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Abstract  44 

 45 

Humans and animals maintain accurate sound discrimination in the presence of loud sources 46 

of background noise. It is commonly assumed that this ability relies on the robustness of 47 

auditory cortex responses. However, only a few attempts have been made to characterize 48 

neural discrimination of communication sounds masked by noise at each stage of the auditory 49 

system and to quantify the noise effects on the neuronal discrimination in terms of alterations 50 

in amplitude modulations. Here, we measured neural discrimination between communication 51 

sounds masked by a vocalization-shaped stationary noise from multiunit responses recorded 52 

in the cochlear nucleus, inferior colliculus, auditory thalamus, primary and secondary auditory 53 

cortex at several signal-to-noise ratios (SNR) in anesthetized male or female guinea pigs. 54 

Masking noise decreased sound discrimination of neuronal populations in each auditory 55 

structure, but collicular and thalamic populations showed better performance than cortical 56 

populations at each SNR. In contrast, in each auditory structure, discrimination by neuronal 57 

populations was slightly decreased when tone-vocoded vocalizations were tested. These 58 

results shed new light on the specific contributions of subcortical structures to robust sound 59 

encoding, and suggest that the distortion of slow amplitude modulation cues conveyed by 60 

communication sounds is one of the factors constraining the neuronal discrimination in 61 

subcortical and cortical levels. 62 

 63 

 64 

Significance statement 65 

Dissecting how auditory neurons discriminate communication sounds in noise is a major goal 66 
in auditory neuroscience. Robust sound coding in noise is often viewed as a specific property 67 
of cortical networks although this remains to be demonstrated. Here, we tested the 68 
discrimination performance of neuronal populations at five levels of the auditory system in 69 
response to conspecific vocalizations masked by noise. In each acoustic condition, subcortical 70 
neurons better discriminated target vocalizations than cortical ones and in each structure, the 71 
reduction in discrimination performance was related to the reduction in slow amplitude 72 
modulation cues. 73 

 74 
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Introduction  75 
 76 

Understanding the neural mechanisms used by the auditory system to extract and represent 77 

relevant information for discriminating communication sounds in a variety of acoustic 78 

environments is a major goal in auditory neurosciences. 79 

Several studies have prompted the view that the perceptual robustness mainly relies on the 80 

capacity of cortical neurons to extract invariant acoustic features (Narayan et al., 2007; 81 

Schneider and Woolley, 2013; Carruthers et al., 2015; Ni et al., 2017; Town et al., 2018), and 82 

it was proposed that this capacity is due to a larger adaptation of cortical cells to the noise 83 

statistics compared with subcortical cells (Rabinowitz et al., 2013). Indeed, in the cortical 84 

field L - the analogous of primary auditory cortex (A1) in bird - the percentage of correct 85 

neuronal discrimination between zebra-finch songs embedded in different types of acoustic 86 

maskers decreases proportionally to the target-to-masker ratio and parallels behavioral 87 

performance (Narayan et al., 2007). Also, consistent to behavioral data (for review see Verhey 88 

et al., 2003), the co-modulation of different frequency bands in background noise improved 89 

tone detection in noise of auditory cortical, thalamic and collicular neurons (Nelken et al., 90 

1999; Las et al., 2005). Moreover, between-vowels discrimination performance of neuronal 91 

populations located in A1 resists to a large range of acoustic alterations (including changes in 92 

fundamental frequency, spatial location or level) and is similar to behavioral performance 93 

(Town et al., 2018).  94 

The goal of the present study was to challenge this view by identifying the auditory structures 95 

responsible for this robust neural discrimination. Background noise has three disruptive 96 

effects on communication sounds (Noordhoek and Drullman, 1997; Dubbelboer and Houtgast, 97 

2007): it attenuates the power of their amplitude modulation components (AM, also called 98 

“temporal-envelope”; Houtgast and Steeneken, 1985; Ewert and Dau, 2000; Biberger and 99 

Ewert, 2017), corrupts their frequency modulation components (FM, also called “temporal 100 

fine structure”; Shamma and Lorenzi, 2013; Varnet et al., 2017) and introduces stochastic 101 

fluctuations in AM power which generate temporal irregularities (from bin to bin) in the 102 

signal temporal envelopes (Ewert and Dau, 2000). Here, electrophysiological recordings were 103 

collected from the cochlear nucleus up to a secondary auditory cortical area in anesthetized 104 

guinea pigs and the discrimination performance of neuronal populations was assessed for four 105 

utterances of the same vocalization category (the whistle, e.g. the guinea pig alarm call) 106 

presented against a vocalization-shaped stationary noise at three signal-to-noise ratios (SNRs: 107 

