspond to the pairs of disjoint cubic cones.

(ii) If Aut0(V ) = Ga ×Gm then Si contains exactly 2 cubic cones for i = 1, 2. The
four cubic cones in V form a chain, that is, the neighbors have a common ruling
and belong to different components of S (V ), and the pair of extremal vertices
corresponds to the unique pair of disjoint cones.

(iii) If Aut0(V ) = GL2(C) then the subfamily of cubic cones in Si
∼= P2 consists of a

line and an isolated point.

Proof. By Lemma 1.5 the variety Λ(S) ⊂ Σ(V ) of rulings of a cubic scroll S ⊂ V
is the fiber of one of the projections pri, so it is a line under the Segre embedding
Σ(V ) ⊂ P2 × (P2)∨ ↪→ P8, and any line on Σ(V ) appears in this way. A line l on V is
called a splitting line if the union of lines on V meeting l splits into a union of two cubic
scrolls. Assuming Aut0(V ) 6= GL2(C) the subvariety Σs(V ) ⊂ Σ(V ) of splitting lines is
a del Pezzo sextic, which admits two birational contractions to P2 [PZ18, Proposition
10.2]. The scroll S on V is a cubic cone exactly when the line Λ(S) lies on Σs(V ) [PZ18,
Proposition 9.10]. The surface Σs(V ) is smooth in case (i), and has a unique node in
case (ii) [PZ18, Proposition 10.2]. It is well known that a smooth sextic del Pezzo surface
contains exactly 6 lines, and these are arranged in a cycle. If Σs(V ) has a singularity of
type A1, then it contains exactly 4 lines, and these are arranged in a chain.

In the both cases, a pair of intersecting lines on Σs(V ) corresponds to a pair of cubic
cones on V sharing a common ruling. By Lemma 1.4(vii), such cones belong to distinct
components of S (V ). Thus, two neighbors of the same cubic cone belong to the same
component Si and meet transversally in a unique point, and two cubic cones separated
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by two others belong to distinct components of S (V ) and are disjoint, see Lemma 1.4(v).
This gives (i) and (ii). See [PZ18, Corollary 10.3.2] for (iii). �

1.8. Corollary ([PZ18, Lemmas 12.2 and 12.8.1]). If Aut0(V ) = G2
m or Ga×Gm then any

cubic cone in V is Aut0(V )-invariant. If Aut0(V ) = GL2(C) then Si contains exactly
one Aut0(V )-invariant cubic cone.

1.9. Lemma. Let S1 ⊂ S (V ) be a connected component. Then the set
⋂
S∈S1

AS coin-
cides with the union of vertices of cubic cones in S1. In particular,

⋂
S∈S (V ) AS = ∅.

Proof. Let v ∈ V be the vertex of a cubic cone Sv ∈ S1. By Lemma 1.2 one has S∩Sv 6= ∅
for any S ∈ S1, and so, v ∈

⋂
S∈S1

AS due to Lemma 1.3.
Conversely, let v ∈

⋂
S∈S1

AS. Assume to the contrary that the lines on V passing
through v form a finite set, say, {l1, . . . , lk}. By Lemma 1.4(iii)&(iv), the number of lines
on V passing through a general point of li is finite. Hence, the family Σ(V ; l1, . . . , lk) of

lines in V meeting
⋃k
i=1 li is one-dimensional, and again by Lemma 1.4(iv), any line in

this family is contained in a finite number of cubic scrolls. It follows that the subfamily
S1(l1, . . . , lk) of cubic scrolls from S1 meeting

⋃k
i=1 li is one-dimensional too. Since

dim S1 = 2, see Theorem 1.1(b), one has S1(l1, . . . , lk) 6= S1, and the general cubic

scroll S ∈ S1 does not meet
⋃k
i=1 li. This implies v /∈ AS, a contradiction.

Thus, any point v ∈
⋂
S∈S1

AS is the vertex of a cubic cone, say, Sv. Then one has
Sv ∩ S 6= ∅ for any S ∈ S1. Assuming Sv /∈ S1 it follows from Lemma 1.2 that for
any S ∈ S1 the intersection Sv ∩ S contains a curve. Then any line in Sv meets S, and
so, Sv ⊂

⋂
S∈S1

AS. By the preceding, any point of Sv is a vertex of a cubic cone in
V . This contradicts Lemma 1.4(iv) and proves the first assertion. The second assertion
follows from the first since two distinct cubic cones cannot share the same vertex, see
Lemma 1.4(iii). �

For instance, in the case Aut0(V ) = GL2(C) the intersection
⋂
S∈Si

AS is the twisted
cubic Γi, i = 1, 2 as in Lemma 2.2 below, see [PZ18, Theorem 13.5(b)].

2. Aut0(V )-action on the Fano-Mukai fourfold V of genus 10

Generalities.

2.1. Lemma. (i) Under the induced Aut0(V )-action on the Hilbert scheme of lines
Σ(V ), the stabilizer of the general point is trivial.

(ii) Under the induced Aut0(V )-action on the Hilbert scheme of cubic scrolls S (V ),
the stabilizer of the general point is finite.

