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AFFINE CONES OVER FANO-MUKAI FOURFOLDS OF GENUS 10
ARE FLEXIBLE

YURI PROKHOROV AND MIKHAIL ZAIDENBERG

Abstract. We show that the affine cones over any Fano–Mukai fourfold of genus 10
are flexible in the sense of [AFK+13]. In particular, the automorphism group of such a
cone acts highly transitively outside the vertex. Furthermore, any Fano–Mukai fourfold
of genus 10, with one exception, admits a covering by open charts isomorphic to A4.
Besides, we complete the description of the automorphism groups of these fourfolds.
The neutral components of these groups were found in our previous paper [PZ18]; here
we finish the description of the discrete parts.
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Introduction

Our base field is the complex number field C. We use the notation of [PZ18]. Let V18 be
a Fano-Mukai fourfold of genus 10 and degree 18 half-anticanonically embedded in P12.
Recall ([KR13], [PZ18, Remark 13.4]) that the moduli space of these fourfolds is one-
dimensional. It contains two special members, namely, V a

18 with Aut0(V a
18) = Ga × Gm

and V s
18 with Aut0(V ) = GL2(C) [PZ18, Theorem 1.3.a,b]. For the general member

V g
18 /∈ {V a

18, V
s

18} one has Aut0(V g
18) = G2

m [PZ18, Theorem 1.3.c].
Let X be an affine variety. Consider the subgroup SAut(X) of the automorphism group

Aut(X) generated by all the one-parameter unipotent subgroups of Aut(X). The variety
X is called flexible if SAut(X) acts highly transitively on the smooth locus reg(X), that
is, m-transitively for any natural number m [AFK+13]. There are many examples of
flexible affine varieties, see, e.g., [AZK12, AFK+13, MPS18]; studies on this subject are
in an active phase. For a projective variety, the flexibility of the affine cones might depend
on the choice of an ample polarization. If the affine cone over a smooth projective variety
V with Picard number one is flexible, then V is a Fano variety. For a pluri-anticanonical
polarization of a Fano variety V , the flexibility of the affine cone X over V is a nontrivial
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new invariant of V . Among del Pezzo surfaces with their pluri-anticanonical polarizations,
only the surfaces of degree ≥ 4 have flexible affine cones, see [Per13, PW16]. Moreover,
the group SAut(X) of the affine cone X over (V,−mKV ), m > 0, is trivial for any
del Pezzo surface V of degree at most 3, see [CPW16, KPZ11]. The affine cones over
flag varieties of dimension ≥ 2 are flexible [AZK12]. The secant varieties of the Segre-
Veronese varieties provide another class of examples [MPS18]. There are many examples
of Fano threefolds with flexible affine cones, see, e.g., [MPS18]. However, we know just
two examples of such Fano fourfolds, and one of these is V s

18, see [PZ18, Theorem 14.3].
In the following theorem we extend the latter result to all the Fano-Mukai fourfolds of
genus 10.

Theorem A. Let V = V18 be a Fano-Mukai fourfold of genus 10. Then the affine cone
over V is flexible for any ample polarization of V .

The proof exploits the criteria of flexibility of affine cones borrowed from [Per13, The-
orem 5] and [MPS18, Theorem 1.4]. These criteria are based on existence of some special
open coverings of the underlined projective variety, for instance, a covering by flexible
affine charts, or by suitable toric affine varieties, or by the affine spaces, see Theorem 3.6.
To apply these criteria, one needs to construct such a covering. To this end, we use
Theorem B below.

Any Fano-Mukai fourfold V = V18 can be represented, at least in two ways, as an
Aut0(V )-equivariant compactification of the affine space A4 [PZ18, Theorem 1.1]. More
precisely, there exists at least two different Aut0(V )-invariant hyperplane sections A1, A2

of V such that Ui := V \ Ai is isomorphic to A4, i = 1, 2. Statement (a) of the following
theorem is proven in [PZ18, Theorem 13.5(f)].

Theorem B. For the Fano-Mukai fourfolds V = V18 of genus 10 the following hold.

(a) If Aut0(V ) = GL2(C) then V admits a covering by a one-parameter family of
Zariski open subsets Ut isomorphic to A4, where each Ut is the complement of a
hyperplane section of V . Exactly two of these sets are Aut0(V )-invariant;

(b) if Aut0(V ) = G2
m then V is covered by six Aut0(V )-invariant subsets Ui ∼= A4 as

in (a), i = 1, . . . , 6;
(c) if Aut0(V ) = Ga×Gm then there exist in V four Aut0(V )-invariant affine charts

Ui ∼= A4, i = 1, . . . , 4 such that V \
⋃4
i=1 Ui is a projective line covered by a

one-parameter family of A2-cylinders Ut ∼= A2 × Zt, where Zt is a smooth affine
surface, t ∈ P1.

Besides, we complete the description of the automorphism groups Aut(V ) of the Fano-
Mukai fourfolds V of genus 10. These groups are completely described in [PZ18, Theo-
rem 1.3] in the exceptional cases V = V s

18 and V = V a
18, and only partially in the general

case V = V g
18. Summarizing the results of [PZ18] and the ones of Theorem 6.2 and

Corollary 6.3 of the present paper we get the following

Theorem C. Let V be a Fano-Mukai fourfold V of genus 10. Then the following hold.

(i) Aut(V ) is isomorphic to one of the following groups:

(0.1) GL2(Z) o Z/2Z, (Ga ×Gm) o Z/2Z, G2
m o Z/6Z, G2

m o Z/2Z.

(ii) For any one of the first three groups in (0.1) there exists a unique, up to iso-
morphism, Fano-Mukai fourfold V with Aut(V ) isomorphic to this group. The
Fano-Mukai fourfolds V with Aut(V ) being the last group in (0.1) vary in a
one-parameter family.
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(iii) The generator of the subgroup Z/2Z in (0.1) acts on Aut0(V ) via the automor-
phism g 7→ (gt)−1 in the first case and via the inversion otherwise, and acts on
V interchanging the cubic cones in the disjoint pairs. The generator of the sub-
group Z/6Z in (0.1) acts on Aut0(V ) via an automorphism of order 6. Its action
on V induces a cyclic shift of the cycle formed by the six cubic cones on V , cf.
Lemma 1.8 (i).a homogeneous fivefold This is a

(iv) Consider the adjoint variety Ω ⊂ P13 of the simple algebraic group G2. Under
the Mukai realization of V as a hyperplane section of the homogeneous fivefold
Ω, the group Aut(V ) coincides with the stabilizer of V in G2, except in the case
where Aut0(V ) = Ga ×Gm.

0.2. The one-dimensional family of Fano-Mukai fourfolds of genus 10 with reductive auto-
morphism groups admits the following description in the framework of Mukai’s realization
[Muk89]. Consider a parabolic subgroup of the simple complex algebraic group of type
G2 which corresponds to a short root. Then the flag variety Ω = G2/P is a Fano fivefold.
It is naturally embedded in P13 = Pg2, where g2 is the Lie algebra of G2.

Let h ⊂ g2 be a Cartan subalgebra. Any nonzero element h ∈ h defines the hyperplane
section V (h) of Ω by the hyperplane orthogonal to h with respect to the Killing form. If
V (h) is smooth, then V (h) is a Fano-Mukai fourfold of genus 10 with a reductive group
Aut0(V (h)). Conversely, any Fano-Mukai fourfold V of genus 10 with a reductive group
Aut0(V ) has the form V = V (h) for some h ∈ h \ {0}. This correspondence between
points of an open subset of the projective line Ph and Fano-Mukai fourfolds V of genus
10 with a reductive group Aut0(V ) is not bijective meaning that distinct points could
correspond to isomorphic fourfolds. However, this open set surjects onto the moduli space
of the fourfolds in question.

Consider the Weyl group W (G2) acting on h. There are three homogeneous semi-
invariants ψ2, p3, q3 ∈ O(h) of W (G2) of degrees 2, 3, and 3, respectively, such that V (h)
is singular if and only if p3(h) = 0, Aut0(V (h)) = GL2(C) if and only if q3(h) = 0, and
Aut0(V (h)) = G2

moZ/6Z if and only if ψ2(h) = 0. If (ψ2p3q3)(h) 6= 0 then Aut0(V (h)) =
G2

m oZ/2Z; see Remark 6.28 for further details. Under the induced action of W (G2) on
Ph, the points in the same orbit correspond to isomorphic Fano-Mukai fourfolds.

Some other families of Fano varieties demonstrate similar behavior of the automorphism
groups. For instance, this concerns the Fano threefolds of degree 22 and Picard number 1
[KP18, Pro90] and the Fano threefolds of degree 28 and Picard number 2 [PCS19, § 9].
Any member of the first family is a compactification of the affine 3-space. It is plausible
that the same is true for the second family. It would be interesting to investigate the
flexibility of the affine cones over these varieties.

The paper is organized as follows. In Sections 1 and 2 we gather necessary preliminaries,
in particular, some results from [KR13, PZ16, PZ18]; cf. also [PZ17]. Based on this, in
Section 2 we prove Theorems A and B in the case where Aut0(V ) = G2

m. In Section 3 we
proceed with the proof of Theorem B in the case Aut0(V ) = Ga×Gm. Besides, we provide
a criterion of flexibility related to the existence of a special family of A2-cylinders on V .
Such a family of cylinders is constructed in Section 4 for the smooth quadric fourfold Q4

and for the del Pezzo quintic fourfold W5, and in Section 5 for any Fano-Mukai fourfold
V of genus 10. This enables us to complete the proofs of Theorems A and B in the
remaining case where Aut(V ) = Ga ×Gm. In the last Section 6 we prove Theorem C.

Acknowledgment. The authors are grateful to Alexander Perepechko for a careful reading
and valuable remarks.
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1. Cubic scrolls in the Fano-Mukai fourfolds V18

In this section we recall and extend some facts from of [PZ18] used in the sequel.
Throughout this paper we let V be a Fano-Mukai fourfold V = V18 of genus 10 half-
anticanonically embedded in P12. Following [KR13] we call a cubic scroll both a smooth
cubic surface scroll and a cone over a rational twisted cubic curve. The latter cones in
P4 will be called cubic cones for short.

