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Abstract: Tropical forests have exceptional floristic diversity, but their characterization remains 
incomplete, in part due to the resource intensity of in-situ assessments. Remote sensing technologies 
can provide valuable, cost-effective, large-scale insights. This study investigates the combined use 
of airborne LiDAR and imaging spectroscopy to map tree species at landscape scale in French 
Guiana. Binary classifiers were developed for each of 20 species using linear discriminant analysis 
(LDA), regularized discriminant analysis (RDA) and logistic regression (LR). Complementing 
visible and near infrared (VNIR) spectral bands with short wave infrared (SWIR) bands improved 
the mean average classification accuracy of the target species from 56.1% to 79.6%. Increasing the 
number of non-focal species decreased the success rate of target species identification. Classification 
performance was not significantly affected by impurity rates (confusion between assigned classes) 
in the non-focal class (up to 5% of bias), provided that an adequate criterion was used for adjusting 
threshold probability assignment. A limited number of crowns (30 crowns) in each species class was 
sufficient to retrieve correct labels effectively. Overall canopy area of target species was strongly 
correlated to their basal area over 118 ha at 1.5 ha resolution, indicating that operational application 
of the method is a realistic prospect (R2 = 0.75 for six major commercial tree species). 

Keywords: tropical forest; species diversity; hyperspectral; LiDAR 
 

1. Introduction 

Tropical forests are a major terrestrial plant biodiversity reservoir [1]. The preservation of this 
biome is therefore globally important. Persistent deforestation [2] is resulting in drastic declines in 
biodiversity. From 2000 to 2010, logging in natural forests removed approximately 5% of the world’s 
forest area [3]. While the biggest drivers for biodiversity change [4] have been shown to be land use 
change and climate change, logging impact on the biodiversity of various taxonomic groups 
(mammals, birds, amphibians) is also well documented [5]. Logging impact is not restricted to the 
removal of a few commercial stems per ha, but also includes damage associated with opening tracks 
to access to the logging area. Untargeted trees can be wounded in the process of timber felling and 
hauling, contributing to carbon release [6] and possibly slowing forest recovery rate [7] by favouring 
fast-growing species such as lianas [8,9]. Logging may therefore profoundly modify the floristic 
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composition of the exploited plot [10] while disturbing wildlife [11,12]. Proper management of 
tropical forests is therefore crucial to mitigate the erosion of biodiversity [13]. 

Remote sensing technologies can provide valuable information for the preservation of tropical 
forests. Large-scale species distribution maps may provide valuable insights into species autecology 
and species population dynamics. Imaging spectroscopy has proven useful in monitoring the 
development of invasive species [14–16]. From a forest management perspective, evaluating 
abundance and spatial distribution of commercial species will help prioritize areas to be set aside for 
regeneration purposes and biodiversity conservation, or simply because there is not enough 
commercially valuable resource for logging operations. Accurate mapping of species prior to opening 
roads and tracks can therefore support the development of reduced impact logging techniques by 
minimizing the detrimental impact on soil and forest cover and contributing to protect and maintain 
forest diversity [17]. This technology is particularly well adapted to tropical forestry, since trees of 
commercial interest are typically large, upper canopy trees (dominant or emergent) but making up a 
small part of the entire tree community. 

The efficacy of tree species discrimination in tropical forests via airborne imaging spectroscopy 
has been demonstrated [18–22]. At leaf scale, part of the SWIR1 domain (1467 nm to 1771 nm) was 
found to support accurate species identification. The SWIR2 domain (1994 nm to 2435 nm) was also 
found to be important in discriminating species at crown level [23]. A study conducted in semi-
deciduous tropical forest [24] reported that including SWIR information (1045 nm to 2395 nm) 
improved their classification accuracy from 64.2% to 79.8%. While extending the spectral range 
increases the discriminative power of hyperspectral imagery, it has known drawbacks. Sensors 
limited to the VNIR domain are lower cost, more widespread, more easily miniaturized to mount on 
UAV platforms and have better intrinsic performance (higher signal-to-noise ratio). Hence, the 
balance between costs and benefits of increasing the spectral range should be assessed with respect 
to the specific task considered. 

Improved accuracy has been reported from performing classification at the crown level as 
opposed to the pixel level [22,25,26]. However, segmentation of individual tree crowns (ITCs) in 
dense canopies remains a difficult task. Light detection and ranging (LiDAR) can help considerably. 
A recent benchmark study comparing crown segmentation methods using the LiDAR point cloud of 
a dense tropical canopy [27] identified AMS-3D (Adaptive Mean Shift in 3 Dimensions) as the most 
effective method. LiDAR and hyperspectral data fusion may further improve our ability to 
distinguish individual crowns [28]. 

Most studies in tropical forest so far have focused on discriminating a limited number of species 
against one another. In the present study, we are interested in retrieving a few target species amongst 
a very large number of non-focal species. To this end, one might consider focussing the annotation 
effort on the well-known more easily recognized focal species. This raises the question of the 
definition of the non-focal species class. A random sample of pixels of the area may capture the 
diversity of species in the background but will most likely include pixels of the focal species as well. 
Standard measures of accuracy such as F-measure then become inappropriate during the training 
stage due to this possible source of bias. A new unbiased criterion was proposed to replace the F-
measure in such settings [29] It is based on the evaluation of the focal class (given by the recall metrics) 
divided by the probability that a sample is classified in the focal class among the non-focal class. This 
methodology was applied to identify five species on Barro Colorado Island (BCI) [19]. In the latter 
study, the authors did not specifically study the sensitivity of the classifier to the level of bias 
(impurity of the non-focal class). 

Finally, we go beyond individual tree classification accuracy evaluation by exploring how well 
one can predict the cumulative basal area of commercial species per unit area from imaging 
spectroscopy to truly tackle the issue of quantitative forest resource mapping. 

Our study starts by examining the benefits of using a SWIR sensor (1000 nm to 2500 nm) in 
conjunction with a VNIR sensor (400 nm to 1000nm) for tree species discrimination. We then move 
on to the core of our study, which is to evaluate the potential of hyperspectral imagery in an 
operational setting. We first explore for 20 locally abundant species how much the retrieval rate may 
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depend on the diversity of the set of species among which the target species are mixed. We compare 
the performance of different binary classifiers developed to retrieve target species from wide views 
of the forest canopy after delineating individual tree crowns using LiDAR data. We further examine 
the impact of mislabeling of the focal and non-focal classes on the different classifiers’ performance. 
We also briefly examine the impact of the size of the training set representing the species of interest. 
We finally compare hyperspectral predictions of basal area per species to a large ground inventory 
database. 

2. Materials and Methods  

2.1. Study site 

The study site of Paracou (5  ∘18 ᇱN, 52 ∘53 ᇱW) was established during the 1980s in French 
Guiana. The main objective of the experimental set-up was to document the impacts of different 
silvicultural practices on the dynamics of a tropical rainforest in order to provide guidelines for its 
sustainable exploitation [30]. Seventy-six 125 × 125m plots (118.75 ha) are regularly monitored (stem 
girth and vital status being recorded). All trees with a diameter at breast height (DBH) higher than 
10 cm have been identified to species level (or higher order taxon level if species was unknown). At 
the onset of the experiment, all the trees were geo-located using a meter tape after materializing a 
12.5x12.5m grid on the ground using strings. Tree location accuracy was estimated to be +/- 2m. 

2.2. General methodology outline 

The general methodology is outlined in Figure 1. LiDAR data was used to segment crowns 
(Section 2.4.1) over the entire area of interest (118.75 ha). Manual segmentation (Section 2.3.3) and 
ground referencing was used to build a reference spectral signature database and species-specific 
allometric models. Inventory data (Section 2.4.2) were then paired with the automatically segmented 
(Section 2.4.1) crowns based on size and geolocation congruence. 

The spectral signature database was used to train the binary classifiers, developed for each focal 
species (Section 2.5). The automatically delineated and labeled segments were used to mask the focal 
species across the whole area of the permanent plots to ensure a high level of purity of the non-focal 
class. To ensure that the non-focal class contained as few pixels as possible from the focal class, we 
considered a buffer around the crowns determined by the automatic assignment as belonging to the 
focal class. All contiguous segments and the segment itself were excluded from the training and 
testing sets (Figure 1). 
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Figure 1. General methodological outline illustrated for a sample plot. The inventory data (green 
points) are paired with the automatically segmented crown (orange outline). Pairing is based on an 
allometric model developed from manually segmented crowns (black outline). In the segmented and 
colorized image, the green segment is one potential crown of the focal species; in grey, the 
neighbouring crowns that are also masked to make sure all pixels of the focal class are removed 
(striped segments) from the data set; in blue, the crowns preserved. 

2.3. Remote sensing data 

2.3.1. Hyperspectral imaging 

Imaging spectroscopy data was acquired with a Hyspex VNIR-1600 and a Hyspex SWIR-384 
(Hyspex NEO, Skedsmokorset, Norway) sensor. The VNIR-1600 sensor covers the range from 414 
nm to 1000 nm with 160 spectral bands and a spectral sampling distance of 3.64 nm. The SWIR-384 
sensor covers the range from 1000 nm to 2500 nm with 288 spectral bands and a spectral sampling 
distance of 5.45 nm. The entire spectral range of the VNIR sensor was used. The information acquired 
in the SWIR domain is sensitive to atmospheric water absorption, so the spectral information 
corresponding to the low signal-to-noise ratio domains was discarded. Finally, the following spectral 
windows were kept: for the SWIR domain: 1009 nm to 1318 nm, 1454 nm to 1796 nm and 1964 nm to 
2458 nm. Hence, 195 SWIR bands were retained. The King Air B200 airplane flew at an average 
altitude of 920 m. The flight took place on a cloudless day (from 15:00 to 17:00, solar time) on the 19th 
September 2016. Images were orthorectified and georeferenced with the PARGE software [31] using 
the canopy DSM (digital surface model) produced from the LiDAR point cloud (see next section). 
The DSM was created from the point cloud by selecting point of maximum height on a 1-m resolution 
grid. The spatial resolutions of the VNIR and SWIR images were 1 m and 2 m respectively. In order 
to merge the data without degrading the spatial resolution of the VNIR imagery, we resampled the 
SWIR imagery at 1 m using the nearest neighbor method. In addition, the fields of view of the two 
sensors are not identical (17° and 16°). We constrained the spectral information to the narrowest field 
of view corresponding to the one of the SWIR sensor. In the end, we obtained VSWIR imagery 
covering the entire spectrum (414 nm to 1963 nm) corresponding to 355 bands. Spectral information 
used to train the species classifiers was extracted from flight lines rather than from a mosaic, as it was 
previously shown to be more effective [22]. Although the training was carried out on the flight lines, 
the prediction was done on the mosaic where the pixels with viewing angle closest to vertical were 
kept (“center cropped” option of PARGE software [32]). 