+10, 0, -10 dB). An increased discrimination performance may result from the specialization 108 



 

4 

of cortical responses for detecting crucial vocalization features (Wang et al., 1995; Wang and 109 

Kadia, 2001; Schneider and Woolley, 2013), whereas a decreased discrimination performance 110 

may result from the loss of spectro-temporal details promoting the categorization of sounds 111 

into auditory objects (Nelken and Bar-Yosef, 2008; Chechik and Nelken, 2012). Mutual 112 

information was used to determine if the temporal patterns of neuronal responses to the four 113 

vocalizations sufficiently differed to assign each response to a particular vocalization. The 114 

results obtained in noise were compared to the effects of a deterministic signal-processing 115 

scheme, namely a tone vocoder, which markedly altered the FM cues and progressively 116 

attenuated the AM cues (within 38 to 10 frequency bands). The AM spectra were computed at 117 

the output of simulated guinea pig auditory filters for each acoustic alteration. Our results 118 

suggest that, the attenuation of slow AM cues is one of the factors explaining the decrease in 119 

discrimination performance in cortical and subcortical structures. In addition, this study 120 

revealed that, for each acoustic distortion tested, the highest level of discrimination was found 121 

in subcortical structures, either at the collicular level (in masking-noise conditions) or at the 122 

thalamic level (in vocoder conditions). 123 

 124 

 125 

 126 
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Materials and Methods 127 

Subjects 128 

These experiments were performed under the national license A-91-557 (project 2014-25, 129 

authorization 05202.02) and using the procedures N° 32-2011 and 34-2012 validated by the 130 

Ethic committee N°59 (CEEA Paris Centre et Sud). All surgical procedures were performed 131 

in accordance with the guidelines established by the European Communities Council 132 

Directive (2010/63/EU Council Directive Decree). 133 

Extracellular recordings were obtained from 47 adult pigmented guinea pigs (aged 3 to 16 134 

months, 36 males, 11 females) at five different levels of the auditory system: the cochlear 135 

nucleus (CN), the inferior colliculus (IC), the medial geniculate body (MGB), the primary 136 

(AI) and secondary (area VRB) auditory cortex. Animals, weighting from 515 to 1100 g 137 

(mean 856 g), came from our own colony housed in a humidity (50-55%) and temperature 138 

(22-24°C)-controlled facility on a 12 h/12 h light/dark cycle (light on at 7:30 A.M.) with free 139 

access to food and water.  140 

Two to three days before each experiment, the animal’s pure-tone audiogram was determined 141 

by testing auditory brainstem responses (ABR) under isoflurane anaesthesia (2.5 %) as 142 

described in Gourévitch et colleagues (2009). The ABR was obtained by differential 143 

recordings between two subdermal electrodes (SC25-NeuroService) placed at the vertex and 144 

behind the mastoid bone. A software (RTLab, Echodia, Clermont-Ferrand, France) allowed 145 

averaging 500 responses during the presentation of nine pure-tone frequencies (between 0.5 146 

and 32 kHz) delivered by a speaker (Knowles Electronics) placed in the animal right ear. The 147 

auditory threshold of each ABR was the lowest intensity where a small ABR wave can still be 148 

detected (usually wave III). For each frequency, the threshold was determined by gradually 149 

decreasing the sound intensity (from 80 dB down to -10 dB SPL). All animals used in this 150 

study had normal pure-tone audiograms (Gourévitch et al., 2009; Gourévitch and Edeline, 151 

2011; Aushana et al., 2018). 152 

Surgical procedures 153 

All animals were anesthetized by an initial injection of urethane (1.2 g/kg, i.p.) supplemented 154 

by additional doses of urethane (0.5 g/kg, i.p.) when reflex movements were observed after 155 

pinching the hind paw (usually 2-4 times during the recording session). A single dose of 156 
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atropine sulphate (0.06mg/kg, s.c.) was given to reduce bronchial secretions and a small dose 157 

of buprenorphine was administrated (0.05mg/kg, s.c.) as urethane has no antalgic properties.  158 