1.1. Theorem ([KR13, Propositions 1 and 2 and the proof of Proposition 4]).

(a) Let Σ(V ) be the Hilbert scheme of lines in V . Then Σ(V ) is isomorphic to the
variety Fl(P2) of full flags on P2.

(b) Let S (V ) be the Hilbert scheme of cubic scrolls in V . Then S (V ) is isomorphic
to a disjoint union of two projective planes.

This theorem and the next lemma show that the cubic scrolls in V play the same role
as do the planes in a smooth quadric fourfold, cf. [Har92, Lecture 22].

1.2. Lemma ([PZ18, Proposition 9.6]). Let S1 and S2 be the connected components of
S (V ). Then for any Si ∈ Si and Sj ∈ Sj, i, j ∈ {1, 2} we have the following relation:
Si · Sj = δi,j in H∗(V,Z).

1.3. Lemma ([PZ18, Lemma 9.2, Corollary 4.5.2]).

(i) For any cubic scroll S on V there exists a unique hyperplane section AS of V
such that Sing(AS) = S. This hyperplane section coincides with the union of
lines on V meeting S, and any line contained in AS meets S.

(ii) For any point P ∈ AS \S there is exactly one line l ⊂ AS passing through P and
meeting S. Such a line meets S in a single point.

(iii) If S ⊂ V is a cubic cone, then V \ AS ∼= A4.

1.4. Lemma ([PZ18, Proposition 8.2]). Let v ∈ V be a point. There exists a divisor
B ⊂ V such that the following hold:

(i) for any point v ∈ V \B there are exactly three lines passing through v;
(ii) for v ∈ B the number of lines passing through v either is infinite, or equals 2

or 1;
(iii) if the number of lines passing through v is infinite, then the union of these lines

is a cubic cone S with vertex v, and S ⊂ B.

1.5. Lemma ([PZ18, Lemmas 9.3, 9.4, 9.9(a), Corollaries 9.7.3, 9.7.4, 9.10.1]).

(i) Any line on V can be contained in at most finite number of cubic scrolls, and in
at most two cubic cones;

(ii) two cubic cones from different components of S (V ) either are disjoint, or share
a unique common ruling. Two cubic cones from the same component Si meet
transversally in a single point different from their vertices;

(iii) if two cubic cones S and S ′ are disjoint, then vS /∈ AS′, where vS stands for the
vertex of S;

(iv) if two cubic cones S and S ′ share a common ruling l, then S ∪ S ′ coincides with
the union of lines on V meeting l.

1.6. Lemma ([PZ18, Lemma 9.7.2, Corollary 9.7.3(i)]). In the notation of Theorem 1.1(a)
the Hilbert scheme of lines Σ(V ) = Fl(P2) is a divisor of type (1, 1) on P2 × (P2)∨. Let

(1.7) pr1 : Σ(V ) = Fl(P2) −→ P2 and pr2 : Σ(V ) = Fl(P2) −→ (P2)∨
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be the natural projections. Any line l on V is the common ruling of exactly two cubic
scrolls, say, S1(l) ∈ S1 and S2(l) ∈ S2. Hence, there are well-defined morphisms

pri : Σ(V ) −−−→ Si = P2, l 7−−−→ Si(l), i ∈ {1, 2}
which coincide with the ones in (1.7). The fiber of pri over S ∈ Si is the line on Σ(V )
which parameterizes the rulings of S.

Recall that the Fano-Mukai fourfolds V = V18 are classified in three types according to
the group Aut0(V ), which can be isomorphic to one of the following groups

G2
m, Ga ×Gm, GL2(C).

This classification reflects the geometry of V , namely, the number of cubic cones on V .

1.8. Lemma. Let Si
∼= P2 be a connected component of S (V ). Then the following hold.

(i) If Aut0(V ) = G2
m then Si contains exactly 3 cubic cones for i = 1, 2. The six

cubic cones in V form a cycle so that the neighbors have a common ruling and
belong to different components of S (V ), and the pairs of opposite vertices of the
cycle correspond to the pairs of disjoint cubic cones.

(ii) If Aut0(V ) = Ga ×Gm then Si contains exactly 2 cubic cones for i = 1, 2. The
four cubic cones in V form a chain, that is, the neighbors have a common ruling
and belong to different components of S (V ), and the pair of extremal vertices
corresponds to the unique pair of disjoint cones.

(iii) If Aut0(V ) = GL2(C) then the subfamily of cubic cones in Si
∼= P2 consists of a

projective line and an isolated point.

Proof. By Lemma 1.6 the variety Λ(S) ⊂ Σ(V ) of rulings of a cubic scroll S ⊂ V
is the fiber of one of the projections pri, so it is a line under the Segre embedding
Σ(V ) ⊂ P2 × (P2)∨ ↪→ P8, and any line on Σ(V ) appears in this way. A line l on V is
called a splitting line if the union of lines on V meeting l splits into a union of two cubic
scrolls. Assuming Aut0(V ) 6= GL2(C) the subvariety Σs(V ) ⊂ Σ(V ) of splitting lines is
a del Pezzo sextic, which admits two birational contractions to P2 [PZ18, Proposition
10.2]. The scroll S on V is a cubic cone exactly when the line Λ(S) lies on Σs(V ) [PZ18,
Proposition 9.10]. The surface Σs(V ) is smooth in case (i), and has a unique node in
case (ii) [PZ18, Proposition 10.2]. It is well known that a smooth sextic del Pezzo surface
contains exactly 6 lines, and these are arranged in a cycle. If Σs(V ) has a singularity of
type A1, then it contains exactly 4 lines, and these are arranged in a chain.

In the both cases, a pair of intersecting lines on Σs(V ) corresponds to a pair of cubic
cones on V sharing a common ruling. By Lemma 1.5(iv), such cones belong to distinct
components of S (V ). Thus, two neighbors of the same cubic cone belong to the same
component Si and meet transversally in a unique point, and two cubic cones separated
by two others belong to distinct components of S (V ) and are disjoint, see Lemma 1.5(ii).
This gives (i) and (ii). See [PZ18, Corollary 10.3.2] for (iii). �

1.9. Corollary ([PZ18, Lemmas 12.2 and 12.8.1]). If Aut0(V ) = G2
m or Ga×Gm then any

cubic cone in V is Aut0(V )-invariant. If Aut0(V ) = GL2(C) then Si contains exactly
one Aut0(V )-invariant cubic cone.

1.10. Lemma. Let S1 ⊂ S (V ) be a connected component. Then the set
⋂
S∈S1

AS
coincides with the union of vertices of cubic cones in S1. In particular,

⋂
S∈S (V ) AS = ∅.

Proof. Let v ∈ V be the vertex of a cubic cone Sv ∈ S1. By Lemma 1.2 one has S∩Sv 6= ∅
for any S ∈ S1, and so, v ∈

⋂
S∈S1

AS due to Lemma 1.3.
5



Conversely, let v ∈
⋂
S∈S1

AS. Assume to the contrary that the lines on V passing
through v form a finite set, say, {l1, . . . , lk}. By Lemmas 1.4(iii) and 1.5(i), the number of
lines on V passing through a general point of li is finite. Hence, the family Σ(V ; l1, . . . , lk)

of lines in V meeting
⋃k
i=1 li is one-dimensional, and again by Lemma 1.5(i), any line in

this family is contained in a finite number of cubic scrolls. It follows that the subfamily
S1(l1, . . . , lk) of cubic scrolls from S1 meeting

⋃k
i=1 li is one-dimensional too. Since

dim S1 = 2, see Theorem 1.1(b), one has S1(l1, . . . , lk) 6= S1, and the general cubic

scroll S ∈ S1 does not meet
⋃k
i=1 li. This implies v /∈ AS, a contradiction.

Thus, any point v ∈
⋂
S∈S1

AS is the vertex of a cubic cone, say, Sv. Then one has
Sv ∩ S 6= ∅ for any S ∈ S1. Assuming Sv /∈ S1 it follows from Lemma 1.2 that for
any S ∈ S1 the intersection Sv ∩ S contains a curve. Then any line in Sv meets S, and
so, Sv ⊂

⋂
S∈S1

AS. By the preceding, any point of Sv is a vertex of a cubic cone in
V . This contradicts Lemma 1.5(i) and proves the first assertion. The second assertion
follows from the first since two distinct cubic cones cannot share the same vertex, see
Lemma 1.4(iii). �

For instance, in the case Aut0(V ) = GL2(C) the intersection
⋂
S∈Si

AS is the twisted
cubic Γi, i = 1, 2 as in Lemma 2.2 below, see [PZ18, Theorem 13.5(b)].

2. Aut0(V )-action on the Fano-Mukai fourfold V of genus 10

Generalities.

2.1. Lemma. (i) Under the induced Aut0(V )-action on the Hilbert scheme of lines
Σ(V ), the stabilizer of the general point is trivial.

(ii) Under the induced Aut0(V )-action on the Hilbert scheme of cubic scrolls S (V ),
the stabilizer of the general point is finite.

Proof. Statement (i) follows from the fact that through the general point of V pass at
least two lines, see Lemma 1.4(i), and two lines meet in a single point. In turn, (ii) follows
from the fact that through the general line l on V pass a finite number of cubic scrolls,
and l is a component of the intersection of these scrolls, see Lemma 1.5(i). �

2.2. Lemma. Let S1, S2 ⊂ V be disjoint cubic cones, and let Γ1 = S1∩AS2, Γ2 = S2∩AS1.
Then the following holds.

(i) Γ1 and Γ2 are rational twisted cubic curves;
(ii) there exists a one-parameter family of lines lt in V joining Γ1 and Γ2;

(iii) any line in V passing through a point γ ∈ Γi is either a ruling of Si, or a unique
member of the family lt;

(iv) D :=
⋃
t∈P1 lt is a rational normal sextic scroll contained in AS1 ∩ AS2;

(v) If S1 and S2 are Aut0(V )-invariant then D and the curves Γi, i = 1, 2, are as
well, and the stabilizer of the general point of D in Aut0(V ) is finite.

