
HAL Id: hal-02618634
https://hal.science/hal-02618634

Preprint submitted on 26 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability estimates for an inverse Steklov problem in a
class of hollow spheres

Germain Gendron

To cite this version:
Germain Gendron. Stability estimates for an inverse Steklov problem in a class of hollow spheres.
2020. �hal-02618634�

https://hal.science/hal-02618634
https://hal.archives-ouvertes.fr


Stability estimates for an inverse Steklov problem in a class

of hollow spheres

Germain Gendron

Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629,

2 Rue de la Houssinière BP 92208, F-44322 Nantes Cedex 03.

Email: germain.gendron@univ-nantes.fr

May 26, 2020

Abstract

In this paper, we study an inverse Steklov problem in a class of n-dimensional manifolds
having the topology of a hollow sphere and equipped with a warped product metric. Precisely,
we aim at studying the continuous dependence of the warping function defining the warped
product with respect to the Steklov spectrum. We first show that the knowledge of the
Steklov spectrum up to an exponential decreasing error is enough to determine uniquely the
warping function in a neighbourhood of the boundary. Second, when the warping functions
are symmetric with respect to 1/2, we prove a log-type stability estimate in the inverse Steklov
problem. As a last result, we prove a log-type stability estimate for the corresponding Calderón
problem.

Keywords. Inverse Calderón problem, Steklov spectrum, Weyl-Titchmarsh functions, Nevan-
linna theorem, Müntz-Jackson’s theorem.
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1 Introduction

1.1 Framework

For n ≥ 2, let us consider a class of n-dimensional manifolds M = [0, 1]× Sn−1 equipped with a
warped product metric

g = f(x)(dx2 + gS)

where gS denotes the usual metric on Sn−1 induced by the euclidean metric on Rn and f is a
smooth and positive function on [0, 1]. Let ψ belong to H1/2(∂M) and ω be in R.

The Dirichlet problem is the following elliptic equation with boundary condition

{

−∆gu = ωu in M

u = ψ on ∂M,
(1)

where, in a local coordinate system (xi)i=1,...,n, and setting |g| = det(gij) and (gij) = (gij)
−1, the

Laplacian operator −∆g has the expression

−∆g = −
∑

1≤i,j≤n

1
√

|g|
∂i
(√

|g|gij∂j
)
.

If ω does not belong to the Dirichlet spectrum of −∆g, the equation (1) has a unique solution in
H1(M) (see [11, 14]), so we can define the so-called Dirichlet-to-Neumann operator ("DN map")
Λg(ω) as :

Λg(ω) : H1/2(∂M) → H−1/2(∂M)

ψ 7→ ∂u

∂ν

∣
∣
∂M

where ν is the unit outer normal vector on ∂M . The previous definition has to be understood in
the weak sense by:

∀(ψ, φ) ∈ H1/2(∂M)2 : 〈Λg(ω)ψ, φ〉 =
∫

M

〈du, dv〉g, dVolg + ω

∫

M

uv dVolg. (2)

where v is any element of H1(M) such that v|∂M = φ, 〈., .〉 is the standard L2 duality pairing
between H1/2(∂M) and its dual, and dVolg is the volume form induced by g on M .

The DN map Λg(ω) is a self-adjoint pseudodifferential operator of order one on L2(∂M). Then, it
has a real and discrete spectrum accumulating at infinity. We shall denote the Steklov eigenvalues
counted with multiplicity by

σ(Λg(ω)) = {0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λk → +∞},

usually called the Steklov spectrum (see [8], p.2 or [7] for details).

The inverse Steklov problem adresses the question whether the knowledge of the Steklov spectrum
is enough to recover the metric g. Precisely:

If σ
(
Λg(ω)

)
= σ

(
Λg̃(ω)

)
, is it true that g = g̃ ?

It is known that the answer is negative because of some gauge invariances in the Steklov problem.
These gauge invariances are (see [8]):

1) Invariance under pullback of the metric by the diffeomorphisms of M :

∀ψ ∈ Diff(M), Λψ∗g(λ) = ϕ∗ ◦ Λg(λ) ◦ ϕ∗−1.
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where ϕ := ψ|∂M and where ϕ∗ : C∞(∂M) → C∞(∂M) is the application defined by ϕ∗h := h ◦ϕ.

2) In dimension n = 2 and for ω = 0, there is one additional gauge invariance. Indeed, thanks to
the conformal invariance of the Laplacian, for every smooth function c > 0, we have

∆cg =
1

c
∆g.

Consequently, the solutions of the Dirichlet problem (1) associated to the metrics g and cg are the
same when ω = 0. Moreover, if we assume that c ≡ 1 on the boundary, the unit outer normal
vectors on ∂M are also the same for both metrics. Therefore,

Λcg(0) = Λg(0).

In our particular model, we have shown in [6] that the only gauge invariance is given by the
involution η : x 7→ 1 − x when n = 2 and also when n ≥ 3 under some technical estimates on the
conformal factor f on the boundary. Precisely, we proved:

Theorem 1.1. Let M = [0, 1]×Sn−1 be a smooth Riemannian manifold equipped with the metrics

g = f(x)(dx2 + gS), g̃ = f̃(x)(dx2 + gS),

and let ω be a frequency not belonging to the Dirichlet spectrum of −∆g and −∆g̃ on M . Then,

1. For n = 2 and ω 6= 0,

(
σ(Λg(ω)) = σ(Λg̃(ω))

)
⇔

(
f = f̃ or f = f̃ ◦ η

)

where η(x) = 1− x for all x ∈ [0, 1].

2. For n ≥ 3, and if moreover

f, f̃ ∈ Cb :=
{

f ∈ C∞([0, 1]),

∣
∣
∣
∣

f ′(k)

f(k)

∣
∣
∣
∣
≤ 1

n− 2
, k = 0 and 1

}

,

(
σ(Λg(ω)) = σ(Λg̃(ω))

)
⇔

(
f = f̃ or f = f̃ ◦ η

)

Remark 1. In Theorem 1.1, there is no need to assume that ω 6= 0 when n ≥ 3 whereas this
condition is necessary in dimension 2, due to the gauge invariance by a conformal factor.

In this paper, we will show two additional results on the Steklov inverse problem, that follow and
precise the question of uniqueness. Namely, we will prove some local uniqueness and stability re-
sults. Before stating our results, recall that the boundary ∂M of M has two connected components.
If we denote −∆gS the Laplace-Beltrami operator on (Sn−1, gS) and

σ(−∆gS) := {0 = µ0 < µ1 ≤ µ2 ≤ ... ≤ µm ≤ ... → +∞}

the sequence of the eigenvalues of −∆gS , counted with multiplicity, one can show that the spectrum
of Λg(ω) is made of two sets of eigenvalues {λ−(µm)} and {λ+(µm)} whose asymptotics are given
later in Lemma 2.1.

1.2 Closeness of two Steklov spectra

Let us define first what is the closeness between two spectra σ
(
Λg(ω)

)
and σ

(
Λg̃(ω)

)
.

Definition 1.2. Let (εm)m a sequence of positive numbers. We say that σ
(
Λg(ω)

)
is close to

σ
(
Λg̃(ω)

)
up to the sequence (εm)m if, for every λ±(µm) ∈ σ

(
Λg(ω)

)
:

• there is λ̃± in σ
(
Λg̃(ω)

)
such that |λ±(µm)− λ̃±| ≤ εm.
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• Card
{
λ± ∈ σ

(
Λg(ω)

)
, |λ±(µm)−λ±| ≤ εm

}
= Card

{
λ̃± ∈ σ

(
Λg̃(ω)

)
, |λ±(µm)− λ̃±| ≤ εm

}
.

where CardA is the cardinal of the set A. We denote it

σ
(
Λg(ω)

) ⊂∼
(εm)

σ
(
Λg̃(ω)

)
.

Remark 2. The second point of Definition 1.2 amounts to taking into account the multiplicity of
the eigenvalues.

Definition 1.3. We say that σ
(
Λg(ω)

)
and σ

(
Λg̃(ω)

)
are close up to (εm)m if

σ
(
Λg(ω)

) ⊂∼
(εm)

σ
(
Λg̃(ω)

)
and σ

(
Λg̃(ω)

) ⊂∼
(εm)

σ
(
Λg(ω)

)
.

We denote it σ
(
Λg(ω)

)
≍

(εm)
σ
(
Λg̃(ω)

)
.

Constant sequence : if (εm) is a constant sequence such that, for all m, εm = ε, we just denote

σ
(
Λg(ω)

)
≍
ε
σ
(
Λg̃(ω)

)
.

Definition 1.4. If A and Ã are any finite subset of R, we will denote A ⊂∼
ε
Ã if, for every a ∈ A

• There is ã ∈ Ã such that |a− ã| ≤ ε,

• Card
{
λ ∈ A, |λ− a| ≤ ε

}
= Card

{
λ̃ ∈ Ã, |a− λ̃| ≤ ε

}
.

We denote A ≍
ε
Ã if A ⊂∼

ε
Ã and Ã ⊂∼

ε
A.

This work is based on ideas developped by Daudé, Kamran and Nicoleau in [5]. However, due to
the specific structure of our model that possesses a disconnected boundary (contrary to the model
studied in [5]), some new difficulties arise.

Local uniqueness. We would like to answer the following question : if the data of the Steklov
spectrum is known up to some exponentially decreasing sequence, is it possible to recover the
conformal factor f in the neigbourhood of the boundary (or one of its component) up to a natural
gauge invariance ? The main difficulty that appears here is due to the presence of two sets of
eigenvalues, in each spectrum σ

(
Λg(ω)

)
and σ

(
Λg̃(ω)

)
, instead of one as in [5]. With the previous

definitions of closeness, it is not clear that we can get, for example, this kind of implication :
(
σ
(
Λg(ω)

)
and σ

(
Λg̃(ω)

)
close

)
⇒

(
λ−(µm) and λ̃−(µm) close for all m ∈ N

)

or
(
λ−(µm) and λ̃+(µm) close for all m ∈ N

)
.

In order to overcome this problem, we will need to do some hypotheses on the warping function
f to introduce a kind of asymmetry on the metric on each component. In that way, the previous
implication will be true by replacing N with an infinite subset L ⊂ N that satisfies, for m large
enough, L∩{m,m+1} 6= ∅. In other word, the frequency of integers belonging to L will be greater
than 1/2.

Stability. As regards the problem of stability, if the Steklov eigenvalues are known up to a positive,
fixed and small ε, is it possible to find an approximation of the conformal factor f depending on
ε ? Thanks to Theorem 1.1, we know that there is no uniqueness in the problem of recovering
f from σ

(
Λg(ω)

)
. This seems to be a serious obstruction to establish any result of stability in a

general framework. Indeed, the uniqueness problem solved in Theorem 1.1 is quite rigid (as well
as the local uniqueness result) and is based on analyticity results that can no longer be used here.
On the contrary, the condition

σ
(
Λg(ω)

)
≍
ε
σ
(
Λg̃(ω)

)

seems much less restrictive than an equality, and the non-uniqueness makes this new problem quite
difficult to tackle. From Theorem 1.1, we see that the only way to get a strict uniqueness result
is to assume that f is symmetric with respect to 1/2. This natural - albeit restrictive - condition
will be made on f in Section 4 devoted to the stability result.
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1.3 The main results

Definition 1.5. The class of functions Db is defined by

Db = {h ∈ C∞([0, 1])
∣
∣ ∃k ∈ N, h(k)(0) 6= (−1)kh(k)(1)}.

Definition 1.6. The potential associated to the conformal factor f is the function qf defined on

[0, 1] by qf =
(f

n−2

4 )′′

f
n−2

4

− ωf .

The potential qf naturally appears when we solve the problem (1) by separating the variables in
order to get an infinite system of ODE. We have at last to precise the following notation that will
appear in the statement of Theorem 1.7.

Notation: Let x0 be in R and g be a real function such that lim
x→x0

g(x) = 0.

We say that f(x) =
x0

Õ
(
g(x)

)
if

∀ε > 0 lim
x→x0

|f(x)|
|g(x)|1−ε = 0.

Here is our local uniqueness result.

Theorem 1.7. Let M = [0, 1]×Sn−1 be a smooth Riemannian manifold equipped with the metrics

g = f(x)(dx2 + gS), g̃ = f̃(x)(dx2 + gS),

and let ω be a frequency not belonging to the Dirichlet spectrum of −∆g or −∆g̃ on M . Let a ∈]0, 1[
and E be the set of all the positive sequences (εm)m satisfying

εm = Õ
(
e−2a

√
µm

)
,

In order to simplify the statements of the results, let us denote the propositions:

∗ (P1) : f = f̃ on [0, a]

∗ (P2) : f = f̃ ◦ η on [0, a]

∗ (P3): f = f̃ on [1− a, 1]

∗ (P4) : f = f̃ ◦ η on [1− a, 1]

where η(x) = 1− x for all x ∈ [0, 1].

Assume that f and f̃ belong to C∞([0, 1]) ∩ Cb where Cb is defined as

Cb =
{

•
∣
∣
∣
∣

f ′(k)

f(k)

∣
∣
∣
∣
≤ 1

n− 2
, k ∈ {0, 1}, • qf ∈ Db

}

.

Then :

• For n = 2 and ω 6= 0 or n ≥ 3:

(

∃ (εm) ∈ E , σ(Λg(ω)) ≍
(εm)

σ(Λg̃(ω))

)

⇒ (P1) or (P2) or (P3) or (P4),

Remark 3. When n = 2, the condition

∣
∣
∣
∣

f ′(k)

f(k)

∣
∣
∣
∣
≤ 1

n− 2
is always satisfied.
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Remark 4. The converse is not true if f(0) 6= f(1). If one of the (Pi) is satisfied, it cannot
imply more than the closeness of one of the subsequence

(
λ−(µm)

)
or

(
λ+(µm)

)
with

(
λ̃−(µm)

)

or
(
λ̃+(µm)

)
.

Special case : when f(0) = f(1), we have the following equivalence :

(

∃ (εm) ∈ E , σ(Λg(ω)) ≍
(εm)

σ(Λg̃(ω))

)

⇔
(

(P1) and (P3)

)

or

(

(P2) and (P4)

)

.

Let us also give our stability result. It requires to assume that, for some A > 0, the unknown
conformal factor belongs to the set of A-admissible functions that we define now.

Definition 1.8. Let A > 0. The set of A-admissible functions is defined as :

C(A) =
{

• f ∈ C2([0, 1]) • ∀k ∈ [[0, 2]], ‖f (k)‖∞ +

∥
∥
∥
∥

1

f

∥
∥
∥
∥
∞

≤ A

}

Our stability result for the Steklov problem is the following:

Theorem 1.9. Let M = [0, 1]×Sn−1 be a smooth Riemanniann manifold equipped with the metrics

g = f(x)(dx2 + gS), g̃ = f̃(x)(dx2 + gS),

with f , f̃ positive on [0, 1] and symmetric with respect to x = 1/2.