Atmospheric correction was applied using ATCOR-4 software [31]. The water vapor was 
retrieved using the APDA (atmospheric pre-corrected differential absorption) algorithm. The aerosol 
optical thickness (AOT) represents the amount of aerosols in the entire column of the atmosphere. It 
was considered constant. Non-vegetated pixels were identified based on NDVI (normalized 
difference vegetation index) thresholding, following recommendations for wavelength selection 
given in [33]. 𝑁𝐷𝑉𝐼 = 𝜆଻଻ସ − 𝜆଺଻଺𝜆଻଻ସ + 𝜆଺଻଺ (1) 

Pixels with NDVI values higher than 0.4 were considered vegetation. Then, we applied a spatial 
mean filtering and a spectrum normalization by the mean as described in [22]. The illumination ratio 
was used to remove pixels with a scaled shadow fraction value higher than 0.6. 

2.3.2. LiDAR data and RGB imagery 

Airborne laser scanning data and RGB imagery were acquired during the same flight as the 
hyperspectral data. The LiDAR system was an LMS Q780 RIEGL operated with the following 
characteristics: a scan frequency of 400 kHz, a scan angle of +/- 30°. Neighbouring strips overlapped 
by 90%. Final mean pulse density was 33 pulses.m−2. In addition, RGB (red, green, blue) imagery was 
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acquired during the same flight using an iXu 180 Phase One camera. The final spatial resolution of 
the RGB orthorectified mosaic was 10 cm.  

2.3.3. Ground reference data 

A field survey was conducted to build a large ground reference dataset distributed over 56 of 
the 76 plots monitored on the study site (87.5 ha). Easily discernible crowns were first delineated 
manually based on the canopy height model (CHM), derived from LiDAR data with the help of the 
high-resolution RGB mosaic. The correct delineation of these ITCs was then validated in the field and 
the corresponding species ascertained. The 20 most abundant species in the delineated ITC dataset 
represented 1297 ITCs with a minimum of 24 individuals per species. Another 949 crowns were 
delineated, corresponding to 226 species. In total, the labeled database contained 2246 trees (Table 1). 
Most crowns were imaged twice by hyperspectral sensors because of the overlapping flight lines. The 
normalized mean spectra and its standard deviation for the most abundant tree species is illustrated 
in Figure 2. 

In the 20 plots where no manual segmentation of ITC was done, 532 species were recorded for a 
total of 19,379 trees. 

Table 1. List of target species, and corresponding number of crowns and total number of pixels 
retained for analysis (each crown was imaged twice, but some pixels were removed due to low 
illumination or NDVI values). Sample representation refers to the proportion of manually segmented 
crowns of a given species. Mean crown area followed by standard deviation in brackets. Commercial 
species are underlined. 

Species (acronyms) 
Number of 

crowns 
Number of 

pixels 
Mean crown area (m2) 

(SD) 
Sample representation 

(%) 
Qualea rosea (Q.r.) 206 27,828 109.5 (59.4) 9.2 

Pradosia cochlearia (P.c.) 164 38,349 142.3 (122.5) 7.3 
Eschweilera sagotiana (E.s.) 139 12,559 49.1 (29.0) 6.2 
Dicorynia guianensis (D.g.) 108 18,589 102.7 (66.8) 4.8 

Eperua falcata (E.f.) 106 15,355 71.7 (41.3) 4.7 
Eperua grandiflora (E.g.) 74 10,859 87.3 (46.2) 3.3 
Recordoxylon speciosum 

(R.s.) 69 7944 69.6 (26.2) 3.1 

Tachigali melinonii (T.m.) 51 6745 106.2 (67.1) 2.3 
Couratari multiflora (C.m.) 49 4850 55.1 (33.8) 2.2 

Licania alba (L.a.) 46 3894 47.0 (18.4) 2.0 
Symphonia sp.1 (S.s.) 34 3355 50.2 (20.1) 1.5 

Vouacapoua americana 
(V.a.) 34 3218 65.4 (34.0) 1.5 

Sextonia rubra (S.r.) 32 4070 118.5 (99.3) 1.4 
Tapura capitulifera (T.c.) 32 1224 30.5 (12.2) 1.4 

Licania heteromorpha (L.h.) 27 1437 40.3 (21.7) 1.2 
Moronobea coccinea (M.c.) 27 3355 68.8 (36.7) 1.2 

Inga alba (I.a.) 26 3846 81.3 (58.7) 1.2 
Goupia glabra (G.g.) 25 4998 133.7 (77.3) 1.1 

Bocoa prouacensis (B.p.) 24 2375 54.9 (35.8) 1.1 
Jacaranda copaia (J.c.) 24 1705 40.4 (22.7) 1.1 

Others 949 84,713 80.8 (71.6) 42.3 
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Figure 2. Normalized mean reflectance spectra (and standard deviation) for six focal species estimated 
on manually segmented crowns. 

2.4. Automatic segmentation method 

2.4.1. AMS-3D method 

We applied AMS-3D [34] to the LiDAR data for ITCs segmentation. The AMS-3D algorithm 
considers the point cloud as a multi-modal 3D distribution where each mode corresponds to the 
location of a tree crown. To find the modes, a Pollock function was used as bandwidth [35], with 
parameters changing with points’ height to allow higher crowns to be bigger [34]. Points converging 
to the same mode were attributed the same ITC. The 3D clusters corresponding to each crown were 
then projected vertically to obtain polygons. The point cloud segmentation was conducted with the 
Computree platform (http://computree.onf.fr/), and the projection with the R package lidR [36]. 

2.4.2. Correspondence between ITC and inventory data 

The automatically segmented crowns were then paired with the inventory data, using a pairing 
algorithm based on allometric relation and distance between the crown and the stem [27]. First, using 
data from the manually segmented crowns, we modelled each tree DBH as a function of crown 
diameter, height and taxon:  

 𝑙𝑛ሺ𝐷𝐵𝐻௜ሻ = 𝛼௦௣೔ + 𝛽௦௣೔𝑙𝑛ሺ𝐻௜ ൈ 𝐶𝐷௜ሻ + 𝜀 (2) 

 𝜀 ∼ 𝒩ሺ0,𝜎௜ଶሻ (3) 

where 𝐷𝐵𝐻௜ is the DBH (cm) of tree 𝑖 of species 𝑠𝑝௜, 𝐻௜ is its height, 𝐶𝐷௜ its crown diameter, 
and 𝜀 the error term. We then computed the distance between each manual segmented crown and 
all trunks of the inventory, computed the distance ranking of the trunk associated with the crowns, 
and fitted an exponential distribution on the ranks: 𝑑௜,௝  =  𝛼𝑒ିఈ௥೔,ೕ (4) 

where ri,j  is the rank of tree j associated with crown 𝑖, and α is the parameter of the exponential 
distribution. Then, we developed an algorithm to optimally pair a crown with a tree from the 
inventory using the model previously parameterized. This algorithm takes two types of information 
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into account: i) the distance between the crown center (computed as the 2D-centroid of crown 
projection) and the trunk location in the inventory should be close, and ii) the tree should obey the 
allometric relation between the crown size and the trunk diameter. We considered those two rules to 
apply independently, neglecting a possible dependency of crown trunk distance on tree size. The 
pairing algorithm pairs each crown with the tree with highest: 𝑝௜,௝ =  𝑑௜,௝ .𝑔௜,௝ (5) 

where 𝑔௜,௝ is the density function of the allometric model. Stems were ordered by decreasing 
DBH, and they were paired one after another in that order, with the segmented crown having the 
largest 𝑑௜,௝  in the neighbourhood of the stem (15m). When a crown was allocated to a stem, it was no 
longer available for others. Details of the algorithm can be found in [27]. 

2.5. Classification method 

We compared three classification methods for tree species identification: linear discriminant 
analysis (LDA), regularized discriminant analysis (RDA) and logistic regression (LR). We used the 
python language and the sklearn library [37]. The optimization of hyperparameters for the LR 
required considerable computing power. We used a Singularity container [38] and ran the code on a 
cluster of computers. 

The LDA classification algorithm is well adapted to classification problems in high-dimension 
feature spaces provided that the number of observations is larger than the number of features in the 
least abundant class [39]. The principle of LDA consists in calculating new variables called 
discriminating canonical variables as linear combinations of the initial variables. It is calculated to 
maximize the ratio of the inter-group variance to the intra-group variance.  

RDA is a compromise between LDA and quadratic discriminant analysis (QDA). QDA is a 
variant of LDA, the former being better adapted for non-linear separation.  LDA assumes 
multivariate normal distribution of features with a common covariance matrix and different mean 
vector for each class. As shown by [40], LDA is not sensitive to the normal distribution assumption. 
Nevertheless, when the assumption of common covariance matrix is not satisfied, the individual 
covariance matrix for each group should preferably be estimated. This specific step characterizes 
QDA. The discriminating boundaries of the QDA are quadratic curves. The intermediate method 
between the two gives the RDA method proposed by [41] and makes it possible to regularize group 
covariance matrices, while preserving its performance in multi-dimensionality [42]. 

The assumptions of multivariate normality and equal variance–covariance matrices between 
groups are required before proceeding with LDA. On the contrary, in LR, these assumptions are not 
made. The authors of [43] showed in a bivariate case that in binary classification LR would be more 
efficient as soon as the normality assumption would be violated. A regularization term penalizing large 
values of the parameters was considered to avoid possible overfitting during the training step. A 
penalty parameter controlling the relative cost of errors occurring in the two classes was also tuned. We 
used a grid search to find the best combination of hyper-parameters C (regularization) and wc (relative 
focal class weight) over the values C {e0, e1, e2,…, e6 } and 𝑤௖{1,2,…,10 }. In case of bias (impure non-
focal class), we used the criterion of [29], otherwise we used the F-measure metric (see below). 