Proof. Since S1 ∩ S2 = ∅ one has vi /∈ ASj
for i, j = 1, 2, i 6= j, see Lemma 1.5(iii). This

yields (i). By Lemma 1.3(i)–(ii) for any γ ∈ Γ1 there exists a unique line lγ ⊂ AS1 ∩ AS2

joining γ and S2. This line lγ meets Γ2 = S2 ∩ AS1 . This shows (ii) and the inclusion
D ⊂ AS1 ∩ AS2 , where D is as in (iv). Statement (iii) follows from Lemma 1.4(i)–(iii).
For the first assertion in (iv) see, e.g., [Har92, Example 8.17]. The first assertion in (v)
is immediate. To prove the second, we assume Aut0(V ) to be abelian. In the case
Aut0(V ) = GL2(C) one can either restrict to the maximal torus of GL2(C), or simply
deduce the result from [PZ18, Theorem 13.5]. Suppose G is a one-parameter subgroup
of Aut0(V ) acting trivially on D. Then G fixes the general line meeting D. So, there is

6



a two-dimensional subvariety Σ′ ⊂ Σ(V ) parameterizing G-invariant lines on V . By the
description of Σ(V ), see Theorem 1.1(a) and Lemma 1.6, the group G acts trivially on
Σ(V ) and on V , a contradiction. �

2.3. Lemma. Let S be an Aut0(V )-invariant cubic cone in V , and let G0 be a two-
dimensional connected abelian subgroup of Aut0(V ). Then G0 acts on S with an open
orbit.

Proof. We repeat the argument from the proof of the last statement in Lemma 2.2(v).
By Lemmas 1.3(ii) and 1.4(ii)–(iii) though the general point P of S passes a unique line
different from the ruling of S through P . Hence, the family of lines on V meeting S is
two-dimensional. If the G0-action on S does not have an open orbit, then all the lines in
this family have a common one-dimensional stabilizer G. As before, this stabilizer acts
trivially on Σ(V ) and on V , a contradiction. �

The case Aut0(V ) = G2
m. In this subsection we prove Theorems B and A in the case

Aut(V ) = G2
m, that is, we let V = V g

18.

2.4. The Fano-Mukai fourfold V with Aut0(V ) = G2
m contains exactly six cubic cones,

see Lemma 1.8(i). By Lemma 1.4(iii), any cubic cone S ⊂ V coincides with the union of
lines in V passing through its vertex, is Aut0(V )-invariant, and its vertex is fixed under
Aut0(V ). By Lemma 1.4(iii), the vertices of distinct cubic cones are distinct. Using
Lemma 6.14 we deduce the following corollary.

2.5. Corollary. Let Aut0(V ) = G2
m. Then the vertices vi of the cubic cones Si, i =

1, . . . , 6, are the only fixed points of the torus T = Aut0(V ) acting on V .

The next corollary yields Theorem B(b).

2.6. Corollary. One has
⋂6
i=1 ASi

= ∅.

Proof. Assume the contrary holds. Then by the Borel fixed point theorem, the inter-
section

⋂6
i=1ASi

contains a fixed point of the torus Aut0(V ) = G2
m. By Corollary 2.5

this point is the vertex of a cubic cone, say S1 ∈ S1. By Lemma 1.5(iii), S1 meets
any of the remaining cones Si, i = 2, . . . , 6. In particular, S1 meets the cones, say S2,
S4, and S6, which belong to the other component S2 of S (V ). Then S1 · Si = 0 for
i = 2, 4, 6, see Lemma 1.2. By Lemma 1.5(ii), S1 shares a common ruling with S2, S4,
and S6. These three rulings of S1 are Aut0(V )-invariant and pairwise distinct, see [PZ18,
Corollary 9.7.3(ii)]. It follows that the Aut0(V )-action on the base of S1 is trivial, and
so, any ruling of S1 is invariant. However, this contradicts the fact that the torus G2

m

acts on S1 with an open orbit, see Lemma 2.3. �

2.7. Remark. An alternative argument is as follows. By Lemma 1.8 one has S1∩S4 = ∅,
and so, vS1 /∈ AS4 due to Lemma 1.5(iii). This gives again a contradiction.

Proof of Theorem A in the case Aut(V ) = G2
m. Recall that the affine space A4 is a flex-

ible variety, see, e.g., [KZ99, Lemma 5.5]. By Proposition 3.1, V is covered by the
flexible Zariski open subsets Ui = V \ ASi

∼= A4, i = 1, . . . , 6. Thus, the criterion of
Theorem 3.6(ii) applies and gives the result. �

The case Aut0(V ) = Ga ×Gm. In this subsection we let V = V a
18.

7



2.8. Lemma. Any effective action of Ga×Gm on P2 can be given in suitable coordinates
by the matrices

(2.9)

λ 0 0
0 1 µ
0 0 1

 where λ ∈ C∗, µ ∈ C.

This action has exactly two invariant lines J1, J2 ⊂ P2 and exactly two fixed points
P0 ∈ J1 ∩ J2 and P1 ∈ J2 \ J1, see Fig. 2.A.

Proof. Since the group Ga × Gm is abelian and acts effectively on P2, (2.9) is the only
possibility for the Jordan normal form of its elements modulo scalar matrices. �

J1 J2

P0

P1

Figure 2.A.

2.10. Proposition. For V = V a
18 the following assertions hold.

(i) The action of Aut0(V ) = Ga×Gm on each component Si
∼= P2 of S (V ), i = 1, 2

is given by matrices (2.9), and the action on Σ(V ) ∼= Fl(P2) is the induced one.
(ii) The subfamily S a

1 of Ga-invariant cubic scrolls corresponds to the line J2 on
S1 = P2, and the subfamily S m

1 of Gm-invariant cubic scrolls corresponds to J1,
see Fig. 2.A.

(iii) There are exactly three Aut0(V )-invariant lines li,i+1, i ∈ {1, 2, 3} and exactly
four Aut0(V )-invariant cubic scrolls Si, i = 1, . . . , 4 on V . With a suitable
enumeration, li,i+1 is a common ruling of Si and Si+1, while Si and Sj have
no common ruling if j − i 6= ±1. Furthermore, Si and Sj belong to the same
connected component of S (V ) if and only if j ≡ i mod 2.1

(iv) Any cubic scroll Si in (iii) is a cubic cone, and any cubic cone on V coincides
with one of the Si’s.

(v) There are exactly four Aut0(V )-fixed points v1, . . . , v4 on V . These points are the
vertices of cubic cones S1, . . . , S4. Furthermore, one has

v2 = l1,2 ∩ l2,3 = S1 ∩ S3, v3 = l2,3 ∩ l3,4 = S2 ∩ S4, S1 ∩ S4 = ∅.
The three lines li,i+1 form a chain.

(vi) There are exactly two families of Ga-invariant lines on V . These are the families
of rulings of S2 and S3.

(vii) There are exactly three families of Gm-invariant lines on V . These are the fam-
ilies of rulings of S1, S4, and of the smooth sextic scroll D ⊂ V , see 2.11.

Collecting the information from Proposition 2.10 we see that the configuration of the
cones Si looks as the one on Fig 2.B.

2.11. Notation. There is exactly one pair of disjoint cubic cones on V , namely, (S1, S4).
We let D ⊂ V be the smooth sextic scroll as in Lemma 2.2(iv), that is, the union of lines
on V joining the corresponding points of the rational twisted cubic curves Γ1 = S1 ∩AS4

and Γ4 = S4 ∩ AS1 . Notice that the curves Γ1 and Γ4, as well as the surface D are
Aut0(V )-invariant.

1This gives an alternative proof of Lemma 1.8(ii).
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v2 v4

v1 v3

l1,2

l2,3

l3,4S1 S3

S2

S4

Figure 2.B.

Proof of Proposition 2.10. Assertions (i) and (ii) are immediate, see Lemma 2.8. Asser-
tion (iii) follows from Lemmas 1.6 and 2.8.

(iv). Any cubic cone on V is Aut0(V )-invariant, hence, is contained in {S1, . . . , S4},
see Corollary 1.9. We have to show only that any invariant cubic scroll is a cubic cone.
Actually, this follows from Lemma 1.8(ii), however, we provide an alternative proof.

Suppose to the contrary S2 is smooth, and so S2
∼= F1. Then its exceptional section is an

invariant line, hence, it coincides with l3,4. By [PZ18, Proposition 9.5] the corresponding
connected component of S (V ) contains a cubic cone, which must coincide with S4 due
to (iii). Let l be the ruling of S2 passing through the vertex v4 of S4. Then l is a common
ruling of S2 and S4. This contradicts (iii). Thus, S2 is a cubic cone. By symmetry, S3 is
a cubic cone too.

Suppose further S1 is smooth. If S1 contains the vertex v3 of S3, then S1 and S3 have a
common ruling, a contradiction. Thus, v3 /∈ S1, and so, S1 does not contain the invariant
lines l2,3 and l3,4. It follows that the ruling l1,2 of S1 is the only Aut0(V )-invariant line
on S1, which coincides then with the exceptional section of S1, a contradiction. Thus, S1

is a cubic cone, and by symmetry, the same holds for S4.
(v) Notice that the vertices of the cubic cones in V are fixed by Aut0(V ), because these

cones are invariant. Let v be a fixed point of the Aut0(V )-action on V different from the
vertices of cubic cones. According to Lemma 1.4(iii), the number of lines on V passing
through v is finite. Hence each of these lines is Aut0(V )-invariant. By (iii) such a line
coincides with the common ruling li,i+1 of a pair (Si, Si+1), i ∈ {1, 2, 3}. However, any
line li,i+1 contains exactly two Aut0(V )-fixed points, namely, the vertices vi and vi+1. The
remaining statements are immediate.

(vi) and (vii). By Theorem 1.1(a) we have Σ(V ) ∼= Fl(P2). By Lemma 2.8 the group
Aut0(V ) ∼= Ga ×Gm acts on Σ(V ) ∼= Fl(P2) via (2.9). Looking at Fig.2.A one can select
all the lines on V with one-dimensional stabilizers. There are exactly five such families
of lines; they correspond to the following five families of flags on P2:

• (P0, l), where l runs over the pencil of lines through P0;
• (P1, l), where l runs over the pencil of lines through P1;
• (P, J2), where P runs over J2;
• (P, J1), where P runs over J1;
• (P, l), where P runs over J1 and l passes through P1.

The last family corresponds to the family of rulings of D, and the other four correspond
to the families of rulings of the cubic cones S1, . . . , S4. �
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3. Affine 4-spaces in V a
18 and flexibility of affine cones

Affine 4-spaces in V a
18. In this subsection we analyze affine charts isomorphic to A4 on

the Fano-Mukai fourfold V = V a
18 of genus 10 with Aut0(V ) = Ga × Gm, and provide a

modified criterion of flexibility of affine cones over projective varieties in terms of existence
of certain cylinders.