Proof. Statement (i) follows from the fact that through the general point of V pass at
least two lines, see Lemma 1.4(i), and two lines meet in a single point. In turn, (ii) follows
from the fact that through the general line l on V pass a finite number of cubic scrolls,
and l is a component of the intersection of these scrolls, see Lemma 1.4(iv). �

2.2. Lemma. Let S1, S2 ⊂ V be disjoint cubic cones, and let Γ1 = S1∩AS2, Γ2 = S2∩AS1.
Then the following holds.

(i) Γ1 and Γ2 are rational twisted cubic curves;
(ii) there exists a one-parameter family of lines lt in V joining Γ1 and Γ2;

(iii) any line in V passing through a point γ ∈ Γi is either a ruling of Si, or a unique
member of the family lt;

(iv) D :=
⋃
t∈P1 lt is a rational normal sextic scroll contained in AS1 ∩ AS2;
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(v) If S1 and S2 are Aut0(V )-invariant then D and the curves Γi, i = 1, 2, are as
well, and the stabilizer of the general point of D in Aut0(V ) is finite.

Proof. Since S1 ∩ S2 = ∅ one has vi /∈ ASj
for i, j = 1, 2, i 6= j, see Lemma 1.4(vi). This

yields (i). By Lemma 1.3(i)–(ii) for any γ ∈ Γ1 there exists a unique line lγ ⊂ AS1 ∩ AS2

joining γ and S2. This line lγ meets Γ2 = S2 ∩ AS1 . This shows (ii) and the inclusion
D ⊂ AS1 ∩ AS2 , where D is as in (iv). Statement (iii) follows from Lemma 1.4(i)–(iii).
For the first assertion in (iv) see, e.g., [Har92, Example 8.17]. The first assertion in
(v) is immediate. To prove the second, we assume Aut0(V ) to be abelian. In the case
Aut0(V ) = GL2(C) one can either restrict to the maximal torus of GL2(C), or simply
deduce the result from [PZ18, Theorem 13.5]. Suppose G is a one-parameter subgroup
of Aut0(V ) acting trivially on D. Then G fixes the general line meeting D. So, there is
a two-dimensional subvariety Σ′ ⊂ Σ(V ) parameterizing G-invariant lines on V . By the
description of Σ(V ), see Theorem 1.1(a) and Lemma 1.5, the group G acts trivially on
Σ(V ) and on V , a contradiction. �

2.3. Lemma. Let S be an Aut0(V )-invariant cubic cone in V , and let G0 be a two-
dimensional connected abelian subgroup of Aut0(V ). Then G0 acts on S with an open
orbit.

Proof. We repeat the argument from the proof of the last statement in Lemma 2.2(v).
By Lemmas 1.3(ii) and 1.4(ii)–(iii) though the general point P of S passes a unique line
different from the ruling of S through P . Hence, the family of lines on V meeting S is
two-dimensional. If the G0-action on S does not have an open orbit, then all the lines in
this family have a common one-dimensional stabilizer G. As before, this stabilizer acts
trivially on Σ(V ) and on V , a contradiction. �

The case Aut0(V ) = G2
m. In this subsection we prove Theorems 0.4 and 0.1 in the case

Aut(V ) = G2
m, that is, we let V = V g

18.

2.4. Consider the simple algebraic group G2 of rank 2 and of dimension 14. By the
Mukai construction [Muk89] (see also [PZ18, Theorem 7.1]), any Fano-Mukai fourfold V
of genus 10 is a hyperplane section of the homogeneous fivefold Ω = G2/P ⊂ P13, where
P ⊂ G2 is a parabolic subgroup of dimension 9 corresponding to a long root, and so, Ω is
the corresponding adjoint variety. It is known [PZ18, Theorem 1.2] that Aut0(V ) is the
identity component of the stabilizer of V in G2 acting naturally on Ω.

2.5. Lemma. Let T ⊂ G2 be a maximal torus. Then T has exactly six fixed point in Ω.

Proof. The left coset ω = gP ∈ Ω, where g ∈ G2, is a fixed point of T if and only if for
any t ∈ T there exists p ∈ P with tg = gp, that is, g−1Tg ⊂ P . Since the maximal tori
in G2 are conjugated and P contains the Borel subgroup of G2, we may assume T ⊂ P .
Consider the following subgroup of G2:

Γ := {g ∈ G2 | g−1Tg ⊂ P}.
Clearly, Γ ⊃ P . Two T -fixed points ωi = giP ∈ Ω, i = 1, 2, coincide if and only if
g2 ∈ g1P . So, the fixed points of T in Ω are in one-to-one correspondence with the
elements of the left coset space Γ/P .

We have NG2(T ) ⊂ Γ, where NG(G′) stands for the normalizer subgroup of a subgroup
G′ ⊂ G. The normalizer NG2(T ) acts on Γ/P via

NG2(T ) 3 η : gP 7−−−→ ηgP ∀g ∈ Γ.

This action is transitive. Indeed, given g ∈ Γ, let T ′ = g−1Tg ⊂ P . The maximal
tori T and T ′ are conjugate in P , and so, T ′ = p−1Tp for some p ∈ P . Then n :=
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pg−1 ∈ NG2(T ) verifies nP = gP . The stabilizer of the coset P in NG2(T ) under this
action is P ∩ NG2(T ) = NP (T ). Therefore, the fixed points of T in Ω are in one-to-one
correspondence with the elements of the left coset space

NG2(T )/NP (T ) =
(
NG2(T )/T

)
/
(
NP (T )/T

)
= W(G2)/W(P ) = D6/{±1} = Z/6Z,

where W(G) stands for the Weyl group of G, and Dn is the nth dihedral group. This
yields the assertion. �

2.6. The Fano-Mukai fourfold V with Aut0(V ) = G2
m contains exactly six cubic cones,

see Lemma 1.7(i). By Lemma 1.4(iii), any cubic cone S ⊂ V coincides with the union of
lines in V passing through its vertex, is Aut0(V )-invariant, and its vertex is fixed under
Aut0(V ). By Lemma 1.4(iii), the vertices of distinct cubic cones are distinct. Using
Lemma 2.5 we deduce the following corollary.