2.5.1. Classifier evaluation criteria 

To assess the reliability of the binary classifier, the F-measure was the chosen accuracy 
measurement. It relies on the estimation of the precision and recall of the class of interest. F-measure 
was used instead of accuracy due to the difference in proportion between the classes. The precision 
is the number of correct positive results divided by the number of all positive results returned by the 
classifier, and the recall is the number of correct positive results divided by the number of all relevant 
samples (all samples that should have been identified as positive).  F − measure = 2 × precision × recallprecision + recall  (6) 
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Precision = ∑ TP∑ (TP + FP) (7) 

Recall = ∑ TP∑ (TP + FN) (8) 

TP, FP and FN refer to true positive, false positive and false negative, respectively.  
For comparison between LDA, RDA and LR, we used the exact same randomly sampled training 

and testing sets. 

2.5.2. Optimization step 

All classifiers used in this study output a probability for a pixel of belonging to the focal class, 
which is defined by the maximum likelihood. The threshold used for assignment to the focal class 
can be refined by using a specified criterion, to improve the classification performance. We used 
different criteria for the standard (unbiased) case and when the non-focal class was impure. In the 
standard case, we sought to maximize the pixel level F-measure. When dealing with the mislabeled 
non-focal class (i.e. when the non-focal class contained pixels of the focal class), true precision was 
unknown, so we sought to maximize the following quantity [29]: 𝑅𝑒𝑐𝑎𝑙𝑙ଶ𝑃(𝑓(𝑥) = 1) (9) 

where the 𝑅𝑒𝑐𝑎𝑙𝑙  is recall of the accuracy and P[f(x)=1] is the probability that a sample is 
classified in the focal class. 

2.6. Experimental set-up 

We present four different experiments. All classifiers considered in this study were binary 
classifiers; i.e., a particular focal species is classified against a large set of non-focal species. As a rule, 
we separated the data into 70% of the crowns used for the training set and 30% for the test set (Figure 
3) repeating the operation 30 times. We provide the mean and the standard deviation of the F-
measure. 

We first compared classification performances obtained when using spectral information from 
either VNIR or VSWIR on the 20 most abundant species only (Experiment 1). Then, we explored how 
the performance of the classifier would be affected by gradually increasing the number of species 
among which our focal species was retrieved (Experiment 2). In a third experiment, we explored the 
sensitivity of the classifiers to different types of errors affecting the training data (labeling errors) 
(Figure 3, Experiment 3). In a final test (Experiment 4), we predicted the basal area of focal species 
per 1.56 ha plot from the hyperspectral data. 

 
Figure 3. Nested datasets are used as illustrated in the leftmost chart. Flowchart 1 refers to Experiment 
1. Flowchart 2 illustrates how classifiers were penalized by contamination of the non-focal class 
(Experiment 3). 
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2.6.1. Experiment 1—VNIR versus VNIR+ SWIR  

We assessed the effectiveness of adding SWIR bands to the VNIR spectrum. We used manual 
segmentation data and we selected the 20 most abundant tree species (Figure 3, 1). The same pixels 
were used to build training and test sets (70%–30%) for VNIR and VSWIR data. For this first 
experiment, none of the three classification methods were subject to secondary optimization. 

2.6.2. Experiment 2—Increasing background spectral diversity 

The same 20 focal species were considered for this experiment, but we gradually added more 
species to the non-focal class. We first added the crowns of the most abundant species present in the 
manually segmented crowns database, up to 99 different species. We then added all the remaining 
crowns from the manual segmentation database (each crown being the sole representative of its 
species) in arbitrary order. Thereby, the 364 different species were opposed to each of the 20 species 
alternately. For this first experiment, LDA was used, without an optimization step. 

2.6.3. Experiment 3—Effect of noise in the training data  

In an operational case, the inventory effort will likely be focused on few target species. Thus, the 
other non-focal species will not be systematically inventoried. Therefore, to train the classifier, the 
non-focal species class will be represented by a random selection of pixels over the entire study area 
(excluding crowns known to belong to the focal species). However, the probability for a pixel of the 
focal class of being selected and contributing to the non-focal class is dependent on the distribution 
of this species in the study area, viewed at canopy level. 

To assess the impact of a given level of mislabeling of the non-focal pixels, we artificially biased 
the learning data set (Figure 3, 2). We randomly selected 100,000 pixels from the background, 
excluding the focal species to create the training set for the non-focal species. We simulated three 
level of bias in the training data by successively replacing 1%, 2% and 5% of the pixels labeled as 
belonging to the non-focal class with pixels taken from crowns of the focal species class. 

We also explored the potential impact of mislabeling of the focal pixels, reckoning that such 
errors may occur regardless of the efforts made in the field (identification errors, matching errors, 
etc.). We used Mahalanobis distance to detect outliers among the 20 most abundant species in the 
manually segmented crown database. For each species, we computed this multi-dimensional distance 
for each pixel, we then computed the mean Mahalanobis distance per crown. Crowns beyond two 
standard deviations were considered as pseudo-outliers and removed from the database. Binary 
classifications using all the information (including pseudo outliers) were then compared to those 
excluding pseudo-outliers.  

Mahalanobis distance is a multi-dimensional distance measure between a point and a 
distribution. This distance d(x) can also be defined as a dissimilarity measure between a vector and 
a mean vector from the same distribution: 

𝑑(𝑥⃗) =  ඨ(𝑥⃗ − 𝑢ሬ⃗ )்෍ (𝑥⃗ − 𝑢ሬ⃗ )ିଵ   (10) 

where 𝑥 is a spectrum, 𝑢 the mean spectrum, Σ is the variance–covariance matrix. 

2.6.4. Experiment 4—Predicting basal area per species per plot 

The ground inventory data comprised 76 plots of 1.56 hectares. For each plot, we compared the 
canopy surface predicted per species (at crown and pixel level) by the best-performing classification 
method and the basal area of the species using a linear regression. The learning step used all the 
information on the focal species which was available in the manually segmented crown database to 
build the focal class and 100,000 pixels randomly selected from the same 56 plots. Hence, 20 plots (c. 
25% of the area) were set aside to be used for independent validation. The learning step used 100,000 
pixels from flight lines, while the prediction was realized on the mosaic. 
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We compared prediction of the three classifiers applied with and without an optimization step 
and with or without majority vote at crown level. The majority vote rule was applied to decide on 
the species label to be assigned to ITCs, which corresponded to a filling rate higher than 50% of the 
pixels. We present the results obtained with the LDA only. The basal area considered here is the basal 
area of all trees with DBH greater than 10cm. It may be noted that smallest trees will not be visible in 
the areal imagery. 

3. Results 

3.1. Experiment 1 

The combination of VNIR and SWIR information strongly improved the performances of all 
classifiers compared to VNIR information only, with an increase in F-measure of 23.8%, 27.3% and 
19.4% for LDA, RDA and LR respectively. The contribution of SWIR was very important for all 
species. The difference between LDA and RDA was not significant in this case. All species were rather 
well identified (F-measure never lower than 59%). LR did not outperform LDA nor RDA. 

Moderate differences in performance were observed between classifiers when only the VNIR 
information was used. LR performed slightly better than the other two methods except for Eschweilera 
sagotiana (70% vs. 79%) and RDA appeared to perform slightly worse, particularly at pixel level 
(Appendix A). The change from pixel to object level was confirmed to be very beneficial. LDA gained 
the most from the majority vote, with an increase of 15.5% in F-measure using the complete VSWIR 
information (Table 2).  

Table 2. Comparison of the F-measure at object level (and standard deviation) obtained after 
classification with the three methods when either VNIR or VSWIR information are used. Commercial 
species are underlined. The best prediction for each species with either VNIR or VSWIR information 
is in bold. 

 VNIR VSWIR 
 

Species LDA RDA LR LDA RDA LR 

B.p. 25.4 (±11.6) 22.3 (±8.5) 26.4 (±7.2) 66.9 (±11.3) 83.3 (±10.4) 61.0 (±18.0) 
C.m. 66.7 (±13.2) 64.8 (±13.5) 67.5 (±11.0) 75.0 (±10.7) 67.9 (±9.9) 77.0 (±8.4) 
D.g. 61.2 (±4.5) 61.3 (±4.7) 69.2 (±7.0) 88.6 (±2.5) 86.3 (±3.6) 90.3 (±2.4) 
E.f. 46.9 (±5.5) 7.3 (±2.5) 29.6 (±9.6) 70.0 (±5.8) 72.9 (±8.2) 73.9 (±6.7) 
E.g. 63.1 (±6.4) 61.8 (±7.4) 79.4 (±5.0) 82.1 (±5.3) 87.6 (±4.4) 89.7 (±3.6) 
E.s. 79.0 (±3.3) 72.8 (±5.3) 70.6 (±7.3) 89.6 (±2.8) 89.3 (±1.9) 86.4 (±2.1) 
G.g. 44.3 (±8.9) 63.3 (±12.1) 67.6 (±12.9) 84.1 (±7.3) 83.9 (±12.0) 80.4 (±12.7) 
I.a. 44.4 (±14.2) 49.4 (±15.6) 62.7 (±17.2) 77.6 (±10.0) 76.3 (±8.5) 66.0 (±16.0) 
J.c. 58.4 (±16.7) 59.2 (±12.6) 57.1 (±16.6) 59.2 (±19.1) 58.2 (±18.1) 70.2 (±16.8) 
L.a. 55.9 (±10.0) 62.9 (±10.7) 62.6 (±11.4) 78.1 (±4.5) 79.6 (±9.5) 74.6 (±9.1) 
L.h. 22.2 (±8.0) 16.7 (±0.0) 20.0 (±0.0) 65.2 (±11.3) 60.7 (±13.7) 49.0 (±14.6) 
M.c. 64.5 (±11.4) 52.7 (±14.3) 64.1 (±13.3) 82.8 (±10.9) 74.7 (±17.4) 79.7 (±12.7) 
P.c. 80.5 (±4.2) 83.6 (±3.8) 88.4 (±3.3) 93.5 (±1.9) 93.6 (±1.9) 94.1 (±1.6) 
Q.r. 94.8 (±1.6) 94.6 (±1.5) 95.6 (±1.2) 96.9 (±1.1) 96.2 (±1.4) 97.2 (±1.1) 
R.s. 84.9 (±6.0) 81.4 (±5.0) 90.0 (±4.7) 91.4 (±3.3) 87.1 (±6.1) 90.6 (±3.8) 
S.r. 55.0 (±9.2) 50.6 (±14.5) 53.7 (±13.2) 77.6 (±11.5) 82.9 (±8.4) 85.2 (±7.3) 
S.s. 24.0 (±0.0) 0.0 (±0.0) 11.3 (±0.0) 64.0 (±11.7) 68.9 (±12.1) 50.5 (±13.7) 
T.m. 73.3 (±7.7) 79.2 (±6.0) 84.1 (±5.6) 93.5 (±4.1) 93.3 (±4.3) 93.4 (±4.1) 
T.c. 35.4 (±8.7) 17.1 (±4.0) 38.2 (±14.1) 82.6 (±8.9) 72.7 (±11.8) 83.5 (±9.8) 
V.a. 48.7 (±13.8) 52.8 (±13.7) 43.0 (±14.7) 85.1 (±8.3) 83.8 (±10.0) 77.1 (±10.1) 

Mean F-measue 56.4 52.7 59.1 80.2 80.0 78.5 
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3.2. Experiment 2  

We gradually added crowns from new species to increase the spectral variability of the non-
focal class. We used an LDA binary classifier to retrieve each of the 20 most abundant species. No 
optimization was applied. We present the results at object level (following majority vote). 