The following proposition proves the first part of Theorem B(c); the second part will
be proven in Proposition 5.3.

3.1. Proposition. In the notation of Proposition 2.10 one has
⋂4
j=1ASj

= l2,3.

The proof is done below. We need the following auxiliary facts. Let Y =
⋂4
j=1 ASj

.

Clearly, Y is Aut0(V )-invariant.

3.2. Claim. One has l2,3 ⊂ Y .

Proof. The line l2,3 intersects all the Si. Hence, l2,3 ⊂ ASi
for all i. �

3.3. Claim. S1 ∩ Y = {v2} and S4 ∩ Y = {v3}.

Proof. We have v1 /∈ AS4 because S1 ∩ S4 = ∅. Hence S1 ∩ AS4 is a smooth irreducible
hyperplane section of the cone S1. Since v1 ∈ AS2 , the intersection S1 ∩AS2 is a singular
hyperplane section of S1. Therefore, the intersection S1∩Y is a finite set, whose points are
fixed by Aut0(V ). Then by Proposition 2.10(v) and Claim 3.2 we have S1∩Y = {v2}. �

3.4. Claim. S2 ∩ Y = S3 ∩ Y = l2,3.

Proof. We have v2 ∈ S2 ∩ Y and S2 6⊂ Y because l1,2 6⊂ Y by Claim 3.3. Since S2 ∩ Y =
S2∩〈Y 〉 the intersection S2∩Y consists of a finite number of rulings of S2. These rulings
are Aut0(V )-invariant. Since l1,2 6⊂ Y by Claim 3.3 the only possibility is S2 ∩ Y = l2,3,
see Proposition 2.10(iii). �

Proof of Proposition 3.1. Assume there is a point P ∈ Y \ l2,3. By Claims 3.3 and 3.4
P /∈ Sj for all j. By Lemma 1.3(ii) for any j = 1, . . . , 4 through P passes a unique line
lj ⊂ ASj

meeting Sj. Since there are at most three lines on V passing through P , one
has li = lj for some i 6= j. Set l := li = lj. Thus, one has P ∈ l ⊂ ASi

∩ ASj
. By

Lemma 1.4(iii), V contains no plane. Hence, the set of lines contained in the surface
ASi
∩ ASj

has dimension at most one, cf. [KPS18, Lemma A.1.1]. Since l 6⊂ Sj for all j,

the line l cannot be Aut0(V )-invariant, see Proposition 2.10(iii). Therefore, the stabilizer
G of l under the Aut0(V )-action on Σ(V ) is one-dimensional. Since l 6⊂ Sj for all j, due
to Proposition 2.10(vi)-(vii), l is a ruling of D, and so, is Gm-invariant. The rulings l
and l2,3 of D are disjoint, because P /∈ l2,3 by our choice. It follows from Claim 3.4 that
l ∩ S2 = l ∩ S3 = ∅. So, we have {i, j} = {1, 4}, that is, l meets S1 and S4 in Gm-fixed
points. Besides, there exists a unique line l2 6= l in V joining P and S2. If the stabilizer
of P in G is finite, then l = G · P ⊂ Y . In particular, the intersection point P1 of l and
S1 lies on Y . By Claim 3.3 one has P1 = v2, contrary to the fact that l∩S2 = ∅. Hence,
P is fixed by Gm, and then the line l2 is Gm-invariant. Since l2 is not a ruling of D or of
one of the Si, we get a contradiction with Proposition 2.10(vii). �

Criteria of flexibility of affine cones. To formulate the flexibility criteria, we need
the following notions.

3.5. Definition ([Per13, Definitions 3–4]). An open covering (Ui)i∈I of a projective variety
V by the A1-cylinders Ui ∼= A1 × Zi is called transversal if it does not admit any proper
invariant subset. A subset Y ⊂ V is proper if it is nonempty and different from V . It
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is called invariant with respect to this covering if for any cylinder Ui → Zi, i ∈ I, the
intersection Y ∩ Ui is covered by the fibers of Ui → Zi.

3.6. Theorem. Let (V,H) be a polarized smooth projective variety. Then the affine cone
over (V,H) is flexible if one of the following holds:

(i) ([Per13, Theorem 5]) V admits a transversal covering by a family of A1-cylinders
Ui = V \ Supp(Di) ∼= A1 × Zi, where Zi is a smooth affine variety, i ∈ I;

(ii) ([MPS18, Theorem 1.4]) V admits a covering by a family of flexible Zariski open
subsets Ui = V \ Supp(Di), i ∈ I,

where in the both cases the Di are effective Q-divisors on V with Di ∼Q H, i ∈ I.

For instance, the affine cone over (V,H) is flexible provided one can find an open
covering {Ui}i∈I of V by toric affine varieties Ui = V \ Supp(Di) with no torus factor,
that is, non-decomposable as a product Ui = Wi× (A1 \{0}). Indeed, any such variety Ui
is flexible [AZK12, Theorem 2.1]. In the simplest case where Pic(V ) = Z and V admits
an open covering by the affine spaces, the affine cone X over (V,H) is flexible whatever is
an ample polarization H of V . According to Theorem B(a),(b), such a covering exists for
any Fano-Mukai fourfold V18 with a reductive automorphism group. In the remaining case
of V = V a

18 with Aut0(V ) = Ga ×Gm we ignore whether V admits a covering by flexible
affine charts, cf. Proposition 3.1. Hence, we cannot apply the criterion of Theorem 3.6(ii)
in this case. Instead, we will apply the following version, which mixes the two criteria of
Theorem 3.6.

Let (V,H) be a polarized projective variety, and let A be an effective divisor on V . We
say that an open set U = V \ Supp(A) is polar if A ∼Q H.

3.7. Proposition. Let (V,H) be a smooth projective variety of dimension n ≥ 3 with
an ample polarization. Suppose V possesses a family of flexible polar A1-cylinders Ui =
V \Supp(Ai) ∼= A1×Zi, i ∈ I, where Zi is an affine variety of dimension n− 1. Assume
further that

• D :=
⋂
i∈I Ai is a subvariety of V of dimension m ≤ n− 2;

• through any point of V pass at most k components of D;
• any point P ∈ D is contained either in a principal open polar Am+1-cylinder
UP ∼= Am+1 × ZP in V , or in k + 1 principal polar open Am-cylinders UP,j ∼=
Am × ZP,j in V , j = 1, . . . , k + 1, where ZP and ZP,j are affine varieties, and
for any two cylinders UP,j and UP,j′ with j 6= j′ the Am-fibers through P of the
natural projections UP,j → ZP,j and UP,j′ → ZP,j′ meet properly, that is, the
dimension of their intersection is smaller than m.

Then the affine cone over (V,H) is flexible.

Proof. We use the criterion of Theorem 3.6(i), that is, we show the existence of a transver-
sal covering of V by polar open A1-cylinders. For such a covering, we take the union of
the collections {Ui}, {UP}, and {UP,j}, where each member is endowed with all possible
structures of an A1-cylinder.

Let Y ⊂ V be a nonempty subset invariant with respect to the above covering of V
by A1-cylinders, see Definition 3.5. We claim that if Y ∩ Ui 6= ∅ for some i ∈ I, then
Y ⊃ Ui. Indeed, let P ∈ Y ∩ Ui, and let l be the ruling of the A1-cylinder Ui passing
through P . Then l ⊂ Y because Y is invariant. Since Ui is flexible, for any point P ′ ∈ Ui
different from P one can find an automorphism α ∈ SAut(Ui) such that α(P ) = P and
α−1(P ′) ∈ l. Then α(l) is a ruling of a new A1-cylinder structure on Ui. Since P, P ′ ∈ α(l)
and P ∈ Y , where Y is invariant, then also P ′ ∈ α(l) ⊂ Y . Hence, one has Ui ⊂ Y , as
claimed.
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It follows that Y ∩ Uj 6= ∅ for any j ∈ I. Thereby, one has Y ⊃
⋃
i∈I Ui = V \ D.

Due to our assumptions, for any point P ∈ D one can choose either a principal open
Am+1-cylinder UP , or a principal open Am-cylinder UP,j such that the Am-fiber passing
through P of the projection UP,j → ZP,j is not contained in D. Then for a suitable
A1-cylinder structure on UP or UP,j, respectively, the ruling l ∼= A1 passing through P is
not contained in D, and so, meets V \D ⊂ Y . Then one has P ∈ l ⊂ Y . Since this holds
for any P ∈ D, one has D ⊂ Y , and so, Y = V , that is, Y is not a proper subset of V .

The latter argument shows as well that a nonempty invariant subset Y ⊂ V cannot be
contained in D. Thus, the criterion of Theorem 3.6(i) applies and yields the result. �

Using Proposition 3.1 we deduce such a corollary.

3.8. Corollary. The affine cones over the Fano-Mukai fourfold V with Aut0(V ) = Ga ×
Gm are flexible provided any point P of the common ruling l2,3 of the cubic cones S2 and
S3 on V is contained in a principal open A2-cylinder UP in V .

In Proposition 5.3 we construct such an open covering of l2,3 in V by principal open A2-
cylinders. Combining with Corollary 3.8 this gives a proof of Theorem A in the remaining
case Aut0(V ) = Ga ×Gm.

4. A2-cylinders in smooth quadric fourfolds and in the del Pezzo quintic
fourfold

The next lemma on the existence of an A2-cylinder will be used the proof of Proposi-
tion 4.5 below.

4.1. Lemma. Let Q ⊂ P5 be a smooth quadric, and let Q′, Q? be distinct hyperplane
sections of Q. Let Q1, . . . , Qk be the members of the pencil 〈Q′, Q?〉 generated by Q′ and
Q? which have singularities outside Q′ ∩ Q?, and let Pi be the unique singular point of
Qi. Given a point P ∈ Q \ (Q′ ∪ Q? ∪ {P1, . . . , Pk}) there exists a principal affine open
subset U = UP ⊂ Q \ (Q′ ∪Q?) such that

(i) P ∈ U ;
(ii) U ∼= A2 × Z, where Z is an affine surface.