After placing the animal in a stereotaxic frame, a craniotomy was performed and a local 159 

anesthetic (Xylocain 2%) was liberally injected in the wound.  160 

For auditory cortex recordings (area A1 and VRB), a craniotomy was performed above the 161 

left temporal cortex. The opening was 8 mm wide starting at the intersection point between 162 

parietal and temporal bones and 8-10 mm height. The dura above the auditory cortex was 163 

removed under binocular control and the cerebrospinal fluid was drained through the cisterna 164 

to prevent the occurrence of oedema.  165 

For the recordings in MGB, a craniotomy was performed above the most posterior part of the 166 

MGB (8 mm posterior to Bregma) to reach the left auditory thalamus at a location where the 167 

MGB is mainly composed of its ventral, tonotopic, division (Redies et al., 1989; Edeline et 168 

al.; 1999, 2000; Anderson et al., 2007; Wallace et al., 2007).  169 

For IC recordings, a craniotomy was performed above the IC and portions of the cortex were 170 

aspirated to expose the surface of the left IC. For CN recordings, after opening the skull above 171 

the right cerebellum, portions of the cerebellum were aspirated to expose the surface of the 172 

right CN (Paraouty et al., 2018).  173 

After all surgeries, a pedestal in dental acrylic cement was built to allow an atraumatic 174 

fixation of the animal’s head during the recording session. The stereotaxic frame supporting 175 

the animal was placed in a sound-attenuating chamber (IAC, model AC1). At the end of the 176 

recording session, a lethal dose of Exagon (pentobarbital >200 mg/kg, i.p.) was administered 177 

to the animal. 178 

Recording procedures 179 

Data from multi-unit recordings were collected in 5 auditory structures, the non-primary 180 

cortical area VRB, the primary cortical area A1, the medial geniculate body (MGB), the 181 

inferior colliculus (IC) and the cochlear nucleus (CN). In a given animal, neuronal recordings 182 

were only collected in one auditory structure. Cortical extracellular recordings were obtained 183 

from arrays of 16 tungsten electrodes (ø: 33 μm, <1 MΩ) composed of two rows of 8 184 

electrodes separated by 1000 μm (350 μm between electrodes of the same row). A silver wire, 185 

used as ground, was inserted between the temporal bone and the dura matter on the 186 

contralateral side. The location of the primary auditory cortex was estimated based on the 187 

pattern of vasculature observed in previous studies (Edeline and Weinberger, 1993; Manunta 188 
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and Edeline, 1999; Edeline et al., 2001; Wallace et al., 2000). The non-primary cortical area 189 

VRB was located ventral to A1 and distinguished because of its long latencies to pure tones 190 

(Grimsley et al., 2012; Rutkowski et al., 2002). For each experiment, the position of the 191 

electrode array was set in such a way that the two rows of eight electrodes sample neurons 192 

responding from low to high frequency when progressing in the rostro-caudal direction [see 193 

examples of tonotopic gradients recorded with such arrays in figure 1 of Gaucher and 194 

colleagues (2012) and in figure 6A of Occelli and colleagues (2016)].  195 

All the remaining extracellular recordings (in MGB, IC and CN) were obtained using 16 196 

channel multi-electrode arrays (NeuroNexus) composed of one shank (10 mm) of 16 197 

electrodes spaced by 110 μm and with conductive site areas of 177μm2. The electrodes were 198 

advanced vertically (for MGB and IC) or with a 40° angle (for CN) until evoked responses to 199 

pure tones could be detected on at least 10 electrodes. 200 

All thalamic recordings were from the ventral part of MGB (see above surgical procedures) 201 

and all displayed latencies < 9ms. At the collicular level, we distinguished the lemniscal and 202 

non-lemniscal divisions of IC based on depth and on the latencies of pure tone responses. We 203 

excluded the most superficial recordings (until a depth of 1500μm) and those exhibiting 204 

latency >= 20ms in an attempt to select recordings from the central nucleus of IC (CNIC). At 205 

the level of the cochlear nucleus, the recordings were collected from both the dorsal and 206 

ventral divisions.  207 

The raw signal was amplified 10,000 times (TDT Medusa). It was then processed by an RX5 208 

multichannel data acquisition system (TDT). The signal collected from each electrode was 209 

filtered (610-10000 Hz) to extract multi-unit activity (MUA). The trigger level was set for 210 

each electrode to select the largest action potentials from the signal. On-line and off-line 211 

examination of the waveforms suggests that the MUA collected here was made of action 212 

potentials generated by a few neurons at the vicinity of the electrode. However, as we did not 213 

used tetrodes, the result of several clustering algorithms (Pouzat et al., 2002; Quiroga et al., 214 

