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kPCA-Based Parametric Solutions Within the PGD Framework

D. Gonzilez' - J. V. Aguado? - E. Cueto' - E. Abisset-Chavanne® - F. Chinesta®

Abstract Parametric solutions make possible fast and
reliable real-time simulations which, in turn allow real time
optimization, simulation-based control and uncertainty
propagation. This opens unprecedented possibilities for
robust and efficient design and real-time decision making.
The construction of such parametric solutions was
addressed in our former works in the context of models
whose parameters were easily identified and known in
advance. In this work we address more complex scenarios
in which the parameters do not appear explicitly in the
model—complex microstructures, for instance. In these
circumstances the parametric model solution requires
combining a technique to find the relevant model param-
eters and a solution procedure able to cope with high-di-
mensional models, avoiding the well-known curse of
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dimensionality. In this work, kPCA (kernel Principal
Component Analysis) is used for extracting the hidden
model parameters, whereas the PGD (Proper Generalized
Decomposition) is used for calculating the resulting para-
metric solution.

1 Introduction to Parametric Modeling

Many problems related to important societal and industrial
challenges require decision-making procedures to be
accomplished fast and reliably. These are in general data-
driven and arise from complex models expressed in the form
of partial differential equations. They involve usually
enormous amounts of information. In addition, very often,
solutions are needed in real-time. Moreover, there is an
industrial claim towards “democratization” of simulation,
so that these simulations can be employed by non-specialists
running deployed platforms such as smartphones or tablets.
To our knowledge, the solution of such complex computa-
tional models has been very often addressed by employing
high-performance computing running in supercomputers. It
is expected that, in the near future, real-time simulation,
optimization and control in applied sciences and engineer-
ing will be achieved by extensive usage of supercomputing
frameworks. Consequently, it is expected that important
advances in hardware and software for high-performance
computing will be achieved. On the contrary, there is also an
alternative approach to this end with an eye towards the
development of as simple as possible models (within a
prescribed degree of simulation realism, of course!). It can
now be foreseen that a new generation of simulation tech-
niques, beyond high-performance computing, will be
developed so as to improve efficiency or simply to allow
obtaining results in such challenging scenarios.
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As mentioned before, many problems in applied science
and engineering remain intractable, in spite of the
impressive progresses attained in modeling, numerical
analysis, discretization techniques and computer science
during the last decade. This is because their numerical
complexity, or the restrictions imposed by different
requirements make them unaffordable for today’s tech-
nologies. Many problems in the fields of parametric mod-
eling, inverse identification, process or shape optimization,
usually require, when standard techniques are employed,
the direct computation of a very large number of solutions
of the model for particular values of the parameters. When
the number of parameters increases such a procedure
becomes intractable.

The human being has developed throughout history dis-
tinct facilities for giving fast responses to these questions.
Thus, abaci were already used 2700 years B.C. in Mesopo-
tamia, for instance, as a means to cope with parametric
problems. However, the initial arithmetic was rapidly com-
plemented with more complex representations; some of
them were the charts and the nomograms. The just men-
tioned abaci allowed for fast calculations and data manipu-
lations. Nomograms can be easily constructed when the
mathematical relationship that they express is purely alge-
braic, eventually nonlinear. In these cases it was easy to
represent some outputs as a function of some inputs. Com-
putations necessary for such data representations were per-
formed “offline” and then used “online” in many branches
of engineering sciences for design and optimization.

However, these procedures fail when addressing more
complex scenarios. Thus, sometimes engineers dealt with
non-properly understood physics, and in that case the
construction of nomograms based on a too rude modeling
could be dangerous. Under these circumstances one could
proceed by making several experiments from which
defining a sort of experiment-based nomogram. In other
cases, mathematical objects to be manipulated consisted of
a system of complex coupled nonlinear partial differential
equations, whose solution for each possible combination of
the involved parameter values is simply out of reach for
modern computational resources. In these cases, it becomes
necessary to design a set of experiments or expensive
computational solutions for a sampling of possible states of
the system. For these, a simplified model, linking the inputs
to the outputs of interest is elaborated. These simplified
models have different names: surrogate models, meta-
models, response-surface methodologies, etc.

More recently, model order reduction (MOR) opened
new possibilities. MOR based upon techniques such as
Proper Orthogonal Decomposition, Proper Generalized
Decomposition or Reduced Basis is nowadays widely
considered from both fundamental and applicative
viewpoints.

Proper Orthogonal Decomposition (POD, also known as
Principal Component Analysis, PCA) is a general tech-
nique for extracting the most significant characteristics of a
system’s behavior and representing them in a set of “POD
basis vectors” [36, 44]. These basis vectors then provide an
efficient, low-dimensional representation of the system
behavior, which proves useful in a variety of ways. The
most common use is to project governing equations onto
the reduced-order subspace spanned by the POD basis
vectors. This yields an explicit POD reduced model that
can be solved in place of the original system. The POD
basis can also provide a low-dimensional description in
which to perform parametric interpolation, infill missing or
“gappy” data, and perform model adaptation. There exists
an extensive literature on the topic and POD has been
applied broad application across fields [8, 9, 13, 16, 28, 58,
67, 68, 70, 73]. Some review of POD and its applications to
model order reduction can be found in [25, 57, 75].

Another family of model reduction techniques lies in the
use of Reduced Basis constructed by combining a greedy
algorithm and “a posteriori” error indicators. As for the
POD, the Reduced Basis method requires some amount
offline work. Once computed, however, the reduced basis
approach can be used online with the notable advantage of
a rigorous control of the solution accuracy, thanks to the
availability of error bounds. The reduced basis can be
enriched if the attained error is judged too high, by
invoking a greedy adaption strategy [47, 48, 65]. Useful
review works on the subject are [34, 49, 59, 61, 64, 66].

Techniques based on the use of separated representa-
tions are at the heart of the so-called Proper Generalized
Decomposition methods. Such separated representations
are rooted in the very classical method of separation of
variables due to Fourier. More recently, they have been
applied to quantum chemistry for approximating multidi-
mensional quantum wave-functions, e.g. Hartree-Fock and
post-Hartree-Fock methods [17]. In the eighties, Pierre
Ladeveze proposed the use of space-time separated repre-
sentations of transient solutions arising in strongly non-
linear models, defining a non-incremental integration
procedure [37, 38]. Separated representations were then
employed for solving highly multidimensional models.
These suffer the so-called curse of dimensionality [3, 4, 42]
and in the context of stochastic modeling [56]. They soon
were extended for separating space coordinates, thus
making possible the solution of models defined in degen-
erated domains such as plate and shells [14, 15] as well as
for addressing parametric models, where model parameters
were considered as model extra-coordinates. This “extra-
coordinate” assumption made possible an offline calcula-
tion of the parametric solution, that plays the role of a
meta-model or a computational vademecum, to be used
online for real-time simulation, optimization, inverse



analysis and simulation-based control [22]. Some recent
reviews concerning the PGD can be found in [20, 21, 24],
along with the recently published primer [23].