Proof. Pick a general point P • ∈ Q′ ∩Q?, and let TP •Q ⊂ P5 be the embedded tangent
space to Q at P •. The projection with center P • defines an isomorphism

Q \Q• ∼= P4 \ P3 ∼= A4, where Q• := Q ∩TP •Q.

The quadric cone Q• with vertex P • coincides with the union of lines on Q passing
through P •. If the quadric cone ∆P (Q) = Q ∩ TPQ with vertex P ∈ Q \ (Q′ ∩ Q?)
contains Q′ ∩Q?, then ∆P (Q) coincides with a member Qi of the pencil 〈Q′, Q?〉, which
has the singular point P = Pi for some i ∈ {1, . . . , k}. However, the latter is excluded by
our assumption. So, Q′ ∩ Q? 6⊂ ∆P (Q). Hence, for the general point P • ∈ Q′ ∩ Q? the
line joining P and P • is not contained in Q. The latter implies P /∈ Q•.

The images of Q′ \ Q• and Q? \ Q• in A4 = P4 \ P3 under the projection with center
P • is a pair of affine hyperplanes with nonempty intersection. Thus, we obtain

�(4.2) P ∈ Q \ (Q• ∪Q′ ∪Q?) ∼= A2 × (A1 \ {a point})× (A1 \ {a point}).

Recall that a smooth del Pezzo quintic fourfold W = W5 ⊂ P7 is unique up to iso-
morphism [Fuj81]. This variety is quasihomogeneous, more precisely, the automorphism
group Aut(W ) has the open orbit W \ R ∼= A4 in W , where R is the hyperplane section
of W covered by the lines on W which meet the unique σ2,2-plane Ξ ⊂ W , see [PZ16,
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Section 4]. The planes on W different from Ξ form a one-parameter family, and their
union coincides with R; we call them Π-planes.

4.3. Proposition. Let W = W5 ⊂ P7 be the del Pezzo quintic fourfold. Then the following
hold.

(i) ([PZ16, Corollary 2.6]) The Hilbert scheme Σ(W ) of lines on W is smooth, irre-
ducible of dimension dim Σ(W ) = 4. For any point P ∈ W the Hilbert scheme
Σ(W ;P ) ⊂ Σ(W ) of lines passing through P has pure dimension 1.

(ii) ([PZ16, Proposition 4.11.iv]) For any line l ⊂ W there exists a unique hyperplane
section Bl of W with Sing(Bl) ⊃ l. This Bl is the union of lines meeting l.

(iii) Given a point P ∈ W , let ∆P be the union of lines in W passing through P . If
P ∈ W \ R, then ∆P is a cubic cone. If P ∈ R \ Ξ, then ∆P is the union of a
plane ΠP passing through P and a quadric cone ∆′P with vertex P .

(iv) Let B ⊂ W be a hyperplane section whose singular locus is two-dimensional.
Then B = R and Sing(B) = Ξ.

(v) Let B ⊂ W be a hyperplane section whose singular locus is one-dimensional.
Then B = Bl for some line l.

(vi) Let B ⊂ W be a hyperplane section, and let C ⊂ B be an irreducible curve.
Assume B contains a two-dimensional family of lines meeting C. Then one of
the following holds:
(a) C is contained in a plane on B;
(b) C = l is a line, and B = Bl;
(c) B = R.

Proof. (iii) By (i) the universal family of lines L(W ) ⊂ Σ(W ) ×W is smooth, and the
natural projection s : L(W )→ W is a flat morphism of relative dimension one. Its fiber
s−1(P ) is isomorphic to the base of the cone ∆P . Let P ∈ W \ R. Since W \ R is the
open orbit of Aut(W ), see, e.g., [PZ18, (5.5.5)], the fiber s−1(P ) is smooth in this case.
Let H be a general hyperplane section of W passing through P . By Bertini’s theorem,
H is smooth, and by the adjunction formula, H is a del Pezzo threefold of degree 5. It
is well known, see, e.g., [Isk80, Ch. 2, § 1.6] or [KPS18, Corollary 5.1.5], that through a
general point of H pass exactly three lines. This implies deg ∆P = 3. On the other hand,
one has ∆P = TPW ∩W . Since W is intersection of quadrics, ∆P cannot be a cone over
a plane cubic. It follows that ∆P is a cubic cone.

Let further P ∈ R \Ξ. By [PVdV99, Theorem 6.9], Aut(W ) acts transitively on R \Ξ.
We have ∆P 6⊃ Ξ, and ∆P contains a Π-plane ΠP passing through P . Such a plane
is unique because no two planes on W meet outside Ξ. By the flatness of s we have
deg ∆P = 3. There are lines on W which are not contained in R and meet R \Ξ, and one
of these lines passes through P . Therefore, one has ∆P 6= 3ΠP . Then the only possibility
is ∆P = ΠP + ∆′P , where ∆′P is a quadric cone.

(iv) Let Z2 be an irreducible component of Sing(B) of dimension two. Choose general
hyperplane sections H1 and H2 of W , and let C = B ∩H1 ∩H2. By Bertini’s theorem,
C is an irreducible curve with Sing(C) = Z2 ∩H1 ∩H2. By the adjunction formula one
has pa(C) = 1. Hence degZ2 = 1, i.e. Z2 is a plane. Since B contains any line meeting
Z2 we have B = R, and then Sing(B) = Ξ.

(v) Let Z1 be the union of one-dimensional irreducible components of Sing(B). Since
Z1 ⊂ Sing(B) and B is a hyperplane section, B contains any line meeting Z1. Hence, B
is the union of lines meeting Z1, see (i). By (iv) one has B 6= R. If Z1 is a line, then
B = BZ1 by (ii). Thus, we may assume Z1 to be a curve of degree d > 1. Consider
the general hyperplane section H ⊂ B. By Bertini’s theorem, H has exactly d singular
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points, and these are the points of H ∩Z1. By the adjunction formula, −KH is the class
of a hyperplane section of H. Hence, H is a normal Gorenstein del Pezzo quintic surface.

By [CT88, Proposition 8.5] we have d = 2, that is, H has exactly two singular points,
say, P1 and P2, and Z1 is a conic. Again by [CT88, Proposition 8.5], H contains the line
joining P1 and P2. Hence, B contains the linear span 〈Z1〉. Since R is the union of planes
contained in W , we have Z1 ⊂ 〈Z1〉 ⊂ R. By (iv) one has 〈Z1〉 6= Ξ. So, 〈Z1〉 = Π is a
Π-plane on R, where Π ⊂ B. Take a general line l ⊂ Π, and let Z1 ∩ l = {P1, P2}. Since
Ξ meets l ⊂ Sing(Bl) one has Ξ ⊂ Bl. Likewise, since Ξ meets Z1 ⊂ Sing(B) one has
Ξ ⊂ B. Besides, the quadric cones ∆′P1

and ∆′P2
as in (iii) are contained in both B and

Bl. Thus, we obtain
B ∩Bl ⊃ Π ∪ Ξ ∪∆′P1

∪∆′P2
.

Assuming B 6= Bl the latter contradicts the fact that deg(B ∩Bl) = degW = 5.
(vi) We may suppose that B 6= R and the singular locus of B has dimension ≤ 1,

see (iv). By assumption, C ⊂ B is an irreducible curve, and there exists an irreducible
two-dimensional family of lines Σ(B,C) ⊂ Σ(B) on B meeting C. Let r : L(C,B) →
Σ(C,B) be the universal family, and let s : L(C,B) → B be the natural projection. If
s(L(C,B)) 6= B, then s(L(C,B)) is a plane, see, e.g., [KPS18, Lemma A.1.1], and so, C
is contained in a plane on B. Assume further s(L(C,B)) = B, and so, s is a generically
étale morphism. We claim that the general line from Σ(C,B) meets the singular locus
of B. The argument below is well-known, see e.g. [Isk80, Ch. 3, Prop. 1.3] or [KPS18,
Lemma 2.2.6], and we repeat it in brief for the sake of completeness. Suppose to the
contrary that the general line l from Σ(C,B) lies in the smooth locus of B. Using the
fact that the restriction of s to r−1([l]) is an isomorphism, we may identify l with r−1([l]).
For the normal bundles of l we have

(4.4) Nl/L(C,B) = Ol ⊕ Ol, Nl/B = Ol(a)⊕ Ol(−a), a ≥ 0.

Over the point l ∩ C the map s is not an isomorphism. Hence the differential

ds : Nl/L(C,B) −−−→ Nl/B

is not an isomorphism either. From (4.4) we see that ds degenerates along l. This means
that s is not generically étale, a contradiction.

Thus, the general line from Σ(C,B) meets Sing(B). Since B is not a cone, by our
assumption we have dim Sing(B) = 1. Due to (v) there is a line l0 on W such that
B = Bl0 . If l0 = C, then we are done. Otherwise, the lines on B passing through the
general point P ∈ C meet l0 = Sing(B). The union of these lines is the cone with vertex
P over l0, that is, a plane. It follows that B is swept out by planes. Since any plane on
W is contained in R, we conclude that B = R, contrary to our assumption. �

4.5. Proposition. Let B ⊂ W be a hyperplane section. For any point P ∈ W \ B there
exists a principal affine open subset UP ⊂ W \B such that

(i) P ∈ UP ;
(ii) UP ∼= A2 × ZP , where ZP is an affine surface.

Proof. If B = R then W \ B ∼= A4 [PZ18, Corollary 2.2.2], and the assertion follows.
So, we assume in the sequel B 6= R. We apply the following construction from [Fuj81]
(see also [PZ16, Proposition 4.11]). Fix a line l ⊂ W not contained in R. There is the
Sarkisov link

(4.6)
W̃

ρW

zz

ϕQ

$$
W

θl // Q
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where Q ⊂ P5 is a smooth quadric, θl is induced by the linear projection with center
l, ρW is the blowup of l, and ϕQ is the blowup of a smooth cubic scroll Λ = Λ3 ⊂ Q.

Furthermore, ϕQ sends the ρW -exceptional divisor EW ⊂ W̃ onto the quadric cone Q? =

Q ∩ 〈Λ〉, while the ϕQ-exceptional divisor B̃l ⊂ W̃ is the proper transform of Bl ⊂ W .
Let Q′ := θl(B).