2004; Franke et al., 2015) based on spike waveform analyses were not reliable enough to 215 

isolate single units with good confidence. Although these are not direct proofs, the fact that 216 

the electrodes were of similar impedance (0.5-1MOhm) and that the spike amplitudes had 217 

similar values (100-300μV) for the cortical and the subcortical recordings, were two 218 

indications suggesting that the cluster recordings obtained in each structure included a similar 219 

number of neurons.  220 

 221 
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Acoustic stimuli 222 

Acoustic stimuli were generated using MATLAB (The Mathworks, Natick, MA), transferred 223 

to a RP2.1-based sound delivery system (TDT) and sent to a Fostex speaker (FE87E). The 224 

speaker was placed at 2 cm from the guinea pig’s right ear, a distance at which the speaker 225 

produced a flat spectrum (± 3 dB) between 140 Hz and 36 kHz. The stimulation was not 226 

purely monaural, but the animal’s head and body largely attenuated binaural cues. Calibration 227 

of the speaker was made using noise and pure tones recorded by a Bruel & Kjaer microphone 228 

4133 coupled to a preamplifier B&K 2169 and a digital recorder Marantz PMD671.  229 

The Time-Frequency Response Profiles (TFRP) were determined using 129 pure-tones 230 

frequencies covering eight octaves (0.14-36 kHz) and presented at 75 dB SPL. The tones had 231 

a gamma envelop given by (ݐ)ߛ = (௧ସ)²݁ష೟ర  ,where t is time in ms. At a given level, each 232 

frequency was repeated eight times at a rate of 2.35 Hz in pseudorandom order. The duration 233 

of these tones over half-peak amplitude was 15 ms and the total duration of the tone was 50 234 

ms, so there was no overlap between tones.  235 

A set of four conspecific vocalizations was used to assess the neuronal responses to 236 

communication sounds. These vocalizations were recorded from animals of our colony. Pairs 237 

of animals were placed in the acoustic chamber and their vocalizations were recorded by a 238 

Bruel & Kjaer microphone 4133 coupled to a preamplifier B&K 2169 and a digital recorder 239 

Marantz PMD671. A large set of whistle calls was loaded in the Audition software (Adobe 240 

Audition 3) and four representative examples of whistle were selected. As shown in figure 241 

1A, despite the fact the maximal energy of the four selected whistles was in the same 242 

frequency range (typically between 4 and 26 kHz), these calls displayed slight differences in 243 

their spectrogram and spectrum (Fig. 1A-B). In addition, their global temporal envelopes 244 

clearly differed (Fig. 1C). The four selected whistles were processed by three tone vocoders 245 

(Gnansia et al., 2009, 2010). In the following figures, the unprocessed whistles will be 246 

referred to as the original versions, and the vocoded versions as Voc38 (Voc20, Voc10 247 

respectively) for the 38-band (20-band, 10-band, respectively) vocoded whistles. In contrast 248 

to previous studies that used noise-excited vocoders (Nagarajan et al., 2002; Ranasinghe et 249 

al., 2012; Ter-Mikaelian et al., 2013), a tone vocoder was used here, because noise vocoders 250 

introduce random (i.e., non-informative) intrinsic temporal-envelope fluctuations distorting 251 

the crucial spectro-temporal modulation features of communication sounds (Shamma and 252 

Lorenzi, 2013; Kates, 2011; Stone et al., 2011).  253 
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Figure 1D displays the spectrograms of the 38-band vocoded (first column), the 20-band 254 

vocoded (second column) and the 10-band vocoded (third column) of the four whistles. The 255 

three vocoders differed only in terms of the number of frequency bands (i.e., analysis filters) 256 

used to decompose the whistles (38, 20 or 10 bands). The 38-band vocoding process is briefly 257 

described below, but the same principles apply to the 20-band or the 10-band vocoders. Each 258 

digitized signal was passed through a bank of 38 fourth-order Gammatone filters (Patterson, 259 

1987) with center frequencies uniformly spaced along a guinea-pig adapted ERB (Equivalent 260 