2.7. Corollary. Let Aut0(V ) = G2
m. Then the vertices vi of the cubic cones Si, i =

1, . . . , 6, are the only fixed points of the torus T = Aut0(V ) acting on V .

The next corollary yields Theorem 0.4(b).

2.8. Corollary. One has
⋂6
i=1ASi

= ∅.

Proof. Assume the contrary holds. Then by the Borel fixed point theorem, the inter-
section

⋂6
i=1ASi

contains a fixed point of the torus Aut0(V ) = G2
m. By Corollary 2.7

this point is the vertex of a cubic cone, say S1 ∈ S1. By Lemma 1.4(vi), S1 meets
any of the remaining cones Si, i = 2, . . . , 6. In particular, S1 meets the cones, say S2,
S4, and S6, which belong to the other component S2 of S (V ). Then S1 · Si = 0 for
i = 2, 4, 6, see Lemma 1.2. By Lemma 1.4(v), S1 shares a common ruling with S2, S4,
and S6. These three rulings of S1 are Aut0(V )-invariant and pairwise distinct, see [PZ18,
Corollary 9.7.3(ii)]. It follows that the Aut0(V )-action on the base of S1 is trivial, and
so, any ruling of S1 is invariant. However, this contradicts the fact that the torus G2

m

acts on S1 with an open orbit, see Lemma 2.3. �

2.9. Remark. An alternative argument is as foloows. By Lemma 1.7 one has S1∩S4 = ∅.
It follows by Lemma 1.4(vi) that vS1 /∈ AS4 , which gives again a contradiction.

Proof of Theorem 0.1 in the case Aut(V ) = G2
m. Recall that the affine space A4 is a flex-

ible variety, see, e.g., [KZ99, Lemma 5.5]. By Proposition 3.1, V is covered by the
flexible Zariski open subsets Ui = V \ ASi

∼= A4, i = 1, . . . , 6. Thus, the criterion of
Theorem 0.3(ii) applies and gives the result. �

The case Aut0(V ) = Ga ×Gm. In this subsection we let V = V a
18.

2.10. Lemma. Any effective action of Ga×Gm on P2 can be given in suitable coordinates
by the matrices

(2.11)

λ 0 0
0 1 µ
0 0 1

 where λ ∈ C∗, µ ∈ C.

This action has exactly two invariant lines J1, J2 ⊂ P2 and exactly two fixed points
P0 ∈ J1 ∩ J2 and P1 ∈ J1 \ J2, see Fig. 2.A.

Proof. Since the group Ga × Gm is abelian and acts effectively on P2, (2.11) is the only
possibility for the Jordan normal form of its elements modulo scalar matrices. �

2.12. Proposition. For V = V a
18 the following assertions hold.

7



J2 J1

P0

P1

Figure 2.A.

(i) The action of Aut0(V ) = Ga×Gm on each component Si
∼= P2 of S (V ), i = 1, 2

is given by matrices (2.11), and the action on Σ(V ) ∼= Fl(P2) is the induced one.
(ii) The subfamily S a

1 of Ga-invariant cubic scrolls corresponds to the line J1 on
S1 = P2, and the subfamily S m

1 of Gm-invariant cubic scrolls corresponds to J2,
see Fig. 2.A.

(iii) There are exactly three Aut0(V )-invariant lines li,i+1, i ∈ {1, 2, 3} and exactly
four Aut0(V )-invariant cubic scrolls Si, i = 1, . . . , 4 on V . With a suitable
enumeration, li,i+1 is a common ruling of Si and Si+1, while Si and Sj have
no common ruling if j − i 6= ±1. Furthermore, Si and Sj belong to the same
connected component of S (V ) if and only if j ≡ i mod 2.1

(iv) Any cubic scroll Si in (iii) is a cubic cone, and any cubic cone on V coincides
with one of the Si’s.

(v) There are exactly four Aut0(V )-fixed points v1, . . . , v4 on V . These points are the
vertices of cubic cones S1, . . . , S4. Furthermore, one has

v2 = l1,2 ∩ l2,3 = S1 ∩ S3, v3 = l2,3 ∩ l3,4 = S2 ∩ S4, S1 ∩ S4 = ∅.
The three lines li,i+1 form a chain.

(vi) There are exactly two families of Ga-invariant lines on V . These are the families
of rulings of S2 and S3.

(vii) There are exactly three families of Gm-invariant lines on V . These are the fam-
ilies of rulings of S1, S4, and of the smooth sextic scroll D ⊂ V , see 2.13.

Collecting the information from Proposition 2.12 we see that the configuration of the
cones Si looks as the one on Fig 2.B.

v2 v4

v1 v3

l1,2

l2,3

l3,4S1 S3

S2

S4

Figure 2.B.

2.13. Notation. There is exactly one pair of disjoint cubic cones on V , namely, (S1, S4).
We let D ⊂ V be the smooth sextic scroll as in Lemma 2.2(iv), that is, the union of lines
on V joining the corresponding points of the rational twisted cubic curves Γ1 = S1 ∩AS4

1This gives an alternative proof of Lemma 1.7(ii).
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and Γ4 = S4 ∩ AS1 . Notice that the curves Γ1 and Γ4, as well as the surface D are
Aut0(V )-invariant.