Let A > 0 be fixed and ω be a frequency not belonging to the Dirichlet spectrum of −∆g and −∆g̃

on M . Then, for n ≥ 2, for a sufficiently small ε > 0 and under the assumption

f, f̃ ∈ C(A)

we have the implication :

σ(Λg(ω)) ≍
ε
σ(Λg̃(ω)

)
⇒

∥
∥qf − q̃f

∥
∥
2
≤ CA

1

ln
(
1
ε

)

where CA is a constant that only depends on A.

As a by-product, we get two corollaries :

Corollary 1.10. Using the same notations and assumptions as in Theorem 1.9, for all 0 ≤ s ≤ 2,
we have

σ(Λg(ω)) ≍
ε
σ(Λg̃(ω)

)
⇒

∥
∥qf − q̃f

∥
∥
Hs(0,1)

≤ CA
1

ln
(
1
ε

)θ

where θ = (2− s)/2 and CA is a constant that only depends on A. In particular, from the Sobolev
embedding, one gets

σ(Λg(ω)) ≍
ε
σ(Λg̃(ω)

)
⇒

∥
∥qf − q̃f

∥
∥
∞ ≤ CA

√

1

ln
(
1
ε

)

Corollary 1.11. Using the same notations and assumptions as in Theorem 1.9, if moreover ω = 0
and n ≥ 3, one has

σ(Λg(ω)) ≍
ε
σ(Λg̃(ω)

)
⇒

∥
∥f − f̃

∥
∥
∞ ≤ CA

1

ln
(
1
ε

)

where CA is a constant that only depends on A.
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The stability in the inverse Calderón problem somehow precedes the inverse Steklov problem, so
we say few words about it. Let B(H1/2(∂M)) be the set of bounded operators from H1/2(∂M) to
H1/2(∂M) equipped with the norm

‖F‖∗ = sup
ψ∈H1/2(∂M)\{0}

‖Fψ‖H1/2

‖ψ‖H1/2

.

In Lemma 5.1 (Section 5) we show the equivalence

Λg(ω)− Λg̃(ω) ∈ B(H1/2(∂M)) ⇔
{

f(0) = f̃(0)

f(1) = f̃(1)

and prove the following stability result for the Calderón problem. We draw the reader’s attention
to the fact that the symmetry hypothesis no longer occurs here since the strict uniqueness is true
(see [4]). However, it is replaced by a technical assumption on the mean of the difference of the
potentials.

Theorem 1.12. Let M = [0, 1] × Sn−1 be a smooth Riemanniann manifold equipped with the
metrics

g = f(x)(dx2 + gS), g̃ = f̃(x)(dx2 + gS),

with f and f̃ positive on [0, 1].

Let A > 0 be fixed and ω be a frequency not belonging to the Dirichlet spectrum of −∆g and −∆g̃

on M . Let n ≥ 2, ε > 0 and assume that

• f(0) = f̃(0) and f(1) = f̃(1),

• f, f̃ ∈ C(A),

•
∣
∣
∣
∣

∫ 1

0

(
qf − q̃f

)
∣
∣
∣
∣
+ ‖Λg(ω)− Λg̃(ω)‖∗ ≤ ε.

Then :
∥
∥qf − q̃f

∥
∥
2
≤ CA

1

ln
(
1
ε

) ,

where CA is a constant that only depends on A.

Corollary 1.13. Using the same notations and assumptions as in Theorem 1.12, for all 0 ≤ s ≤ 2,
we obtain also

∥
∥qf − q̃f

∥
∥
Hs(0,1)

≤ CA
1

ln
(
1
ε

)θ

where θ = (2− s)/2 and CA is a constant that only depends on A. In particular, from the Sobolev
embedding, one gets

∥
∥qf − q̃f

∥
∥
∞ ≤ CA

√

1

ln
(
1
ε

)

Corollary 1.14. Using the same notations and assumptions as in Theorem 1.12, if moreover
ω = 0 and n ≥ 3, one has the stronger conclusion:

∥
∥f − f̃

∥
∥
∞ ≤ CA

1

ln
(
1
ε

)

where CA is a constant that only depends on A.
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2 Asymptotics of the Steklov spectrum

The proof of both theorems is based on the separation of variables that leads to reformulating the
Dirichlet problem in terms of boundary value problems for ordinary differential equations. All the
details can be found in [6, 4] but we outline the main points for the sake of completeness.

2.1 From PDE to ODE using separation of variables

The equation {

−∆gu = ωu in M

u = ψ on ∂M
(3)

can be reduced to a countable system of Sturm Liouville boundary value problems on [0, 1]. Indeed,
the boundary ∂M of the manifold M has two distinct connected components

Γ0 = {0} × Sn−1 and Γ1 = {1} × Sn−1,

so we can decompose H1(∂M) as the direct sum :

H1/2(∂M) = H1/2(Γ0)
⊕
H1/2(Γ1).

Each element ψ of H1/2(∂M) can be written as

ψ =







ψ0

ψ1






, ψ0 ∈ H1/2(Γ0) and ψ1 ∈ H1/2(Γ1).

Using separation of variables, one can write the solution of (1) as

u(x, y) =

+∞∑

m=0

um(x)Ym(y),

and ψ0 and ψ1 as

ψ0 =
∑

m∈N

ψ0
mYm, ψ1 =

∑

m∈N

ψ1
mYm,

where (Ym) represents an orthonormal basis of eigenfunctions of −∆S associated to the sequence
of its eigenvalues counted with multiplicity

σ
(
∆S

)
= {0 = µ0 ≤ µ1... ≤ µm → +∞}.

By setting

v(x, y) = f
n−2

4 u(x, y) =

+∞∑

m=0

vm(x)Ym(y), x ∈ [0, 1], y ∈ Sn−1,

one can show the equivalence (cf [6]) :

u solves (1) ⇔ ∀m ∈ N,

{

− v
′′

m(x) + qf (x)vm(x) = −µmvm(x), ∀x ∈]0, 1[
vm(0) = f

n−2

4 (0)ψ0
m, vm(1) = f

n−2

4 (1)ψ1
m,

(4)

with qf =
(f

n−2

4 )′′

f
n−2

4

− ωf (the dependence in f will be omitted in the following and we will just

write q instead of qf ).

We thus are brought back to a countable system of 1D Schrödinger equations whose potential
does not depend on m ∈ N. Thanks to the Weyl-Titchmarsh theory, we are able to give a nice
representation of the DN map that involves the Weyl-Titchmarsh functions of (4) evaluated at the
sequence (µm).
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2.2 Diagonalization of the DN map

From the equation on [0, 1]
−u′′ + qu = −zu, z ∈ C. (5)

one can define two fundamental systems of solutions of (5), {c0, s0} and {c1, s1}, whose initial
Cauchy conditions satisfy

{

c0(0, z) = 1, c′0(0, z) = 0

c1(1, z) = 1, c′1(1, z) = 0
and

{

s0(0, z) = 0, s′0(0, z) = 1

s1(1, z) = 0, s′1(1, z) = 1.
(6)

We shall add the subscript ˜ to all the quantities referring to q̃.

The characteristic function ∆(z) associated to the equation (5) is defined by the Wronskian

∆(z) =W (s0, s1) := s0s
′
1 − s′0s1. (7)

Furthermore, there are two (uniqueLy defined) Weyl-solutions ψ and φ of (5) having the form :

ψ(x) = c0(x) +M(z)s0(x), φ(x) = c1(x) −N(z)s1(x)

with Dirichlet boundary conditions at x = 1 and x = 0 respectively. The meromorphic functions
M and N are called the Weyl-Titchmarsh functions. Denoting

D(z) :=W (c0, s1), E(z) :=W (c1, s0)

an easy calculation leads to

M(z) = −D(z)

∆(z)
, N(z) = −E(z)

∆(z)
.

Remark 5. The function N has the same role as M for the potential q(1− x), i.e :

N(z, q) =M(z, q ◦ η)

where, for all x ∈ [0, 1], η(x) = 1− x.

Those meromorphic functions naturally appear in the expression of the DN map Λg(ω) in a specific
basis of H1/2(Γ0)⊕H1/2(Γ1). More precisely, in the basis B =

(
{e1m, e2m}

)

m≥0
where e1m and e2m

are defined as :
e1m = (Ym, 0) e2m = (0, Ym)

one can prove the that the operator Λg(ω) can be bloc-diagonalized :

[Λg]B =















Λ1
g(ω) 0 0 · · ·

0 Λ2
g(ω) 0 · · ·

0 0 Λ3
g(ω) · · ·

...
...

...
. . .















,

with, for every m ∈ N and setting h = fn−2 (cf [4]):

Λmg (ω) =







−M(µm)√
f(0)

+ 1

4
√
f(0)

h′(0)
h(0) − 1√

f(0)

h1/4(1)
h1/4(0)

1
∆(µm)

− 1√
f(1)

h1/4(0)
h1/4(1)

1
∆(µm) −N(µm)√

f(1)
− 1

4
√
f(1)

h′(1)
h(1)






.

10



2.3 Asymptotics of the eigenvalues

It is then possible, with this representation of Λg(ω), to get the following precise asymptotics of
the eigenvalues λ±(µm) of Λg(ω) :

Lemma 2.1. When q belongs to Db, Λmg (ω) has two eigenvalues λ−(µm) and λ+(µm) whose
asymptotics are given by :







λ−(µm) = −N(µm)
√

f(1)
− (ln h)′(1)

4
√

f(1)
+ Õ

(

e−2
√
µm

)

λ+(µm) = −M(µm)
√

f(0)
+

(ln h)′(0)

4
√

f(0)
+ Õ

(

e−2
√
µm

)

.

Proof. The characteristic polynomial χm(X) of Λmg (ω) is

χm(X) = X2 − Tr(Λmg (ω))X + det(Λmg (ω)).

To simplify the notations, we set

C0 =
ln(h)′(0)

4
√

f(0)
, C1 =

ln(h)′(1)

4
√

f(1)
.

Thanks to the matrix representation of Λg(ω), we see that Tr(Λmg (ω)) and det(Λmg (ω)) satisfy the
equalities:







Tr(Λmg (ω)) = −M(µm)
√

f(0)
− N(µm)

√

f(1)
+ C0 − C1.

det(Λmg (ω)) =

(

− M(µm)
√

f(0)
+ C0

)(

− N(µm)
√

f(1)
− C1

)

+O(µme
−2

√
µm), m→ +∞

The asymptotics of the discriminant δm of χm(X) is thus :

δm =

(

− M(µm)
√

f(0)
+ C0 −

N(µm)
√

f(1)
− C1

)2

− 4

(

− M(µm)
√

f(0)
+ C0

)(

− N(µm)
√

f(1)
− C1

)

+O(µme
−2

√
µm).

=

(

− M(µm)
√

f(0)
+ C0 +

N(µm)
√

f(1)
+ C1

)2

+O(µme
−2

√
µm).

Now, let us recall the result obtained by Simon in [13] :

Theorem 2.2. M(z2) has the following asymptotic expansion :

∀B ∈ N, −M(z2) =
z→∞

z +

B∑

j=0

βj(0)

zj+1
+ o

(
1

zB+1

)

where, for every x ∈ [0, 1], βj(x) is defined by :







β0(x) =
1

2
q(x)

βj+1(x) =
1

2
β′
j(x) +

1

2

j
∑

l=0

βl(x)βj−l(x).

From Remark 5, by symmetry, one has immediately:
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Corollary 2.3. N(z2) has the following asymptotic expansion :

∀B ∈ N, −N(z2) =
z→∞

z +

B∑

j=0

γj(0)

zj+1
+ o

(
1

zB+1

)

where, for all x ∈ [0, 1], γj(x) is defined by :







γ0(x) =
1

2
q(1− x)

γj+1(x) =
1

2
γ′j(x) +

1

2

j
∑

l=0

γl(x)γj−l(x).

If f(0) 6= f(1), we deduce from Theorem 2.2 and Corollary 2.3:

−M(µm)
√

f(0)
+
N(µm)
√

f(1)
=

(
1

√

f(0)
− 1

√

f(1)

)

︸ ︷︷ ︸

6=0

√
µm +O

(
1√
µm

)

.

If f(0) = f(1), we will need the elementary general following lemma:

Lemma 2.4. We have the equivalence :

q(k)(0) = (−1)kq(k)(1), ∀k ∈ N ⇔ βk(0) = γk(0), ∀k ∈ N.

Proof.

Let us prove by induction that, for every j ∈ N, there exists Pj ∈ R[X1, ..., Xj] such that







βj(x) =
1

2j+1
q(j)(x) + Pj(q, q

′, ..., q(j−1))(x)

γj(x) =
1

2j+1
(q ◦ η)(j)(x) + Pj(q ◦ η, (q ◦ η)′, ..., (q ◦ η)(j−1))(x)

(8)

where η(x) = 1− x.

• β0(x) =
1

2
q(x) and γ0(x) =

1

2
q(1− x), so the result holds with P0(X) = 0.

• Let j ∈ N and assume that






βk(x) =
1

2k+1
q(k)(x) + Pk(q, q

′, ..., q(k−1))(x)

γk(x) =
1

2k+1
(q ◦ η)(k)(x) + Pk(q ◦ η, (q ◦ η)′, ..., (q ◦ η)(k−1))(x),

for every 0 ≤ k ≤ j. Then :

βj+1(x) =
1

2
β′
j(x) +

1

2

j
∑

l=0

βl(x)βj−l(x)

=
1

2j+2
q(j+1)(x) + Pj+1(q, q

′, ..., q(j))(x),

where we have set Pj+1(q, q
′, ..., q(j)) =

1

2

[
Pj(q, q

′, ..., q(j−1))
]′
+

1

2

j
∑

l=0

βl(x)βj−l(x).

In the same way, one also has

γj+1(x) =
1

2
γ′j(x) +

1

2

j
∑

l=0

γl(x)γj−l(x)

=
1

2j+2
(q ◦ η)(j+1)(x) + Pj+1(q ◦ η, (q ◦ η)′, ..., (q ◦ η)(j))(x).
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• Hence, we get the result by induction.

We are now able to prove the equivalence.

(⇒) If q(j)(0) = (−1)jq(j)(1) for every j ∈ N then one has, for every k ∈ N and every P ∈
R[X1, ..., Xk] :

P (q, q′, ..., q(k−1))(0) = P (q ◦ η, (q ◦ η)′, ..., (q ◦ η)(k−1))(0),

so, thanks to (8):

βj(0) = γj(0) for every j ∈ N.

(⇐) Conversely, assume that there is j ∈ N such that q(j)(0) 6= (−1)jq(j)(1) and set k = min{j ∈
N, q(j)(0) 6= (−1)jq(j)(1)}. As previously, for every P ∈ R[X1, ..., Xk] :

P (q, q′, ..., q(k−1))(0) = P (q ◦ η, (q ◦ η)′, ..., (q ◦ η)(k−1))(0).