1.1 Proper Generalized Decomposition

Most of the existing model reduction techniques proceed
by projecting the problem solution onto a reduced basis
(this constitutes the wide class of projection-based model
order reduction methods [10]). Therefore, the construction
of the reduced basis usually constitutes the first step in the
solution procedure, giving rise to a second important dis-
tinction when classifying MOR techniques: a posteriori
versus a priori MOR [69]. One must be careful on the
suitability of a particular reduced basis when employed for
representing the solution of a particular problem, particu-
larly if it was obtained through snapshots of slightly dif-
ferent problems. This difficulty (at least partially)
disappears if the reduced basis is constructed at the same
time that the problem is solved (in other words: a priori
with no need for snapshots of different problems). Thus,
each problem has its associated basis in which its solution
is expressed. One could consider few vectors in the basis,
leading to a reduced representation, or all the terms needed
for approximating the solution up to a certain accuracy
level. The Proper Generalized Decomposition (PGD),
which is described in general terms in the next section,
proceeds in this manner.

When calculating the transient solution of a generic
problem, say u(x, f), we usually consider a given basis of
space functions N;(x), i =1,...,N, the so-called shape
functions within the finite element framework. They
approximate the problem solution as

u(x, 1) & Y ai(t)Ni(x).
i=1

This implies a space-time separated representation where
the time-dependent coefficients ¢;(r) are unknown at each
time instant (when proceeding incrementally) and the space
functions N;(x) are given “a priori”, e.g., piece-wise
polynomials. POD and Reduced Basis methodologies
consider a set of global, reduced basis ¢;(x) for approxi-
mating the solution instead of the generic, but local, finite
element functions N;(x). The former are expected to be
more adequate to approximate the problem at hand. Thus, it
results

R

u(x, 1) ~ Zbi(f)d’i(x)a (1)

i=1

where it is expected that R << N. Again, Eq. (1) represents
a space-time separated representation where the time-

dependent coefficient must be calculated at each time
instant during the incremental solution procedure.

Inspired from these results, one could consider the
general space-time separated representation

u(xa t) ~ ZXI(X) : Ti(t)v (2)
i=1

where now neither the time-dependent functions T;(¢) nor
the space functions X;(x) are a priori known. Both will be
computed on the fly when solving the problem.

As soon as one postulates that the solution of a transient
problem can be expressed in the separated form (2), whose
approximation functions X;(x) and 7;(¢) will be determined
during the problem solution, one could make a step forward
and assume that the solution of a multidimensional prob-
lem u(xy,...,x4) could be found in the separated form

N
u(xi, X, o xg) & Y XH) - XF(x) - X (xa),
i=1

and even more, expressing the 3D solution u(x, y, z) as a
finite sum decomposition involving low-dimensional
functions

N

u(x,y,z) ~ ZX,-(x) Yi(y) - Zi(2),

i=1
or

N
M(.X,y,Z) & ZXi(x7y) : Zi(z)'

i~
Equivalently, the solution of a parametric problem
u(x,t,pi,...,p,) could be approximated as

N 2
ue,1,p1s.0po) & Y Xilx)  Tie) - [T PE(po).-
i=1 k=1

The performance of all these separated representations is
excelent in many cases, leading to important time savings.
However, the key point when considering such a separated
representation lies in the algorithm to be used for calcu-
lating the involved functions: T;(¢), X;(x), P;(p). Both
questions will be addressed in this section.

This kind of parametric modeling has been deeply
studied in a panoply of applications, where material and/or
process parameters [1, 2, 5, 14, 35, 39, 60, 74], initial
conditions [29, 31], boundary conditions [26, 27, 30, 55],
different scales [6, 19, 33] and parameters defining the
geometry [7] were considered extra-coordinates within the
PGD framework. All these parametric solutions were suc-
cessfully employed for performing real time simulations
(e.g. surgical simulation involving haptic devices involving
contact, cutting, etc.) [52], material homogenization [39],



real-time process optimization [26, 27], inverse analysis
and simulation-based control [29]. They where also
employed in dynamic data driven application systems.

1.2 Dimensionality Reduction

In the framework just described, model parameters are
explicitly defined. Initial conditions, boundary conditions,
material or process parameters or some geometrical
parameter defining the domain in which the model is
defined can easily be considered as parameters under this
framework. In all the treated cases these parameters were
explicitly given and the only difficulty was to transfer all
them into the extended weak form of the problem before
applying the PGD rationale to construct the parametric
separated representation [22, 23].

The difficulty appears as soon as the model contains
some hidden parameters, that are not explicitly known. In
that case, these parameters must be previously identified
and extracted and then introduced into the model before
computing its parametric solution.

This situation is found in many engineering applica-
tions. In this paper we address two of them. The first
concerns the parametrization of microstructures consisting
of inclusions into a matrix phase (a situation encountered in
the analysis of composite materials, for instance). The
second concerns patient-specific biomechanics modeling
for surgery simulation and planning, in which the solution
must encompass both parametric loading and organ shape
(patient-specific anatomy). In essence, this situation arises
whenever shape itself is a parameter of the model. How to
parametrize the shape of the domain with a minimal
number of degrees of freedom is thus a question of utmost
interest.

In this framework loads are easily parametrized because
their intensity and the region in which they apply can be
easily defined [55]. However, parameters defining the
organ shape (anatomy) are not explicitly available. No
CAD description or similar is available for organs and
consequently an extractor of the parameters defining the
organ shape is compulsory. These questions were addres-
sed in some of our former works [32, 45] in which some
preliminary answers were proposed based on the use of
Locally Linear Embedding (LLE) manifold learning
techniques.

POD, that is equivalent to PCA—Principal Components
Analysis—, can be viewed as an information extractor
from a raw data set that attempts to find a linear subspace
of lower dimensionality than the original space. If the data
has more complicated structures which cannot be well
represented in a linear subspace, standard PCA will not be
very helpful, leading to too many vectors in the base.
Fortunately, kernel PCA allows us to generalize standard

PCA to nonlinear dimensionality reduction [71, 72, 76].
Locally Linear Embedding (LLE) [63] results from a par-
ticular choice of the kernel within the kKPCA framework
[77].

In [45] LLE was considered for performing suitable in-
terpolations on the data manifold available from offline
information. Thus, homogenized properties in heteroge-
neous microstructures were inferred in real-time and with a
minimum amount of calculation. In [32], again within the
LLE framework, parametric solutions related to organ
deformation for parametrized loads were interpolated on
the manifold defined by organ shapes to create patient-
specific surgery tools.

In the present work we move a step forward. More than
extracting a manifold for interpolating on it model solu-
tions (or parametric solutions), we propose to compute
parametric solutions by properly integrating on the mani-
fold defined by all possible domain geometries.