Suppose our line l ⊂ W satisfies the following conditions:

(A) l ⊂ B, l 6⊂ R, P /∈ Bl, and
(B) θl(P ) /∈ {P1, . . . , Pk}, where P1, . . . , Pk have the same meaning as in Lemma 4.1.

We have an isomorphism

W \ (B ∪Bl) ∼= Q \ (Q′ ∪Q?).

By Lemma 4.1 there exists a principal affine open subset ŨP ⊂ Q \ (Q′ ∪Q?) such that

(i) θ(P ) ∈ ŨP ;
(ii) ŨP ∼= A2 × ZP , where ZP is an affine surface.

Then UP = θ−1(ŨP ) ⊂ W verifies (i)–(ii) of Proposition 4.5.
It remain to show the existence of a line l ⊂ W satisfying (A) and (B).
Consider the union ∆P of lines on W passing through P . By Proposition 4.3(iii), ∆P

is a (possibly reducible) cubic cone with vertex P on W of pure dimension two. Recall
that ∆P = (TPW ∩W )red, because W is an intersection of quadrics.

Let C = ∆P ∩ B, and let Σ(B,C) be the Hilbert scheme of lines in B which meet C,
or, which is equivalent, which meet ∆P . If dim Σ(B,C) = 2 then by Proposition 4.3 (vi),
either the lines from Σ(B,C) sweep out a plane, say, D on B, or C = l is a line and
B = Bl. However, the latter case is impossible. Indeed, Bl being singular along l = C,
any ruling of the cone ∆P meets C ⊂ Sing(Bl), hence is contained in Bl = B. Then also
P ∈ B, which is a contradiction.

Assume further dim Σ(B,C) = 1. Then the lines from Σ(B,C) sweep out a surface
scroll D on B. Thus, the latter holds whatever is the dimension of Σ(B,C).

It follows from Proposition 4.3(i) that the threefold B is covered by lines on W . Since
B 6= R by our assumption, there is a point P ′ ∈ B \ (D ∪ R). Any line l through P ′ on
B does not lie on D ∪R, and so, does not belong to Σ(B,C). Hence, ∆P ∩ l = ∅ for the
general line l on B. Since Bl is the union of lines on W meeting l, see Proposition 4.3 (ii),
we deduce P /∈ Bl. Thus, the general line l on B satisfies (A).

To show (B), we use the notation from the proof of (A). By the preceding, one has
∆P ∩ l = ∅. Hence, the projection θl with center l is regular in a neighborhood of ∆P .
It follows that ∆Q

P := θl(∆P ) is a cone with vertex PQ := θl(P ). Suppose to the contrary
that PQ = Pi for some i ∈ {1, . . . , k}. Then PQ is the vertex of a quadric cone Qi over

Q′ ∩Q?, see Lemma 4.1. Clearly, one has ∆Q
P ⊂ Qi. From l 6⊂ D we deduce C 6⊂ Bl.

On the other hand, we have θl(Bl) = Λ, Q? = Q ∩ 〈Λ〉, and

θl(C) = θl(∆P ∩B) ⊂ θl(∆P ) ∩ θl(B) = ∆Q
P ∩Q

′ ⊂ Qi ∩Q′ = Q∗ ∩Q′ ⊂ 〈Λ〉 ∩Q.
From these inclusions we deduce Bl = θ−1

l (Λ) ⊂ θ−1
l (〈Λ〉 ∩Q). The latter inclusion is an

equality, since the both sets are hyperplane section of W . Thus, one has C ⊂ Bl. This
contradiction proves (B). �

5. A2-cylinders in V18 and flexibility of affine cones over V a
18

In this section we finish the proofs of Theorems A and B in the case where Aut0(V ) =
Ga ×Gm. The assertion of Theorem A follows immediately in this case by the flexibility
criterion of Corollary 3.8 due to the following result.
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5.1. Let S be a cubic scroll on V = V18. Then either S is smooth and isomorphic to the
Hirzebruch surface F1, or S is a cubic cone. By virtue of [PZ18, Proposition 3.1], in both
cases the linear projection

θS : V = V18 ⊂ P12 99999K P7

with center 〈S〉 = P4 restricted to V yields a Sarkisov link

(5.2)
Ṽ

ρV

zz
ϕW

$$
V

θS // W

where W = W5 ⊂ P7 is the del Pezzo quintic fourfold, ρV is the blowup of S, and
ϕW is the blowup of a smooth rational quintic scroll F = F5 ⊂ W isomorphic to F1.
Furthermore, ϕW sends the ρV -exceptional divisor EV ⊂ Ṽ onto the hyperplane section
BF := W ∩ 〈F 〉 of W , while the ϕW -exceptional divisor ÃS ⊂ Ṽ is the proper transform
of AS. We have

V \ AS ∼= W \BF .

If S is a cubic cone, then BF = R is the hyperplane section of W singular along the
Ξ-plane, and V \ AS ∼= W \R ∼= A4.

5.3. Proposition. Let V = V18 be a Fano-Mukai fourfold of genus 10. Then for any
point P ∈ V there exists a principal affine open subset UP ⊂ V such that

(i) P ∈ UP ;
(ii) UP ∼= A2 × ZP , where ZP is an affine surface.

Proof. Let S ⊂ V be a cubic scroll, and let AS be the hyperplane section of V with
Sing(AS) = S, see Lemma 1.3. The general cubic scroll S ∈ S (V ) is smooth, that is, not
a cubic cone, and P /∈ AS by Lemma 1.10. By Lemma 1.10, for the general S ∈ S (V )
the map θS in (5.2) is well defined at P , and θS(P ) /∈ BF . Now the assertion follows from
Proposition 4.5. �

6. On the automorphism groups of Fano-Mukai fourfolds of genus 10

It is known [PZ18, Theorem 1.3.a,b] that

Aut(V s
18) = GL2(C) o (Z/2Z) and Aut(V a

18) = (Ga ×Gm) o (Z/2Z),

where the generator of Z/2Z acts on Aut0(V ) via the involution g 7→ (gt)−1 in the first
case and g 7→ g−1 in the second. In the general case we have Aut0(V ) = G2

m and

(6.1) Aut(V g
18) ⊂ G2

m o (Z/6Z),

see [PZ18, Theorem 1.3.c and Lemma 11.4]. The following Theorem 6.2 and Corollary 6.3
complete these results and provide a proof of Theorem C from the Introduction.

6.2. Theorem. (i) There exists a unique, up to isomorphism, Fano-Mukai fourfold
V r of genus 10 with Aut(V r) = G2

m o (Z/6Z), where each generator of Z/6Z acts
on G2

m via an automorphism of order 6.
(ii) For any Fano-Mukai fourfold V of genus 10 with Aut0(V ) = G2

m non-isomorphic
to V r one has Aut(V ) = G2

m o (Z/2Z), where the generator of the factor Z/2Z
acts on G2

m via g 7→ g−1.

6.3. Corollary. For any Fano-Mukai fourfold V of genus 10, Aut(V ) \Aut0(V ) contains
an element of order two which interchanges the members in each pair of disjoint cubic
cones on V and acts on Aut0(V ) via the involution g 7→ (gt)−1. Furthermore, if Aut0(X)
is reductive then Aut(V ) = StabAd(G2)(V ).
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6.4. Remark. The latter conclusion does not hold in the exceptional case V = V a
18,

where Aut(V ) = (Ga ×Gm) o (Z/2Z). Indeed, the generator of the factor Z/2Z admits
no extension to an element of Ad(G2), see [PZ18, Remark 15.5].

The proofs of Theorem 6.2 and Corollary 6.3 are done at the end of this section. Let
us introduce the following notation.

6.5. Notation. Consider the Lie algebra g2 of the simple complex algebraic group G2,
the projective space Pg2 = P13, and the projectivized adjoint representation Ad(G2) on
Pg2. The adjoint variety Ω = G2/P ⊂ P13 is the projectivized minimal nilpotent orbit
of G2, see [Muk89]. Fix a maximal torus T ⊂ P of G2, and let h = Lie(T ) be the
corresponding Cartan subalgebra of h. Choose a basis of simple roots (α1,α2) of the
root system ∆ ⊂ h∨ with α1 ∈ ∆s and α2 ∈ ∆`, where ∆` and ∆s stand for the subsets
of long and short roots, respectively. We identify g2 with the dual vector space (g2)∨ via
the duality on g2 defined by the Killing form. Under this identification, the Ad(G2)-orbits
coincide with the corresponding Ad∗(G2)-orbits [CMG93, Section 1.3]. Consider the root
space decomposition

g2 = h⊕

(⊕
α∈∆`

gα

)
⊕

(⊕
α∈∆s

gα

)
where gα = Ceα for α ∈ ∆ is the root subspace generated by the root vector eα. One
can choose for P the parabolic subgroup of G2 with Lie algebra

p = h⊕

(⊕
α∈∆+

gα

)
⊕ g−α1 = b⊕ g−α1 ,

where b is the corresponding Borel subalgebra of g2.

6.6. Mukai presentation revisited. Recall [Muk89] that any Fano-Mukai fourfold of genus
10 can be presented as a hyperplane section V (h) = Ω ∩ Ph⊥ for a nonzero element
h ∈ g2 = Lie(G2), where h⊥ stands for the orthogonal complement of Ch in g2 with
respect to the Killing form.

The following two propositions will be important in the proof of Theorem 6.2.

6.7. Proposition. For a nonzero element h ∈ g2 the following hold.

(i) If h is semisimple then Aut0(V (h))) is reductive;
(ii) if Aut0(V (h))) is reductive and V (h) is smooth then h is semisimple;

(iii) for any Fano-Mukai fourfold V with reductive group Aut0(X) there exist h ∈
h \ {0} and g ∈ G2 such that V = Ad(g)(V (h)).

The proof is done in 6.11 below.
Consider the family H of hyperplane sections V (h) of Ω with h ∈ h\{0} parameterized

by the projective line Ph ⊂ P13.

6.8. Corollary. (i) Any Fano-Mukai fourfold V of genus 10 with reductive group
Aut0(X) is isomorphic to a member of H.

(ii) H contains exactly three singular members, exactly three smooth members with
Aut0(V ) = GL2(C), and exactly two smooth members with Aut(V ) = To(Z/6Z).
For any other member V (h) of H one has Aut(V (h)) = T o (Z/2Z).