Hence :

βk(0) 6= γk(0) ⇔
1

2k+1
q(k)(0) + Pk(q, ..., q

(k−1))(0) 6= 1

2k+1
(q ◦ η)(k)(0)

+ Pk
(
(q ◦ η), ..., (q ◦ η)(k−1)

)
(0)

⇔ 1

2k+1
q(k)(0) 6= 1

2k+1
(q ◦ η)(k)(0)

⇔ q(k)(0) 6= (−1)kq(k)(1),

and that is true by definition of k. �

As we have assumed that q belongs to Db, by setting k = min{j ∈ N, q(j)(0) 6= (−1)jq(j)(1)}, we
get, thanks to (2.2), (2.3) and Lemma 2.4:

−M(µm)
√

f(0)
+
N(µm)
√

f(1)
=

(
βk(0)− γk(0)

√

f(0)

)

︸ ︷︷ ︸

6=0

1

(
√
µm)k+1

+O

(
1

(
√
µm)k+2

)

.

In both cases, there is A ∈ R\{0} and k ∈ Z such that

−M(µm)
√

f(0)
+
N(µm)
√

f(1)
= A(

√
µm)k + o

(
(
√
µm)k

)
(9)

Thus, recalling that

δ =

(

− M(µm)
√

f(0)
+ C0 +

N(µm)
√

f(1)
+ C1

)2

+O(µme
−2

√
µm),

we obtain, as A is not 0:

√
δ =

[(

− M(µm)
√

f(0)
+ C0 +

N(µm)
√

f(1)
+ C1

)2

+O(µme
−2

√
µm)

] 1
2

=

[(

A(
√
µm)k + C0 + C1 + o

(
(
√
µm)k

)
)2

+O(µme
−2

√
µm)

] 1
2

=

∣
∣
∣
∣
A(

√
µm)k + C0 + C1 + o

(
(
√
µm)k

)
∣
∣
∣
∣

[

1 +O

(
(√
µm

)−2k+2
e−2

√
µm

)] 1
2

=

∣
∣
∣
∣

N(µm)
√

f(1)
− M(µm)

√

f(0)
+ C0 + C1

∣
∣
∣
∣

[

1 +O

(
(√
µm

)−2k+2
e−2

√
µm

)]

=

∣
∣
∣
∣

N(µm)
√

f(1)
− M(µm)

√

f(0)
+ C0 + C1

∣
∣
∣
∣
+ Õ

(
e−2

√
µm

)
.
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Therefore, the two eigenvalues λ±(µm) of Λmg (ω) satisfy the asymptotics equalities







λ−(µm) = −N(µm)
√

f(1)
− ln(h)′(1)

4
√

f(1)
+ Õ

(
e−2

√
µm

)

λ+(µm) = −M(µm)
√

f(0)
+

ln(h)′(0)

4
√

f(0)
+ Õ

(
e−2

√
µm

)
.

�

In fact, the eigenvalues µm being counted with multiplicity, the asymptotics of Lemma 2.1 won’t be
sufficiently precise for our purpose. Indeed, by Theorem 2.2 and its Corollary, the Weyl-Titchmarsh
functions always satisfy







−N(z2) = z +O

(
1

z

)

−M(z2) = z +O

(
1

z

)

.

So, using the Weyl law, one can prove immediately that







λ−(µm) =

√
µm

√

f(1)
− (lnh)′(1)

4
√

f(1)
+O

(
1√
µm

)

= C1m
1

n−1 +O(1)

λ+(µm) =

√
µm

√

f(0)
+

(lnh)′(0)

4
√

f(0)
+O

(
1√
µm

)

= C0m
1

n−1 +O(1)

(10)

with C0, C1 > 0. In order to have a much more precise asymptotic expansion in m, let us introduce
the set

Σ
(
Λg(ω)

)
= {λ±(κm), m ∈ N} (11)

where the κm are the eigenvalues of −∆S counted without multiplicity. We have an explicit formula
for κm (cf [12]) given by

κm = m(m+ n− 2).

From now on, we will always use the asymptotics of Lemma 2.1 by replacing µm by κm. Of
course, one can also define the closeness between Σ

(
Λg(ω)

)
and Σ

(
Λg̃(ω)

)
up to a sequence (εm)

by replacing µm by κm in Definitions 1.2 and 1.3.

3 A local uniqueness result

Now, let us give the proof of Theorem 1.7.

Proof. Let (εm) be a sequence such that εm = Õ(e−2a
√
µm) and σ(Λg(ω)) ≍

(εm)
σ(Λg̃(ω)).

Then, there is a subsequence of (εm), that we will still denote (εm) which satisfies the estimate

εm = Õ(e−2a
√
κm)

and the relation
Σ(Λg(ω)) ≍

(εm)
Σ(Λg̃(ω)).

Lemma 3.1. Under the hypothesis Σ(Λg(ω)) ≍
(εm)

Σ(Λg̃(ω)), we have the alternative :

{

f(0) = f̃(0)

f(1) = f̃(1)
or

{

f(0) = f̃(1)

f(1) = f̃(0).
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Proof.

• We first show the equality

√

f(0) +
√

f(1) =

√

f̃(0) +

√

f̃(1) (12)

As
√
κm = m+

n− 2

2
+O

(
1

m

)

, we get from Lemma 2.1 the following asymptotics







λ−(κm) =
m

√

f(1)
+

n− 2

2
√

f(1)
− (lnh)′(1)

4
√

f(1)
+O

(
1

m

)

λ+(κm) =
m

√

f(0)
+

n− 2

2
√

f(0)
+

(lnh)′(0)

4
√

f(0)
+O

(
1

m

) (13)

Let L > 0. The sequences (λ±(κm)) are asymptotically in arithmetic progression. Combined with
the relation

Σ
(
Λg(ω)

)
≍

(εm)
Σ
(
Λg̃(ω)

)
,

this leads to the equality (when L→ +∞)

Card
{
m ∈ N, λ−(κm) ≤ L

}
+ Card

{
m ∈ N, λ+(κm) ≤ L

}

= Card
{
m ∈ N, λ̃−(κm) ≤ L

}
+ Card

{
m ∈ N, λ̃+(κm) ≤ L

}
+O(1).

(14)

Thanks to the asymptotics (13), we deduce that :

Card
{
m ∈ N, m ≤

√

f(1)L
}

+ Card
{
m ∈ N, m ≤

√

f(0)L
}

= Card
{
m ∈ N, m ≤

√

f̃(1)L
}

+ Card
{
m ∈ N, m ≤

√

f̃(0)L
}
+O(1),

and then that :

√

f(1)L+
√

f(0)L =

√

f̃(1)L+

√

f̃(0)L+O(1), L→ +∞.

As L is any positive number, this proves (12).

• Now, we have to show : f(0) ∈ {f̃(0), f̃(1)}.

Assume that it is not true, for example

f(0) < min{ ˜f(0), f̃(1)}. (15)

Then (12) implies
f(1) > max{f̃(0), f̃(1)}. (16)

Let m be in N. There is ℓ ∈ N such that

λ−(κm)− λ̃−(κℓ) = O(εm), (17)

with |O(εm)| ≤ εm. From the assumption σ
(
Λg(ω)

)
≍

(εm)
σ
(
Λg̃(ω)

)
, each of the eigenvalues

λ−(κm−1), λ
−(κm+1) and λ−(κm+2) is also close to an element of σ

(
Λg̃(ω)

)
. If m is large enough,

the situation is necessary the following:
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(
λ−(κm)

)
λ−(κm−1) λ−(κm) λ−(κm+1) λ−(κm+2)

(
λ̃−(κℓ)

)
λ̃−(κℓ−1) λ̃−(κℓ) λ̃−(κℓ+1)

(
λ̃+(κp)

)
λ̃+(κp−1) λ̃+(κp) λ̃+(κp+1)

εm

εm+1

Indeed, since f(1) > f̃(1), for m large enough, from (13) and (17), we have

λ−(κm+1) = λ−(κm) +
1

√

f(1)
+ o(1)

= λ̃−(κℓ) +O(εm) +
1

√

f(1)
+ o(1)

= λ̃−(κℓ+1) +
1

√

f(1)
− 1

√

f̃(1)
︸ ︷︷ ︸

<0

+O(εm) + o(1)

Let us chose m large enough such that







1
√

f(1)
− 1

√

f̃(1)
+O(εm) + o(1) < εm+1

O(εm) +
1

√

f(1)
+ o(1) > εm+1

Then:
λ̃−(κℓ) + εm+1 < λ−(κm+1) < λ̃−(κℓ+1)− εm+1

so, as
(
λ̃−(κℓ)

)
is a strictly increasing sequence, for m large enough λ−(κm+1) is not εm+1-close

to any element of
(
λ̃−(κℓ)

)
: there is thus p ∈ N such that

λ−(κm+1)− λ̃+(κp) = O(εm+1), (18)

with |O(εm+1)| ≤ εm+1.

For the same reasons, we get also λ̃−(κℓ−1)+εm−1 < λ−(κm−1) < λ̃−(κℓ)−εm−1 and one deduces
that (the previous picture helps to visualize it)

λ−(κm−1)− λ̃+(κp−1) = O(εm−1), (19)

with |O(εm−1)| ≤ εm−1. Since we have f(1) > f̃(0), we get also

λ̃+(κp) + εm+2 < λ−(κm+2) < λ̃+(κp+1)− εm+2.

Consequently
λ−(κm+2)− λ̃−(κℓ+1) = O(εm+2) (20)

with |O(εm+2)| ≤ εm+2.

16



Then, by (17), (18), (19) and (20), we have for m large enough :

{

λ−(κm+1)− λ−(κm−1) = λ̃+(κp)− λ̃+(κp−1) +O(εm+1)−O(εm−1)

λ−(κm+2)− λ−(κm) = λ̃−(κℓ+1)− λ̃−(κℓ) +O(εm+2)−O(εm).

In particular: 





2
√

f(1)
=

1
√

f̃(0)
+ o(1)

2
√

f(1)
=

1
√

f̃(1)
+ o(1),

and so, taking m→ +∞, one deduces

2

√

f̃(0) =
√

f(1) and 2

√

f̃(1) =
√

f(1).

As
√

f(0) +
√

f(1) =
√

f̃(0) +
√

f̃(1), we get

2
√

f(0) = 2

(√

f̃(0) +

√

f̃(1)−
√

f(1)

)

=

(

2

√

f̃(0)−
√

f(1)

)

+

(

2

√

f̃(1)−
√

f(1)

)

= 0.

and we get a contradiction as f(0) > 0.

Hence f(0) ∈ {f̃(0), f̃(1)}. The equality (12) gives the conclusion. �

Assume from now that f(0) = f̃(0) and f(1) = f̃(1). The other case is obtained by substituting
the roles of λ̃−(κm) and λ̃+(κm).

3.1 The case f(0) 6= f(1)

Without loss of generality, we assume that f(0) < f(1). The following lemma focuses on the
sequence

(
λ−(κp)

)
since this is the sequence that grows slower. If we had treated the case f(0) >

f(1), the sequence considered in this section would have been
(
λ+(κp)

)
.

Lemma 3.2. Assume that f(0) < f(1). There is an infinite subset L of N such that

• λ−(κp)− λ̃−(κp) = Õ(e−2aκp), p ∈ L.

• For all m in N large enough, {m,m+ 1} ∩ L 6= ∅.
Proof. Let us denote U the subset of {λ−(κm), m ∈ N} such that :

U ⊂∼
(εm)

{λ̃+(κm), m ∈ N}

Case 1 : U is finite. Then there is m0 ∈ N such that :

∀m ≥ m0, ∃p ∈ N, |λ−(κm)− λ̃−(κp)| ≤ εm

This can be written as :
λ−(κm)− λ̃−(κp) = O(εm)

with |O(εm)| ≤ εm. By replacing the eigenvalues by their asymptotics (13) in the previous equality,
one finds, as f(1) = f̃(1):

m
√

f(1)
+

n− 2

2
√

f(1)
− ln(h)′(1)

4
√

f(1)
=

p
√

f(1)
+

n− 2

2
√

f(1)
− ln(h̃)′(1)

4
√

f(1)
+O(εm)
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• If n = 2 then h = fn−2 is a constant. One has
m

√

f(1)
=

p
√

f(1)
+O(εm). Hence, as m and

p are integers, if m is large enough, we have m = p.

• If n ≥ 3, then m− p =
ln(h)′(1)

4
− ln(h̃)′(1)

4
+O(εm). By hypothesis :

∣
∣
∣
∣

ln(h)′(1)

4
− ln(h̃)′(1)

4

∣
∣
∣
∣
=
n− 2

4

∣
∣
∣
∣

f ′(1)

f(1)
− f̃ ′(1)

f(1)

∣
∣
∣
∣
≤ n− 2

4
× 2

n− 2
=

1

2
.

Hence, m = p for m, p greater than some integer m0.

The set L = {m ∈ N, m ≥ m0} satisfies the properties of Lemma 3.2.

Case 2 : U is infinite. Then, there exists ϕ, ψ : N → N two strictly increasing functions such that :

λ−(κψ(m))− λ̃+(κϕ(m)) = O(εψ(m)), (21)

with |O(εψ(m))| ≤ εψ(m).

Remark 6. ϕ and ψ are built in such a way that an integer m ∈ N that is not in the range of ψ
(respectively not in the range of ϕ) satisfies |λ−(κm)− λ̃−(κn)| < εm for some n ∈ N (respectively
|λ+(κn)− λ̃+(κm)| < εn for some n ∈ N).

By replacing λ+(κϕ(m)) and λ̃−(κψ(m)) with their asymptotics in the equality (21), one has :

ϕ(m)
√

f(0)
=

ψ(m)
√

f(1)
+ C +O(εψ(m)) +O

(
1

ϕ(m)

)

(22)

where C = − ln(h)′(1)

4
√

f(1)
− ln(h)′(0)

4
√

f(0)
+

n− 2

2
√

f(1)
− n− 2

2
√

f(0)
.

Lemma 3.3. There is an integer m0 ∈ N such that
(
m ≥ m0 ⇒ ψ(m+ 1) ≥ ψ(m) + 2

)
.

Proof. Set B =

√

f(1)
√

f(0)
> 1 and C′ = −

√

f(1)C. From (22), one gets :

ψ(m) = Bϕ(m) + C′ + o(1).

Assume ψ(m+ 1) = ψ(m) + 1. Then :

ψ(m) + 1 = ψ(m+ 1) = Bϕ(m+ 1) + C′ + o(1)

≥ B(ϕ(m) + 1) + C′ + o(1)

= Bϕ(m) + C′ +B + o(1)

= ψ(m) +B + o(1).

Thus, we find :

1 ≥ B + o(1)

which is false if m ≥ m0 for some m0 ∈ N. �

Consequently, the range of ψ does not contain two consecutive integers. Let us set :

L = {m ∈ N
∣
∣m ≥ m0, m /∈ range(ψ)}.