2 From PCA to kPCA
2.1 Principal Component Analysis—PCA—

Let us consider D observed variables defining the vector
y € RP. These are commonly referred to in the MOR lit-
erature as the snapshots of the system: nodal values of the
essential field of the mode throughout time in usual finite
element modeling, or parameter values at these nodal
locations, for instance. We assume that these variables are
therefore not uncorrelated and, notably, that there exists a
linear transformation W defining the vector v € [Rd, where
d <D represents the unknown so-called latent variables,
according to

y = Wo. (3)

The transformation W, D x d, is assumed to verify the
orthogonality condition W/W = I,;, where I, represents
the d x d-identity matrix (WW? is not necessarily Ip). The
existence of such a transformation is precisely at the origin
of PCA methods.

We assume the existence of M different snapshots
Y1, ---,Yu- that can be stored in the columns of the D x M
matrix Y. The associated d x M reduced matrix 1" contains
the associated vectors v;, i = 1,..., M.

We assume that both observed and latent variables are
centered, that is Z?i,yi =0 and Zf‘i] v; = 0. If it is not
the case, prior to proceed, observed variables must be
centered by removing the expectation of E{y} to each
observation y;, i = 1,..., M. Since the exact expectation is
unknown, one commonly accepted procedure is to substi-
tute it by the sample mean.



PCA is able to calculate both d—the necessary number
of members in the basis of the reduced-order subspace—
and the transformation matrix W. PCA proceeds by guar-
anteeing maximal preserved variance and decorrelation in
the latent variable set v. From a statistical point of view,
therefore, it can be assumed that the latent variables in v are
uncorrelated (no linear dependencies among them) or
mutually orthogonal, thus constituting a basis. In practice,
this means that the covariance matrix of v, defined as

C,, =E{TT"}, (4)

for centered y data, is diagonal.

However, the observed variables are expected to be
correlated. The goal of PCA is then to extract the d
uncorrelated latent variables in v, according to

C,, = E{YY"} = E{wYY'W"}
= WE{rY"}W' =wC, W',

that by pre-multiplying and post-multiplying by W’ and W
respectively, and taking into account that W/ W = I, leads
to:

C,=Wwc,w. (5)

The covariance matrix C,, can then be factorized by
applying the singular value decomposition,

C,, = VAV, (6)

with V containing the orthonormal eigenvectors and A the
diagonal matrix containing the eigenvalues (non-negative
real numbers), assumed in descending order.

Substituting the factorized expression of the covariance
matrix (6) into Eq. (5) it results

C,, =WvAvTw.

This equality holds only when the d columns of W are
taken collinear with d columns of V. If the PCA model is
fully respected, then only the first d eigenvalues in A are
strictly larger than zero; the other ones are zero.

The eigenvectors associated with these d nonzero
eigenvalues must be kept:

W = VIp.a,
yielding
Cuv = IdeAIDXd~

This shows that the eigenvalues in A correspond to the
variances of the latent variables (the diagonal entries of
Cm))‘

In real situations, some noise may corrupt the observed
variables. As a consequence, all eigenvalues of C,, are
larger than zero, and the choice of d columns in V becomes

more difficult. Assuming that the latent variables have
larger variances than the noise, it suffices to choose the
eigenvectors associated with the largest eigenvalues. This
is the common practice in finite element model order
reduction procedures. A number of columns of V are kept
so as to preserve a chosen amount of the energy of the
system.

From a geometrical point of view, the columns of V
indicate the directions in R” that span the subspace of the
latent variables v. The name PCA then arises naturally
from the fact of keeping the components—columns—as-
sociated with the largest variance.

PCA constitutes a polyvalent method, developed, dis-
covered and re-discovered many times in different bran-
ches of applied science and engineering [36, 44, 46]. It
determines data dimensionality, builds an embedding
accordingly, and extracts the latent variables. However,
PCA is still based upon one critical assumption: the linear
dependency expressed by Eq. (3) between observed and
latent variables (in other words, between the reduced-
order and full-order models). It has been observed, how-
ever, that very often this is not the case. Frequently, latent
variables posses a manifold structure, and therefore it
simply does not exist a basis able to construct a projection
such as that in Eq. (3). This is the case, for instance, in
non-linear, large strain solid dynamics, where a slow
manifold can be found in which the displacement of the
solid evolves [53].

Nonlinear methods are often more powerful than linear
ones, because the connection between the latent variables
and the observed ones may be much richer than a simple
matrix multiplication.

Next section extends linear PCA to nonlinear dimen-
sionality reduction, and describes the so-called kernel
Principal Component Analysis—kPCA.

2.2 Kernel Principal Component Analysis (kPCA)

PCA works with the sample covariance matrix, YY T On
the contrary, kPCA works with the matrix of pairwise
scalar products that defines the Gram matrix § = Y7Y as it
is also the case of Multidimensional Scaling (MDS)
methods, also known as method of snapshots [43].
Multidimensional scaling methods construct a configu-
ration of points in a target metric space from information
about point distances. Among the most basic non-linear
dimensionality reduction method classification (that of
distance- or neighbourhood-preserving methods), MDS
falls within the first. In its classical version, MDS preserves
pairwise scalar products instead of pairwise distances (both
are closely related). Moreover, classical metric MDS



Fig. 1 Different positions of inclusions w; (top) and @, (bottom)
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Fig. 2 Reduced data embedded in a 3D (left) and 2D (right) spaces

cannot achieve dimensionality reduction in a nonlinear
way. MDS proceeds from

S=Y'y=r"w'wr =771,
whose eigenvalue decomposition results

S — UAUT — (UAI/Z) (AI/ZUT) _ (A1/2UT>T(A1/2UT)’

from which it results
Y = LyuA"?U",

being easy to prove the equivalence between MDS and
PCA [43].
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The idea behind kernel-PCA methods is simple, yet
appealing: data not linearly separable in D dimensions,
could be linearly separated if previously projected to a
space in Q > D dimensions. Thus, surprisingly, kPCA
begins by projecting the data to an even higher dimensional
space. In other words, it proceeds by linearizing the
underlying manifold M. To this end, a mapping

¢: MCRP - RC y—z=4¢(y),

is employed, where Q may be any dimension. One the
biggest advantages of this is that there is no need to
explicitly determine the analytical expression of the map-
ping ¢ (it may be even infinite dimensional!).



Fig. 3 Thermal problem

The symmetric matrix @ = Z”Z has to be decomposed
in eigenvalues and eigenvectors. However, the mapped
data z; involved in @ must be previously centered. It is
difficult to center it because the mapping is unknown.
Fortunately, centering can be achieved in an implicit way
by performing the double centering.

The mean of the j-th column of @ reads ;(z; - z;), and
the mean of its i-th row reads f(z; - z;). The mean of all
entries of @ reads y, ;(z; - z;). The double centering results
from

zi 25— (@i - 2) — (2 ) + iz 7).

Now, the eigenvalue-eigenvector decomposition can be
performed on the double centered matrix, according to

& =UAU",
from which it results
Y =I,uA"?U".