The overall trend in Figure 4 highlights that increasing the number of species degraded the 
classifier's performance. Some species were highly affected (e.g. Eschweilera sagotiana); others were 
only slightly affected (e.g. Qualea rosea). Increasing the number of species from 99 to 364 significantly 
affected discrimination of all target species. F-measure for Qualea rosea, the best-identified species, 
decreased from 88.6% to 84.9%, a loss of about 4% points.  

 

 

Figure 4. Evolution of species discrimination by successive addition of new species. F-measure value 
is smoothed using a five-step moving average, except after the 99th species when all remaining species 
were added at once (red box). Commercially valuable species are plotted in bold line. 

The F-measure value for the species Licania alba, Licania heteromorpha and Inga alba declined 
sharply with the added species. In these cases, the focal species was well retrieved (the recall was 
higher than 70%), but the precision was very low (a lot of pixels were wrongly predicted to belong to 
the focal class).  

3.3. Experiment 3 –Exploring the impact of training set impurity  

To evaluate the impact on the classification performance of mislabeled pixels in the non-focal 
class, we applied different levels of contamination bias (1%, 2% and 5%). 

3.3.1. Low level of impurity (all species) 

We first examined to what degree the different classification methods were affected by a low 
level of impurity of the non-focal class, and whether optimizing the pixel threshold based on the 
criterion proposed by [29] could mitigate this bias. 

A noise of 1% had no significant effect on the identification of species, whether an optimization 
step was used or not (Table 3). When no optimisation was applied, LDA was outperformed by the 
other two methods for most of the species. For some species, LR was more efficient (e.g. Pradosia 
cochlearia) while for other species (e.g. Sextonia rubra) RDA performed best. Once optimized, all 
methods performed on a par in this experiment. 
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Table 3. Object level F-measure (and its standard deviation in brackets) of species binary classifiers 
trained with 1% mislabeling of the non-focal class. Plain and optimized indicate whether an 
optimization step (selecting a threshold probability value) was applied to maximize either the F-
measure (0% contamination) or the Lee and Liu 2003 criterion (1% contamination). Standard deviation 
is given in Appendix B. The best prediction for each species and method is in bold. 

Bias 
0% 1% 

Plain Optimized Plain Optimized 
Species LDA RDA LR LDA RDA LR LDA RDA LR LDA RDA LR 

B.p. 35.8 (±10.3) 57.7 (±12.4) 37.5 (±15.5) 65.4 57.5 42.1 36.4 58.5 43.4 64.3 56.2 43.0 
C.m. 68.3 (±10.8) 64.7 (±10.1) 68.0 (±10.5) 69.8 68.3 71.4 67.4 65.1 66.5 69.8 68.0 69.4 
D.g. 57.7 (±3.9) 72.3 (±6.0) 78.2 (±6.1) 75.8 72.0 78.5 57.5 72.6 78.2 74.8 72.2 78.3 
E.f. 50.8 (±4.1) 67.7 (±6.1) 69.2 (±6.2) 71.5 68.9 70.5 51.5 67.9 68.0 72.1 69.2 70.5 
E.g. 65.1 (±7.0) 82.0 (±5.3) 84.4 (±4.6) 82.4 82.7 84.8 64.9 81.9 82.5 82.0 82.5 84.7 
E.s. 68.1 (±4.2) 74.2 (±4.1) 71.0 (±5.2) 74.7 74.1 75.9 68.5 74.7 69.2 74.1 73.4 74.9 
G.g. 62.5 (±12.6) 73.4 (±11.5) 76.4 (±12.5) 74.5 73.5 77.3 62.8 72.6 74.8 74.5 74.4 75.0 
I.a. 38.3 (±11.5) 42.3 (±12.7) 38.5 (±11.6) 43.0 41.0 41.4 38.9 42.7 36.6 43.0 41.4 40.9 
J.c. 50.7 (±19.7) 51.4 (±16.8) 52.4 (±17.1) 50.9 49.3 53.1 52.2 49.0 51.6 51.5 50.4 52.6 
L.a. 41.6 (±8.7) 56.3 (±10.8) 53.9 (±10.5) 56.6 54.4 62.3 41.9 56.8 48.5 57.0 54.7 59.7 
L.h. 25.6 (±8.9) 43.6 (±11.0) 22.8 (±8.1) 44.0 34.2 25.5 26.5 43.5 23.5 46.6 33.7 26.0 
M.c. 58.5 (±13.8) 55.5 (±16.9) 60.0 (±14.5) 56.3 54.9 62.7 58.6 56.1 56.5 55.4 56.2 61.7 
P.c. 69.5 (±4.5) 77.1 (±4.9) 85.9 (±3.6) 77.6 77.0 84.3 69.6 78.0 85.8 78.2 77.4 84.0 
Q.r. 86.6 (±2.5) 88.1 (±2.7) 91.3 (±2.3) 86.4 85.8 90.7 86.9 88.1 91.2 86.6 86.2 90.8 
R.s. 82.5 (±3.8) 78.8 (±4.5) 81.2 (±5.2) 81.0 80.7 84.9 82.4 79.3 79.5 80.7 79.7 83.4 
S.r. 54.3 (±9.2) 70.8 (±10.7) 61.6 (±14.7) 71.8 66.9 68.0 53.8 69.7 52.3 71.3 66.4 61.1 
S.s. 29.1 (±5.9) 36.7 (±9.1) 21.3 (±7.1) 36.6 36.7 25.6 29.1 35.8 21.3 35.5 35.8 25.6 
T.m. 64.7 (±6.4) 69.9 (±6.0) 80.7 (±9.4) 76.3 75.8 78.8 64.9 70.4 78.2 76.0 75.6 78.9 
T.c. 58.3 (±11.5) 65.4 (±12.5) 72.2 (±14.8) 65.8 52.1 72.5 58.2 65.4 69.6 63.6 51.0 70.6 
V.a. 68.2 (±8.7) 72.8 (±12.2) 65.1 (±12.8) 74.4 74.4 66.9 66.5 74.1 63.9 74.4 73.6 64.6 

Average 56.8 65.0 63.6 66.7 64.0 65.9 56.9 65.1 62.0 66.6 63.9 64.8 

3.3.2. High level of impurity (most abundant species) 

This analysis was restricted to the five most abundant species in order to explore the effect of 
high rates of contamination of the non-focal species, which required having sufficient focal pixels. 
Results are summarized in Figure 5. 

 

Figure 5. Object level F-measure (and its standard deviation) of species binary classifier trained with 
either 0% or 5% mislabeling of non-focal class. Paler color represents performance after applying an 
optimization step (see text). An arrow indicates cases when optimization decreased performance. 

A labeling error of 5% did not affect LDA, with or without an optimization step. However, the 
optimization step was very beneficial in both cases. RDA was mildly affected by labeling error and 
not improved by optimization. LR classification method was much more impacted by a 5% error level 
and the optimization only partially compensated for this. The average loss in F-measure was 11.8% 
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(without optimization) and 6.7% (with optimization). More complete results on the average F-
measure, with or without an optimization step are provided in Appendix B, including results 
obtained for 2% bias. 

In summary, RDA appeared to be robust to high noise level even without optimization. LR was 
sensitive to noise even after including a modified optimization step criterion [29]. LDA performed 
very well, provided that an optimization step was included.  

3.3.3. High level of impurity—smaller focal training class 

To assess the impact of the size of the focal class on classification performance we reduced the 
number of crowns to 30 in the focal class while still considering 100,000 pixels randomly selected for 
the non-focal class. Only the five most abundant species were considered. Miss-labeled pixels were 
added to the non-focal class to achieve different levels of contamination (1%, 2% and 5%). Results 
were almost undistinguishable from those obtained with larger training sets for the same level of bias 
(see Appendix C). 

3.3.4. Focal class purification 

Mean crown Mahalanobis distance (computed across pixels within species) was used to try to 
detect outliers (Figure 6). Only Licania alba and Bocoa prouacensis had no outliers (outliers being 
defined as crowns showing a mean Mahalanobis distance greater than two standard deviations from 
the mean of all crowns). The most heavily impacted species were Jacaranda copaia and Goupia glabra 
(see table in Appendix D). Overall, for the 1297 representatives in the 20 focal classes, 55 crowns were 
potential outliers. There was thus a global potential bias of the focal classes of 4.2% or 2844 unreliable 
spectra.  

 

Figure 6. Within-species Mahalanobis distance (computed per crown). The blue line represents the 
mean of the Mahalanobis distance. The red lines represent the mean plus or minus two standard 
deviations. 

We examined all those potential outliers on high-resolution RGB imagery. In a few cases, those 
outliers could be related to particular features (illustrated in Appendix D): low illumination leaving 
very few pixels per crown after filtering, higher than average contribution of wood caused by partial 
leaflessness (especially for Eperua falcata), presence of liana in the crown. However, in 90% of the 
cases, no peculiarity was detected on high-resolution imagery. One cannot exclude that crown 
mislabeling occurred, but this could not be ascertained.  
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To evaluate the improvement achieved after removing potential outlier crowns, a Student test 
by species was performed on each metric at object level for the three classifiers (without the 
optimization step). We compared those metrics before and after removal of the potential outliers. The 
most impacted species were the Couratari multiflora (from 68% to 71.6% using LR) and Sextonia rubra 
(from 61.6% from 64.7% using LR) (P-value <0.01). Recordoxylon speciosum (from 81.2% to 83.8% using 
LR) and Jacaranda copaia (from 50.7% to 59.2% using LDA) were less impacted (P-value <0.05). The 
RDA method was the method least sensitive to the introduction of outliers. For more detail, see the 
table in Appendix D. 