Then L satisfies the condition L ∩ {m,m + 1} 6= ∅ for any m ≥ m0. Moreover, for any m ∈ L,
there is ℓ ∈ N such that |λ−(κm)− λ̃−(κℓ)| ≤ εm. One deduces, as previously, m = ℓ. �
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Remark 7. Lemma 3.2 and asymptotics (13) imply in particular

(lnh)′(1)

4
√

f(1)
=

(ln h̃)′(1)

4
√

f̃(1)
.

Now, let us recall an asymptotic integral representation of the Weyl-Titschmarsh function N(z2)
obtained by Simon in [13] (Theorem 3.1) :

Theorem 3.4. For every 0 < a < 1, there is A ∈ L1([0, a]) such that

N(z2) = −z −
∫ a

0

A(x)e−2xzdx+ Õ(e−2az), z → +∞. (23)

From the asymptotic of λ−(κm) obtained in Lemma 2.1, we have

λ−(κm) = −N(κm)
√

f(1)
− (ln h)′(1)

4
√

f(1)
+ Õ

(

e−2
√
κm

)

.

Hence

λ−(κm)−λ̃−(κm) = Õ(e−2a
√
κm)

⇒ −N(κm)
√

f(1)
− (lnh)′(1)

4
√

f(1)
= − Ñ(κm)

√

f̃(1)
− (ln h̃)′(1)

4

√

f̃(1)
+ Õ(e−2a

√
κm) + Õ

(

e−2
√
κm

)

The equalities f(1) = f̃(1) and
(ln h)′(1)

4
√

f(1)
=

(ln h̃)′(1)

4
√

f̃(1)
(see Remark 7) imply

λ−(κm)− λ̃−(κm) = Õ(e−2a
√
κm) ⇒ N(κm) = Ñ(κm) + Õ(e−2a

√
κm)

⇒
∫ a

0

A(x)e−2x
√
κmdx =

∫ a

0

Ã(x)e−2x
√
κmdx+ Õ(e−2a

√
κm)

⇒
∫ a

0

(A(x) − Ã(x))e−2x
√
κmdx = Õ(e−2a

√
κm).

Let ε > 0 and set F (z) = e2a(1−ε)z
∫ a

0

(A(x)− Ã(x))e−2xzdx. The function F is entire and satisfies

∀z ∈ C, Re(z) > 0 ⇒ |F (z)| ≤ ‖A− Ã‖1e2a(1−ε)Re(z)

Let m be an integer large enough. From Lemma 3.2, we can find an integer p in {2m, 2m + 1}
such that |λ−(κp)− λ̃−(κp)| ≤ εp. We can thus build a sequence (um) by setting, for each m large

enough, um =

√
κp

2
. This sequence satisfies

um −m = O(1).

We set at last G(z) = F (2z). Then |G(z)| ≤ ‖A− Ã‖1e4a(1−ε)Re(z) and moreover :

G(um) = o(1)

Consequently (cf [2], Theorem 10.5.1, p.191), G is bounded on R+, and so is F :

∀u ∈ R+,

∫ a

0

(A(x) − Ã(x))e−2xudx = O
(
e−2a(1−ε)u)

As this estimate is true for all ε > 0, we have :

∀u ∈ R+,

∫ a

0

(A(x) − Ã(x))e−2xudx = Õ
(
e−2au

)
,
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hence ([13], Lemma A.2.1) A = Ã on [0, a]. One deduces :

∀t ∈ R, N(t2)− Ñ(t2) = Õ(e−2at)

From Remark 5, N (resp. Ñ) has the same role as M (resp. M̃) for the potential x 7→ q(1 − x)
(resp. x 7→ q̃(1 − x)). Now, it follows, from [13], Theorem A.1.1, that we get q(1 − x) = q̃(1 − x)
for all x ∈ [0, a], i.e

(fn−2)′′(x)

fn−2(x)
− ωf(x) =

(f̃n−2)′′(x)

f̃n−2(x)
− ωf̃(x) := r(x), ∀x ∈ [1− a, 1].

The functions f and f̃ solve on [1− a, 1] the same ODE

(yn−2)′′(x)− λyn−1(x) = r(x)yn−2(x)

Moreover f(1) = f̃(1) and, thanks to the equality

(lnh)′(1)

4
√

f(1)
=

(ln h̃)′(1)

4
√

f̃(1)
,

we also have f ′(1) = f̃ ′(1). Hence, the Cauchy-Lipschitz Theorem entails that f = f̃ on [1− a, 1].

Remark 8. If we had assumed that f(0) > f(1), we would have worked with
(
λ+(κp)

)
and

(
λ̃+(κp)

)
, and found that f = f̃ on [0, a].

3.2 The case f(0) = f(1)

Assume, without loss of generality, that f(0) = f(1) = 1. From Lemma 2.1, the eigenvalues
λ±(κm) satisfy the asymptotics :







λ−(κm) = −N(κm)− (lnh)′(1)

4
+ Õ

(

e−2
√
κm

)

λ+(κm) = −M(κm) +
(lnh)′(0)

4
+ +Õ

(

e−2
√
κm

)

.

Let us denote C0 =
(lnh)′(0)

4
, C1 =

(ln h)′(1)

4
, C̃0 =

(ln h̃)′(0)

4
and C̃1 =

(ln h̃)′(1)

4
.

Using the asymptotics of M and N given in Theorem 2.2 and Corollary 2.3, and the explicit
expression of κm = m(m+ n− 2), we get







λ−(κm) = m+
n− 2

2
− C1 +O

(
1

m

)

λ+(κm) = m+
n− 2

2
+ C0 +O

(
1

m

)

.

m→ +∞. (24)

Let us set also

Vm =

{

λ−(κm)− n− 2

2
, λ+(κm)− n− 2

2

}

and Ṽm =

{

λ̃−(κm)− n− 2

2
, λ̃+(κm)− n− 2

2

}

.

As f and f̃ belong to Cb, one has

|Ci| ≤
1

4
, |C̃i| ≤

1

4
, i ∈ {0, 1}. (25)
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Hence, thanks to (24) and (25), we get for m large enough:

Vm, Ṽm ⊂
[

m− 1

3
,m+

1

3

]

(26)

Of course, the assumption Σ
(
Λg(ω)

)
≍

(εm)
Σ
(
Λg̃(ω)

)
implies

−n− 2

2
+ Σ

(
Λg(ω)

)
≍

(εm)
−n− 2

2
+ Σ

(
Λg̃(ω)

)
(27)

From (26) and (27), for each m large enough, we have the alternative
{

λ−(κm)− λ̃−(κm) = O
(
e−2a

√
κm

)

λ+(κm)− λ̃+(κm) = O
(
e−2a

√
κm

) or

{

λ−(κm)− λ̃+(κm) = O
(
e−2a

√
κm

)

λ+(κm)− λ̃−(κm) = O
(
e−2a

√
κm

) (28)

There is thus an infinite set S ⊂ N such that either

∀m ∈ S,
{

λ−(κm)− λ̃−(κm) = O
(
e−2a

√
κm

)

λ+(κm)− λ̃+(κm) = O
(
e−2a

√
κm

) or

∀m ∈ S,
{

λ−(κm)− λ̃+(κm) = O
(
e−2a

√
κm

)

λ+(κm)− λ̃−(κm) = O
(
e−2a

√
κm

)
.

(29)

Assume, for example, that the former is true. Then we have, using (24) :

C1 = C̃1 and C0 = C̃0. (30)

Case 1 : C0 6= −C1.

Let us denote

δ =
|C0 + C1|

3
∈
]
0,

1

4

[
.

For m large enough, we have, thanks to (24):

• λ−(κm)− n− 2

2
and λ̃−(κm)− n− 2

2
both belong to the interval −C1+[m−δ,m+δ] := Im,1

• λ+(κm)− n− 2

2
and λ̃+(κm)− n− 2

2
both belong to the interval C0+[m− δ,m+ δ] := Im,0.

Moreover, as C0 6= −C1, we have d(Im,1, Im,0) ≥ δ for all m large enough, where d(I, J) =
inf

x∈I,y∈J
|x− y|. We can therefore associate eigenvalues as follows :

{

λ−(κm) = λ̃−(κm) +O(e−2a
√
κm)

λ+(κm) = λ̃+(κm) +O(e−2a
√
κm)

m→ +∞.

One shows, as in Section 3.1, that
{

N(t2)− Ñ(t2) = Õ(e−2at)

M(t2)− M̃(t2) = Õ(e−2at)
t→ +∞

and then, that

f(x) = f̃(x) ∀x ∈ [1− a, 1] and f(x) = f̃(x) ∀x ∈ [0, a].

Case 2 : C0 = −C1.

By hypothesis : f, f̃ belong to Cb so q belongs to Db. Thanks to Lemma 2.4, there is j0 ∈ N such
that βj(0) 6= γj(0). Let us set
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j0 = min{j ≥ 2, βj(0) 6= γj(0)}.

The asymptotics given by Theorem 2.2 and Corollary (2.3) imply

λ−(κm)− λ+(κm) =
γj0 − βj0
mj0

+O

(
1

mj0+1

)

.

Because of the relation Σ(Λg(ω)) ≍
(εm)

Σ(Λg̃(ω)), one can show that, for the same j0:

λ̃−(κm)− λ̃+(κm) =
γ̃j0 − β̃j0
mj0

+O

(
1

mj0+1

)

It is then possible to order the eigenvalues λ−(κm) and λ+(κm) (also λ̃− and λ̃+ ), and this order
depends on the sign of γj0 − βj0 (resp. γ̃j0 − β̃j0). If γj0 − βj0 and γ̃j0 − β̃j0 have the same sign,
we claim that

{

λ−(κm) = λ̃−(κm) + Õ(e−2a
√
κm)

λ+(κm) = λ̃+(κm) + Õ(e−2a
√
κm).

(31)

Indeed, if not, from (28), there is an infinite subset F ⊂ N such that :

{

λ−(κm) = λ̃+(κm) + Õ(e−2a
√
κm)

λ+(κm) = λ̃−(κm) + Õ(e−2a
√
κm).

, m→ +∞, m ∈ F .

Then λ−(κm)− λ+(κm) = λ̃+(κm)− λ̃−(κm) +O(e−2a
√
κm), and letting m go to infinity :

γj0 − βj0 = β̃j0 − γ̃j0

and we have a contradiction. Using (31) and the same method as in Section 3.1, we find

∀t ∈ R+, M(t2)− M̃(t2) = Õ(e−2at) and N(t2)− Ñ(t2) = Õ(e−2at)

and at last

f = f̃ on [0, a] and f = f̃ on [1− a, 1].

If γj0 − βj0 and γ̃j0 − β̃j0 have opposite sign, then :

{

λ−(κm) = λ̃+(κm) +O(e−2a
√
κm)

λ+(κm) = λ̃−(κm) +O(e−2a
√
κm).

In this case, one can prove that

f = f̃ ◦ η on [0, a] and f = f̃ ◦ η on [1− a, 1].
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3.3 Special case

When f(0) = f(1), the direct implication has already been established. Now, we prove the converse
in this case. Let a ∈]0, 1[ and assume that, for example:

f = f̃ on [0, a] and f = f̃ on [1 − a, 1]

In that case, q = q̃ on [0, a] and q ◦ η = q̃ ◦ η on [0, a]. But thanks to Theorem 3.1 in [13], the
potential q determines the function A that appears in the representation (3.4). Hence,

{

M(z2)− M̃(z2) = Õ(e−2az)

N(z2)− Ñ(z2) = Õ(e−2az)

The hypothesis (P1) implies in particular that f(0) = f̃(0) and f ′(0) = f̃ ′(0). From (P3) we have
also f(1) = f̃(1) and f ′(1) = f̃ ′(1). Using the asymptotics given by Lemma 2.1, one deduces
immediately that

{

λ+(κm)− λ̃+(κm) = Õ(e−2a
√
κm)

λ−(κm)− λ̃−(κm) = Õ(e−2a
√
κm)

m→ +∞

which concludes the proof. �

Remark 9. We emphasize that if f(0) = f(1) and
1

2
≤ a < 1, then we have a global uniqueness

result.

Corollary 3.5. If f and f̃ are analytic functions on [0, 1] the previous local uniqueness result
becomes a global uniqueness result without the additional constraint that q, q̃ ∈ Db.

Proof. In proving Theorem 1.7, we needed the hypothesis q, q̃ ∈ Db only in the case where f(0) =
f(1) and C0 = −C1. In all other cases, without this hypothesis, one of the properties (P1), (P2),
(P3) or (P4) was obtained and, as f and f̃ are assumed to be analytic, the corresponding equalities
extend over [0, 1] by analytic continuation. Then, only this latter case remains to be dealt with.
Let us assume, without loss of generality, that f(0) = 1.

Subcase 1 : q, q̃ ∈ Db and the situation has already been studied.

Subcase 2 : q or q̃ does not belong to Db. Assume, for example, that q /∈ Db. As f is analytic,
so is q. The function ϕ : [0, 1] 7→ R, x 7→ q(x) − q(1 − x) is also analytic and, as q is not in Db,
satisfies :

∀k ∈ N, ϕ(k)(0) = 0.

By analytic continuation, ϕ vanishes everywhere on [0, 1], i.e q = q ◦ η on [0, 1]. This is equivalent
to M = N . The eigenvalues λ±(κm) then satisfy the asymptotics







λ−(κm) =M(κm) + C0 + Õ

(

e−2a
√
κm

)

λ+(κm) =M(κm) + C0 + Õ

(

e−2a
√
κm

)

Using the assumption σ(Λg(ω)) ≍
(εm)

σ(Λg̃(ω)) and the same arguments as above, we prove that

C0 = C̃0 = −C̃1 and

{

M(κm) = M̃(κm) +O
(
e−2a

√
κm

)

M(κm) = Ñ(κm) +O
(
e−2a

√
κm

) m→ +∞

One can show, as in the proof of Theorem 1.7, that :
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M(t2)− M̃(t2) = O(e−2at) and M(t2)− Ñ(t2) = O(e−2at).

Hence f = f̃ on [0, a] and f = f̃ ◦ η on [0, a]. By analytic continuation :

f = f̃ = f̃ ◦ η sur [0, 1].

�

The next section is devoted to the proof of Theorem 1.9.

4 Stability estimates for symmetric conformal factors

4.1 Discrete estimates on Weyl-Titchmarsh functions

Preliminary remarks:

1. Until the end of the paper, we will denote by CA any constant depending only on A, even
within the same calculation.

2. In this section, each factor f and f̃ is supposed so be symmetric. This simplifies many
formula. However, in order to generalize our arguments as much as possible, we will use this
property of symmetry only when it seems necessary and write the formulas in their generic
forms. For example, we will distinguish M from N whereas those two functions are equal.

The goal of this subsection is to prove the following result which will be useful in Subsection 4.2.