It is worth noting that the mapping ¢ is used solely in
scalar products. This may result in a prohibitive compu-
tational cost if the mapping is performed onto a space of a
high number of dimensions, Q. However, it is possible to
simply avoid this difficulty and even ¢ may stay unknown
if a kernel function « is found that directly gives the value
of the scalar product k(y;, yj) = z;-zj. This property fol-
lows from Mercer’s theorem that establishes that if x(u,v)
is continuous, symmetric and positive definite, then it
defines an inner-product in the mapped space.

There exist many different kernels fulfilling Mercer’s
condition, also known as the “kernel trick”. Among them:

— Polynomial kernels: x(u,v) = (u-v+ 1), with p an
arbitrary integer;

2
— Gaussian kernels: x(u,v) = exp(— %) for a real o;
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Fig. 4 One-dimensional manifold related to the square inclusion
moving along the domain diagonal

N(s)

Fig. 5 One-dimensional manifold parametrization

— Sigmoid kernels: x(u,v) = tanh(u - v + b) for a real b.

The choice of a specific kernel is quite arbitrary and mainly
motivated by the hope that the induced mapping ¢ lin-
earizes the manifold to be embedded. If this goal is
reached, then PCA applied to the mapped data set should
efficiently reveal the nonlinear principal components of the
data set.

Remark Other methods proceed by reducing the dimen-
sionality by preserving the topology of data rather than
their pairwise distances. Topology preservation seems an
appealing route for dimensionality reduction, however,
they are in principle more difficult to implement. There
exist two variants, the ones that proceed on a predefined
topology and the more recent in which the topology is also
extracted from the data [43]. Locally Linear Embedding
(LLE) is a member of the vast family of techniques. In
opposition to most of techniques preserving topology by
keeping neighboring points close to each other, LLE is
based on conformal mappings. A conformal mapping that
represents a transformation that preserves local angles. The
preservation of local angles and local distances can be



interpreted as two different ways to preserve local scalar
products. This dimensionality reduction technique suc-
ceeded for defining robust interpolations and has been
employed in some of the author’s previous works [32, 45,
63].

2.3 kPCA Dimensionality Reduction
from A Numerical Example

To show how kPCA works, consider an idealized com-
posite microstructure. It is defined in a squared domain Q
composed of D = 40 x 40 cells that contains an inclusion.
We allow this inclusion to move along one of the diagonals
of Q. First we consider a squared inclusion w; C €, cov-
ering 5 x 5 cells of Q. Then, we consider a similar scenario
but now consisting in a 10 x 5-cell rectangular inclusion
w, C Q. Both cases are depicted in Fig. 1.

For each microstructure defined by a particular position
of the inclusions w* and ¥, k = 1,...,M = 15, within Q,
we define the phase field p(i, j) associated to each cell
C(i,j) C Q:

. 1 if C(i,j) C v,

i ={y e

0 if C(i,j) C Q- w.
The phase field of each microstructure can be expressed as
a vector with binary entries, p € R”. Each constitutes a

column of matrix P. A Gaussian kernel with ¢ = 10 is
employed for dimensionality reduction. One of the

te.gse-o1
Z0.6
0.3

0.00e+00

Z“\

E2.49e+00
-15

Eo

E-1 5
-2.82e+00

é“‘:

drawbacks of non-linear dimensional reduction is the need
for user-defined parameters. Typically, these include the
number of dimensions of the embedding space. The cor-
responding images = related to data in P in a three- and
two-dimensional embedding spaces are depicted in Fig. 2.
It can be noticed that, as expected, data belong to a man-
ifold of dimension one (more complex situations will be
addressed later), and moreover that kPCA succeeded to
separate both kind of microstructures, the ones composed
of a square inclusion from the ones related to the rectan-
gular inclusion.

3 Combining kKPCA Dimensionality Reduction
and PGD-Based Parametric Solutions

We consider in this example a problem with a parametric
dependence. The difficulty comes from the fact that this
parametric dependence is not explicit. We do not know
even what the parameters are. This type of problems arises
naturally in the characterization and ulterior numerical
simulation of composite materials, for instance.

We consider the thermal problem illustrated in Fig. 3
that involves the temperature field wu(x), with

x € Q=[0,1]%, for any position of the inclusion » C Q
along the domain diagonal and for any conductivity con-

trast o0 = kk— (inclusion to matrix conductivity ratio), with

o €L = [omin = 1, 0may = 10].  The steady-state heat
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Fig. 6 Space modes: Ty (x) (top-left); T>(x) (top-right); T5(x) (bottom-leff) and Ty(x) (bottom-right)
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Fig. 7 Modes related to the curvilinear coordinate s: Sy (s) (top-left); Sz(s) (top-right); S3(s) (bottom-left) and S4(s) (bottom-right)

transfer problem, with both conductivities (of matrix and
inclusion phases) assumed homogeneous and isotropic,
reads

V- (k(x)Vu(x)) = Q(x), inQ,

subjected to the prescribed homogeneous boundary con-
ditions, u(x € 0Q) = 0. The source term Q(x) has a unit
value inside the inclusion and vanishes elsewhere.

Since we are interested in calculating the parametric
solution for any position of the inclusion (along the domain
diagonal) and for any conductivity contrast « € Z, the first
step consists in introducing both parameters explicitly into
the problem model.

For that purpose, we consider the one-dimensional
manifold associated to the inclusion location depicted in
Fig. 4, that can be parametrized as depicted in Fig. 5. Each
point in the manifold is related to one of the M = 15
considered snapshots (positions of @ on the domain diag-
onal). The manifold is defined by the polygonal joining the
different snapshots, even if smoother reconstructions can

be defined by using splines, for instance. The manifold is
parametrized by the curvilinear coordinate s and each
vertex is defined by a coordinate s; and the associated
phase field p,.

When considering a particular position s, the phase field
can be approximated using the simplest interpolation
schema, the piece-wise linear interpolation defined from

() = N, (7)
i=1

that for 2<i<M — 1,

§—8i-1

— $5i1Ss<s;

Si — Si—1
Ni(s) = 4 ‘i1 — s ’

i+1
——— 5i<s<sip
Si+1 — Si
S5 —S
where Nl(Sl SSSSQ) —ﬁ and NM(SM—I SSSSM)
— S—Sm—1 ’ ’
SM—Sm-1"

It is important to notice that Eq. (7) constitutes a sepa-
rated representation with functions N;(s) depending on the
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Fig. 8 Modes related to the conductivity contrast a: A; (o) (top-left); Ax(a) (top-right); Asz(o) (bottom-left) and A4(o) (bottom-right)

coordinate describing the one-dimensional manifold. In
turn, phase fields p; are vectors collecting nodal values of
p(x) for each considered snapshot. Thus, in a more com-
pact form, it can be written as

p(x,s) = > Fi(x) - Gi(s).
i=1

Within this rationale, the conductivity parametrization
results

k(x) = ky + k(o0 — D)p(x, 5)

M

= ki + k(2= 1) > Fi(x) - Gi(s).

i=1

The parametric temperature field can now be written in the
separated form

N
u(x, o s) ~ Y Tilx) - Sis) - Ay(w). (8)
i=1

In order to construct such a separated representation, we
consider the triply-weak form

/Q/I/M ' (x, 0, 5) - V( (ki + ki (00 = 1)

f:Fi(x) - Gi(s))Vu(x,a,s)) dx do ds =0,

and proceed by calculating iteratively each functional
product involved in the separated representation (8). At
each iteration a nonlinear problem must be solved, and for
that purpose an alternated direction fixed point algorithm is
considered. For the implementation details the interested
reader can refer to [23] and the numerous references
therein.