Proof of Proposition 2.12. Assertions (i) and (ii) are immediate, see Lemma 2.10. Asser-
tion (iii) follows from Lemmas 1.5 and 2.10.

(iv). Any cubic cone on V is Aut0(V )-invariant, hence, is contained in {S1, . . . , S4},
see Corollary 1.8. We have to show only that any invariant cubic scroll is a cubic cone.
Actually, this follows from Lemma 1.7(ii), however, we provide an alternative proof.

Suppose to the contrary S2 is smooth, and so S2
∼= F1. Then its exceptional section is an

invariant line, hence, it coincides with l3,4. By [PZ18, Proposition 9.5] the corresponding
connected component of S (V ) contains a cubic cone, which must coincide with S4 due
to (iii). Let l be the ruling of S2 passing through the vertex v4 of S4. Then l is a common
ruling of S2 and S4. This contradicts (iii). Thus, S2 is a cubic cone. By symmetry, S3 is
a cubic cone too.

Suppose further S1 is smooth. If S1 contains the vertex v3 of S3, then S1 and S3 have a
common ruling, a contradiction. Thus, v3 /∈ S1, and so, S1 does not contain the invariant
lines l2,3 and l3,4. It follows that the ruling l1,2 of S1 is the only Aut0(V )-invariant line
on S1, which coincides then with the exceptional section of S1, a contradiction. Thus, S1

is a cubic cone, and by symmetry, the same holds for S4.
(v) Notice that the vertices of the cubic cones in V are fixed by Aut0(V ), because these

cones are invariant. Let v be a fixed point of the Aut0(V )-action on V different from the
vertices of cubic cones. According to Lemma 1.4(iii), the number of lines on V passing
through v is finite. Hence each of these lines is Aut0(V )-invariant. By (iii) such a line
coincides with the common ruling li,i+1 of a pair (Si, Si+1), i ∈ {1, 2, 3}. However, any
line li,i+1 contains exactly two Aut0(V )-fixed points, namely, the vertices vi and vi+1. The
remaining statements are immediate.

(vi) and (vii). By Theorem 1.1(a) we have Σ(V ) ∼= Fl(P2). By Lemma 2.10 the group
Aut0(V ) ∼= Ga×Gm acts on Σ(V ) ∼= Fl(P2) via (2.11). Looking at Fig.2.A one can select
all the lines on V with one-dimensional stabilizers. There are exactly five such families
of lines; they correspond to the following five families of flags on P2:

• (P0, l), where l runs over the pencil of lines through P0;
• (P1, l), where l runs over the pencil of lines through P1;
• (P, J1), where P runs over J1;
• (P, J2), where P runs over J2;
• (P, l), where P runs over J2 and l passes through P and P1.

The last family corresponds to the family of rulings of D, and the other four correspond
to the families of rulings of the cubic cones S1, . . . , S4. �

3. Affine 4-spaces in V a
18 and flexibility of affine cones

Affine 4-spaces in V a
18. In this subsection we analyze affine charts isomorphic to A4 on

the Fano-Mukai fourfold V = V a
18 of genus 10 with Aut0(V ) = Ga × Gm, and provide a

modified criterion of flexibility of affine cones over projective varieties in terms of existence
of certain cylinders.

The following proposition proves the first part of Theorem 0.4(c); the second part will
be proven in Proposition 5.1.

3.1. Proposition. In the notation of Proposition 2.12 one has
⋂4
j=1ASj

= l2,3.

The proof is done below. We need the following auxiliary facts. Let Y =
⋂4
j=1ASj

.

Clearly, Y is Aut0(V )-invariant.
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3.2. Claim. One has l2,3 ⊂ Y .

Proof. The line l2,3 intersects all the Si. Hence, l2,3 ⊂ ASi
for all i. �

3.3. Claim. S1 ∩ Y = {v2} and S4 ∩ Y = {v3}.
Proof. We have v1 /∈ AS4 because S1 ∩ S4 = ∅. Hence S1 ∩ AS4 is a smooth irreducible
hyperplane section of the cone S1. Since v1 ∈ AS2 , the intersection S1 ∩AS2 is a singular
hyperplane section of S1. Therefore, the intersection S1∩Y is a finite set, whose points are
fixed by Aut0(V ). Then by Proposition 2.12(v) and Claim 3.2 we have S1∩Y = {v2}. �
3.4. Claim. S2 ∩ Y = S3 ∩ Y = l2,3.

Proof. We have v2 ∈ S2 ∩ Y and S2 6⊂ Y because l1,2 6⊂ Y by Claim 3.3. Since S2 ∩ Y =
S2∩〈Y 〉 the intersection S2∩Y consists of a finite number of rulings of S2. These rulings
are Aut0(V )-invariant. Since l1,2 6⊂ Y by Claim 3.3 the only possibility is S2 ∩ Y = l2,3,
see Proposition 2.12(iii). �

Proof of Proposition 3.1. Assume there is a point P ∈ Y \ l2,3. By Claims 3.3 and 3.4
P /∈ Sj for all j. By Lemma 1.3(ii) for any j = 1, . . . , 4 through P passes a unique line
lj ⊂ ASj

meeting Sj. Since there are at most three lines on V passing through P , one
has li = lj for some i 6= j. Set l: = li = lj. Thus, one has P ∈ l ⊂ ASi