Rectangular Bandwidth) scale ranging from 20 to 35505 Hz (Sayles and Winter, 2010). In 261 

each frequency band, the temporal envelope was extracted using full-wave rectification and 262 

lowpass filtering at 64 Hz with a zero-phase, sixth-order Butterworth filter. The resulting 263 

envelopes were used to amplitude modulate sine-wave carriers with frequencies at the center 264 

frequency of the Gammatone filters, and with random starting phase. Impulse responses were 265 

peak-aligned for the envelope (using a group delay of 16 ms) and the temporal fine structure 266 

across frequency channels (Hohmann, 2002). The modulated signals were finally weighted 267 

and summed over the 38 frequency bands. The weighting compensated for imperfect 268 

superposition of the bands’ impulse responses at the desired group delay. The weights were 269 

optimized numerically to achieve a flat frequency response. Figure 1E shows the long-term 270 

power spectrum of the 38-band, 20-band and 10-band vocoded whistles, and figure 1F shows 271 

their global temporal envelopes (which were relatively well preserved by the vocoding 272 

process). 273 

The four whistles were also presented in a frozen noise ranging from 10 to 24,000 Hz. To 274 

generate this noise, recordings were performed in the colony room where a large group of 275 

guinea pigs were housed (30-40; 2-4 animals/cage). Several 4-seconds of audio recordings 276 

were added up to generate a "chorus noise", which power spectrum was computed using the 277 

Fourier transform. This spectrum was then used to shape the spectrum of a white Gaussian 278 

noise. The resulting vocalization-shaped stationary noise therefore matched the "chorus-279 

noise" audio spectrum, which explains why some frequency bands were over-represented in 280 

the vocalization-shaped stationary noise. Figure 1G displays the spectrograms of the four 281 

whistles in the vocalization-shaped stationary noise with a SNR of +10 dB SPL, 0 dB SPL, -282 

10 dB SPL. Figure 1H shows the long-term power spectrum of the four whistles at the +10 283 

dB, 0 dB and -10 dB SNR, and figure 1I shows their global temporal envelopes (which were 284 

severely altered at the 0 dB and -10 dB SNR). 285 

Amplitude-modulation (AM) spectra were computed for the original, vocoded and noisy 286 

versions of each vocalization by decomposing each sound with the same bank of 50 287 
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gammatone filters than for the vocoding (spanning the range 0.1-50 kHz). The AM 288 

component (envelope) thus corresponds to the magnitude of the analytic signal, whereas the 289 

TFS corresponds to its unwrapped instantaneous phase.  290 

For the AM spectrum, we analyzed the temporal envelope in each frequency band through a 291 

bank of AM filters using a method adapted from the human study by Varnet and colleagues 292 

(2017) for the guinea pigs’ hearing range (1/3-octave wide first-order Butterworth bandpass 293 

filters overlapping at -3 dB, with center frequencies between 0.1 Hz and 410 Hz). The root-294 

mean-square amplitude of the filtered output was multiplied by a factor of √2. For each AM 295 

filter, a modulation index was calculated by dividing the output by the mean amplitude of the 296 

AM component for the vocalization sample in the corresponding gammatone filter.  297 

Experimental protocol 298 

As inserting an array of 16 electrodes in a brain structure almost systematically induces a 299 

deformation of this structure, a 30-minutes recovering time lapse was allowed for the 300 

structure to return to its initial shape, then the array was slowly lowered. Tests based on 301 

measures of time-frequency response profiles (TFRPs) were used to assess the quality of our 302 

recordings and to adjust the electrodes’ depth. For auditory cortex recordings (AI and VRB), 303 

the recording depth was 500-1000 μm, which corresponds to layer III and the upper part of 304 

layer IV according to Wallace and Palmer (2008). For thalamic recordings, the NeuroNexus 305 

probe was lowered about 7mm below pia before the first responses to pure tones were 306 

detected. 307 

When a clear frequency tuning was obtained for at least 10 of the 16 electrodes, the stability 308 

of the tuning was assessed: we required that the recorded neurons displayed at least three 309 

successive similar TFRPs (each lasting 6 minutes) before starting the protocol. When the 310 

stability was satisfactory, the protocol was started by presenting the acoustic stimuli in the 311 

following order: We first presented the 4 original whistles in their natural versions, followed 312 

by the vocoded versions with 38, 20 and 10 bands at 75 dB SPL. The same set of original 313 

whistles was then presented in the vocalization-shaped stationary noise presented at 65, 75 314 

and 85 dB SPL. Thus, the level of the original vocalizations was kept constant (75 dB SPL), 315 

and the noise level was increased (65, 75 and 85 dB SPL). In all cases, each vocalization was 316 

repeated 20 times. Presentation of this entire stimulus set lasted 45 minutes. The protocol was 317 

re-started either after moving the electrode arrays on the cortical map or after lowering the 318 

electrode at least by 300 μm for subcortical structures.  319 
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Data analysis 320 