Figures 6, 7, 8 depict the four more significative modes
involved in the separated representation (),
Tix), i=1,---,4, Si(s), i=1,---,4 and A;(a), i =
1,---,4 respectively.

Figure 9 depicts the points at which the solution will be
particularized, in the left column the manifold is embedded
in a 2D dimensional space whereas in the right column
these points appears on the one-dimensional manifold now
embedded in a 3D space.
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Fig. 9 Points in the 1D manifold embedded in a 2D (leff) and 3D
(right) spaces

Finally Figs. 10 and 11 depict respectively the solution
at the five positions for & = 5.5 (Fig. 10) and the solution at
the central point for « = 1, « = 5.5 and o = 10 (Fig. 11).

4 Patient-Specific Computational Liver
Vedemecums

Among the problems in which shape plays a prominent
role, those in the field of biomechanics have utmost
importance. What we mean by shape in biomechanics is

actually anatomy. The problem could thus be formulated in
loose terms as: what makes a liver to be a liver (in terms of
shape, of course) and therefore be easily recognized by a
surgeon? What is the minimal number of parameters that
must be employed to properly characterize and identify a
human liver? Characterizing the mechanical response of
such a parametric liver would make it possible to have the
definitive patient-specific model for surgery simulation
and/or planning.

One of the most successful approaches to this type of
problems within the framework of reduced-order models is
that of free-form models [11, 41, 51]. Particularly note-
worthy for biomechanics applications is its application to
hemodynamics [40, 50, 62]. Essentially, free-form defor-
mations consider the embedding of the model within a
cube. By deforming this cube, and assuming an affine
deformation of the solid within the cube, a parametrization
of the shape of the model is obtained in terms of the nodal
discretization of the embedding cube.

4.1 Parametrizing Shapes

Computational vademecums can be used for very different
purposes. Real-time simulation for surgery planning and
training, for instance, is one of these possible applications
[52]. These vademecums represent the response, in the
form of a displacement field u = u(x,s) as a function of the
physical point considered, x, and the location s of the load
provoked by the surgical instrument. In a previous work,
the authors employed Locally Linear Embedding tech-
niques to properly interpolate these computational vade-
mecums obtained for different anatomies [32]. Thus, a new
patient anatomy was firstly interpolated on the manifold of
vademecums to obtain his/her own vademecum.

Here, this approach has been generalized so as to obtain
a completely general vademecum in which shape is a
parameter itself. Indeed, shape is parameterized by a
minimal number of degrees of freedom dictated by the
application of kPCA techniques to a set of 75 livers. These
organs were obtained by affinely deforming a reference
anatomy. More details can be found in [32]. The set of 75
livers is shown in Fig. 12.

Every liver model is then embedded within a mesh
composed by 43 x 31 x 37 elements, thus making 49321
nodes. A level set (distance) field is then computed and
nodal values stored for each sample in a set of vectors
Y ={y,.- ¥} ¥ € R¥?! see Fig. 13.

These high-dimensional vectors y; serve as a precise
identification of every anatomy in the sample. However,
49321 values do not constitute an appropriate
parametrization of liver geometry, for obvious reasons.
These 75 high-dimensional vectors are analyzed by
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Fig. 10 Reconstructed solution at the five points depicted in Fig. 9 for « = 5.5

employing kPCA methods, by employing Gaussian ker-
nels, taking ¢ = 95 x 10°. Tests done with up to 500 dif-
ferent livers showed that the embedding manifold is
actually flat, see Fig. 14. Surprisingly, all the 500 cases lie
very accurately in a square domain.

This implies that it is possible to work on a flat space of
shapes, parameterized by the embedding coordinates
v; € R?, (whatever they mean physically), and that the
considered anatomies lie actually within a square. It is
therefore possible to mesh the shape space by employing
Delaunay triangulations over the set of embedded vectors.
Back to the set of 75 livers, the resulting triangulation of
the convex hull of shapes is shown in Fig. 15.

Once the shape space has been properly identified and
parameterized, it is possible to establish the weak form of
the problem. What we call a vademecum [22] is actually a
parametric solution for the problem at hand, that is com-
puted off-line once for life, and is then evaluated fast once
needed. Therefore, our parametric solution for this prob-
lem, or shape vademecum, would be u = u(x,s,v), thus
representing the displacement field of a liver, for any load
position on its surface s and for any geometry (anatomy)

v = (v1,v2) € X = conv(v;). Here, conv(-) stands for the
convex hull of the set of points.

4.2 Developing the Vademecum

To develop the sought weak for of the parametric problem,
we start by the (static, for simplicity) equilibrium equa-
tions, namely,

V.e+b=0 in Q 9)

where b represents the volumetric force applied to the
body. The domain is subjected to the following boundary
conditions

u=u on I,

on=t on I,

I' C I, represents the portion of the boundary of the organ
where the load can be applied (region accesible to the
surgeon). After multiplying both sides of Eq. (9) by an
admissible variation of the displacement, u*, and inte-
grating over the domain €, the standard weak form of the
problem is obtained. However, in this case we face a
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parametric problem. In this case, the (triply-)weak form
will consist in finding the displacement u € H'(Q) x
LX) x L*(%) such that for all w* € Hy(Q) x L*(I') x
L2(X) [54]:

/Z/F/Q(VS“*>T""Q”’F:/Z/F/Fﬂ(u*)Ttdrdr, (10)

where Vu represents the symmetric part of the gradient of
displacements, I' = I', U I'; represents the boundary of the
solid, divided into essential and natural regions, and where
I's=1T, UTI}y, ie., regions of homogeneous and non-ho-
mogeneous, respectively, natural boundary conditions.
The load ¢ acts on a moving position s. It is therefore
expressed as t(x,s) =td(x —s), where O represents the
Dirac-delta function.This Dirac-delta term should be reg-
ularized for computation purposes and approximated by:

Gy f(x0g)(s),

i=1
by performing a singular value decomposition of the load,
for instance, and truncating the number of terms m ac-
cording to some error tolerance.

As mentioned before, PGD proceeds in an iterative way,
constructing an approximation to the solution composed by
a finite sum of separable functions. Let us assume that, at
iteration n of this algorithm, convergence has been
attained, giving

Wes.o) = S FHE) - GHs) - HE).
k=1

where the term u; refers to the j-th component of the dis-
placement vector, j = 1,2,3 and functions F*, G* and H*
represent the separated functions used to approximate the
unknown field, obtained in previous iterations of the PGD
algorithm.