Proposition 4.1. Let ε > 0 small enough. Assume that σ(Λg(ω)) ≍
ε
σ(Λg̃(ω)). There is CA > 0

and m0 ∈ N (independant of ε) such that, for all m ≥ m0 and by setting ym =
√
κm :

∣
∣
∣
∣

(

M(κm)N(κm)− 1

∆2(κm)

)

−
(

M̃(κm)Ñ(κm)− 1

∆̃2(κm)

)∣
∣
∣
∣
≤ CAε× ym

Proof. We first need the following result.

Lemma 4.2. Under the hypothesis σ(Λg(ω)) ≍
ε
σ(Λg̃(ω)), and under the hypothesis that f and f̃

are symmetric, we have :
f(0) = f̃(0).

Proof. Using the same argument as in the proof of Lemma 3.1, one proves the equality

√

f(1) +
√

f(0) =

√

f̃(1) +

√

f̃(0).

As f and f̃ are symmetric with respect to 1/2, we have f(0) = f(1) and f̃(0) = f̃(1). Hence
2f(0) = 2f̃(0). This proves Lemma 4.2. �

Lemma 4.3. For m large enough, we have :

{λ−(κm), λ+(κm)} ≍
ε
{λ̃−(κm), λ̃+(κm)} (32)
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Proof. For every m ∈ N, there p such that :

|λ±(κm)− λ̃±(κp| ≤ ε (33)

Let us denote

C1 =
1

4
√

f(1)

h′(1)

h(1)
et C0 =

1

4
√

f(0)

h′(0)

h(0)
.

Since f and f̃ are supposed symmetric, we have

C0 = −C1 and C̃0 = −C̃1

Thus, setting
C = C0 − C̃0

one has, from Lemma 2.1 :

√

f(0)

(

λ±(κm)− λ̃±(κp)

)

=
(
m− p

)
+ C + o(1).

Let k = ⌊C⌋. Then

m− p+ k =
√

f(0)

(

λ±(κm)− λ̃±(κp)

)

+ k − C
︸ ︷︷ ︸

∈]−1,0[

+o(1) (34)

and, as m− p+ k is an integer, using (33), this leads, for m large enough and ε small enough, to

p = m+ k.

Hence, for m large enough, (33) is equivalent to

{

|λ−(κm)− λ̃−(κm+k)| ≤ ε

|λ+(κm)− λ̃+(κm+k)| ≤ ε
or

{

|λ−(κm)− λ̃+(κm+k)| ≤ ε

|λ+(κm)− λ̃−(κm+k)| ≤ ε

The relation Σ
(
Λg(ω)

)
≍
ε
Σ
(
Λg̃(ω)

)
implies

2m = 2(m+ k)

and then k = 0.

This means that, for m greater than some m0 (that does not depend on ε) one has

{λ−(κm), λ+(κm)} ≍
ε
{λ̃−(κm), λ̃+(κm)} (35)

�

Of course, Lemma 4.3 is still true by replacing κm by µm. For m large enough, we have :

{λ−(µm), λ+(µm)} ≍
ε
{λ̃−(µm), λ̃+(µm)} (36)

Recall that

Λmg (ω) =







−M(µm)√
f(0)

+ C0 − 1√
f(0)

h1/4(1)

h1/4(0)
1

∆(µm)

− 1√
f(1)

h1/4(0)

h1/4(1)
1

∆(µm) −N(µm)√
f(1)

− C1
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Hence

Tr
(
Λmg (ω)

)
− Tr

(
Λmg̃ (ω)

)

=

[

− M(µm)
√

f(0)
+ C0 −

N(µm)
√

f(1)
− C1

]

−
[

− M̃(µm)
√

f̃(0)
+ C̃0 −

Ñ(µm)
√

f̃(1)
− C̃1

]

= − 1
√

f(0)

(

M(µm)− M̃(µm)

)

− 1
√

f(1)

(

N(µm)− Ñ(µm)

)

+ (C̃0 − C0) + (C1 − C̃1)

(37)

Thanks to (34), with k = 0 and m− p = 0, we have

|C| = |C̃0 − C0| = |C1 − C̃1| ≤ CAε. (38)

Hence, combining (36), (37) and (38), we get :

∣
∣
∣
∣

1
√

f(0)

(

M(µm)− M̃(µm)

)

+
1

√

f(1)

(

N(µm)− Ñ(µm)

)∣
∣
∣
∣
≤

∣
∣Tr

(
Λmg (ω)

)
− Tr

(
Λmg̃ (ω)

)∣
∣

︸ ︷︷ ︸

≤2ε

+CAε

≤ CAε.

As f and f̃ are symmetric with respect to 1/2, this leads to

∣
∣
∣
∣
M(µm)− M̃(µm)

∣
∣
∣
∣
≤ CAε

We also have an estimate on the determinant. From (36), assume for example that

∣
∣λ+(µm)− λ̃+(µm)

∣
∣ ≤ ε and

∣
∣λ̃−(µm)− λ−(µm)

∣
∣ ≤ ε.

Then :
∣
∣
∣
∣
det(Λmg (ω))− det(Λmg̃ (ω))

∣
∣
∣
∣
=

∣
∣
∣
∣
λ−(µm)λ+(µm)− λ̃−(µm)λ̃+(µm)

∣
∣
∣
∣

≤
∣
∣λ−(µm)

∣
∣
∣
∣λ+(µm)− λ̃+(µm)

∣
∣+

∣
∣λ̃−(µm)− λ−(µm)

∣
∣
∣
∣λ̃+(µm)

∣
∣

≤ CAε×
√
µm

We write :

det(Λmg (λ)) − det(Λmg̃ (λ)) = I(µm) + II(µm) + III(µm) + IV

with

I(µm) =
1

√

f(0)f(1)

[(

M(µm)N(µm)− 1

∆2(µm)

)

−
(

M̃(µm)Ñ(µm)− 1

∆̃2(µm)

)]

,

II(µm) =
1

√

f(0)

[

C1(M(µm)− M̃(µm)) + (C1 − C̃1)M̃(µm)

]

III(µm) =
1

√

f(1)

[

C̃0(Ñ(µm)−N(µm)) + (C̃0 − C0)N(µm)

]

and
IV = (C̃0 − C0)C̃1 + C0(C̃1 − C1)

We have:
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|II(µm)| ≤ 1
√

f(0)
|C1||M(µm)− M̃(µm)|+ 1

√

f(0)
|C1 − C̃1||M̃(µm)|

≤ CAε+ CAε
√
µm

≤ CAε
√
µm.

Similarly:
|II(µm)| ≤ CAε

√
µm and |IV| ≤ CAε.

Finally :
|I(µm)| ≤

∣
∣ det(Λmg (λ)) − det(Λmg̃ (λ))

∣
∣ + CAε

√
µm

≤ CAε
√
µm

As this is true for µm, with m ≥ m0 with m0 not depending on ε, this is also true for κm with
m ≥ m0 (with m0 different from the other one but still independent of ε). Hence, by setting
ym =

√
κm, we have proved that there exists CA > 0 such that, for m ≥ m0 :

∣
∣
∣
∣

(

M(κm)N(κm)− 1

∆2(κm)

)

−
(

M̃(κm)Ñ(κm)− 1

∆̃2(κm)

)∣
∣
∣
∣
≤ CAε× ym

�

4.2 An integral estimate

In all this section, we will use the estimate of Proposition 4.1 in order to show that

‖q − q̃‖L2(0,1) ≤ CA
1

ln
(
1
ε

) .

where q is the potential defined in (4).

Let us go back to the Sturm-Liouville equation

−u′′ + qu = −zu, z ∈ C (39)

and to the fundamental system of solutions {c0, s0} and {c1, s1} given by (6). We define ψ and φ
as the two unique solutions of (39) that can be written as

ψ(x, z) = c0(x, z) +M(z)s0(x, z), φ(x, z) = c1(x, z)−N(z)s1(x, z), (40)

with Dirichlet boundary conditions at x = 1 and x = 0 respectively.

Proposition 4.4. We have the following relations

s0(1, z) = ∆(z)

s′0(1, z) = −N(z)∆(z)

c0(1, z) = −M(z)∆(z)

c′0(1, z) =M(z)N(z)∆(z)− 1

∆(z)

and

s1(0, z) = −∆(z)

s′1(0, z) = −M(z)∆(z)

c1(0, z) = −N(z)∆(z)

c′1(0, z) =
1

∆(z)
−N(z)M(z)∆(z).

Proof. First of all, the equalities s0(1, z) = ∆(z) and s1(0, z) = −∆(z) come from the relation (7).
The set of solutions of (39) that satisfy u(0, z) = 0 is a one dimensional vector space. Therefore,
there exists A(z) ∈ C such that :

∀x ∈ [0, 1], s0(x, z) = A(z)φ(x, z) (41)
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The conditions on c1 and s1 at x = 1 lead to the equality A(z) = s0(1, z) = ∆(z). We get also, by
differentiating (41):

s′0(1, z) = A(z)
(
c′1(1, z)−N(z)s′1(1, z)

)
= −N(z)A(z) = −∆(z)N(z).

Analogously, there is B(z) ∈ C such that

s1(x, z) = B(z)ψ(x, z)

and we show B(z) = −∆(z). Hence s′1(1, z) = −∆(z)ψ′(1, z) and so ψ′(1, z) = − 1

∆(z)
.

By differentiating (41) and taking x = 1, we get:

c′0(1, z) +M(z)s′0(1, z) = − 1

∆(z)

and then

c′0(1, z) =M(z)N(z)∆(z)− 1

∆(z)
.

This proves the equalities on c0 and s0. We proceed similarly to establish those on c1 and s1. �

Thanks to those relations, we are now able to prove the following lemma:

Lemma 4.5. Denote P the poles of N . For any z ∈ C\P we have the equality :

∆̃(z)∆(z)

(

M(z)N(z)− 1

∆(z)2

)

−M(z)Ñ(z)∆(z)∆̃(z) + 1

=

∫ 1

0

(
q(x) − q̃(x)

)
c0(x, z)s̃0(x, z)dx

(42)

Proof. Let us define θ : x 7→ c0(x, z)s̃
′
0(x, z)− s′0(x, z)c̃0(x, z). Then :

θ′(x) = c0(x, z)s̃
′′
0 (x, z) + c′0(x, z)s̃

′
0(x, z)− c′0(x, z)s̃

′
0(x, z)− c′′0(x, z)s̃0(x, z)

= c0(x, z)(q̃(x)s̃0(x, z) + zs̃0(x, z))− (q(x)c0(x, z) + zc0(x, z))s̃0(x, z)

= (q̃(x) − q(x)
)
c0(x, z)s̃0(x, z)

Hence, by integrating between 0 and 1 :

θ(1)− θ(0) =

∫ 1

0

(
q(x) − q̃(x)

)
c0(x, z)s̃0(x, z)dx.

By replacing c′0(1, z), s̃0(1, z), c0(1, z) and s̃′0(1, z) by the expressions given in Proposition 4.4, we
get the relation of Lemma 4.5. �

By inverting the roles of q and q̃, we get

∆(z)∆̃(z)

(

M̃(z)Ñ(z)− 1

∆̃(z)2

)

− M̃(z)N(z)∆(z)∆̃(z) + 1

=

∫ 1

0

(
q̃(x) − q(x)

)
c̃0(x, z)s0(x, z)dx

(43)

At last, from Remark 5, if we replace q(x) and q̃(x) by q(1− x) and q̃(1− x), then, the roles of M
and N are inverted. Moreover, we remark that c1(1 − x) and −s1(1 − x) play the roles of c0(x)
and s0(x) but for the potential q(1− x), i.e. denoting η(x) = 1− x:

c0(x, z, , q ◦ η) = c1(1− x, z, q) and s0(x, z, , q ◦ η) = −s1(1− x, z, q)
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Hence :

∆(z)∆̃(z)

(

M̃(z)Ñ(z)− 1

∆̃(z)2

)

−Ñ(z)M(z)∆(z)∆̃(z) + 1

= −
∫ 1

0

(
q̃(1 − x)− q(1− x)

)
c̃1(1− x, z)s1(1− x, z)dx

(44)

As q is symmetric, we have c1(1− x) = c0(x) and s1(1 − x) = −s0(x). The previous equality can
be written

∆(z)∆̃(z)

(

M̃(z)Ñ(z)− 1

∆̃(z)2

)

− Ñ(z)M(z)∆(z)∆̃(z) + 1

=

∫ 1

0

(
q̃(x) − q(x)

)
c̃0(x, z)s0(x, z)dx

(45)

Hence, by substracting the relation of Lemma 4.5 from equality (45), we get

∆(x)∆̃(z)

[(

M(z)N(z)− 1

∆(z)2

)

−
(

M̃(z)Ñ(z)− 1

∆̃(z)2

)]

=

∫ 1

0

(
q(x) − q̃(x)

)
c0(x, z)s̃0(x, z)dx

+

∫ 1

0

(
q(x) − q̃(x)

)
c̃0(x, z)s0(x, z)dx

Using Proposition 4.1, we have proved:

Proposition 4.6. There is m0 ∈ N such that, for m ≥ m0 :
∣
∣
∣
∣

∫ 1

0

(
q(x) − q̃(x)

)[
c0(x, κm)s̃0(x, κm) + c̃0(x, κm)s0(x, κm)

]
dx

∣
∣
∣
∣
≤ CAym|∆(κm)||∆̃(κm)|ε (46)

4.3 Construction of an inverse integral operator

From now on, we set L(x) = q(x) − q̃(x). We want to express the integrand in the left-hand-side
of (46) in terms of an operator acting on L.

Proposition 4.7. There is an operator B : L2([0, 1]) → L2([0, 1]) such that :

1. For all m ∈ N,

∫ 1

0

[
c0(x, κm)s̃0(x, κm) + c̃0(x, κm)s0(x, κm)

]
L(x)dx =

1

ym

∫ 1

0

sinh(2τym)BL(τ)dτ.

2. The function τ 7→ BL(τ) is C1 on [0, 1] and BL and (BL)′ are uniformly bounded by a
constant CA.

Proof. Let us extend on [−1, 0] q and q̃ into even functions. From [10] (page 9) we have the
following integral representations of the functions c0 and s0:

s0(x,−z2) =
sin(zx)

z
+

∫ x

0

H(x, t)
sin(zt)

z
dt

c0(x,−z2) = cos(zx) +

∫ x

0

P (x, t) cos(zt)dt

where H(x, t) and P (x, t) can be written as

H(x, t) = K(x, t)−K(x,−t)
P (x, t) = K(x, t) +K(x,−t) (47)

with K a C1 function on [−1, 1] × [−1, 1] satisfying some good estimates. More precisely ([10],
p.14), we have:
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Theorem 4.8. On [−1, 1]× [−1, 1], K satisfies the estimate

|K(x, t)| ≤ 1

2
w

(
x+ t

2

)

exp

(

σ1(x)− σ1

(
x+ t

2

)

− σ1

(
x− t

2

))

with w(u) = max
0≤ξ≤u

∣
∣
∣
∣

∫ ξ

0

q(y)dy

∣
∣
∣
∣
, σ0(x) =

∫ x

0

|q(t)|dt, σ1(x) =

∫ x

0

σ0(t)dt.