Quantification of responses to pure tones  321 

The TFRP were obtained by constructing post-stimulus time histograms (PSTH) for each 322 

frequency with 1 ms time bins. The firing rate evoked by each frequency was quantified by 323 

summing all the action potentials from the tone onset up to 100 ms after this onset. Thus, 324 

TFRP are matrices of 100 bins in abscissa (time) multiplied by 129 bins in ordinate 325 

(frequency). All TFRPs were smoothed with a uniform 5x5 bin window.   326 

For each TFRP, the Best Frequency (BF) was defined as the frequency at which the highest 327 

firing rate was recorded. Peaks of significant excitatory response were automatically 328 

identified using the following procedure: An excitatory peak in the TFRP was defined as a 329 

contour of firing rate above spontaneous activity plus six times the standard deviation of the 330 

spontaneous activity. Recordings without significant excitatory peak of responses or with only 331 

inhibitory responses were excluded from the data analyses. The bandwidth (BW) was defined 332 

as the sum of all peak widths in octaves. The response duration was the time difference 333 

between the first and last spikes of the significant peaks. The response 334 

strength was the total number of spikes falling in the significant peaks. 335 

Quantification of responses evoked by vocalizations 336 

The responses to vocalizations were quantified using two parameters: (i) The firing rate of the 337 

evoked response, which corresponds to the total number of action potentials occurring during 338 

the presentation of the stimulus minus spontaneous activity; (ii) the trial-to-trial temporal339

reliability coefficient (named CorrCoef as in our previous studies: Gaucher et al., 2013a; 340 

Huetz et al., 2014; Gaucher and Edeline, 2015; Aushana et al., 2018) which quantifies the 341 

trial-to-trial reliability of the responses over the 20 repetitions of the same stimulus. This 342 

index was computed for each vocalization: it corresponds to the normalized covariance 343 

between each pair of spike trains recorded at presentation of this vocalization and was 344 

calculated as follows:  345 

 346 

where N is the number of trials and σxixj is the normalized covariance at zero lag between 347 

spike trains xi and xj where i and j are the trial numbers. Spike trains xi and xj were previously 348 

convolved with a 10-msec width Gaussian window. Based upon computer simulations, we 349 



 

12 

have previously shown that this CorrCoef index is not a function of the neurons’ firing rate 350 

(Gaucher et al., 2013a).  351 

Quantification of mutual information from the responses to vocalizations 352 

The method developed by Schnupp and colleagues (2006) was used to quantify the amount of 353 

information (Shannon, 1948) contained in the responses to vocalizations obtained with natural 354 

vocoded and noise stimuli. This method allows quantifying how well the vocalization’s 355 

identity can be inferred from neuronal responses. Here, “neuronal responses” refer either to (i) 356 

the spike trains obtained from a small group of neurons below one electrode (for the 357 

computation of the individual Mutual Information, MIIndividual), or to (ii) a concatenation of 358 

spike trains simultaneously recorded under several electrodes (for the computation of the 359 

population, MIPopulation). In both cases, the following computation steps were the same. 360 

Neuronal responses were represented using different time scales ranging from the duration of 361 

the whole response (firing rate) to a 1-ms precision (precise temporal patterns), which allows 362 

analyzing how much the spike timing contributes to the information. As this method is 363 

exhaustively described in Schnupp and colleagues (2006) and in Gaucher and colleagues 364 

(2013a), we only present below the main principles. 365 

The method relies on a pattern-recognition algorithm that is designed to “guess which 366 

stimulus evoked a particular response pattern” (Schnupp et al., 2006) by going through the 367 

following steps: From all the responses of a cortical site to the different stimuli, a single 368 

response (test pattern) is extracted and represented as a PSTH with a given bin size (different 369 

sizes were considered as indicated in the Results section). Then, a mean response pattern is 370 

computed from the remaining responses (training set) for each stimulus class. The test pattern 371 

is then assigned to the stimulus class of the closest mean response pattern. This operation is 372 

repeated for all the responses, generating a confusion matrix where each response is assigned 373 

to a given stimulus class. From this confusion matrix, the Mutual Information (MI) is given 374 

by Shannon’s formula:   375 

 376 
where x and y are the rows and columns of the confusion matrix, or in other words, the values 377 

taken by the random variables “presented stimulus class” and “assigned stimulus class”. 378 