The algorithm now proceeds by looking for an
improvement of this approximation in a subsequent itera-
tion. The (n+ 1)-th term will therefore incorporate an
unknown functional product:

uj’.‘“(x,s, v) = u} (x,5,0) + R;(x) - Sj(s) - T;(v), (11)

where R(x), S(s) and T(v) are the sought functions that
improve the approximation.

The admissible variation of the displacement is obtained
after straightforward application of the rules of variational
calculus,

uj (x,5,0) = R (x) - S;(s) - Tj(v) + R;(x) - S (s) - Tj(v)
+R;(x) - S;(5) - T (v)-
(12)

At this point several options are at hand so as to determine
the new triplet of functions R , S and 7. The most fre-
quently used, due to both its easy of implementation and
good convergence properties, in general, is a fixed-point
algorithm in which functions R, S and T are sought itera-
tively. For details on this algorithm, we refer the interested
reader to any of our previous works in the field [54, 55].
Once Egs. (11) and (12) have been substituted into the
weak form of the problem (10), the matrix form of the
problem is obtained. At this point it is worth noting that
several approaches have been investigated in the literature
to linearize the problem if, as is it very often the case, it
presents non-linear constitutive equations. For instance,
explicit linearizations are possible [54], as well as the
employ of Taylor expansions [55] to avoid the computation
of the full-order tangent stiffness problem. The application
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Fig. 12 A group view of the 75 different liver geometries considered for this example

Fig. 13 Distance field computed for one particular instance of the 75
different livers in the sample

of well-stablished techniques such as the Empirical Inter-
polation method [12, 18] is also another possibility. Its
application within the framework of PGD methods is
deeply analyzed in [23].

Finally, as technical detail, it is worthy of mention that
integration on the shape space X = conv(v;) is done by

o
o 3 -

3" embedding coordinate, I
S
[6;]

'
-

-1
05
%10 ,
x10°

0.5
1

-5
18t embedding coordinate, & ond embedding coordinate, ¢,

Fig. 14 Embedding of 500 different livers by kPCA techniques. Note
the squared, flat, geometry of the resulting embedding, showing that
there are two relevant parameters in the set

employing the underlying Delaunay triangles shown in
Fig. 15.

4.3 Results

To test the just presented technique, we have taken one of
the livers as a reference anatomy and have calculated its
own vademecum u.s = u(x,s) following standard PGD
methods [54]. Hence, no shape dependence is considered.



This liver has then be eliminated from the set and the above
procedure has been applied with the remaining 74 livers.
We therefore check the accuracy of the just presented
technique in providing an accurate approximation to this
reference vademecum.

We have also calculated the distance field (in the form
of a high-dimensional vector y,) for the reference anat-
omy. When the kPCA algorithm is applied to y . vector so
as to give v,s coordinates in the embedded space, this point
appears as the blue diamond in Fig. 16. On the other hand,
given the nodal connectivity of the triangle to which y,
pertains, one could employ standard finite element shape
function so as to interpolate y,.; from its three neighbors.
The resulting geometry is shown as a red square in the
same Fig. 16, showing the accuracy of the kPCA projection
onto the embedding space.
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Fig. 15 Delaunay triangulation of the set of 75 livers in the
embedding space
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But the true interest of this method is to obtain, once
particularized, a vademecum for the reference geometry of
the form u = u(x,s,v.r) and to compare it with u,.¢(x,s).
Both are defined over slightly different domains. In fact, if
we compare the distance field generated by both anatomies
(the reference one and the interpolated one), the obtained
error on L?>-norm is 5.77 %. The error in the predicted
displacement field, measured as

llu(x, 80, Orer) — Urer(x,50)]| 12,

for a particular load position sy, was 8.539 %, which is
judged enough for this type of applications where the
dispersion in mechanical properties of living tissues, for
instance, is much more than that. Load positions different
to so give of course different errors, but of the same order
of magnitude.

Figure 17 shows the difference in geometry between the
reference geometry and the one computed by the vade-
mecum. As can be noticed, both agree to a reasonable
degree of accuracy, not easily distinguishable by the human
eye. In Fig. 18 a comparison is made between deformed
configurations for one particular load position sy. Again,
the accuracy of the approximation is noteworthy.

If compared to our previous approach to the problem,
based upon an interpolation of standard vademecums
u(x,s) for different geometries, employing weights given
by LLE embedding of the high-dimensional vectors z;, the
obtained accuracy is of the same order, cf. [32]. The error
in the predicted geometry is very similar (about 5 % in L*-
norm), while the error in the predicted displacement field is
somewhat less in the present work.

We must also highlight the fact that we have worked
with only 75 livers. The algorithm is prepared so as to be
fed by a continuous stream of data coming from new
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Fig. 16 Approximation of one particular liver anatomy. Left position of the reference liver in the embedding space. Right detail of the error

versus the interpolated anatomy (blue diamond)



Fig. 17 Difference in geometry between the interpolated and the
reference livers. The reference liver is represented in wireframe,
while the approximated one is represented in solid
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Fig. 18 Difference in the predicted displacement for a particular load
position between the interpolated and the reference livers

patients that will very much improve the result by refining
the sampling of the shape space.

5 Conclusions

In this work we proved the ability of KPCA to extract the
relevant parameters associated to microstructures or
shapes. As soon as nonlinear dimensionality reduction
applies, a parametric solution using the just extracted
parameters can be envisaged within the PGD framework.
This PGD approximation is constructed on top of the just
found relevant features of the geometric description of the
domain. Thus, by combining nonlinear dimensionality
reduction and Proper Generalized Decomposition powerful

parametric solutions can be constructed, including param-
eters with full physical meaning and others that where
extracted in a transparent way for the user.

The two numerical examples described and discussed
prove the extremely high potential of the approaches here
proposed. The resulting methods is a sort of mixed a priori/
a posteriori, linear/non-linear model order reduction
method. Indeed, while the parametric space is identified a
posteriori and non-linearly, the PGD part of the proposed
algorithm construct a priori (and linearly) the high-di-
mensional approach to the parametric solution.

This mixed approach shows great promise in a wide
variety of problems. Particularly, those in which shape, in
its broadest sense, is one of the parameters of the solution.

Acknowledgments This work has been supported by the Spanish
Ministry of Economy and Competitiveness through Grant number
CICYT DPI2014-51844-C2-1-R and by the Regional Government of
Aragon and the European Social Fund, research group T88. Professor
Chinesta is also supported by the Institut Universitaire de France.