3.4. Experiment 4 

We related the recorded basal area per species per plot with the canopy area predicted to belong 
to the same species by the different classifiers. We used all the available crowns in our manual 
segments database to train the classifiers. For each focal species, we randomly selected 100,000 pixels 
to create the non-focal class for training the classifier. Results for LDA are reported in Figure 7 for the 
most abundant commercial species. Results for all other species are provided in Appendix E, Figure 
A3. 

 

Figure 7. Relation between basal areal (m2.ha−1) and area predicted (m2.ha−1) using the optimized LDA. 
Plots not used for training are plotted in red and the R-squared for those observations given in 
brackets. The plot used for the training are in blue. Global R-squared values are given using all points 
(red and blue). In solid black line, linear regression based on all points passing through zero. The 
normal confidence ellipses are given, computed for each group points using the corresponding color 
(red or blue). 

As expected, the effectiveness of the classifier conditions the correlation between the predicted 
canopy area and the basal area. The mean linear correlation coefficient across species was 0.70 (n=20; 
Appendix F). Optimized LDA and RDA were the methods that provided the best average R2 both at 
pixel and object level (not shown).  

In addition, we compared the slope of the relations across species. We used a linear model 
without intercept. While species effect was significant overall (P < 0.01, e.g. Eperua grandiflora vs. 
Eperua falcata), some species shared a very similar slope (e.g. Qualea rosea vs. Vouacapoua americana). 
It might therefore be possible to use a common model between these species 
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Object-based prediction was better correlated to basal area than pixel-based prediction (4–8 
point gain in R2) for all classifiers. Less than 2% of the pixels were classified into more than one species 
for both LDA and RDA. Hence, the confusion was low, despite the fact that the species-specific 
classifiers were developed independently. After majority voting, no confusion remained.  

4. Discussion 

The first experiment unambiguously confirmed that addition of SWIR information vastly 
improves classification performance. Our results on the contribution of SWIR information to species 
identification are in line with those obtained in previous studies [23,26,44]. The authors of [23] found 
that the LDA classification accuracy of seven tropical forest tree species was improved from 67.3% to 
83.6%. Similarly, we found an increase in accuracy of about 20%–25% on average across species 
depending on the method considered. We noted that the gain was more important for LDA and RDA 
than for LR. In addition, we assessed the quality of our database. In fact, our database may contain a 
few mislabeled cases, as suggested by the Mahalanobis distance analysis. However, these outliers 
had a limited negative effect on classification in general. It is unclear how many of these pseudo-
outliers are actual outliers. Phenology or presence of lianas was not found to be significantly 
associated with potential outliers. 

The comparison of the results obtained in this study (Table 3, without bias) with previously 
published results (Table 4 in Laybros et al., 2019) indicates that there is no significant difference in 
performance between the binary and multiclass LDA classifier at pixel level. However, at the object 
level, the binary classifiers are clearly outperformed, implying a strong influence of the majority vote. 
The relative majority can be effective in a multi-class problem, whereas the absolute majority is 
required when only two classes are considered.  

An important characteristic of our study case is the unbalanced number of spectra (pixels) in 
each class. The minority classes are the most affected by this constraint. Unbalanced classes impact 
results obtained with SVM classifications [45]. In some studies, the authors used SVM without a 
specific method to control for this effect [20,21,24,26,46]. This method is, however, sensitive to 
unbalanced classes [47–50]. Biasing the classifier by adding weights and breaking down the 
penalization of the classifiers (parameter C) into two parameters was recommended by [19,51] in 
order to reduce the negative impact of the minority classes. Conversely, LDA is not sensitive to the 
number of elements per class [52] because it shares the variance–covariation matrix between the 
classes. In addition, training on the entire data set or a subset of only 30 crowns did not affect the 
performance of the classifier. The similar results between the LDA and the RDA methods seem to 
confirm that RDA IS not sensitive to the disproportion between classes either.  

It is preferable to optimize a specific metric in the biased cases and especially with a high bias 
rate. F-measure is not a good choice, because the precision is biased to an unknown extent. The use 
of the criterion proposed by [29] proved useful. In addition, when the bias is very severe, it is 
recommended to use a threshold that will optimize discrimination [49]. In the present study, LR was 
found to benefit much from this methodology. Conversely, the optimal probability threshold did not 
improve species discrimination for RDA. 

The maximum level of bias tested here was 5%. How likely are larger biases to occur? In an 
operational case, the random selection of pixels on the study area will comprise a range of species 
reflecting the local flora of the study site. Despite the extremely high local tree species diversity (alpha 
diversity) in tropical forests [53], some species are spatially aggregated as a result of either 
environmental preference or dispersal limitation. For example, the Eperua falcata measured in the 
Piste de St Ellie region, is a species with an aggregated spatial distribution [54]. Vouacapoua americana, 
Eperua grandiflora and Qualea rosea species were also reported as being highly aggregated [55,56]. 
Extreme cases of aggregation may lead to monodominance [57], where more than 50% of the stems 
belong to a single species (e.g., Spirotropis longifolia). This, however, is a rare case and local frequency 
of the focal species will seldom reach 5% [58].  

Most previous studies focused on discriminating a few well-known species against each other, 
which is of little relevance to an operational context. Here, we focused on assessing the potential of 
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classification methods using hyperspectral information for retrieving particular species in a diverse 
canopy. This problem was previously addressed by [19], who highlighted the feasibility of 
identifying four tree species in a tropical forest canopy using biased SVM on the BCI site. As reported 
by [59], the taxonomic diversity in BCI is lower than in Paracou, whatever the diversity considered 
(alpha, beta or gamma diversity). On the BCI site, 225 tree species have been counted among more 
than 21,457 stems for an area of 50 hectares. On the Paracou site, 229 tree species were listed among 
1124 stems for an area of 2 hectares. Therefore, the identification of focal tree species may be more 
challenging in the context of the present study than in the [19] study. As shown in Experiment 1, the 
performance of the classifiers tends to decrease with increasing diversity of the background.  

The size of the training data set can be critical in an operational setting. The minimum number 
of crowns to be used for training in tropical canopies was investigated by [18,45]. Thirty crowns were 
found to be reasonable for species retrieval against 100,000 pixels. In the present study reducing the 
number of focal crowns from 74-144 to 30 crowns did not entail any loss in F-measure (comparison 
between Table 3 and Figure A.1). However, the minimum training set size may depend on the species 
[18] and the diversity of the canopy. For the same number of crowns in the learning set (34 crowns, 
Table 1), the F-measure for Vouacapoua americana reached of 72.8% while it was only 36.7% for 
Symphonia sp.1 (Table 3, RDA). In addition, because classification results were so variable across 
species (Figure 4), we examined correlations between the predictability of the species (F-measure), 
the size of the focal species training set, the intra-specific spectral variance—sensu [60]—and the 
dispersion of the Mahalanobis distance values. The only significant correlation detected was with the 
size of the training set (number of crowns or number pixels) highlighting that the detectability of a 
species is difficult to predict (Appendix F, Table A5). 

Forest managers need to quantify the resource of the forest in order to orient the choices to be 
made. We found the relation between basal area and crown area in the canopy to vary across species. 
The authors of [61] mention that a global allometric model can predict the diameter of the crown from 
the diameter of the stem. These estimates are based on more than 108,753 stems with different 
geographic locations, consisting of 1,492 tree species. However, this general relation is only valid at 
coarse grain, and studies comparing species occurring in a restricted geographical range repeatedly 
found marked inter-species differences. This was the case for Indian monsoon forest [62] and 
Sumatran peneplains agroforests [63], for instance. In addition, it should be stressed that, albeit 
visible from above (and therefore segmented and labeled), a crown may be partially masked by its 
neighbors, so the area of the visible segment can differ from the total crown area. Finally, errors 
stemming from the automatic segmentation step may have further blurred the basal area–crown area 
relation.  

The use of LiDAR data allowed us to cluster points into putative crowns using the AMS-3D 
algorithm. This segmentation step allowed improving the performance of classifications through 
majority voting by an average of 10%–18%. This suggests that improving the segmentation step might 
provide improvement in the classification results. Segmentation itself may take advantage of 
multisource data. Depending of the way data are merged, fine co-registration can be required but 
may be difficult to achieve [64,65]. 

The next major challenge to address in remote species classification is transferring the 
knowledge acquired on one site to another one [22]. The spectral signature may vary over both space 
and time. One reason is variation in the timing of leafing, fruiting and flowering, which is still not 
well characterized for the vast majority of species in evergreen forest [66]. Tropical rainforest trees 
produce leaves with widely variable phenology and longevity [67,68]. Leaf optical properties may 
differ significantly between young newly sprouted leaves and one- to two-month-old fully mature 
photo-synthetically competent leaves [69]. In French Guiana where our study took place, a seminal 
work [70] monitored the phenology of 750 trees belonging to 35 species during two years. Various 
leafing patterns were reported to occur in that study: deciduous with synchronous or asynchronous 
leaf drop, or evergreen with continuous or seasonal leaf flushing. Local conditions (and notably soil 
water holding capacity) will contribute to desynchronize the phenological stage of deciduous trees 
submitted to similar weather conditions. Difference in tree water status may also alter leaf inclination 
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through wilting which may affect the crown reflectance properties [71]. Additionally, differences in 
soil chemical fertility may induce differences in the spectral signatures of species. A long-known 
effect of an increase in nitrogen availability is an increased chlorophyll content and greenness [72]. 
The second major reason, and probably the most stringent issue, is the variability in imaging 
conditions. Several factors come into play to modify the apparent reflectance. On the one hand, 
during the acquisition, the sun–sensor angles change, as both the positions of the sun and the sensor 
are changing. The reflectance depends on those angles, and this dependency is idiosyncratic (i.e., 
depends on the characteristics of the object being imaged). Modelling the bidirectional reflectance 
distribution function (BDRF) to correct these spurious variations in spectral signature is extremely 
delicate. BRDF is likely to vary from tree to tree as it depends on characteristics such as foliage 
density, crown geometry (leaf size, leaf angle). Empirical or semi-empirical kernel-driven models [73] 
would probably require very large datasets to achieve a reasonable level of accuracy. The fact that 
reflectance in NIR is also significantly affected by neighbors identity [69] renders the hyper-diverse 
tropical forest particularly challenging in this respect. 