We thus have the following estimate :

Proposition 4.9. There is a constant CA > 0, which only depends on A, such that

‖K‖∞ +

∥
∥
∥
∥

∂K

∂x

∥
∥
∥
∥
∞

+

∥
∥
∥
∥

∂K

∂t

∥
∥
∥
∥
∞

≤ CA.

Proof. Since f ∈ C(A), the potential q is bounded by a constant that only depends on A, so are
σ0, σ1, w and K. Denote J(u, v) = K(u + v, u − v). Then J is uniformly bounded by CA and
moreover (cf [10], p. 14 and 16), one has the equalities :







∂J(u, v)

∂u
=

1

2
q(u) +

∫ v

0

q(u+ β)J(u, β)dβ

∂J(u, v)

∂v
=

∫ u

0

q(v + α)J(α, v)dβ

We deduce that the partial derivative of J are uniformly bounded by CA. Returning to the (x, t)
coordinates, the conclusion of Proposition 4.9 follows. �

For z = i
√
κm =: iym, we have thus :

s0(x, κm) =
sinh(ymx)

ym
+

∫ x

0

H(x, t)
sinh(ymt)

ym
dt

c0(x, κm) = cosh(ymx) +

∫ x

0

H(x, t) cosh(ymt)dt

We will take advantage of this representation to write the estimates of Proposition 4.6 as an integral
estimate.

We have
∫ 1

0

L(x)s0(x)c̃0(x)dx =

∫ 1

0

L(x)

[
sinh(ymx)

ym
+

∫ x

0

H(x, t)
sinh(ymt)

ym
dt

]

×
[

cosh(ymx) +

∫ x

0

P̃ (x, u) cosh(ymu)du

]

dx

= I0 + II0 + III0 + IV0,

with

• I0 =

∫ 1

0

L(x)
sinh(ymx) cosh(ymx)

ym
dx

• II0 =

∫ 1

0

L(x)

[ ∫ x

0

P̃ (x, u)
sinh(ymx) cosh(ymu)

ym
du

]

dx

• III0 =

∫ 1

0

L(x)

[ ∫ x

0

H(x, t)
sinh(ymt) cosh(ymx)

ym
dt

]

dx

• IV0 =

∫ 1

0

L(x)

[ ∫ x

0

∫ x

0

P̃ (x, u)H(x, t)
sinh(ymt) cosh(ymu)

ym
du dt

]

dx
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Let us compute those four quantities independently.

I0 =

∫ 1

0

L(x)
sinh(ymx) cosh(ymx)

ym
dx =

1

2ym

∫ 1

0

sinh(2xym)L(x)dx.

II0 =

∫ 1

0

L(x)

[ ∫ x

0

P̃ (x, u)
sinh(ymx) cosh(ymu)

ym
du

]

dx

=
1

ym

∫ 1

0

L(x)

[ ∫ x

0

P̃ (x, u)
sinh(ym(x+ u)) + sinh(ym(x− u))

2
du

]

dx

=
1

2ym

∫ 1

0

L(x)

[ ∫ x

0

P̃ (x, u) sinh(ym(x+ u))du +

∫ x

0

P̃ (x, u) sinh(ym(x − u))du

]

dx

=
1

ym

∫ 1

0

L(x)

[ ∫ x

x
2

P̃ (x, 2τ − x) sinh(2τym)dτ +

∫ x
2

0

P̃ (x, x− 2τ) sinh(2τym)dτ

]

dx

=
1

ym

∫ 1

0

sinh(2τym)

[ ∫ 2τ

τ

P̃ (x, 2τ − x)L(x)dx +

∫ 1

2τ

P̃ (x, x − 2τ)L(x)dx

]

dτ

But, for all (x, τ) in R2, we have P̃ (x, x − 2τ) = P̃ (x, 2τ − x). Then

II0 =
1

ym

∫ 1

0

sinh(2τym)

[ ∫ 1

τ

P̃ (x, 2τ − x)L(x)dx

]

dτ

Let us compute III0 :

III0 =

∫ 1

0

L(x)

[ ∫ x

0

H(x, t)
sinh(ymt) cosh(ymx)

ym
dt

]

dx

=
1

2ym

∫ 1

0

L(x)

[ ∫ x

0

H(x, t) sinh(ym(t+ x))dt +

∫ x

0

H(x, t) sinh(ym(t− x))dt

]

dx

=
1

ym

∫ 1

0

L(x)

[ ∫ x

x
2

H(x, 2τ − x) sinh(2τym)dτ +

∫ 0

− x
2

H(x, 2τ + x) sinh(2τym)dτ

]

dx

By changing τ in −τ , we get

III0 =
1

ym

∫ 1

0

L(x)

[ ∫ x

x
2

H(x, 2τ − x) sinh(2τym)dt+

∫ x
2

0

H(x,−2τ + x) sinh(−2τym)dt

]

dx

=
1

ym

∫ 1

0

L(x)

[ ∫ x

x
2

H(x, 2τ − x) sinh(2τym)dτ −
∫ x

2

0

H(x,−2τ + x) sinh(2τym)dτ

]

dx

As H is odd with respect to the second variable :

III0 =
1

ym

∫ 1

0

L(x)

[ ∫ x

0

H(x, 2τ − x) sinh(2τym)dτ

]

dx

=
1

ym

∫ 1

0

sinh(2τym)

[ ∫ 1

τ

H(x, 2τ − x)L(x)dx

]

dτ

At last :

IV0 =
1

2ym

∫ 1

0

L(x)

[ ∫ x

0

∫ x

0

P̃ (x, u)H(x, t)
(
sinh(ym(t+ u)) + sinh(ym(t− u))

)
du dt

]

dx

= IV0(1) + IV0(2)

31



where

IV0(1) =
1

2ym

∫ 1

0

L(x)

∫ x

0

∫ x

0

P̃ (x, u)H(x, t) sinh(ym(t+ u))dudtdx

=
1

2ym

∫ 1

0

L(x)

∫ 1

0

1[0,x](t)

∫ x+t
2

t
2

2P̃ (x, 2τ − t)H(x, t) sinh(2τym)dτdtdx

=
1

ym

∫ 1

0

L(x)

∫ 1

0

sinh(2τym)1[0,x](τ)

∫ 2τ

2τ−x
P̃ (x, 2τ − t)H(x, t)1[0,x](t)dtdτdx

=
1

ym

∫ 1

0

sinh(2τym)

∫ 1

τ

L(x)

∫ 2τ

2τ−x
P̃ (x, 2τ − t)H(x, t)1[0,x](t)dtdxdτ

and

IV0(2) =
1

2ym

∫ 1

0

L(x)

∫ x

0

∫ x

0

P̃ (x, u)H(x, t) sinh(ym(t− u))du dtdx

=
1

2ym

∫ 1

0

L(x)

∫ 1

0

1[0,x](t)

∫ t
2

t−x
2

2P̃ (x, t− 2τ)H(x, t) sinh(2τym)dτ dtdx

=
1

ym

∫ 1

0

L(x)

∫ 1

−1

sinh(2τym)1[−x,x](2τ)

∫ 2τ+x

2τ

P̃ (x, t− 2τ)H(x, t)1[0,x](t) dtdτdx

=
1

ym

∫ 1

−1

sinh(2τym)

∫ 1

2|τ |
L(x)

∫ 2τ+x

2τ

P̃ (x, t− 2τ)H(x, t)1[0,x](t) dtdxdτ

= IV0(2, 1) + IV0(2, 2)

with

IV0(2, 1) =
1

ym

∫ 0

−1

sinh(2τym)

∫ 1

−2τ

L(x)

∫ 2τ+x

2τ

P̃ (x, t− 2τ)H(x, t)1[0,x](t) dtdxdτ

=
1

ym

∫ 1

0

sinh(2τym)

∫ 1

2τ

L(x)

∫ −2τ+x

−2τ

P̃ (x, t+ 2τ)H(x, t)1[0,x](t) dtdxdτ

=
1

ym

∫ 1

0

sinh(2τym)

∫ 1

2τ

L(x)

∫ −2τ+x

0

P̃ (x, t+ 2τ)H(x, t) dtdxdτ

=
1

ym

∫ 1

0

sinh(2τym)

∫ 1

2τ

L(x)

∫ x

2τ

P̃ (x, t)H(x, t − 2τ) dtdxdτ

and

IV0(2, 2) =
1

ym

∫ 1

0

sinh(2τym)

∫ 1

2τ

L(x)

∫ 2τ+x

2τ

P̃ (x, t− 2τ)H(x, t)1[0,x](t) dtdxdτ

=
1

ym

∫ 1

0

sinh(2τym)

∫ 1

2τ

L(x)

∫ x

2τ

P̃ (x, t− 2τ)H(x, t) dtdxdτ

Finally :

∫ 1

0

s0(x)c̃0(x)L(x)dx =
1

ym

∫ 1

0

sinh(2τym)QL(τ)dτ
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with

QL(τ) =
1

2
L(τ) +

∫ 1

τ

P̃ (x, 2τ − x)L(x)dx +

∫ 1

τ

H(x, 2τ − x)L(x)dx

+

∫ 1

τ

L(x)

∫ 2τ

2τ−x
P̃ (x, 2τ − t)H(x, t)1[0,x](t)dtdx

+

∫ 1

2τ

L(x)

∫ x

2τ

P̃ (x, t)H(x, t− 2τ) dtdx

+

∫ 1

2τ

L(x)

∫ x

2τ

P̃ (x, t− 2τ)H(x, t) dtdx

Similarly, inverting the ˜, we construct as well an operator R : L2(0, 1) → L2(0, 1) such that

∫ 1

0

s̃0(x)c0(x)L(x)dx =
1

ym

∫ 1

0

sinh(2τym)RL(τ)dτ

with

RL(τ) =
1

2
L(τ) +

∫ 1

τ

P (x, 2τ − x)L(x)dx +

∫ 1

τ

H̃(x, 2τ − x)L(x)dx

+

∫ 1

τ

L(x)

∫ 2τ

2τ−x
P (x, 2τ − t)H̃(x, t)1[0,x](t)dtdx

+

∫ 1

2τ

L(x)

∫ x

2τ

P (x, t)H̃(x, t− 2τ) dtdx

+

∫ 1

2τ

L(x)

∫ x

2τ

P (x, t− 2τ)H̃(x, t) dtdx

Let us denote B = Q+R. Then

∫ 1

0

[
c0(x, z)s̃0(x, z) + c̃0(x, z)s0(x, z)

]
L(x)dx =

1

ym

∫ 1

0

sinh(2τym)(R +Q)L(τ)dτ

=
1

ym

∫ 1

0

sinh(2τym)BL(τ)dτ.

Now, let us prove the second part of the proposition. As the conformal factors f and f̃ belong to
C(A), and thanks to Proposition 4.9, we know that H and H̃ are C1 and uniformly bounded by a
constant CA (and also are their partial derivatives). Moreover, it is known that, for a function g

that is C1 on [0, 1], for any a ∈]0, 1[ the function Ga defined as Ga(τ) =

∫ τ

a

g(τ, x)dx is also C1

and its derivative is

G′
a(τ) =

∫ τ

a

∂g

∂τ
(τ, x)dx + g(τ, τ).

Hence BL and its derivative are also bounded by some constant CA. �

Thus, we have obtained:
∣
∣
∣
∣

1

y2m

∫ 1

0

sinh(2τym)BL(τ)dτ

∣
∣
∣
∣
≤ CAε×∆(κm)∆̃(κm) (48)

Moreover

y2me
−2ym × 1

y2m

∫ 1

0

sinh(2τym)BL(τ)dτ =
1

2

[

e−2ym

∫ 1

0

e2τymBL(τ)dτ + e−2ym

∫ 1

0

e−2τymBL(τ)dτ

]

=
1

2

[∫ 1

0

e2(τ−1)ymBL(τ)dτ +

∫ 1

0

e−2(τ+1)ymBL(τ)dτ

]

=
1

2

[∫ 1

0

e−2τymBL(1− τ)dτ +

∫ 2

1

e−2τymBL(τ − 1)dτ

]
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and so, by multiplying (48) by y2me
−2ym , one gets, for m ≥ m0 :

∣
∣
∣
∣

∫ +∞

0

e−2τym

(

BL(1− τ)1[0,1](τ) +BL(τ − 1)1[1,2](τ)

)

dτ

∣
∣
∣
∣
≤ CAε×

[
y2me

−2ym∆(κm)∆̃(κm)
]

≤ CAε.

4.4 A Müntz approximation theorem

4.4.1 A Hausdorf moment problem

Let us set
g(τ) = BL(1− τ)1[0,1](τ) +BL(τ − 1)1[1,2](τ)

The change of variable t = e−τ leads to the estimates :

∀m ≥ m0,

∣
∣
∣
∣

∫ 1

0

t2ym−1g(− ln(t))dt

∣
∣
∣
∣
≤ CAε.

We recall that, for all m ∈ N, we have set ym =
√
κm, where κm = m(m + n − 2). Let us set

α = 2ym0
− 1 and

λm := 2ym − 1− α (49)

Then, by denoting
h(t) = tαg(− ln(t)),

we get:
∣
∣
∣
∣

∫ 1

0

tλmh(t)dt

∣
∣
∣
∣
≤ CAε, ∀m ∈ N. (50)

Thus, we would like now to answer the following question : does the approximate knowledge of
the moments of h on the sequence (λm)m∈N determine h up to a small error in L2 norm ?

Let us fix m ∈ N (we will precise it later) and consider the finite real sequence :

Λm : 0 = λ0 < λ1 < ... < λm.

Definition 4.10. The subspace of the Müntz polynomials of degree λm is defined as :

M(Λm) = {P : P (x) =

m∑

k=0

akx
λk}.

Definition 4.11. The L2-error of approximation from M(Λm) of a function f ∈ L2([0, 1]) is :

E2(f,Λm) = inf
P∈M(Λm)

‖f − P‖2.

E2(h,Λm) appears in an estimate of ‖h‖2 given by Proposition 4.12. Thanks to the Gram-Schmidt
process, we define the sequence of Müntz polynomials

(
Lp(x)

)
as L0 ≡ 1 and, for p ≥ 1 :

Lp(x) =

p
∑

j=0

Cpjx
λj ,

where :

Cpj =
√

2λp + 1

∏p−1
r=0(λj + λr + 1)

∏p
r=0,r 6=j(λj − λr)

.
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Proposition 4.12. Under the assumption (50), we have the following estimate : We have the
following estimate :

‖h‖22 ≤ CAε
2
m∑

k=0

( k∑

ℓ=0

|Ckℓ|
)2

+ E2(h,Λm)2.