In our case, we used responses to the 4 whistles and selected the first 280 ms of these 379 

responses to work on spike trains of exactly the same duration (the shortest whistle being 280 380 
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ms long). In a scenario where the responses do not carry information, the assignments of each 381 

response to a mean response pattern is equivalent to chance level (here 0.25 because we used 382 

4 different stimuli and each stimulus was presented the same number of times) and the MI 383 

would be close to zero. In the opposite case, when responses are very different between 384 

stimulus classes and very similar within a stimulus class, the confusion matrix would be 385 

diagonal and the mutual information would tend to log2(4) =2 bits. 386 

This algorithm was applied with different bin sizes ranging from 1 to 280 ms (see figure 2B 387 

for the evolution of MI with temporal precisions ranging from 1 to 40 ms).  388 

The MI estimates are subject to non-negligible positive sampling biases. Therefore, as in 389 

Schnupp and colleagues (2006), we estimated the expected size of this bias by calculating MI 390 

values for “shuffled” data, in which the response patterns were randomly reassigned to 391 

stimulus classes. The shuffling was repeated 100 times, resulting in 100 MI estimates of the 392 

bias (MIbias). These MIbias estimates are then used as estimators for the computation of the 393 

statistical significance of the MI estimate for the real (unshuffled) datasets: the real estimate is 394 

considered as significant if its value is statistically different from the distribution of MIbias 395 

shuffled estimates. Significant MI estimates were computed for MI calculated from neuronal 396 

responses under one electrode. The range of MIbias values was very similar between auditory 397 

structures: depending on the conditions (original, vocoded, noisy vocalizations), it was from 398 

0.102 to 0.107 in the CN, from 0.107 to 0.110 in the IC, from 0.105 to 0.114 in the MGB, 399 

0.107 to 0.111 in A1 and from 0.106 to 0.116 in VRB. There was no significant difference 400 

between the mean MIbias values in the different structures (unpaired t-test, all p>0.25). 401 

The information carried by a group of recordings was estimated by the population MI 402 

(MIPopulation), using the same method described above: responses of several simultaneous 403 

multiunit recordings were concatenated and considered as a single pattern. To assess the 404 

influence of the group size of simultaneous multiunit recordings on the information carried by 405 

that group (MIPopulation), the number of sites used for computing MIPopulation varied from 2 to 406 

the maximal possible size (which is equal to 16 minus the non-responsive sites). As the 407 

number of possible combinations could be extremely large (Cn
k, where k is the group size and 408 

n the number of responsive sites in a recording session), a threshold was fixed to save 409 

computation time: when the number of possible combinations exceeded one hundred, 100 410 

combinations were randomly chosen, and the mean of all combinations was taken as the 411 

MIPopulation for this group size. 412 

For the MIPopulation, the values of bias were also computed: on average and for all sets of 9 413 

simultaneous recordings, it was 0.104 in the CN, 0.111 in the IC, 0.114 in the MGB, 0.107 in 414 
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AI and 0.106 in VRB. There was no significant difference between the mean MIPopulation bias 415 

values in the different structures (unpaired t-test, all p>0.20). 416 

 417 

 418 

Statistics 419 

To assess the significance of the multiple comparisons (vocoding process: four levels; 420 

masking noise conditions: three levels; auditory structure: five levels), we used an analysis of 421 

variance (ANOVA) for multiple factors to analyze the whole data set. Post-hoc pair-wise tests 422 

were performed between the original condition and the vocoding or noisy conditions. They 423 

were corrected for multiple comparisons using Bonferroni corrections and were considered as 424 

significant if their p value was below 0.05. All data are presented as mean values ± standard 425 

error (s.e.m.).  426 

 427 
 428 
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Results 429 

From a database of 2334 recordings collected in the five auditory structures, two criteria were 430 

used to include neuronal recordings in our analyses. A recording had to show significant 431 

responses to pure tones (see Methods) and an evoked firing rate significantly above 432 

spontaneous firing rate (200 ms before each original vocalization) for at least one of the four 433 

original vocalizations. Applying these two criteria led to the inclusion of 499 recordings in 434 