References

1. Aghighi MS, Ammar A, Metivier C, Chinesta F (2015) Para-
metric solution of the Rayleigh-Bénard convection model by
using the pgd: application to nanofluids. Int J Numer Methods
Heat Fluid Flows 25(6):1252-1281

2. Aguado JV, Huerta A, Chinesta F, Cueto E (2015) Real-time
monitoring of thermal processes by reduced order modelling. Int
J Numer Meth Eng 102(5):991-1017

3. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new
family of solvers for some classes of multidimensional partial
differential equations encountered in kinetic theory modeling of
complex fluids. J Non Newton Fluid Mech 139:153-176

4. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new
family of solvers for some classes of multidimensional partial
differential equations encountered in kinetic theory modeling of
complex fluids. part ii. J Non Newton Fluid Mech 144:98-121

5. Ammar A, Normandin M, Chinesta F (2010) Solving parametric
complex fluids models in rheometric flows. J Non Newton Fluid
Mech 165:1588-1601

6. Ammar A, Chinesta F, Cueto E, Doblaré M (2012) Proper gen-
eralized decomposition of time-multiscale models. Int J] Numer
Meth Eng 90(5):569-596

7. Ammar A, Huerta A, Chinesta F, Cueto E, Leygue A (2014) Para-
metric solutions involving geometry: a step towards efficient shape
optimization. Comput Methods Appl Mech Eng 268:178-193

8. Amsallem D, Cortial J, Farhat C (2010) Towards real-time cfd-
based aeroelastic computations using a database of reduced-order
information. AIAA J 48:2029-2037

9. Amsallem D, Farhat C (2008) An interpolation method for
adapting reduced-order models and application to aeroelasticity.
ATAA J 46:1803-1813

10. Athanasios C, Sorensen ADC, Gugercin S (2001) A survey of
model reduction methods for large-scale systems. Contemp Math
280:193-220

11. Ballarin F, Manzoni A, Rozza G, Salsa S (2014) Shape opti-
mization by free-form deformation: existence results and
numerical solution for stokes flows. J Sci Comput 60(3):537-563

12. Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘em-
pirical interpolation’ method: application to efficient reduced-



13.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

basis discretization of partial differential equations. CR Math
339(9):667-672

Bialecki RA, Kassab AJ, Fic A (2005) Proper orthogonal
decomposition and modal analysis for acceleration of transient
fem thermal analysis. Int J] Numer Meth Engrg 62:774-797

. Bognet B, Bordeu F, Chinesta F, Leygue A, Poitou A (2012)

Advanced simulation of models defined in plate geometries: 3d
solutions with 2d computational complexity. Comput Methods
Appl Mech Eng 201-204:1-12

. Bognet B, Leygue A, Chinesta F (2014) Separated representa-

tions of 3d elastic solutions in shell geometries. Adv Modell
Simul Eng Sci 1(1):1-34

Bui-Thanh T, Willcox K, Ghattas O, Van Bloemen Waanders B
(2007) Goal-oriented, model-constrained optimization for
reduction of large-scale systems. J Comput Phys 224(2):880-896
Cances E, Defranceschi M, Kutzelnigg W, Le Bris C, Maday Y
(2003) Computational quantum chemistry: a primer. In: Hand-
book of numerical analysis, vol X, pp 3-270

Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction
via discrete empirical interpolation. SIAM J Sci Comput
32:2737-2764

Chinesta F, Ammar A, Cueto E (2010) Proper generalized
decomposition of multiscale models. Int J Numer Meth Eng
83(8-9):1114-1132

Chinesta F, Ammar A, Cueto E (2010) Recent advances in the
use of the proper generalized decomposition for solving multi-
dimensional models. Arch Comput Methods Eng 17(4):327-350
Chinesta F, Ammar A, Leygue A, Keunings R (2011) An over-
view of the proper generalized decomposition with applications
in computational rheology. J Non Newton Fluid Mech
166(11):578-592

Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez
D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computa-
tional vademecum for efficient design, optimization and control.
Arch Comput Methods Eng 20(1):31-59

Chinesta F, Keunings R, Leygue A (2014) The proper generalized
decomposition for advanced numerical simulations. Springer,
Switzerland

Chinesta F, Ladeveze P, Cueto E (2011) A short review on model
order reduction based on proper generalized decomposition. Arch
Comput Methods Eng 18:395-404

Dowell E, Hall K (2001) Modeling of fluid-structure interaction.
Annu Rev Fluid Mech 33:445-490

Ghnatios C, Chinesta F, Cueto E, Leygue A, Poitou A, Breitkopf
P, Villon P (2011) Methodological approach to efficient modeling
and optimization of thermal processes taking place in a die:
Application to pultrusion. Compos A Appl Sci Manuf
42(9):1169-1178

Ghnatios C, Masson F, Huerta A, Leygue A, Cueto E, Chinesta F
(2012) Proper generalized decomposition based dynamic data-
driven control of thermal processes. Comput Methods Appl Mech
Eng 213-216:29-41

Girault M, Videcoq E, Petit D (2010) Estimation of time-varying
heat sources through inversion of a low order model built with the
modal identification method from in-situ temperature measure-
ments. Int J] Heat Mass Transf 53:206-219

Gonzalez D, Masson F, Poulhaon F, Cueto E, Chinesta F (2012)
Proper generalized decomposition based dynamic data driven
inverse identification. Math Comput Simul 82:1677-1695
Gonzalez D, Alfaro 1, Quesada C, Cueto E, Chinesta F (2015)
Computational vademecums for the real-time simulation of
haptic collision between nonlinear solids. Comput Methods Appl
Mech Eng 283:210-223

Gonzalez D, Cueto E, Chinesta F (2014) Real-time direct inte-
gration of reduced solid dynamics equations. Int J Numer
Methods Eng 99(9):633-653

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Gonzalez D, Cueto E, Chinesta F (2015) Computational patient
avatars for surgery planning. Ann Biomed Eng 44(1):35-45

El Halabi F, Gonzédlez D, Chico A, Doblaré M (2013) FE2
multiscale in linear elasticity based on parametrized microscale
models using proper generalized decomposition. Comput Meth-
ods Appl Mech Eng 257:183-202

Hesthaven J, Rozza G, Stamm B (2015) Certified reduced basis
methods for parametrized partial differential equations. Springer,
New York

Heyberger C, Boucard P-A, Neron D (2013) A rational strategy
for the resolution of parametrized problems in the PGD frame-
work. Comput Methods Appl Mech Eng 259:40-49

Karhunen K (1946) Uber lineare methoden in der wahrschein-
lichkeitsrechnung. Ann Acad Sci Fennicae Ser Al Math Phys
37:1-79

Ladeveze P (1985) On a family of algorithms for structural
mechanics (in french). Comptes Rendus Académie Des Sci Paris
300(2):41-44

Ladeveze P (1989) The large time increment method for the
analyze of structures with nonlinear constitutive relation descri-
bed by internal variables. Comptes Rendus Académie Des Sci
Paris 309:1095-1099

Lamari H, Ammar A, Cartraud P, Legrain G, Jacquemin F,
Chinesta F (2010) Routes for efficient computational homoge-
nization of non-linear materials using the proper generalized
decomposition. Arch Comput Methods Eng 17(4):373-391
Lassila T, Manzoni A, Quarteroni A, Rozza G (2013) A reduced
computational and geometrical framework for inverse problems in
hemodynamics. Int J Numer Methods Biomed Eng 29(7):741-776
Lassila T, Rozza G (2010) Parametric free-form shape design
with pde models and reduced basis method. Comput Methods
Appl Mech Eng 199(23):1583-1592