5. Conclusion 

We present a method that leverages the fusion of LiDAR data for ITC mapping and 
hyperspectral imagery for species identification. This method allowed us to accurately predict basal 
area of commercial species in a highly diverse tropical forest. As both types of sensors are likely to 
become more and more common, we hope that the proposed method will promote sustainable 
management of tropical forest.  

Addition of the SWIR domain (1000nm to 2500nm) to the more commonly used VNIR spectrum 
was very useful and is strongly recommended whenever possible. In this study, we have examined 
different scenarios that forest managers may encounter to map specific species in tropical forests, 
including limited training set and labeling errors affecting both the focal and non-focal classes. We 
have successfully tested various methods to circumvent labeling error issues. We recommend using 
robust discriminant analysis, which seems to be the method least sensitive to bias while also offering 
very good results in the absence of bias in the training data. In addition, we have found that sampling 
can be limited to a few individuals (30 crowns) without reducing the accuracy of the classifications. 
Certain species were poorly identified with all classification methods. No indicator based on spectral 
characteristics allowed upstream identification of what made it possible to carry out an efficient 
classification of a given tree species. 
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Table A1. Pixel-level results from the one versus 19 other species method. Only the F-measure is given 
with the standard deviation. The best prediction for each species with either VNIR or VSWIR 
information is in bold. 

 VNIR VSWIR 
 

Species LDA RDA LR LDA RDA LR 

B.p. 13.2(±6.5) 18.2(±10.4) 24.1(±12.8) 42.7(±7.7) 65.2(±6.5) 54.7(±7.8) 
C.m. 66.8(±12.0) 65.0(±12.6) 67.2(±10.5) 75.3(±8.0) 72.2(±8.5) 75.6(±5.9) 
D.g. 54.2(±4.3) 51.9(±5.8) 60.1(±4.8) 76.1(±3.3) 75.0(±3.6) 78.9(±3.0) 
E.f. 33.6(±4.5) 14.1(±3.2) 36.5(±4.5) 59.3(±5.2) 66.6(±6.2) 69.4(±4.8) 
E.g. 49.2(±6.5) 56.3(±4.9) 69.6(±4.2) 74.6(±3.5) 79.9(±3.4) 81.5(±2.7) 
E.s. 59.3(±3.4) 66.2(±3.9) 65.7(±4.2) 75.8(±3.0) 78.2(±3.0) 75.6(±3.4) 
G.g. 37.8(±9.7) 62.2(±9.1) 67.4(±9.3) 80.6(±6.2) 81.3(±8.2) 77.2(±10.2) 
I.a. 38.1(±11.0) 45.9(±13.9) 64.6(±12.0) 63.6(±9.5) 69.2(±7.5) 64.6(±8.1) 
J.c. 58.8(±19.4) 59.5(±22.7) 54.5(±20.4) 56.8(±16.9) 53.4(±20.5) 55.3(±12.5) 
L.a. 34.0(±7.3) 52.1(±9.4) 54.0(±9.7) 58.0(±7.9) 67.4(±8.7) 64.2(±6.0) 
L.h. 9.4(±3.9) 5.6(±4.8) 5.6(±4.8) 20.3(±8.3) 46.5(±12.3) 36.0(±9.4) 
M.c. 45.5(±9.3) 50.0(±11.3) 64.4(±9.1) 68.8(±9.0) 70.0(±11.1) 71.1(±5.9) 
P.c. 78.2(±3.2) 78.8(±1.5) 81.3(±1.6) 89.1(±1.6) 88.2(±1.4) 88.9(±1.6) 
Q.r. 88.4(±2.0) 88.1(±1.6) 90.8(±0.8) 94.0(±0.8) 93.0(±1.0) 94.4(±0.8) 
R.s. 76.6(±5.0) 75.1(±5.3) 81.3(±3.4) 84.1(±3.5) 82.4(±4.4) 81.7(±3.5) 
S.r. 36.4(±7.8) 52.3(±10.3) 55.3(±10.0) 53.8(±10.4) 69.2(±6.6) 71.7(±4.6) 
S.s. 13.2(±3.8) 0.4(±0.4) 10.4(±2.7) 33.9(±8.4) 54.6(±6.1) 52.4(±6.6) 
T.m. 63.3(±7.8) 67.8(±7.6) 68.5(±5.8) 87.7(±3.4) 87.1(±3.5) 85.5(±3.4) 
T.c. 7.4(±2.7) 8.8(±6.3) 40.5(±9.0) 30.3(±7.6) 60.0(±12.1) 59.2(±8.7) 
V.a. 31.2(±8.6) 48.6(±10.0) 46.3(±12.5) 69.6(±5.8) 72.4(±7.8) 63.0(±7.1) 

Mean F-measue 44.7 48.3 55.4 64.7 71.6 70.1 
 

LDA’s performance is the lowest compared to RDA and LR, both with (64.7% vs. 71.6%) and 
without (44.7% vs. 48.3%) an SWIR spectrum. At object level, LDA and RDA were the best methods.
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Appendix B—Experiment 3 (Low level of impurity)—Complement  

Table A2. Full table for the comparison between methods and bias applied, with and without optimisation step. Plain and optimized indicate whether an optimization 
step (selecting a threshold probability value) was applied to maximize either the F measure (0% contamination) or the Lee and Liu 2003 criterion (1% contamination). The 
F-measure is given at crown scale. The best prediction for each species, configurations and methods is in bold. 

Bias 0% 1% 2% 5% 
  Plain Optimized Plain Optimized Plain Optimized Plain Optimized 

Specie
s 

LDA RDA LR LDA RDA LR LDA RDA LR LDA RDA LR 
LD
A 

RD
A 

LR 
LD
A 

RD
A 

LR 
LD
A 

RD
A 

LR 
LD
A 

RD
A 

LR 

B.p. 
35.8 

(±10.3) 
57.7 

(±12.4) 
37.5 

(±15.5) 
65.4 

(±12.6) 
57.5 

(±17.4) 
42.1 

(±16.0) 
36.4 

(±9.8) 
58.5 

(±12.4) 
43.4 

(±13.6) 
64.3 

(±12.7) 
56.2 

(±17.3) 
43.0 

(±16.0) -- -- -- -- -- -- -- -- -- -- -- -- 

C.m. 
68.3 

(±10.8) 
64.7 

(±10.1) 
68.0 

(±10.5) 
69.8 

(±11.2) 
68.3 

(±11.3) 
71.4 

(±7.9) 
67.4 

(±11.2) 
65.1 

(±10.3) 
66.5 

(±9.5) 
69.8 

(±11.6) 
68.0 

(±11.3) 
69.4 

(±8.4) -- -- -- -- -- -- -- -- -- -- -- -- 

D.g. 
57.7 

(±3.9) 
72.3 

(±6.0) 
78.2 

(±6.1) 
75.8 

(±5.6) 
72.0 

(±6.3) 
78.5 

(±5.7) 
57.5 

(±3.8) 
72.6 

(±5.7) 
78.2 

(±5.5) 
74.8 

(±6.3) 
72.2 

(±5.4) 
78.3 

(±5.5) 

56.2 
(±4.
2) 

 
69.6 
(±4.
7) 

 
76.5 
(±5.7

) 

 
72.5 
(±5.
2) 

 
67.2 
(±4.
9) 

 
73.2 
(±5.0

) 

58.5 
(±4.
4) 

 
70.3 
(±4.
6) 

 
72.3 
(±4.8

) 

 
73.1 
(±5.
0) 

 
68.0 
(±4.
9) 

 
73.1 
(±4.
4) 

E.f. 
50.8 

(±4.1) 
67.7 

(±6.1) 
69.2 

(±6.2) 
71.5 

(±4.6) 
68.9 

(±5.2) 
70.5 

(±5.0) 
51.5 

(±4.2) 
67.9 

(±5.2) 
68.0 

(±5.4) 
72.1 

(±4.8) 
69.2 

(±4.5) 
70.5 

(±4.9) 

51.4 
(±4.
1) 

 
62.5 
(±6.
1) 

 
61.9 
(±6.5

) 

 
67.3 
(±6.
0) 

 
63.4 
(±5.
9) 

 
65.0 
(±5.5

) 

52.8 
(±5.
4) 

 
62.0 
(±5.
7) 

 
50.7 
(±8.5

) 

 
66.0 
(±5.
4) 

 
62.2 
(±6.
6) 

 
59.3 
(±7.
0) 

E.g. 
65.1 

(±7.0) 
82.0 

(±5.3) 
84.4 

(±4.6) 
82.4 

(±6.2) 
82.7 

(±6.2) 
84.8 

(±4.5) 
64.9 

(±6.9) 
81.9 

(±5.6) 
82.5 

(±6.0) 
82.0 

(±6.2) 
82.5 

(±6.0) 
84.7 

(±4.2) -- -- -- -- -- -- -- -- -- -- -- -- 

E.s. 
68.1 

(±4.2) 
74.2 

(±4.1) 
71.0 

(±5.2) 
74.7 

(±4.3) 
74.1 

(±4.6) 
75.9 

(±4.7) 
68.5 

(±4.5) 
74.7 

(±3.9) 
69.2 

(±6.0) 
74.1 

(±4.3) 
73.4 

(±4.1) 
74.9 

(±5.0) 

67.4 
(±5.
0) 

 
74.1 
(±4.
3) 

 
69.0 
(±6.2

) 

 
74.2 
(±4.
4) 

 
74.2 
(±4.
0) 

 
73.3 
(±4.6

) 

69.8 
(±5.
5) 

 
72.8 
(±4.
4) 

 
47.1 
(±8.7

) 

 
72.0 
(±4.
5) 

 
72.0 
(±4.
0) 

 
61.7 
(±7.
6) 

G.g. 62.5 
(±12.6) 

73.4 
(±11.5) 

76.4 
(±12.5) 

74.5 
(±10.1) 

73.5 
(±10.9) 

77.3 
(±12.3) 

62.8 
(±14.2) 

72.6 
(±10.5) 

74.8 
(±11.6) 

74.5 
(±10.6) 

74.4 
(±11.2) 