Proof. Let us denote π(h) =

m∑

k=0

〈Lk, h〉Lk the orthogonal projection of h on M(Λm).

‖h‖22 = ‖π(h)‖2 + ‖h− π(h)‖22

=

m∑

k=0

〈Lk, h〉2 + E2(Λm, h)
2.

As

|〈Lk, h〉| =
∣
∣
∣
∣

k∑

ℓ=0

Ckℓ

∫ 1

0

xλℓh(x)dx

︸ ︷︷ ︸

≤CAε

∣
∣
∣
∣
≤ CAε

k∑

ℓ=0

|Ckℓ|,

one gets

‖h‖22 ≤ CAε
2
m∑

k=0

( k∑

ℓ=0

|Ckℓ|
)2

+ E2(Λm, h)
2.

�

We would like to find m(ε) ∈ N satisfying :

lim
ε→0

m(ε) = +∞

and such that

m(ε)
∑

k=0

( k∑

ℓ=0

|Ckℓ|
)2

≤ 1

ε
,

in order to obtain ‖h‖22 ≤ CAε+ E2(Λm(ε), h).

Lemma 4.13.

1. For all m ∈ N, λm+1 − λm ≥ 2.

2. For all m ∈ N, λm+1 − λm = 2 +O

(
1

m

)

.

Proof.

1. Let m ∈ N and set a = n−2. From (49) we have the equivalence λm+1−λm ≥ 2 ⇔ ym+1−ym ≥
1, where ym =

√
m2 + am. For m ∈ N, one has :

ym+1 − ym ≥ 1 ⇐
√

(m+ 1)2 + a(m+ 1)−
√

m2 + am ≥ 1

⇔ (m+ 1)2 + a(m+ 1)−m2 − am ≥
√

(m+ 1)2 + a(m+ 1) +
√

m2 + am

⇔ 2m+ 1 + a ≥ m+ 1 +
a

2
− a

8(m+ 1)
+m+

a

2
− a

8m
+ o

(
1

m

)

⇔ a

8(m+ 1)
≥ − a

8m
+ o

(
1

m

)

,

and that is true for m large enough. We assume, without loss of generality, that it is true for all
m ≥ m0. Hence, for all m ∈ N, λm+1 − λm ≥ 2.

2. Let m ∈ N and um =
√
κℓ for some ℓ ∈ N. Then
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ym+1 =
√
κm+1 =

√
κm + 1 +O

(
1

m

)

= ym + 1 +O

(
1

m

)

,

so we have the result. �

Hence, there is C > 0 such that, for all m ∈ N, λm ≤ 2m+ C. By setting M1 = max(2, 2C + 1),
one gets :

p−1
∏

r=0

(λj + λr + 1) ≤
p−1
∏

r=0

(2j + 2r + 2C + 1) ≤Mp
1

p−1
∏

r=0

(j + r + 1).

On the other hand, for all m ∈ N, λm+1−λm ≥ 2. Let m ∈ N and (r, j) ∈ N such that 0 ≤ r, j ≤ m,
r 6= j.

|λj − λr| = |λj − λj−1|+ |λj−1 − λj−2|+ ...+ |λr+1 − λr|
≥ 2|j − r|.

Consequently:

|
p
∏

r=0,r 6=j
(λj − λr)| ≥ 2p

∣
∣
∣
∣

p
∏

r=0,r 6=j
(j − r)

∣
∣
∣
∣

It follows that

|Cpj | ≤
√

4p+ 2C + 1

(
M1

2

)p∏p−1
r=0 |j + r + 1|

∏p
r=0,r 6=j |j − r|

=
√

4p+ 2C + 1

(
M1

2

)p
(j + 1)...(j + p)

j(j − 1)...2× 1× 2× ...(p− j)

=
√

4p+ 2C + 1

(
M1

2

)p
(j + p)!

(j!)2(p− j)!

The multinomial formula stipulates that for any real finite sequence (x0, ..., xm) and any n ∈ N:
( m∑

k=0

xk

)n

=
∑

k1+...+km=n

(
n

k1, k2, ..., km

)

xk11 ...x
km
m ,

where

(
n

k1, k2, ..., km

)

=
n!

k1!k2!...km!
.

As j + j + (p− j) = j + p, one deduces that :

(j + p)!

(j)!(j)!(p − j)!
≤ (1 + 1 + 1)j+p = 3j+p

Hence (see [5] or [1], chapter 4, for similar computations) :

ε2
m∑

k=0

( k∑

ℓ=0

|Ckℓ|
)2

≤ ε2
m∑

k=0

( k∑

ℓ=0

√
4k + 2C + 1

(
M1

2

)k

3k+ℓ
)2

= ε2
m∑

k=0

(
3M1

2

)2k

(4k + 2C + 1)

( k∑

ℓ=0

3ℓ
)2

≤ ε2(4m+ 2C + 1)

m∑

k=0

(
3M1

2

)2k( k∑

ℓ=0

3ℓ
)2

≤ ε2(4m+ 2C + 1)

m∑

k=0

(
3M1

2

)2k
3

2
× 32k

≤ ε2 × 3

2
(4m+ 2C + 1)

m∑

k=0

(
9M1

2

)2k

≤ ε2 × 3

2
(4m+ 2C + 1)(m+ 1)

(
9M1

2

)2m

= ε2g(m)2
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where g(t) :=
3

2
(4t+ 2C + 1)(t+ 1)

(
9M1

2

)2t

.

As g is a strictly increasing function on R+, we can set, for ε small enough, m(ε) = E

(

g−1

(
1√
ε

))

.

Thanks to this choice, we have

g
(
m(ε)

)
≤ 1√

ε
,

so that

ε2
m(ε)
∑

k=0

( k∑

p=0

|Ckp|
)2

≤ ε.

Let us now estimate E2(Λm, h). To this end, we recall some definitions.

Definition 4.14. The index of approximation of Λm in L2([0, 1]) is :

ε2(Λm) = max
y≥0

∣
∣
∣
∣

B(1 + iy)

1 + iy

∣
∣
∣
∣

where B : C → C is the Blaschke product defined as :

B(z) := B(z,Λm) =

m∏

k=0

z − λk − 1
2

z + λk +
1
2

We will take advantage of a much simpler expression of ε2
(
Λm

)
, thanks to the following Theorem

([9], p.360):

Theorem 4.15. Let Λm : 0 = λ0 < λ1 < ... < λm be a finite sequence. Assume that λk+1−λk ≥ 2
for k ≥ 0. Then :

ε2
(
Λm

)
=

m∏

k=0

λk − 1
2

λk +
3
2

Definition 4.16. For a function f ∈ L2([0, 1]), its L2-modulus of continuity w(f, .) : ]0, 1[→ R is
defined as:

w(f, u) = sup
0≤r≤u

(∫ 1−r

0

|f(x+ r) − f(x)|2dx
) 1

2

.

The introduction of the two previous concepts is motivated by the following result (cf [9], Theorem
2.7 p.352) :

Theorem 4.17. Let f ∈ L2([0, 1]). Then there is an universal constant C > 0 such that :

E2(Λm) ≤ Cω(f, ε
(
Λm)

)

Lemma 4.18. w(h, u) ≤ CAu, ∀u ∈ [0, 1/e2].

Proof. We write h(x) as the sum of two functions with disjoint support :

h = h1 + h2,

with :

• h1(t) = tαBL(− ln(x) − 1)1[ 1

e2
, 1e ]

(t),

• h2(t) = tαBL(1 + ln(t))1[ 1e ,1[
(t).
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Thanks to the second part of Proposition 4.7, the function BL is bounded by a constant CA so, for
i ∈ [[1, 2]], each of the function hi is bounded by some constant CA depending on A. Moreover, BL
is C1 on [ 1

e2 ,
1
e ] and [ 1e , 1], and, for i ∈ [[1, 2]], h′i is bounded by a constant CA. Let x ∈ [0, 1/e2],

r ∈ [0, x]. We have :

∫ 1−r

0

|h(t+ r) − h(t)|2dt =
∫ 1

e−r
2

1

e2

|h1(t+ r) − h1(t)|2dt+
∫ 1

e

1
e−r2

|h2(x+ r)− h1(t)|2dt

+

∫ 1−r

1
e

|h2(t+ r)− h2(t)|2dt

≤
(
1

e
− 1

e2
− r2

)

‖h′1‖2∞r2 + r2
(

‖h2‖∞ + ‖h1‖∞
)2

+

(

1− 1

e
− r

)

‖h′2‖2∞r2

≤ CAr
2.

Taking the square root and the supremum on r on each side, the result is proved. �

Lemma 4.19.

ε2
(
Λm

)
= O

(
1

m

)

, m→ +∞.

Proof.

Using Theorem 4.15 and Lemma 4.13, the expression of ε2(Λm) defined above can be written as

ε2(Λm) =

m∏

k=0

λk − 1
2

λk +
3
2

.

Recall there exists C > 0 such that for all m ∈ N, λm ≤ 4m+ C. Consequently, one has :

∀m ∈ N, ln

( m∏

k=0

λk − 1
2

λk +
3
2

)

= ln

( m∏

k=0

(

1− 2

λk +
3
2

))

=

m∑

k=0

ln

(

1− 2

λk +
3
2

))

≤ −2

m∑

k=0

1

λk +
3
2

≤ −2

m∑

k=0

1

2k + C + 3
2

.

But −2

m∑

k=0

1

2k + C + 3
2

=
m→+∞

− ln(m) +O(1). Hence

ε2
(
Λm

)
= O

(
1

m

)

.

�

Hence, as ε2(Λm(ε)) ∈ [0, 1/e2] for ε small enough, we get thanks to Lemma 4.18 and Theorem
4.17:

E(h,Λm(ε))2 ≤ CAε2(Λm(ε)).

38



To sum up, we have shown that :

‖h‖22 ≤ CA

(

ε+ ε2(Λm(ε))
2

)

.

Now, we know that ε2(Λm(ε))
2 ≤ CA

m(ε)2
. By virtue of the double inequality

1√
ε
+ o(1) ≤ g

(
m(ε)

)
≤ 1√

ε

one has

1

2
ln

(
1

ε

)

∼
ε→0

ln

(

g
(
m(ε)

)
)

∼
ε→0

CAm(ε).

Hence (for another CA > 0) :
1

m(ε)
≤ CA

ln
(
1
ε

) . Consequently :

‖h‖22 ≤ CA
1

ln
(
1
ε

)2 .

Since h1 and h2 have disjoint support, we have

‖h‖22 = ‖h1‖22 + ‖h2‖22.

In particular

‖h2‖22 ≤ ‖h‖22
But as

‖h2‖22 =
∫ 1

1
e

t2α
∣
∣
∣
∣
BL

(
1 + ln(t)

)
∣
∣
∣
∣

2

dt

we get
∫ 1

1
e

t2α+1

∣
∣
∣
∣
BL

(
1 + ln(t)

)
∣
∣
∣
∣

2
dt

t
≤ CA,a

ln
(
1
ε

)2

Hence, as we integrate over

[
1

e1
, 1

]

, the term t2α+1 is minorated by (1/e)(2α+1). By returning to

the τ coordinate, we obtain :

‖BL(1− τ)‖L2([0,1]) ≤ CA
1

ln
(
1
ε

) ,

and then

‖BL‖L2([0,1]) ≤ CA
1

ln
(
1
ε

) .

4.4.2 Invertibility of the B operator

Now, we want to prove that B : L2(0, 1) → L2(0, 1) is invertible and that its inverse is bounded
with respect to CA. We can write :

B = I + C

where Ch(τ) =

∫ 1

τ

H1(x, τ)h(x)dx, with :
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H1(x, τ) = P̃ (x, 2τ − x) +H(x, 2τ − x) +

∫ 2τ

2τ−x
P̃ (x, 2τ − t)H(x, t)1[0,x](t)dt

+

∫ x

2τ

P̃ (x, t)H(x, t − 2τ) dt1[2τ,1](x) +

∫ x

2τ

P̃ (x, t− 2τ)H(x, t) dt1[2τ,1](x)

+ P (x, 2τ − x) + H̃(x, 2τ − x) +

∫ 2τ

2τ−x
P (x, 2τ − t)H̃(x, t)1[0,x](t)dt

+

∫ x

2τ

P (x, t)H̃(x, t− 2τ) dt1[2τ,1](x) +

∫ x

2τ

P (x, t− 2τ)H̃(x, t) dt1[2τ,1](x).

Lemma 4.20. There is a constant CA > 0 such that, for all h in L2(0, 1) :

∀n ∈ N
∗, ∀τ ∈ [0, 1], |Cnh(τ)| ≤ CA

(
(1− τ)‖H1‖L∞

)n−1

(n− 1)!
‖h‖L2([0,1])

Proof.

By induction :

• From the estimates of Proposition 4.9, H , H̃ and H1 are bounded by a constant CA. Using the
triangle inequality and the Cauchy-Schwarz inequality, one immediately gets :

|Ch(τ)| ≤ CA

∫ 1

τ

|h(x)|dx ≤ CA(1− τ)‖h‖L2([0,1]) ≤ CA‖h‖L2([0,1])

• Assume it is true for some n ∈ N∗. Then :

|Cn+1h(τ)| =
∣
∣
∣
∣

∫ 1

τ

H1(x, t)C
nh(x)dx

∣
∣
∣
∣
≤

∫ 1

τ

‖H1‖∞CA
(1− x)n−1‖H1‖n−1

∞
(n− 1)!

‖h‖L2(0,1)dx

= CA
‖H1‖n∞
(n− 1)!

‖h‖L2(0,1)

∫ 1

τ

(1− x)n−1dx

= CA

(
(1− τ)‖H1‖∞

)n

n!
‖h‖L2([0,1])

�

Thus ‖Cn‖ ≤ CA

(
(1− τ)‖H1‖∞

)n−1

(n− 1)!
for all n ∈ N∗. It follows that the serie

∑
(−1)nCn is

convergent. Consequently B is invertible, B−1 =

+∞∑

n=0

(−1)nCn and :

‖B−1‖ ≤ CA.

Hence :

‖q − q̃‖L2(0,1) = ‖L‖L2(0,1) ≤ ‖B−1‖‖BL‖L2(0,1) ≤ CA
1

ln
(
1
ε

)

and the proof of Theorem 1.9 is complete.

Let us prove Corollary 1.13.