∩ ASj
. By

Lemma 1.4(iii), V contains no plane. Hence, the set of lines contained in the surface
ASi
∩ ASj

has dimension at most one, cf. [KPS18, Lemma A.1.1]. Since l 6⊂ Sj for all j,

the line l cannot be Aut0(V )-invariant, see Proposition 2.12(iii). Therefore, the stabilizer
G of l under the Aut0(V )-action on Σ(V ) is one-dimensional. Since l 6⊂ Sj for all j, due
to Proposition 2.12(vi)-(vii), l is a ruling of D, and so, is Gm-invariant. The rulings l
and l2,3 of D are disjoint, because P /∈ l2,3 by our choice. It follows from Claim 3.4 that
l ∩ S2 = l ∩ S3 = ∅. So, we have {i, j} = {1, 4}, that is, l meets S1 and S4 in Gm-fixed
points. Besides, there exists a unique line l2 6= l in V joining P and S2. If the stabilizer
of P in G is finite, then l = G · P ⊂ Y . In particular, the intersection point P1 of l and
S1 lies on Y . By Claim 3.3 one has P1 = v2, contrary to the fact that l∩S2 = ∅. Hence,
P is fixed by Gm, and then the line l2 is Gm-invariant. Since l2 is not a ruling of D or of
one of the Si, we get a contradiction with Proposition 2.12(vii). �

Flexibility of affine cones: a criterion. We ignore whether the Fano-Mukai fourfold
V = V a

18 with Aut(V ) = Ga × Gm admits a covering by flexible affine charts, cf. Propo-
sition 3.1. Hence, we cannot apply the criterion of Theorem 0.3(ii) in this case. Instead,
we will apply the following version, which mixes the two criteria of Theorem 0.3. We say
that an open set U = V \ Supp(A) in a polarized projective variety (V,H), where A is
an effective divisor on V , is polar if A ∼Q H.

3.5. Proposition. Let (V,H) be a smooth projective variety of dimension n ≥ 3 with
an ample polarization. Suppose V possesses a family of affine flexible polar A1-cylinders
Ui = V \ Supp(Ai) ∼= A1 × Zi, i ∈ I, where Zi is an affine variety of dimension n − 1.
Assume further that

• D :=
⋂
i∈I Ai is a subvariety of V of dimension m ≤ n− 2;

• through any point of V pass at most k components of D;
• any point P ∈ D is contained either in a principal open polar Am+1-cylinder
UP ∼= Am+1 × ZP in V , or in k + 1 principal polar open Am-cylinders UP,j ∼=
Am × ZP,j in V , j = 1, . . . , k + 1, where ZP and ZP,j are affine varieties, and
for any two cylinders UP,j and UP,j′ with j 6= j′ the Am-fibers through P of the
natural projections UP,j → ZP,j and UP,j′ → ZP,j′ meet properly, that is, the
dimension of their intersection is smaller than m.
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Then the affine cone over (V,H) is flexible.

Proof. We use the criterion of Theorem 0.3(i), that is, we show the existence of a transver-
sal covering of V by polar open A1-cylinders. For such a covering, we take the union of
the collections {Ui}, {UP}, and {UP,j}, where each member is endowed with all possible
structures of an A1-cylinder.

Let Y ⊂ V be a nonempty closed subset invariant with respect to the above covering
of V by A1-cylinders. We claim that if Y ∩ Ui 6= ∅ for some i ∈ I, then Y ⊃ Ui. Indeed,
let P ∈ Y ∩ Ui, and let l be the ruling of the A1-cylinder Ui passing through P . Then
l ⊂ Y because Y is invariant. Since Ui is flexible, for any point P ′ ∈ Ui different from
P one can find an automorphism α ∈ SAut(Ui) such that α(P ) = P and α−1(P ′) ∈ l.
Then α(l) is a ruling of a new A1-cylinder structure on Ui. Since P, P ′ ∈ α(l) and P ∈ Y ,
where Y is invariant, then also P ′ ∈ α(l) ⊂ Y . Hence, one has Ui ⊂ Y , as claimed.

It follows that Y ∩ Uj 6= ∅ for any j ∈ I. Thereby, one has Y ⊃
⋃
i∈I Ui = V \ D.

Due to our assumptions, for any point P ∈ D one can choose either a principal open
Am+1-cylinder UP , or a principal open Am-cylinder UP,j such that the Am-fiber passing
through P of the projection UP,j → ZP,j is not contained in D. Then for a suitable
A1-cylinder structure on UP or UP,j, respectively, the ruling l ∼= A1 passing through P is
not contained in D, and so, meets V \D ⊂ Y . Then one has P ∈ l ⊂ Y . Since this holds
for any P ∈ D, one has D ⊂ Y , and so, Y = V , that is, Y is not a proper subset of V .

The latter argument shows as well that a nonempty invariant subset Y ⊂ V cannot be
contained in D. Thus, the criterion of Theorem 0.3(i) applies and yields the result. �

Using Proposition 3.1 we deduce such a corollary.

3.6. Corollary. The affine cones over the Fano-Mukai fourfold V with Aut0(V ) = Ga ×
Gm are flexible provided any point P of the common ruling l2,3 of the cubic cones S2 and
S3 on V is contained in a principal open A2-cylinder UP in V .

In Proposition 5.1 we construct such an open covering of l2,3 in V by principal open
A2-cylinders. Combining with Corollary 3.6 this gives a proof of Theorem 0.1 in the
remaining case Aut0(V ) = Ga ×Gm.

4. A2-cylinders in smooth quadric fourfolds and in the del Pezzo quintic
fourfold

The next lemma on the existence of an A2-cylinder will be used the proof of Proposi-
tion 4.5 below.