75.0 
(±12.9) -- -- -- -- -- -- -- -- -- -- -- -- 

I.a. 
38.3 

(±11.5) 
42.3 

(±12.7) 
38.5 

(±11.6) 
43.0 

(±12.9) 
41.0 

(±13.3) 
41.4 

(±13.1) 
38.9 

(±11.2) 
42.7 

(±12.5) 
36.6 

(±10.7) 
43.0 

(±14.4) 
41.4 

(±13.5) 
40.9 

(±14.2) -- -- -- -- -- -- -- -- -- -- -- -- 

J.c. 
50.7 

(±19.7) 
51.4 

(±16.8) 
52.4 

(±17.1) 
50.9 

(±16.9) 
49.3 

(±17.5) 
53.1 

(±17.2) 
52.2 

(±17.2) 
49.0 

(±16.9) 
51.6 

(±16.6) 
51.5 

(±17.6) 
50.4 

(±16.5) 
52.6 

(±18.7) -- -- -- -- -- -- -- -- -- -- -- -- 

L.a. 
41.6 

(±8.7) 
56.3 

(±10.8) 
53.9 

(±10.5) 
56.6 

(±11.1) 
54.4 

(±10.6) 
62.3 

(±10.3) 
41.9 

(±9.9) 
56.8 

(±10.2) 
48.5 

(±12.1) 
57.0 

(±10.5) 
54.7 

(±10.1) 
59.7 

(±8.8) -- -- -- -- -- -- -- -- -- -- -- -- 

L.h. 
25.6 

(±8.9) 
43.6 

(±11.0) 
22.8 

(±8.1) 
44.0 

(±12.3) 
34.2 

(±13.1) 
25.5 

(±7.6) 
26.5 

(±8.9) 
43.5 

(±13.6) 
23.5 

(±8.3) 
46.6 

(±9.4) 
33.7 

(±11.5) 
26.0 

(±10.6) -- -- -- -- -- -- -- -- -- -- -- -- 

M.c. 58.5 
(±13.8) 

55.5 
(±16.9) 

60.0 
(±14.5) 

56.3 
(±15.9) 

54.9 
(±16.0) 

62.7 
(±12.0) 

58.6 
(±12.8) 

56.1 
(±16.5) 

56.5 
(±16.9) 

55.4 
(±16.5) 

56.2 
(±15.6) 

61.7 
(±14.8) -- -- -- -- -- -- -- -- -- -- -- -- 

P.c. 
69.5 

(±4.5) 
77.1 

(±4.9) 
85.9 

(±3.6) 
77.6 

(±4.5) 
77.0 

(±4.6) 
84.3 

(±3.2) 
69.6 

(±4.9) 
78.0 

(±4.9) 
85.8 

(±3.2) 
78.2 

(±4.7) 
77.4 

(±4.8) 
84.0 

(±3.8) 

70.4 
(±4.
9) 

 
80.4 
(±3.
4) 

 
84.6 
(±4.6

) 

 
79.9 
(±3.
6) 

 
79.8 
(±3.
5) 

 
84.2 
(±3.4

) 

71.4 
(±4.
8) 

 
79.3 
(±3.
8) 

 
74.2 
(±7.7

) 

 
79.3 
(±3.
8) 

 
78.7 
(±3.
5) 

 
81.9 
(±4.
5) 
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Q.r. 86.6 
(±2.5) 

88.1 
(±2.7) 

91.3 
(±2.3) 

86.4 
(±2.6) 

85.8 
(±2.4) 

90.7 
(±2.6) 

86.9 
(±2.5) 

88.1 
(±2.5) 

91.2 
(±2.2) 

86.6 
(±2.6) 

86.2 
(±2.8) 

90.8 
(±2.4) 

88.0 
(±2.
5) 

 
89.0 
(±2.
5) 

 
92.2 
(±2.0

) 

 
85.6 
(±3.
1) 

 
85.7 
(±2.
7) 

 
90.6 
(±1.8

) 

87.9 
(±2.
6) 

 
89.4 
(±2.
7) 

 
92.1 
(±2.4

) 

 
86.6 
(±3.
2) 

 
86.4 
(±3.
0) 

 
90.4 
(±2.
6) 

R.s. 
82.5 

(±3.8) 
78.8 

(±4.5) 
81.2 

(±5.2) 
81.0 

(±3.7) 
80.7 

(±3.5) 
84.9 

(±4.5) 
82.4 

(±4.2) 
79.3 

(±5.0) 
79.5 

(±5.6) 
80.7 

(±4.4) 
79.7 

(±4.1) 
83.4 

(±5.3) -- -- -- -- -- -- -- -- -- -- -- -- 

S.r. 54.3 
(±9.2) 

70.8 
(±10.7) 

61.6 
(±14.7) 

71.8 
(±13.7) 

66.9 
(±15.8) 

68.0 
(±13.8) 

53.8 
(±9.1) 

69.7 
(±12.3) 

52.3 
(±18.4) 

71.3 
(±13.5) 

66.4 
(±13.9) 

61.1 
(±17.4) -- -- -- -- -- -- -- -- -- -- -- -- 

S.s. 
29.1 

(±5.9) 
36.7 

(±9.1) 
21.3 

(±7.1) 
36.6 

(±8.0) 
36.7 

(±8.8) 
25.6 

(±14.2) 
29.1 

(±6.5) 
35.8 

(±7.9) 
21.3 

(±7.1) 
35.5 

(±9.2) 
35.8 

(±9.2) 
25.6 

(±11.7) -- -- -- -- -- -- -- -- -- -- -- -- 

T.m. 
64.7 

(±6.4) 
69.9 

(±6.0) 
80.7 

(±9.4) 
76.3 

(±7.5) 
75.8 

(±6.8) 
78.8 

(±7.2) 
64.9 

(±6.5) 
70.4 

(±5.6) 
78.2 

(±9.9) 
76.0 

(±6.8) 
75.6 

(±7.2) 
78.9 

(±9.7) -- -- -- -- -- -- -- -- -- -- -- -- 

T.c. 
58.3 

(±11.5) 
65.4 

(±12.5) 
72.2 

(±14.8) 
65.8 

(±14.4) 
52.1 

(±13.6) 
72.5 

(±15.1) 
58.2 

(±10.9) 
65.4 

(±12.7) 
69.6 

(±13.4) 
63.6 

(±14.2) 
51.0 

(±13.5) 
70.6 

(±14.2) -- -- -- -- -- -- -- -- -- -- -- -- 

V.a. 
68.2 

(±8.7) 
72.8 

(±12.2) 
65.1 

(±12.8) 
74.4 

(±12.0) 
74.4 

(±12.2) 
66.9 

(±13.3) 
66.5 

(±10.4) 
74.1 

(±12.0) 
63.9 

(±13.3) 
74.4 

(±12.1) 
73.6 

(±11.1) 
64.6 

(±12.5) -- -- -- -- -- -- -- -- -- -- -- -- 

Avera
ge 

56.8 65.0 63.6 66.7 64.0 65.9 56.9 65.1 62.0 66.6 63.9 64.8 66.7 75.1 76.9 75.9 74.1 77.3 68.0 74.7 67.3 75.4 73.4 73.3 
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Appendix C—Experiment 3 (High level of impurity—smaller focal training class)—Complement 

The procedure was similar to Experiment 3. We set aside 30% of the data for validation. 
However, we selected only 30 crowns of the focal class to use in the training set. In addition, we 
selected 100,000 pixels from the non-focal species to make up the non-focal class. We simulated three 
level of bias in the training set as described below.  

Table A3. Comparison of classification methods with and without bias. Plain and optimized indicate 
whether an optimization step (selecting a threshold probability value) was applied or not. This step 
aims at maximizing either the F measure (0% contamination) or the Lee and Liu 2003 criterion (1% 
contamination). F-measure is given at object level. The best predictions for each species, configuration 
and method are in bold. 

  LDA RDA LR 
SPID Bias Plain Optimized Plain Optimized Plain Optimized 
D. g 0 58.9 (±8.0) 69.7 (±6.4) 67.1 (±6.5) 66.7 (±6.7) 71.6 (±7.4) 74.6 (±6.5) 
E. f 0 53.4 (±7.2) 68.3 (±6.9) 66.0 (±4.9) 64.7 (±7.1) 61.2 (±9.1) 63.6 (±7.6) 
E. s 0 68.6 (±5.7) 71.7 (±6.4) 73.0 (±5.6) 71.5 (±6.3) 61.2 (±9.0) 68.4 (±8.4) 
P. c 0 73.6 (±4.4) 79.9 (±5.6) 79.5 (±5.7) 79.2 (±5.1) 83.6 (±4.2) 84.9 (±5.1) 
Q. r 0 88.8 (±2.7) 89.5 (±2.6) 89.4 (±2.6) 89.4 (±2.7) 90.2 (±2.9) 90.9 (±3.0) 

Average  68.7 75.8 75.0 74.3 73.5 76.5 
        

D. g 1% 58.8 (±8.3) 71.0 (±7.9) 67.8 (±7.7) 67.1 (±8.5) 70.5 (±8.7) 75.3 (±7.0) 
E. f 1% 54.1 (±6.6) 66.8 (±7.8) 65.2 (±5.7) 65.1 (±5.8) 59.0 (±10.0) 63.6 (±6.7) 
E. s 1% 69.0 (±6.6) 73.2 (±5.1) 73.4 (±5.3) 72.5 (±5.5) 52.9 (±8.1) 62.9 (±7.0) 
P. c 1% 71.9 (±5.7) 76.5 (±5.8) 75.8 (±6.7) 76.7 (±5.9) 77.1 (±5.0) 79.5 (±4.7) 
Q. r 1% 89.2 (±2.9) 89.2 (±2.3) 89.2 (±2.9) 88.9 (±2.7) 87.2 (±3.6) 88.5 (±3.6) 

Average  68.6 75.3 74.3 74.0 69.4 74.0 
        

D. g 2% 57.0 (±8.2) 71.5 (±5.8) 68.3 (±6.2) 67.4 (±6.7) 68.5 (±9.5) 72.9 (±7.0) 
E. f 2% 53.7 (±6.1) 66.4 (±7.7) 64.4 (±6.7) 64.6 (±7.3) 54.7 (±10.5) 62.2 (±9.6) 
E. s 2% 68.2 (±6.1) 73.3 (±5.1) 73.6 (±5.3) 71.9 (±6.7) 48.6 (±11.3) 62.0 (±10.0) 
P. c 2% 74.1 (±5.2) 79.6 (±4.0) 78.5 (±4.2) 78.6 (±5.0) 78.6 (±3.5) 82.3 (±3.4) 
Q. r 2% 88.7 (±2.9) 89.3 (±2.9) 89.3 (±2.7) 89.3 (±2.9) 84.2 (±3.0) 87.5 (±2.7) 