Proof. (i) follows from Proposition 6.7, and (ii) follows from Theorem 6.2 and Corol-
lary 6.19 below. �

For the proof of Proposition 6.7 we need the following facts; see [Tev05, Theorem 8.25].
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6.9. Lemma. (i) The fivefold Ω is the unique closed projectivized nilpotent orbit of
the Ad(G2)-action of on Pg2 = P13. This orbit contains the six T -fixed points
Pgα corresponding to the long roots α ∈ ∆`.

(ii) The dual projective variety D` of Ω is an irreducible hypersurface in P13 given by
a homogeneous polynomial δ` of degree six on g2 such that δ`|h =

∏
α∈∆`

α.

(iii) For a short root α ∈ ∆s the orbit Ωs = Ad(G2).Pgα ⊂ P13 does not depend on
the choice of α ∈ ∆s.

(iv) The dual projective variety Ds of the orbit closure Ωs is an irreducible hypersurface
in P13 given by a homogeneous polynomial δs of degree six on g2 such that δs|h =∏

α∈∆s
α.

Any orbit of the projectivized adjoint representation is the image of an orbit of the
adjoint representation. We keep the terminology “a regular orbit”, “a semisimple orbit”,
“a nilpotent orbit”, etc. for the images in P13 of the Ad(G2)-orbits in g2 consisting of
regular, semisimple, nilpotent, etc. elements, respectively.

6.10. Lemma. For the adjoint representation Ad(G2) on Pg2 = P13 the following hold.

(i) ([CMG93, Corollary 2.1.13]) The complement Pg2\(D`∪Ds) is the projectivization
of the set of regular semisimple elements of g2, and D`∩Ds is the projectivization
of the nilpotent cone of g2;

(ii) ([KR13, Lemma 1]) Ds \D` is the union of two orbits, namely,
• a (non-closed) non-semisimple regular orbit Ωa of dimension 12, and
• a closed semisimple subregular orbit Ωsr of dimension 10;

(iii) ([KR13, Lemma 1]) let L = 〈D`, Ds〉 be the pencil of sextic hypersurfaces in P13

generated by D` and Ds. Then for any member Dt of L different from D` and
Ds the complement Dt \D` is a regular semisimple orbit of Ad(G2);

(iv) both Ω and Ωs are nilpotent orbits contained in D` ∩Ds.

Proof. (iv) Both Ω and Ωs are orbits of root subspaces consisting of nilpotent elements,
see Lemma 6.9(i), (iii). The inclusion Ω ∪ Ωs ⊂ D` ∩Ds follows from (i). �

6.11. Proof of Proposition 6.7. (i) If h is semisimple then the centralizer of h in g2 has
dimension 2 if h is regular and 4 otherwise; in the latter case h is subregular, see [PZ18,
Proposition 7.7]. In both cases, Aut0(V ) is a reductive group of rank 2 2.

(ii) The hyperplane section V (h) of Ω is smooth if and only if P(Ch) ∈ P13 is not a
point of the dual variety D` of Ω. If V (h) is smooth and h is not semisimple, then h is
regular non-semisimple by Lemma 6.10(i)–(ii). In the latter case Aut0(V (h)) = Ga×Gm

has rank 1, see [PZ18, Lemma 12.8.1].

(iii) By 6.6 one has V = V (h̃) for some h̃ ∈ g2. By our assumptions, V = V (h̃) is

smooth and rk(Aut(V )) = 2. Hence, h̃ is semisimple due to (ii). So, h̃ is contained in a

Cartan subalgebra, say, h̃ of g2. The Cartan subalgebras h and h̃ being conjugated one
has h̃ = Ad(g)(h) for some g ∈ G2. Letting h = (Ad(g))−1(h̃) ∈ h one gets V = V (h̃) =
Ad(g)(V (h)). �

6.12. The fixed points of the torus. The hyperplane section V (h) is T -invariant if and
only if the vector line Ch is, if and only if

(6.13) h ∈ h ∪

( ⋃
α∈∆`

gα

)
∪

( ⋃
α∈∆s

gα

)
,

2This group coincides with the stabilizer of V in G2, see [PZ18, Theorem 1.3].
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see [Hum72, Section 8]. The line Ch is T -invariant if and only if its projectivization P(Ch)
is a fixed point of the induced T -action on Pg2 = P13. Using (6.13) and Lemma 6.9 we
deduce the following facts.

6.14. Lemma. The fixed points of the torus T acting on P13 are the points of the projective
line Ph and the twelve isolated points Pgα, where α ∈ ∆` ∪∆s. The six fixed points Pgα
which correspond to the long roots α ∈ ∆` are the only fixed points of T on Ω. The six
fixed points Pgα which correspond to the short roots α ∈ ∆s lie on the orbit Ωs.

For any root α ∈ ∆ we let hα be the vector line in h given by the equation α = 0. Let

h0 = h \

{∏
α∈∆

α = 0

}
= h \

⋃
α∈∆

hα.

6.15. Corollary.

(i) For any root α ∈ ∆ the fourfold V (eα) is singular;
(ii) for h ∈ h\{0} the fourfold V (h) is smooth if and only if h ∈ h\D` = h\

⋃
α∈∆`

hα;

(iii) h ∈ h0 =⇒ V (h) is smooth and Aut0(V (h)) = Stab0
G2

(h) = T ;

(iv) h ∈
⋃

α∈∆s
hα =⇒ V (h) is smooth and Aut0(V (h)) = Stab0

G2
(h) = GL2(C) ⊃ T ;

(v) [h] ∈ Ωa ⇐⇒ V (h) is smooth and Aut0(V (h)) ∼= Ga ×Gm.

Proof. Statements (i) and (ii) follow from Lemma 6.9(ii). Statements (iii)-(v) follow from
[PZ18, Corollaries 7.8.3 and 13.2.1]. �

6.16. Remarks. 1. We have
⋃

α∈∆s
Phα = Ph ∩Ds ⊂ Ωsr.

2. The Cartan subalgebra h is NG2(T )-invariant, and the Weyl group NG2(T )/T =
W (G2) = D6 acts on Ph. The center z(W (G2)) acts trivially on Ph. The NG2(T )-action
on h induces an effective S3-action on Ph, where S3 = D6/z(D6) stands for the symmetric
group of rank three. The quotient Ph/S3 parameterizes the semisimple orbits of Ad(G2)
in Pg2, cf. [CMG93, Theorem 2.2.4]. The line Ph does not meet the nilpotent orbits Ω
and Ωs.

6.17. Lemma. Consider the rational function Φ on P13 whose fibers are the members of
the pencil L generated by D` and Ds, and let S3 stand for the symmetric group of order
6. The morphism ϕ = Φ|Ph : Ph ∼= P1 → P1 of degree 6 is a Galois S3-covering given by
the homogeneous S3-invariant rational function on Ph,

(6.18) ϕ =

 ∏
α∈∆+

`

α2

 /

 ∏
α∈∆+

s

α2

 where ∆+
` = ∆` ∩∆+ and ∆+

s = ∆s ∩∆+.

The ramification locus of ϕ in Ph consists of the following 8 points:

• the six points Phα given by
∏

α∈∆ α = 0; the morphism ϕ : P1 → P1 is ramified
with order two in each of these points;
• the two points which correspond to the one-dimensional eigenspaces of the rota-

tion subgroup Z/6Z of D6; the morphism ϕ is ramified with order 3 in each of
these points.

The first group of six points (Phα)α∈∆ consists of two orbits of length three of the S3-
action on Ph, and the remaining two points form a single S3-orbit.

Proof. Any line hα with α ∈ ∆ is the mirror of a reflexion from W (g2) = D6 acting on
h. This action is free off hα, and the quotient morphism h → h/D6 = A2 is ramified
to order 2 along hα. The subgroup of rotations R = Z/6Z ⊂ D6 acts on the set of
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mirrors with two orbits, which are the triples of lines hα which correspond to the short
and the long roots, respectively. The two eigenspaces of R in h are components of the
ramification divisor with ramification of order 3 along each of them. Any reflection from
D6 with mirror hα, where α is a short root, interchanges these eigenspaces. This proves
the lemma. �

Let s, l ∈ Ph/S3
∼= P1 denote the points which correspond, respectively, to the two

S3-orbits of length 3, and let r ∈ Ph/S3 correspond to the unique S3-orbit of length 2.
The following corollary is immediate.

6.19. Corollary. The projective line Ph ⊂ P13 meets any sextic Dt from the pencil L =
〈D`, Ds〉 different from D`, Ds, and Dr in six distinct points outside D`. It meets D`,
resp., Ds in the triple {Phα}α∈∆`

, resp., {Phα}α∈∆s with simple tangency in each of these
six points, and meets Dr in two points with local intersection indices 3 in each of these
points.

6.20. Lemma. Let S ⊂ V be a cubic cone. If Aut0(V ) = G2
m then Aut(V, S) = Aut0(V ).

Proof. One has Aut0(V ) = Aut0(V, S). The Sarkisov link (5.2) transforms (V, S) into
a pair (W,F ), where F ⊂ R is a smooth rational normal quintic scroll (see 5.1), and
induces an isomorphism Aut(V, S) ∼= Aut(W,F ). So, Aut(V, S) acts effectively on W via
this isomorphism. Its action on F is effective too, since Aut(V, S) is reductive in our case,
and the hyperplane section R = W ∩ 〈F 〉 is singular. Since any line on R is contained in
a plane, the rulings of F are lines in Π-planes, and each ruling is contained in a unique
Π-plane. Moreover, J := F ∩ Ξ is a section of F , where Ξ = Sing(R) is the Ξ-plane.
Since F is an intersection of quadrics, J is a smooth conic.

Let S∨ be the unique cubic cone on V disjoint with S. Clearly, Aut(V, S) leaves S∨

invariant. When acting on W it leaves invariant the image S∨W of S∨ in W . Since
the linear projection θ : V 99K W is regular near S∨, the image θ(S∨) is a cubic cone
with vertex P ∈ W \ R. This cone meets R in a rational twisted cubic curve Ψ, see
Proposition 4.3(iii). For any Π-plane in R one has Ψ · Π = 1.

Recall the following facts.