Laughlin RB, Pines D (2000) The theory of everything. Proc Nat
Acad Sci 97(1):28-31

Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction.
Springer, New York

Loeve MM (1963) Probability theory. The university series in
higher mathematics, 3rd edn. Van Nostrand, Princeton, NJ
Lopez E, Gonzalez D, Aguado JV, Abisset-Chavanne E, Lebel F,
Upadhyay R, Cueto E, Binetruy C, Chinesta F (2016) A manifold
learning approach for integrated computational materials engi-
neering (in press)

Lorenz EN (1956) Empirical orthogonal functions and statistical
weather prediction. MIT, Departement of Meteorology, Scientific
Report Number 1, Statistical Forecasting Project

Maday Y, Patera AT, Turinici G (2002) A priori convergence theory
for reduced-basis approximations of single-parametric elliptic
partial differential equations. J Sci Comput 17(1-4):437-446
Maday Y, Ronquist EM (2004) The reduced basis element
method: application to a thermal fin problem. SIAM J Sci
Comput 26(1):240-258

Manzoni A, Quarteroni A, Rozza G (2012) Computational
reduction for parametrized pdes: strategies and applications.
Milan J Math 80:283-309

Manzoni A, Quarteroni A, Rozza G (2012) Model reduction
techniques for fast blood flow simulation in parametrized
geometries. Int J] Numer Methods Biomed Eng 28(6-7):604—625
Manzoni A, Quarteroni A, Rozza G (2012) Shape optimization
for viscous flows by reduced basis methods and free-form
deformation. Int J Numer Meth Fluids 70(5):646-670

Mena A, Bel D, Alfaro I, Gonzalez D, Cueto E, Chinesta F (2015)
Towards a pancreatic surgery simulator based on model order
reduction. Adv Model Simul Eng Sci 2(1):31

Millan D, Arroyo M (2013) Nonlinear manifold learning for
model reduction in finite elastodynamics. Comput Methods Appl
Mech Eng 261-262:118-131



54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Niroomandi S, Gonzalez D, Alfaro I, Bordeu F, Leygue A, Cueto
E, Chinesta F (2013) Real-time simulation of biological soft
tissues: a PGD approach. Int J Numer Methods Biomed Eng
29(5):586-600

Niroomandi S, Gonzalez D, Alfaro I, Cueto E, Chinesta F (2013)
Model order reduction in hyperelasticity: a proper generalized
decomposition approach. Int J Numer Meth Eng 96(3):129-149
Nouy A (2007) A generalized spectral decomposition technique
to solve a class of linear stochastic partial differential equations.
Comput Methods Appl Mech Eng 196:4521-4537

Willcox K, Benner P, Gugercin S (2016) A survey of projection-
based model reduction methods for parametric dynamical sys-
tems. SIAM Rev 57(4):483-531

Park HM, Cho DH (1996) The use of the Karhunen-Loeve
decomposition for the modeling of distributed parameter systems.
Chem Eng Sci 51(1):81-98

Patera AT, Rozza G (2007) Reduced basis approximation and a
posteriori error estimation for parametrized partial differential
equations. Technical report, MIT Pappalardo Monographs in
Mechanical Engineering

Pruliere E, Chinesta F, Ammar A (2010) On the deterministic
solution of multidimensional parametric models using the proper
generalized decomposition. Math Comput Simul 81(4):791-810
Quarteroni A, Rozza G, Manzoni A (2011) Certified reduced
basis approximation for parametrized pde and applications.
J Math Ind 1(1):1-49

Quarteroni A, Rozza G (2003) Optimal control and shape opti-
mization of aorto-coronaric bypass anastomoses. Math Models
Methods Appl Sci 13(12):1801-1823

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction
by locally linear embedding. Science 290(5500):2323-2326
Rozza G (2014) Fundamentals of reduced basis method for
problems governed by parametrized pdes and applications. In:
Ladeveze P, Chinesta F (eds) CISM lectures notes “Separated
Representation and PGD based model reduction: fundamentals
and applications”. Springer, New York

Ronquist EM, Maday Y (2002) A reduced-basis element method.
C R Acad Sci Paris Ser I 335:195-200

Rozza G, Huynh DBP, Patera AT (2008) Reduced basis
approximation and a posteriori error estimation for affinely

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

parametrized elliptic coercive partial differential equations -
application to transport and continuum mechanics. Arch Comput
Methods Eng 15(3):229-275

Ryckelynck D (2003) A priori model reduction method for the
optimization of complex problems. In: Workshop on optimal
design of materials and structures, ecole polytechnique, Palai-
seau, Paris (France)

Ryckelynck D (2005) A priori hyperreduction method: an adap-
tive approach. J Comput Phys 202(1):346-366

Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a
priori model reduction: overview and recent developments. Arch
Comput Methods Eng 12(1):91-128

Ryckelynck D, Hermanns L, Chinesta F, Alarcon E (2005) An
efficient ‘a priori’ model reduction for boundary element models.
Eng Anal Bound Elem 29(8):796-801

Scholkopf B, Smola A, Muller KR (1999) Kernel principal
component analysis. In: Advances in kernel methods—suport
vector learning. MIT Press, New York, pp 327-352

Scholkopf B, Smola A, Miiller K-R (1998) Nonlinear component
analysis as a kernel eigenvalue problem. Neural Comput
10(5):1299-1319

Videcoq E, Quemener O, Lazard M, Neveu A (2008) Heat source
identification and on-line temperature control by a branch
eigenmodes reduced model. Int J Heat Mass Transf
51:4743-4752

Vitse M, Neron D, Boucard P-A (2014) Virtual charts of solu-
tions for parametrized nonlinear equations. Comput Mech
54(6):1529-1539

Volkwein S (2001) Model reduction using proper orthogonal
decomposition. Technical report, lecture notes. Institute of
Mathematics and Scientific Computing, University of Graz
Wang Q (2012) Kernel principal component analysis and its
applications in face recognition and active shape models. ArXiv
preprint arXiv:1207.3538

Zimmer VA, Lekadir K, Hoogendoorn C, Frangi AF, Piella G
(2015) A framework for optimal kernel-based manifold embed-
ding of medical image data. Comput Med Imaging Graph
41:93-107 Machine Learning in Medical Imaging


http://arxiv.org/abs/1207.3538

	kPCA-Based Parametric Solutions Within the PGD Framework
	Abstract
	Introduction to Parametric Modeling
	Proper Generalized Decomposition
	Dimensionality Reduction

	From PCA to kPCA
	Principal Component Analysis---PCA---
	Kernel Principal Component Analysis (kPCA)
	kPCA Dimensionality Reduction from A Numerical Example

	Combining kPCA Dimensionality Reduction and PGD-Based Parametric Solutions
	Patient-Specific Computational Liver Vedemecums
	Parametrizing Shapes
	Developing the Vademecum
	Results

	Conclusions
	Acknowledgments
	References