4.1. Lemma. Let Q ⊂ P5 be a smooth quadric, and let Q′, Q? be distinct hyperplane
sections of Q. Let Q1, . . . , Qk be the members of the pencil 〈Q′, Q?〉 generated by Q′ and
Q? which have singularities outside Q′ ∩ Q?, and let Pi be the unique singular point of
Qi. Given a point P ∈ Q \ (Q′ ∪ Q? ∪ {P1, . . . , Pk}) there exists a principal affine open
subset U = UP ⊂ Q \ (Q′ ∪Q?) such that

(i) P ∈ U ;
(ii) U ∼= A2 × Z, where Z is an affine surface.

Proof. Pick a general point P • ∈ Q′ ∩Q?, and let TP •Q ⊂ P5 be the embedded tangent
space to Q at P •. The projection with center P • defines an isomorphism

Q \Q• ∼= P4 \ P3 ∼= A4, where Q• := Q ∩TP •Q.

The quadric cone Q• with vertex P • coincides with the union of lines on Q passing
through P •. If the quadric cone ∆P (Q) = Q ∩ TPQ with vertex P ∈ Q \ (Q′ ∩ Q?)
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contains Q′ ∩Q?, then ∆P (Q) coincides with a member Qi of the pencil 〈Q′, Q?〉, which
has the singular point P = Pi for some i ∈ {1, . . . , k}. However, the latter is excluded by
our assumption. So, Q′ ∩ Q? 6⊂ ∆P (Q). Hence, for the general point P • ∈ Q′ ∩ Q? the
line joining P and P • is not contained in Q. The latter implies P /∈ Q•.

The images of Q′ \ Q• and Q? \ Q• in A4 = P4 \ P3 under the projection with center
P • is a pair of affine hyperplanes with nonempty intersection. Thus, we obtain

�(4.2) P ∈ Q \ (Q• ∪Q′ ∪Q?) ∼= A2 × (A1 \ {a point})× (A1 \ {a point}).

Recall that a smooth del Pezzo quintic fourfold W = W5 ⊂ P7 is unique up to iso-
morphism [Fuj81]. This variety is quasihomogeneous, more precisely, the automorphism
group Aut(W ) has the open orbit W \ R ∼= A4 in W , where R is the hyperplane section
of W covered by the lines on W which meet the unique σ2,2-plane Ξ ⊂ W , see [PZ16,
Section 4]. The planes on W different from Ξ form a one-parameter family, and their
union coincides with R; we call them Π-planes.

4.3. Proposition. Let W = W5 ⊂ P7 be the del Pezzo quintic fourfold. Then the following
hold.

(i) ([PZ16, Corollary 2.6]) The Hilbert scheme Σ(W ) of lines on W is smooth, irre-
ducible, of dimension dim Σ(W ) = 4. For any point P ∈ W the Hilbert scheme
Σ(W ;P ) ⊂ Σ(W ) of lines passing through P has pure dimension 1.

(ii) ([PZ16, Proposition 4.11.iv]) For any line l ⊂ W there exists a unique hyperplane
section Bl of W with Sing(Bl) ⊃ l. This Bl is the union of lines meeting l.

(iii) Given a point P ∈ W , let ∆P be the union of lines in W passing through P . If
P ∈ W \ R, then ∆P is a cubic cone. If P ∈ R \ Ξ, then ∆P is the union of a
plane ΠP passing through P and a quadric cone ∆′P with vertex P .

(iv) Let B ⊂ W be a hyperplane section whose singular locus is two-dimensional.
Then B = R and Sing(B) = Ξ.

(v) Let B ⊂ W be a hyperplane section whose singular locus is one-dimensional.
Then B = Bl for some line l.

(vi) Let B ⊂ W be a hyperplane section, and let C ⊂ B be an irreducible curve.
Assume B contains a two-dimensional family of lines meeting C. Then one of
the following holds:
(a) C is contained in a plane on B;
(b) C = l is a line, and B = Bl;
(c) B = R.

Proof. (iii) By (i) the universal family of lines L(W ) ⊂ Σ(W ) ×W is smooth, and the
natural projection s : L(W )→ W is a flat morphism of relative dimension one. Its fiber
s−1(P ) is isomorphic to the base of the cone ∆P . Let P ∈ W \ R. Since W \ R is the
open orbit of Aut(W ), see, e.g., [PZ18, (5.5.5)], the fiber s−1(P ) is smooth in this case.
Let H be a general hyperplane section of W passing through P . By Bertini’s theorem,
H is smooth, and by the adjunction formula, H is a del Pezzo threefold of degree 5. It
is well known, see, e.g., [Isk80, Ch. 2, § 1.6] or [KPS18, Corollary 5.1.5], that through a
general point of H pass exactly three lines. This implies deg ∆P = 3. On the other hand,
one has ∆P = TPW ∩W . Since W is intersection of quadrics, ∆P cannot be a cone over
a plane cubic. It follows that ∆P is a cubic cone.

Let further P ∈ R \Ξ. By [PVdV99, Theorem 6.9], Aut(W ) acts transitively on R \Ξ.
We have ∆P 6⊃ Ξ, and ∆P contains a Π-plane ΠP passing through P . Such a plane
is unique because no two planes on W meet outside Ξ. By the flatness of s we have
deg ∆P = 3. There are lines on W which are not contained in R and meet R \Ξ, and one
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of these lines passes through P . Therefore, one has ∆P 6= 3ΠP . Then the only possibility
is ∆P = ΠP + ∆′P , where ∆′P is a quadric cone.