6.21. Claim. (i) Any Π-plane meets the plane Ξ along a tangent line to a common
smooth conic Υ ⊂ Ξ;

(ii) R, Ξ, and Υ are Aut(W )-invariant;
(iii) ([PZ18, Proposition 6.3]) F , Ψ, and J are Aut(V, S)-invariant;
(iv) ([PZ18, Corollary 6.3.1]) the conics J and Υ share common tangents at two

distinct points P1 and P2, while no further line in Ξ is tangent to both J and Υ;
(v) ([PZ18, Lemma 6.2]) one has Aut(Ξ,Υ, J) = Gm o (Z/2Z), where the factor

Z/2Z is generated by an involution κ interchanging the points P1 and P2, and
the Gm-factor fixes these points.

6.22. Claim. Aut(V, S) acting on J fixes the points P1 and P2.

Proof of Claim 6.22. Assume to the contrary that some α ∈ Aut(V, S) interchanges P1

and P2. It is easily seen that α|Υ has exactly two fixed points, say, γ1 and γ2. For i = 1, 2
the unique Π-plane Πi passing through γi is invariant under α. The same is true for the
tangent line li = TγiΥ = Π

i
∩ Ξ and the unordered pair {ri, si} of distinct intersection

points of li with the conic J , see Claim 6.21(iv) and Fig. 6.C. The intersection points
qi ∈ Πi ∩ Ψ, i = 1, 2, are distinct and fixed by α. Since α fixes qi and preserves F , the
ruling Λi of F through qi is α-invariant. The intersection point, say, ri of Λi ∩Ξ ⊂ li ∩ J
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Figure 6.C.

is fixed by α, see [PZ18, Proposition 6.3(a) and its proof]. Then α fixes as well the
second intersection point si of li ∩ J . Thus, l1 ∪ l2 meets J in the points r1, s1, r2, s2

fixed by α. Since at least three of these points are distinct, it follows that α|J = idJ , a
contradiction. �

According to Claim 6.22, Aut(V, S) fixes the intersection point P1 ∈ J ∩Υ and leaves
invariant the ruling ΛP1 of F through P1 and the tangent line TP1J ⊂ Ξ. Hence, the
reductive group Aut(V, S) acting effectively on the tangent plane TP1F is diagonalizable,
and so, abelian.

The group Aut(V, S) being reductive, there are natural embeddings

Aut0(V ) = Aut(V, S) ⊂ Aut(S,Γ)

where Γ = AS∨ ∩ S is a rational twisted cubic curve. The torus Aut0(V ) ∼= G2
m acts on

Γ with two fixed points, say, v′ and v′′; these are the vertices of cubic cones in V which
are the neighbors of S in the cycle (S1, . . . , S6). We have Aut(Γ, {v′, v′′}) ∼= Gm oZ/2Z,
where the generator of Z/2Z interchanges v′ and v′′ and acts on Gm via the inversion. The
image of the abelian group Aut(V, S) under the restriction homomorphism Aut(V, S)→
Aut(Γ, {v′, v′′}) coincides with the neutral component Gm of Aut(Γ, {v′, v′′}) (that is,
it fixes the points v′ and v′′), and the kernel is isomorphic to Gm too. It follows that
Aut(V, S) = Aut0(V ) ∼= G2

m. �

6.23. Corollary. Let Aut0(V ) = G2
m, and let S1, . . . , S6 be the cyclically enumerated

cubic cones in V , see Lemma 1.8(i). Then the quotient Aut(V )/Aut0(V ) ⊂ Z/6Z acts
effectively on the cycle (S1, . . . , S6) via cyclic shifts.

6.24. Remark. Due to [PZ18, Theorem 1.3.3] the exact sequence

1→ Aut0(V )→ Aut(V )→ Aut(V )/Aut0(V )→ 1

splits, and so, one has Aut(V ) ⊂ T o (Z/6Z), cf. (6.1). The element τ ∈ Z/6Z of order
two acts on the Cartan subalgebra h via − idh. Hence, τ acts on T via the inversion.
Likewise, any generator of the factor Z/6Z acts on the torus T via an automorphism of
order six.

6.25. Lemma. For any Fano-Mukai fourfold V = V g
18 with Aut0(V ) ⊃ G2

m one has
Aut(V ) ⊃ G2

m o (Z/2Z), where the generator of Z/2Z
• extends to an element of Ad(G2) acting on g2;
• interchanges the members in each pair of disjoint cubic cones on V ;
• acts on the torus G2

m via the inversion.

Proof. We may suppose Aut0(V ) ⊃ T . There is an exact sequence

1→ Ad(G2) = Aut0(g2)→ Aut(g2)→ Aut(Γ2)→ 1,
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where Γ2 stands for the Dynkin graph of G2, see [FH04, Proposition D40]. Since Γ2

admits no nontrivial automorphism and the center of G2 is trivial, one has Aut(g2) =
Aut0(g2) = Ad(G2) ∼= G2. It follows that

(6.26) StabAut(g2)(h) = StabG2(T ) = NG2(T ) ∼= T oW (G2),

see [AH17, Theorem A] for the latter splitting.
Let τ ∈ z(W (G2)) ∼= Z/2Z be the central element of order two. By [Hum72, Propo-

sition 14.3], τ can be extended to an element τ̃ ∈ StabAut(g2)(h) = NG2(T ) of order two
which preserves the Killing form and sends eα to −e−α for α ∈ {α1,α2}. It is easily
seen that τ̃(eα) ∈ {±e−α} for any α ∈ ∆. For the induced action of τ̃ on P13 one has
τ̃(Pgα) = Pg−α for any α ∈ ∆.

The subgroup of NG2(T ) generated by T and τ̃ is isomorphic to T o (Z/2Z). Since τ
acts trivially on Ph and Ω is invariant under the action of NG2(T ) on g2, any fourfold V (h)
with h ∈ h is (T o (Z/2Z))-invariant, as well as the set of the six T -fixed points on V (h).
Notice that τ̃ interchanges the T -fixed points Pgα and Pg−α in Ω for α ∈ ∆`. Hence, the
involution τ̃ acts effectively on V (h) interchanging the members in each of the three pairs
of cubic cones in V (h). In particular, Aut(V (h)) ⊃ To(Z/2Z). Recall, see Lemma 1.8(i),
that the cubic cones on V (h) are arranged in a cycle, where each pair of opposite vertices
corresponds to a pair of disjoint cubic cones. By Corollary 6.23 the group Aut(V (h)) acts
on this cycle via rotations. Therefore, the involution τ̃ interchanges the members within
each pair of disjoint cubic cones. See Remark 6.24 for the last statement. �

Proof of Theorem 6.2. According to Proposition 6.7(iii) we may suppose Aut0(V ) = T
and V = V (h) for some h ∈ h0.

Let l ⊂ h be the vector line spanned by h. If Pl ∈ Ph \ (D` ∪Ds ∪Dr) then the orbit
of the point Pl under the S3-action on Ph has length six, see Corollary 6.19. In this case
the stabilizer Aut(V (h)) of V (h) in NG2(T ) coincides with T o 〈τ̃〉 = T o (Z/2Z), as
needed in (ii). It remains to investigate the group Aut(V (h)) for [h] from the exceptional
S3-orbit Ph ∩Dr = {r1, r2} = ϕ−1(r), see Corollaries 6.15 and 6.19.

We have ri = Pli, where l1, l2 ⊂ h are the proper subspaces of the subgroup of rotations
R ∼= Z/6Z of W (G2) = D6. It is easily seen that the elements of order two in S3

interchange the points r1 and r2, while the elements of order three fix these points.
Hence, the stabilizer of ri in S3 is the cyclic subgroup R′ of order three, i = 1, 2, and the
preimage of R′ in D6, that is, the stabilizer of the line li in W (R2) is the cyclic subgroup
R of order six.

Let σ be a generator of the cyclic subgroup R ⊂ D6, and let σ̃ ∈ NG2(T ) be a lift of σ
of order six. The line li is invariant under the action of σ̃. Choose a nonzero vector hi ∈ li
for i = 1, 2. Then V (hi) is invariant under the action of T o 〈σ̃〉. By Corollary 6.23, σ̃
acts on the cycle (S1, . . . , S6) of cubic cones on V (hi) via a cyclic shift of order six. It
follows due to (6.1), (6.26), and Lemma 6.25 that

(6.27) Aut(V (hi)) = StabG2(V (hi)) = NG2(T ) ∼= T o (Z/6Z).

By [KR13, Lemma 1], r1 and r2 lie on the same Ad(G2)-orbit Ωr = Dr \D`. Therefore,
there is an isomorphism V (h1) ∼= V (h2). Letting V r = V (h1) we obtain (i). �

6.28. Remark. By Chevalley’s restriction theorem the restriction map gives an isomor-
phism of graded algebras

(6.29) C[g2]Ad(G2) ∼= C[h]W (G2) = C[ψ2, ψ6],

where ψ2 and ψ6 are homogeneous forms in two variables of degree 2 and 6, respectively.
Let φ2 and φ6 be the corresponding homogeneous G2-invariant forms on g2. The graded
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piece
(
C[g2]Ad(G2)

)
6

= 〈φ3
2, φ6〉 is spanned also by the pair (δ`, δs) of irreducible G2-

invariants defined in Lemma 6.9. Hence, the pencils 〈φ3
2, φ6〉 and L = 〈D`, Ds〉 in P13

coincide. Any member Dt of L is irreducible being a G2-orbit closure, see Lemma 6.10.
If Q ⊂ P13 is the G2-invariant quadric defined by φ2, then 3Q belongs to L. In fact, we
have Dr = 3Q. Indeed, the three distinguished W (G2)-invariants ψ2 = φ2|h, δ`|h, and
δs|h correspond to the three orbits of the W (G2)-action on Ph with nontrivial stabilizers,
namely, Q ∩ Ph = Dr ∩ Ph of length two and D` ∩ Ph, Ds ∩ Ph of length three, see
Lemma 6.17. In the notation of 0.2 in the Introduction one has p2

3 = δ`|h and q2
3 = δs|h,

where p3 =
∏

α∈∆+
`
α and q3 =

∏
α∈∆+

s
α, see (6.18). Besides, one has {ψ2 = 0} = l1 ∪ l2.

Proof of Corollary 6.3. In the exceptional cases where Aut0(V ) 6= G2
m the first statement

holds by [PZ18, Theorem 1.3(i)–(ii)]. In the case Aut0(V ) = G2
m this statement follows

from Lemma 6.25. The second statement follows from Lemma 6.25 and (6.27). �
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