Average  68.3 76.0 74.8 74.3 66.9 73.4 
        

D. g 5% 58.8 (±6.8) 71.6 (±5.2) 68.2 (±6.2) 68.1 (±6.3) 61.3 (±5.8) 70.9 (±5.4) 
E. f 5% 52.2 (±5.9) 67.5 (±6.2) 66.1 (±6.4) 66.2 (±5.9) 45.8 (±13.2) 59.0 (±8.6) 
E. s 5% 69.2 (±5.9) 73.2 (±5.5) 73.7 (±4.8) 72.0 (±5.8) 41.6 (±11.2) 58.7 (±10.0) 
P. c 5% 74.0 (±5.7) 80.5 (±5.3) 80.2 (±6.1) 79.9 (±5.8) 71.4 (±5.7) 78.4 (±4.9) 
Q. r 5% 88.6 (±2.9) 89.4 (±2.9) 89.9 (±2.6) 89.2 (±3.1) 74.5 (±5.5) 83.4 (±6.0) 

Average  68.6 76.4 75.6 75.1 58.9 70.1 
 

The use of 30 crowns compared to the use of 70% of focal class crowns had no negative effect on 
the LDA and RDA method. Nevertheless, the LR method seemed to be more sensitive to the use of a 
smaller sample (from 79.1% to 73.5% or from 80.0% to 76.5% with optimisation step). The 
optimization step made up for part of the loss in performance of the F-measure. 
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Figure A1. Comparison of classification methods with and without bias. F-measure and its standard 
deviation are given at object level. Only 30 crowns from the focus class and 100,000 pixels from the 
non-focus class were used to train the model. Bias consisted in adding 5% of the pixels of the focal 
species into the non-focal class. Optimization step is represented in the same paler colour. An arrow 
indicates when optimization decreased performance. 

Appendix D—Experiment 3 (Focal class purification)—Complement 

Removal of potential outliers’ impact on F-measure of various classifiers. 

Table A4. Comparison between using all crowns and without some removed crowns based on the 
Mahalanobis distance. The F-measure is given at object level. Significance codes: * p < 0.1, ** p < 0.05, 
*** p < 0.01. The best predictions for each species, configuration and method are in bold. 

Removing Without With Total 
crowns 

Potential 
outliers 

Proportion 
(%) 

SPID LDA RDA LR LDA RDA LR    

B.p. 
35.8 

(±10.3) 
57.7 

(±12.4) 
37.5 

(±15.5) 40.4 (±10.2) 60.3 (±14.0) 35.0 (±13.3) 24 0 0.0 

C.m. 
68.3 

(±10.8) 
64.7 

(±10.1) 
68.0 

(±10.5) 68.4 (±11.6)** 65.5 (±9.8)** 71.8 (±9.1)*** 49 1 2.0 

D.g. 57.7 (±3.9) 72.3 (±6.0) 78.2 (±6.1) 55.9 (±5.2) 69.6 (±5.9) 76.6 (±5.7) 108 5 4.6 
E.f. 50.8 (±4.1) 67.7 (±6.1) 69.2 (±6.2) 50.3 (±6.1) 66.4 (±6.1) 69.3 (±5.9)* 106 2 1.9 
E.g. 65.1 (±7.0) 82.0 (±5.3) 84.4 (±4.6) 64.2 (±5.9) 81.9 (±5.2) 84.6 (±5.4) 74 5 6.8 
E.s. 68.1 (±4.2) 74.2 (±4.1) 71.0 (±5.2) 66.7 (±4.7) 74.6 (±3.9) 73.9 (±4.8)* 139 7 5.0 

G.g. 
62.5 

(±12.6) 
73.4 

(±11.5) 
76.4 

(±12.5) 
58.4 (±8.3) 68.3 (±11.6) 73.7 (±14.8) 25 2 8.0 

I.a. 
38.3 

(±11.5) 
42.3 

(±12.7) 
38.5 

(±11.6) 38.4 (±9.9) 43.0 (±8.1) 33.4 (±13.2) 26 2 7.7 

J.c. 
50.7 

(±19.7) 
51.4 

(±16.8) 
52.4 

(±17.1) 59.2 (±10.6)** 58.5 (±10.2) 57.4 (±12.6) 24 2 8.3 

L.a. 41.6 (±8.7) 56.3 
(±10.8) 

53.9 
(±10.5) 

43.3 (±7.0) 53.3 (±8.3) 50.1 (±13.7) 46 0 0.0 

L.h. 25.6 (±8.9) 
43.6 

(±11.0) 
22.8 (±8.1) 27.9 (±10.9) 44.0 (±16.7) 26.9 (±8.6) 27 1 3.7 

M.c. 
58.5 

(±13.8) 
55.5 

(±16.9) 
60.0 

(±14.5) 
60.1 (±11.1) 59.9 (±14.9) 66.7 (±12.1) 27 2 7.4 

P.c. 69.5 (±4.5) 77.1 (±4.9) 85.9 (±3.6) 69.2 (±4.2) 79.0 (±3.7) 85.7 (±3.7) 164 6 3.7 
Q.r. 86.6 (±2.5) 88.1 (±2.7) 91.3 (±2.3) 88.5 (±3.0) 89.9 (±2.4) 91.9 (±2.2) 206 7 3.4 
R.s. 82.5 (±3.8) 78.8 (±4.5) 81.2 (±5.2) 83.1 (±7.6) 80.5 (±7.7) 83.8 (±6.3)** 69 2 2.9 

S.r. 54.3 (±9.2) 
70.8 

(±10.7) 
61.6 

(±14.7) 
55.6 (±8.3)*** 71.3 (±7.6) 64.7 (±12.9)*** 32 2 6.3 

S.s. 29.1 (±5.9) 36.7 (±9.1) 21.3 (±7.1) 29.8 (±7.6) 36.1 (±11.5) 22.4 (±6.9) 34 2 5.9 
T.m. 64.7 (±6.4) 69.9 (±6.0) 80.7 (±9.4) 64.6 (±11.5) 69.6 (±11.8) 82.0 (±6.4) 51 4 7.8 

T.c. 
58.3 

(±11.5) 
65.4 

(±12.5) 
72.2 

(±14.8) 55.8 (±9.0) 68.0 (±12.8)* 73.3 (±13.9) 32 2 6.3 

V.a. 68.2 (±8.7) 72.8 
(±12.2) 

65.1 
(±12.8) 

70.0 (±8.6) 78.4 (±7.0) 67.8 (±10.7) 34 1 2.9 

Average 56.8 65.0 63.6 57.5 65.9 64.5 1297.0 55 4.2 
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Figure A2. From left to right: low illumination ratio from hyperspectral images, wood contribution, 
lianas contribution and ground contribution. 

Illustration of tree crowns considered as outliers is proposed above. Low illumination led to a 
reduction in the number of pixels inside the crowns (given by hyperspectral imagery). Other possible 
causes of outlier crowns are illustrated by RGB imagery. 

Appendix E—Experiment 4—Complement 

Figure A3 (basal area vs. prediction) is a fine representation of the behaviour of the classifier and 
makes it possible to understand the constraints. For example, one might think that the predictive 
performance of Inga alba is poor. However, on the plots never used for training (red point) we see 
that this species is not present. The classifier predicts few pixels of this species. The Jacaranda copaia 
is a species that has a low basal area; therefore, a prediction error is potentially more impacting than 
for the Eperua grandiflora. Note that the relationship between the basal area and the predicted area is 
different depending on the species considered, even for the species that have a high R2. 

 

Figure A3. Relation between basal areal (m2.ha−1) and area predicted (m2.ha−1) using the optimized 
LDA. Plots not used for training are plotted in red and the R-squared for those observations are given 
in brackets. The plots used for the training are in blue. Global R-squares are given using all data points 
(red and blue). In solid black line, linear regression based on all points passing through zero. The 
normal confidence ellipses are given, computed for each group of points using the corresponding 
color (red or blue). 
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Appendix F—Test of correlation 

Data used to test the relationship between species object level F measure (obtained using and 
optimized LDA) and different metrics are given in Table F1. AB~CA r2 is the linear regression 
coefficient between the predicted canopy coverage area for a particular species and its recorded basal 
area. Number of pixels is given per species. Intra-group variance was computed as proposed by [60]. 
Species mean Mahalanobis distance was computed as described in section 2.6.3. Pseudo-outlier refers 
to number of outliers detected if Mahalanobis distance value is higher or lower than two standard 
deviations. 

Table A5. F-measure and various metrics tested for correlation. 

Species 
F-measure 

(object 
level) 

BA~CA r2 Number 
of pixels 

Number 
of crowns 

Intra 
group 

variance 

Mean 
species 

Mahalanobi
s distance 

Pseudo 
outlier 

(%) 

B.p. 65.4 0.27 2375 24 60716044 398 0 
C.m. 69.8 0.24 4850 49 42710171 382 2 
D.g. 75.8 0.62 18589 108 88937469 383 4.6 
E.f. 71.5 0.84 15355 106 41768295 383 1.9 
E.g. 82.4 0.92 10859 74 37064303 378 6.8 
E.s. 74.7 0.47 12559 139 42879098 382 5 
G.g. 74.5 0.43 4998 25 45436876 387 8 
I.a. 43.0 0.53 3846 26 73845080 394 7.7 
J.c. 50.9 0.31 1705 24 50504397 417 8.3 
L.a. 56.6 0.49 3894 46 49323222 386 0 
L.h. 44.0 0.27 1437 27 35529833 412 3.7 
M.c. 56.3 0.33 3355 27 53471810 381 7.4 
P.c. 77.6 0.55 38349 164 46398429 374 3.7 
Q.r. 86.4 0.84 27828 206 51460549 374 3.4 
R.s. 81.0 0.79 7944 69 120765823 382 2.9 
S.r. 71.8 0.60 4070 32 31609536 417 6.3 
S.s. 36.6 0.00 3355 34 38010280 378 5.9 

T.m. 76.3 0.57 6745 51 80924196 392 7.8 
T.c. 65.8 0.78 1224 32 36278962 388 6.3 
V.a. 74.4 0.75 3218 34 137806130 387 2.9 

Pearson 
Cor. Coeff 

-- 0.71** 0.54* 0.59*** 0.28 0.08 0.48 

Spearman 
Cor. Coeff. -- 0.69** 0.77** 0.71*** 0.22 -0.44 -0.09 
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