(iv) Let Z be an irreducible component of Sing(B) of dimension two. Choose general
hyperplane sections H1 and H2 of W , and let C = B ∩H1 ∩H2. By Bertini’s theorem,
C is an irreducible curve with Sing(C) = Z ∩ H1 ∩ H2. By the adjunction formula one
has pa(C) = 1. Hence degZ = 1, i.e. Z is a plane. Since B contains any line meeting Z,
we have B = R, and then Sing(B) = Ξ.

(v) Let Υ be the union of one-dimensional irreducible components of Sing(B). Since
Υ ⊂ Sing(B) and B is a hyperplane section, B contains any line meeting Υ. Hence, B
is the union of lines meeting Υ, see (i). By (iv) one has B 6= R. If Υ is a line, then
B = BΥ by (ii). Thus, we may assume Υ to be a curve of degree d > 1. Consider
the general hyperplane section H ⊂ B. By Bertini’s theorem, H has exactly d singular
points, and these are the points of H ∩Υ. By the adjunction formula, −KH is the class
of a hyperplane section of H. Hence, H is a normal Gorenstein del Pezzo quintic surface.

By [CT88, Proposition 8.5] we have d = 2, that is, H has exactly two singular points,
say, P1 and P2, and Υ is a conic. Again by [CT88, Proposition 8.5], H contains the line
joining P1 and P2. Hence, B contains the linear span 〈Υ〉. Since R is the union of planes
contained in W , we have Υ ⊂ 〈Υ〉 ⊂ R. By (iv) one has 〈Υ〉 6= Ξ. So, 〈Υ〉 = Π is a
Π-plane on R, where Π ⊂ B. Take a general line l ⊂ Π, and let Υ ∩ l = {P1, P2}. Since
Ξ meets l ⊂ Sing(Bl) one has Ξ ⊂ Bl. Likewise, since Ξ meets Υ ⊂ Sing(B) one has
Ξ ⊂ B. Besides, the quadric cones ∆′P1

and ∆′P2
as in (iii) are contained in both B and

Bl. Thus, we obtain

B ∩Bl ⊃ Π ∪ Ξ ∪∆′P1
∪∆′P2

.

Assuming B 6= Bl the latter contradicts the fact that deg(B ∩Bl) = degW = 5.
(vi) We may suppose that B 6= R and the singular locus of B has dimension ≤ 1,

see (iv). By assumption, C ⊂ B is an irreducible curve, and there exists an irreducible
two-dimensional family of lines Σ(B,C) ⊂ Σ(B) on B meeting C. Let r : L(C,B) →
Σ(C,B) be the universal family, and let s : L(C,B) → B be the natural projection. If
s(L(C,B)) 6= B, then s(L(C,B)) is a plane, see, e.g., [KPS18, Lemma A.1.1], and so, C
is contained in a plane on B. Assume further s(L(C,B)) = B, and so, s is a generically
étale morphism. We claim that the general line from Σ(C,B) meets the singular locus
of B. The argument below is well-known, see e.g. [Isk80, Ch. 3, Prop. 1.3] or [KPS18,
Lemma 2.2.6], and we repeat it in brief for the sake of completeness. Suppose to the
contrary that the general line l from Σ(C,B) lies in the smooth locus of B. Using the
fact that the restriction of s to r−1([l]) is an isomorphism, we may identify l with r−1([l]).
For the normal bundles of l we have

(4.4) Nl/L(C,B) = Ol ⊕ Ol, Nl/B = Ol(a)⊕ Ol(−a), a ≥ 0.

Over the point l ∩ C the map s is not an isomorphism. Hence the differential

ds : Nl/L(C,B) −−−→ Nl/B

is not an isomorphism either. From (4.4) we see that ds degenerates along l. This means
that s is not generically étale, a contradiction.

Thus, the general line from Σ(C,B) meets Sing(B). Since B is not a cone, by our
assumption we have dim Sing(B) = 1. Due to (v) there is a line l0 on W such that
B = Bl0 . If l0 = C, then we are done. Otherwise, the lines on B passing through the
general point P ∈ C meet l0 = Sing(B). The union of these lines is the cone with vertex
P over l0, that is, a plane. It follows that B is swept out by planes. Since any plane on
W is contained in R, we conclude that B = R, contrary to our assumption. �
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4.5. Proposition. Let B ⊂ W be a hyperplane section. For any point P ∈ W \ B there
exists a principal affine open subset UP ⊂ W \B such that

(i) P ∈ UP ;
(ii) UP ∼= A2 × ZP , where ZP is an affine surface.

Proof. If B = R then W \ B ∼= A4 [PZ18, Corollary 2.2.2], and the assertion follows.
So, we assume in the sequel B 6= R. We apply the following construction from [Fuj81]
(see also [PZ16, Proposition 4.11]). Fix a line l ⊂ W not contained in R. There is the
Sarkisov link

(4.6)
W̃

ρW

zz

ϕQ

$$
W

θl // Q

where Q ⊂ P5 is a smooth quadric, θl is induced by the linear projection with center
l, ρW is the blowup of l, and ϕQ is the blowup of a smooth cubic scroll Λ = Λ3 ⊂ Q.

Furthermore, ϕQ sends the ρW -exceptional divisor EW ⊂ W̃ onto the quadric cone Q? =

Q ∩ 〈Λ〉, while the ϕQ-exceptional divisor B̃l ⊂ W̃ is the proper transform of Bl ⊂ W .
Let Q′ := θl(B).