Proof. Let s1, s2 ≥ 0 and θ ∈ (0, 1). Using the Gagliardo-Nirenberg inequalities (see [3]), one can
write

‖g‖Hs(0,1) ≤ ‖g‖θHs1(0,1)‖g‖1−θHs2(0,1)
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for every g ∈ Hs1(0, 1)∩Hs2(0, 1) and s = θs1 + (1− θ)s2. As f and f̃ belong to C(A) then q− q̃
belong to H2(0, 1) and ‖q − q̃‖H2(0,1) ≤ CA. Hence, for s1 = 0 and s2 = 2, we have:

‖q − q̃‖Hs(0,1) ≤ ‖q − q̃‖θL2(0,1)‖q − q̃‖1−θH2(0,1)

≤ C1−θ
A ‖q − q̃‖θL2(0,1)

≤ CA
1

ln
(
1
ε

)θ

with θ =
2− s

2
. Using the Sobolev embedding H1(0, 1) →֒ C0(0, 1) with ‖.‖∞ ≤ 2‖.‖H1(0,1), one

gets (for s = 1 and θ = 1/2):

‖q − q̃‖∞ ≤ 2‖q − q̃‖H1(0,1) ≤ CA

√

1

ln
(
1
ε

)

�

4.4.3 Uniform estimate of the conformal factors

Now we give the proof of Corollary 1.11. Assume that n ≥ 3, ω = 0 and let us set F = fn−2. We

can write q =
F ′′

F
and then

(F̃F ′ − F̃ ′F )′(t) = F̃F (q − q̃)(t).

For all t ∈ [0, 1], we have :

F̃ (t)F ′(t)− F̃ ′(t)F (t) = (n− 2)f̃n−2fn−3(t)f ′(t)− (d− 2)f̃n−3fn−2(t)f̃ ′(t)

= (n− 2)fn−3(t)f̃n−3(t)

(

f̃(t)f ′(t)− f(t)f̃ ′(t)

)

Assume that for all t in [0, 1], f̃(t)f ′(t)− f(t)f̃ ′(t) 6= 0, for example f̃(t)f ′(t) > f(t)f̃(t). Then :

f ′(t)

f(t)
>
f̃ ′(t)

f̃(t)
.

Then, by integrating between 0 and 1, one gets :

ln
(
f(1)

)
− ln

(
f(0)

)
> ln

(
f̃(1)

)
− ln

(
f̃(0)

)
.

and this is not true as f(0) = f(1) and f̃(0) = f̃(1). Consequently, there is x0 ∈ [0, 1] such that
(
f̃f ′ − f f̃ ′)(x0) = 0. Setting G(x) = (F̃ F ′ − F̃ ′F )(x), we have :

∀x ∈ [0, 1], G(x) =

∫ x

x0

F̃F (q − q̃)(t)dt.

From the L2 estimate previously established on q − q̃, one has :

∀x ∈ [0, 1], |G(x)| ≤
√

|x− x0|CA‖q − q̃‖2

≤ CA
1

ln
(
1
ε

)

Hence : ∣
∣
∣
∣

(
F

F̃

)′
(x)

∣
∣
∣
∣
=

∣
∣
∣
∣

G(x)

F̃ (x)2

∣
∣
∣
∣
≤ CA

1

ln
(
1
ε

) ,

and by integrating betwwen 0 and x :
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∣
∣
∣
∣

F (x)

F̃ (x)
− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ x

0

(
F

F̃

)′
(t)dt

∣
∣
∣
∣
≤

∫ 1

0

∣
∣
∣
∣

G(t)

F̃ (t)2

∣
∣
∣
∣
dt ≤ CA

1

ln
(
1
ε

) .

and this last inequality leads to the estimate :

∀x ∈ [0, 1], |fn−2(x) − f̃n−2(x)| ≤ CA
1

ln
(
1
ε

) .

Setting k = n− 2, thanks to the relation ak − bk = (a− b)
k∑

j=0

ajbk−j , we get at last :

∀x ∈ [0, 1], |f(x)− f̃(x)| ≤ CA
1

ln
(
1
ε

) .

5 About the Calderón problem

Now, we prove Theorem 1.12. For s ∈ R, Hs(∂M) can be defined as

Hs(∂M) =

{

ψ ∈ D′(∂M), ψ =
∑

m≥0







ψ1
m

ψ2
m







⊗ Ym,
∑

m≥0

(1 + µm)s
(

|ψ1
m|2 + |ψ2

m|2
)

<∞
}

.

Recall that we have denoted B(H1/2(∂M)) the set of bounded operators from H1/2(∂M) to
H1/2(∂M) and equipped B(H1/2(∂M)) with the norm

‖F‖∗ = sup
ψ∈H1/2(∂M)\{0}

‖Fψ‖H1/2

‖ψ‖H1/2

.

Lemma 5.1. We have the equivalence :

Λg(ω)− Λg̃(ω) ∈ B(H1/2(∂M)) ⇔
{

f(0) = f̃(0)

f(1) = f̃(1).

Proof. Let us set

C0 =
1

4
√

f(0)

h′(0)

h(0)
, C1 =

1

4
√

f(1)

h′(1)

h(1)
, A0 =

1

f(0)
− 1

f̃(0)
and A1 =

1

f(1)
− 1

f̃(1)
.

For m ≥ 0, one has, using the block diagonal representation of Λg(ω) and the asymptotics of
M(µm) and N(µm) given in Theorem 2.2 and Corollary 2.3:

Λmg (ω)− Λmg̃ (ω) =







M̃(µm)√
f̃(0)

− M(µm)√
f(0)

+ C0 − C̃0 O
(
e−2µm

)

O
(
e−2µm

) Ñ(µm)√
f̃(1)

− N(µm)√
f(1)

+ C̃1 − C1







=







A0
√
µm + (C0 − C̃0) 0

0 A1
√
µm + (C̃1 − C1)







+







O

(

1√
µm

)

O
(
e−2µm

)

O
(
e−2µm

)
O

(

1√
µm

)
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Hence, for any
(
ψ1
m, ψ

2
m

)
∈ R2:

(
Λmg (ω)− Λmg̃ (ω)

)







ψ1
m

ψ2
m







=
√
µm







A0ψ
1
m

A1ψ
2
m







+







(C0 − C̃0)ψ
1
m

(C̃1 − C1)ψ
2
m







+O

(
ψ1
m + ψ2

m√
µm

)

For ψ =
∑

m≥0







ψ1
m

ψ2
m







⊗ Ym ∈ H1/2(∂M), one has

‖
(
Λg(ω)− Λg̃(ω)

)
ψ‖2H1/2(∂M) =

∑

m≥0

(1 + µm)1/2µm

(

A2
0|ψ1

m|2 +A2
1|ψ2

m|2
)

+
∑

m≥0

2(1 + µm)1/2
√
µm

(

|A0(C0 − C̃0)||ψ1
m|2 + |A1(C̃1 − C1)||ψ2

m|2
)

+
∑

m≥0

(1 + µm)1/2O
(
|ψ1
m|2 + |ψ2

m|2
)

Then

‖Λg(ω)− Λg̃(ω)‖∗ <∞ ⇔
{

A0 = 0

A1 = 0
⇔

{

f̃(0) = f̃(0)

f̃(1) = f̃(1).

�

Under the assumptions of Theorem 1.12, the following estimate holds:

Proposition 5.2. Let ε > 0. Assume that ‖Λg(ω)− Λg̃(ω)‖∗ ≤ ε. There is CA > 0 such that :

∀m ∈ N,

∣
∣
∣
∣
N(κm)− Ñ(κm)

∣
∣
∣
∣
≤ CAε.

Proof. For m ∈ N, consider ψm =







0

1







⊗ Ym ∈ H1/2(∂M).

One has :

(
Λg(ω)− Λg̃(ω)

)
ψm =

(
Λmg (ω)− Λmg̃ (ω)

)







0

1







⊗ Ym

=







0 1√
f(0)

h1/4(1)
h1/4(0)

(
1

∆̃(µm)
− 1

∆(µm)

)

0

(

Ñ(µm)√
f(1)

− N(µm)√
f(1)

)

+ (C̃1 − C1)







⊗ Ym

Then

‖
(
Λg(ω)− Λg̃(ω)

)
ψm‖2H1/2(∂M) = (µm + 1)1/2

[(
Ñ(µm)
√

f(1)
−N(µm)
√

f(1)
+ (C̃1 − C1)

)2

+
1

f(0)

h1/2(1)

h1/2(0)

(
1

∆̃(µm)
− 1

∆(µm)

)2]

.

so, for all m ≥ 0:
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(µm + 1)1/2
∣
∣
∣
∣

1
√

f(1)

(
Ñ(µm)−N(µm)

)
+ (C̃1 − C1)

∣
∣
∣
∣

2

≤ ‖
(
Λg(ω)− Λg̃(ω

)
ψm‖2H1/2(∂M)

≤ ‖Λg(ω)− Λg̃(ω)‖2∗‖ψm‖2H1/2(∂M)

= ‖Λg(ω)− Λg̃(ω)‖2∗(µm + 1)1/2

≤ ε2(µm + 1)1/2.

Hence ∣
∣
∣
∣

1
√

f(1)

(
Ñ(µm)−N(µm)

)
+ (C̃1 − C1)

∣
∣
∣
∣
≤ ε. (51)

Using the asymptotic N(µm) = −µm + o(1), we deduce from (51) that

|C̃1 − C1| ≤ ε

and then that there is CA > 0 such that, for all m ∈ N :

∣
∣
∣
∣
N(µm)− Ñ(µm)

∣
∣
∣
∣
≤ CA ε.

�

As in Lemma 4.5, one gets an integral relation between N(z)− Ñ(z) and q − q̃:

Lemma 5.3. The following integral relation holds:

(
N(z)− Ñ(z)

)
∆(z)∆̃(z) =

∫ 1

0

(
q(x)− q̃(x)

)
s0(x, z)s̃0(x, z)dx (52)

Proof. Let us define θ : x 7→ s0(x, z)s̃0
′(x, z)− s′0(x, z)s̃0(x, z). Then :

θ′(x) =
(
q̃(x) − q(x)

)
s0(x, z)s̃0(x, z)

By integrating between 0 and 1, one gets:

s′0(1, z)s̃0(1, z)− s0(1, z)s̃
′
0(1, z) =

∫ 1

0

(
q(x)− q̃(x)

)
s0(x, z)s̃0(x, z)dx

As s′0(1, z) = N(z)∆(z) and s0(1, z) = ∆(z), one gets for all z ∈ C\P :

(
N(z)− Ñ(z)

)
∆(z)∆̃(z) =

∫ 1

0

(
q(x) − q̃(x)

)
s0(x, z)s̃0(x, z)dx.

�

Just as in Section 4, let us extend on [−1, 0] q and q̃ into even functions and denote L(x) =
q(x)− q̃(x). We recall that for all m ∈ N, we have set ym =

√
κm.

We will take advantage of this representation to write in another way the equalities

(
N(κm)− Ñ(κm)

)
∆(κm)∆̃(κm) =

∫ 1

0

(q(x)− q̃(x)s0(x, κm)s̃0(x, κm)dx.

Proposition 5.4. There is an operator D : L2([0, 1]) → L2([0, 1]) such that :

1. For all m ∈ N,
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(
N(κm)− Ñ(κm)

)
s0(1, κm)s̃0(1, κm) =

1

y2m

∫ 1

0

cosh(2τym)DL(τ)dτ − 1

y2m

∫ 1

0

L(τ)dτ.

2. The function τ 7→ DL(τ) is C1 on [0, 1] and DL and (DL)′ are uniformly bounded by a
constant CA.

Proof. Using the same calculations as in Proposition 4.7 together with the representation formula
for s0

s0(x, κm) =
sinh(ymx)

ym
+

∫ x

0

H(x, t)
sinh(ymt)

ym
dt

one can prove that the operator D is given by

DL(τ) = L(τ) +

∫ 1

τ

H̃(x, 2τ − x)L(x)dx +

∫ 1

τ

H(x, 2τ − x)L(x)dx

+

∫ 1

τ

L(x)

∫ 2τ

2τ−x
H̃(x, 2τ − t)H(x, t)1[0,x](t)dtdx

+

∫ 1

2τ

L(x)

∫ x

2τ

H̃(x, t)H(x, t − 2τ) dtdx

+

∫ 1

2τ

L(x)

∫ x

2τ

H̃(x, t− 2τ)H(x, t) dtdx

and so that DL and its derivative are bounded by some constant CA > 0. �

For all m ∈ N, one has

(N(κm)− Ñ(κm))s0(1, κm)s̃0(1, κm) =
1

y2m

∫ 1

0

cosh(2τym)DL(τ)dτ − 1

y2m

∫ 1

0

L(τ)dτ

=
1

2y2m

∫ 1

0

e2τymDL(τ)dτ +
1

2y2m

∫ 1

0

e−2τymDL(τ)dτ

− 1

y2m

∫ 1

0

L(τ)dτ.

Hence, by multiplying both sides by 2y2me
−2ym , one has :

2y2me
−2ym

(
N(κm)− Ñ(κm)

)
s0(1, κm)s̃0(1, κm) =

∫ 1

0

e2ym(τ−1)DL(τ)dτ +

∫ 1

0

e−2ym(τ+1)DL(τ)dτ

− 2e−2ym

∫ 1

0

L(τ)dτ

The asymptotic

s0(1, κm) ∼
eym

ym
, m→ +∞,

ensures that y2me
−2yms0(1, κm)s̃0(1, κm) is bounded uniformly in m. Moreover, by hypothesis:

∣
∣
∣
∣

∫ 1

0

L(τ)dτ

∣
∣
∣
∣
≤ ε

so ∣
∣
∣
∣

∫ 1

0

e2ym(τ−1)DL(τ)dτ +

∫ 1

0

e−2ym(τ+1)DL(τ)dτ

∣
∣
∣
∣
≤ CAε.

We write :

•
∫ 1

0

e2ym(τ−1)DL(τ)dτ =

∫ 1

0

e−2τymDL(1− τ)dτ ,
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•
∫ 1

0

e−2ym(t+1)DL(τ)dτ =

∫ 2

1

e−2τymDL(τ − 1)dτ ,

Setting
RL(τ) = DL(1− τ)1[0,1](τ) +DL(τ − 1)1[1,2](τ)

one has for all m ∈ N

∣
∣
∣
∣

∫ +∞

0

e−2τymRL(τ)dτ

∣
∣
∣
∣
≤ CAε

By the change of variable τ = − ln(t), we obtain the moment problem :

∀m ∈ N,

∣
∣
∣
∣

∫ 1

0

t2ymRL(− ln(t))dt

∣
∣
∣
∣
≤ CAε

Using the same technique as in section 4.4.1, we prove the stability estimate

‖DL‖L2([0,1]) ≤ CA
1

ln
(
1
ε

) .

But D can be written as (see section 4.4.2)

D = I + C

with, for all n ≥ 1, ‖Cn‖ ≤
(
CA(1− τ)

)n−1

(n− 1)!
. Consequently B is invertible and its inverse is

bounded by some constant CA > 0. Hence

‖q − q̃‖2 ≤ ‖D−1‖‖DL‖L2([0,1])

≤ CA
1

ln
(
1
ε

) .

At last, if ω = 0 and n ≥ 3, we deduce as previously that

‖f − f̃‖∞ ≤ CA
1

ln
(
1
ε

) .
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