Suppose our line l ⊂ W satisfies the following conditions:

(A) l ⊂ B, l 6⊂ R, P /∈ Bl, and
(B) θl(P ) /∈ {P1, . . . , Pk}, where P1, . . . , Pk have the same meaning as in Lemma 4.1.

We have an isomorphism

W \ (B ∪Bl) ∼= Q \ (Q′ ∪Q?).

By Lemma 4.1 there exists a principal affine open subset ŨP ⊂ Q \ (Q′ ∪Q?) such that

(i) θ(P ) ∈ ŨP ;
(ii) ŨP ∼= A2 × ZP , where ZP is an affine surface.

Then UP = θ−1(ŨP ) ⊂ W verifies (i)–(ii) of Proposition 4.5.
It remain to show the existence of a line l ⊂ W satisfying (A) and (B).
Consider the union ∆P of lines on W passing through P . By Proposition 4.3(iii), ∆P

is a (possibly reducible) cubic cone with vertex P on W of pure dimension two. Recall
that ∆P = (TPW ∩W )red, because W is an intersection of quadrics.

Let C = ∆P ∩ B, and let Σ(B,C) be the Hilbert scheme of lines in B which meet C,
or, which is equivalent, which meet ∆P . If dim Σ(B,C) = 2 then by Proposition 4.3 (vi),
either the lines from Σ(B,C) sweep out a plane, say, D on B, or C = l is a line and
B = Bl. However, the latter case is impossible. Indeed, Bl being singular along l = C,
any ruling of the cone ∆P meets C ⊂ Sing(Bl), hence is contained in Bl = B. Then also
P ∈ B, which is a contradiction.

Assume further dim Σ(B,C) = 1. Then the lines from Σ(B,C) sweep out a surface
scroll D on B. Thus, the latter holds whatever is the dimension of Σ(B,C).

It follows from Proposition 4.3(i) that the threefold B is covered by lines on W . Since
B 6= R by our assumption, there is a point P ′ ∈ B \ (D ∪ R). Any line l through P ′ on
B does not lie on D ∪R, and so, does not belong to Σ(B,C). Hence, ∆P ∩ l = ∅ for the
general line l on B. Since Bl is the union of lines on W meeting l, see Proposition 4.3 (ii),
we deduce P /∈ Bl. Thus, the general line l on B satisfies (A).

To show (B), we use the notation from the proof of (A). By the preceding, one has
∆P ∩ l = ∅. Hence, the projection θl with center l is regular in a neighborhood of ∆P .
It follows that ∆Q

P := θl(∆P ) is a cone with vertex PQ := θl(P ). Suppose to the contrary
14



that PQ = Pi for some i ∈ {1, . . . , k}. Then PQ is the vertex of a quadric cone Qi over

Q′ ∩Q?, see Lemma 4.1. Clearly, one has ∆Q
P ⊂ Qi. From l 6⊂ D we deduce C 6⊂ Bl.

On the other hand, we have θl(Bl) = Λ, Q? = Q ∩ 〈Λ〉, and

θl(C) = θl(∆P ∩B) ⊂ θl(∆P ) ∩ θl(B) = ∆Q
P ∩Q

′ ⊂ Qi ∩Q′ = Q∗ ∩Q′ ⊂ 〈Λ〉 ∩Q.
From these inclusions we deduce Bl = θ−1

l (Λ) ⊂ θ−1
l (〈Λ〉 ∩Q). The latter inclusion is an

equality, since the both sets are hyperplane section of W . Thus, one has C ⊂ Bl. This
contradiction proves (B). �

5. A2-cylinders in V18 and flexibility of affine cones over V a
18

In this section we finish the proofs of Theorems 0.1 and 0.4 in the case where Aut0(V ) =
Ga×Gm. The assertion of Theorem 0.1 follows immediately in this case by the flexibility
criterion of Corollary 3.6 due to the following result.

5.1. Proposition. Let V = V18 be a Fano-Mukai fourfold of genus 10. Then for any
point P ∈ V there exists a principal affine open subset UP ⊂ V such that

(i) P ∈ UP ;
(ii) UP ∼= A2 × ZP , where ZP is an affine surface.

Proof. Let S ⊂ V be a cubic scroll, and let AS be the hyperplane section of V with
Sing(AS) = S, see Lemma 1.3. The general cubic scroll S ∈ S (V ) is smooth, that is,
not a cubic cone, and P /∈ AS by Lemma 1.9. By virtue of [PZ18, Proposition 3.1] the
linear projection

θS : V = V18 ⊂ P12 99999K P7

with center 〈S〉 = P4 restricted to V yields a Sarkisov link

(5.2)
Ṽ

ρV

zz
ϕW

$$
V

θS // W

where W = W5 ⊂ P7 is the del Pezzo quintic fourfold, ρV is the blowup of S, and ϕW is
the blowup of a smooth rational quintic scroll F = F5 ⊂ W . Furthermore, ϕW sends the
ρV -exceptional divisor EV ⊂ Ṽ onto the hyperplane section BF := W ∩ 〈F 〉 of W , while
the ϕW -exceptional divisor ÃS ⊂ Ṽ is the proper transform of AS. We have

V \ AS ∼= W \BF .

By Lemma 1.9, for the general S ∈ S (V ) the map θS is well defined at P , and θS(P ) /∈
BF . Now the assertion follows from Proposition 4.5. �
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