CN, 386 recordings in CNIC, 262 recordings in MGv, 354 recordings in A1 and 95 recordings 435 

in VRB. Table 1 summarizes the range of best frequencies, mean bandwidth, response 436 

duration and response strength obtained when testing pure tone responses in each auditory 437 

structure. In the following sections, the neuronal responses to the original vocalizations 438 

presented in quiet are compared across brain structures and the discrimination performance 439 

are described at the individual and population levels. The neuronal discrimination tested with 440 

tone-vocoded vocalizations and vocalizations presented against different levels of masking 441 

noise are described and compared next. 442 

 443 

Determination of optimal parameters for temporal analyses of spike trains in the five 444 

auditory structures 445 

 446 

Before quantifying the neuronal discrimination performance in the five investigated 447 

structures, we first looked for the optimal parameters for analyzing the temporal patterns of 448 

spike trains in the five structures. 449 

First, the CorrCoef index which quantifies the trial-to-trial temporal reliability, was computed 450 

with a Gaussian window ranging from 1 to 50 ms. As a general rule, the largest the Gaussian 451 

window, the largest the CorrCoef mean value whatever the structure was. We questioned if 452 

selecting a particular value for the Gaussian window influenced the between-structure 453 

differences in CorrCoef mean values. Based upon the responses to the original vocalizations, 454 

figure 2A shows that the relative ranking between auditory structures remained unchanged 455 

whatever the width of the Gaussian window was. Therefore, we kept the value of 10 ms for 456 

the Gaussian window (dashed line in Fig. 2A) as it was used in previous cortical studies 457 

(Huetz et al., 2009; Gaucher et al., 2013a; Gaucher and Edeline, 2015; Aushana et al., 2018). 458 

Second, at the cortical level, it was previously showed that the maximal value of mutual 459 

information (MI) based on temporal patterns was obtained, on average, with a bin size of 8ms 460 

(Schnupp et al., 2006; Gaucher et al., 2013a). However, it has never been demonstrated that 461 

the same bin size was optimal at all levels of the auditory system. Figure 2B shows the 462 
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evolution of MI as a function of temporal precision ranging from 1 to 40 ms based on the 463 

responses to the original vocalizations. In our experimental conditions, and with our set of 464 

acoustic stimuli, the 8-ms temporal precision was found to be optimal for all auditory 465 

structures, in the original (dashed line in Fig. 2B), vocoded and noisy conditions (data not 466 

shown). Therefore, the MI value obtained for a temporal precision of 8 ms was subsequently 467 

used in our analyses. 468 

 469 

Subcortical structures better discriminate the original vocalizations 470 

 471 

Figure 3A displays neuronal responses of two simultaneous multiunit recordings obtained at 472 

five levels of the auditory pathway (CN, CNIC, MGv, AI and VRB). The neuronal responses 473 

were strong and sustained in the CN and CNIC, more transient in MGv, phasic in AI and 474 

more diffuse in VRB. For most of the recordings, temporal patterns of response were clearly 475 

reproducible from trial-to-trial, but they differed from one vocalization to another both at the 476 

cortical and subcortical level. The PSTHs displayed in figure 3B show that at each level of the 477 

auditory system, the four whistles triggered distinct temporal patterns of responses. 478 

Quantifications of evoked responses to original vocalizations over all the recordings are 479 

presented on figures 3C-F for each auditory structure. These analyses clearly pointed out large 480 

differences between the mean values of evoked firing rate, CorrCoef and MI quantified at the 481 

cortical vs. at the subcortical level. First, the evoked firing rate was significantly higher in the 482 

subcortical structures than in the cortex (unpaired t-test, lowest p value p<0.001). It was also 483 

higher in CN compared to the other subcortical structures (Fig. 3C). Second, the CorrCoef 484 

values were significantly higher in CNIC and MGv compared to AI and VRB (Fig. 3D), 485 

indicating that the trial-to-trial reliability of evoked responses was stronger in these structures 486 

than in CN, A1 and VRB. Third, the MIIndividual values obtained at the subcortical level were 487 

significantly higher than at the cortical level (unpaired t-test, highest p<0.001 between the 488 

cortex and the other structures; Fig. 3E). At the subcortical level, the MIIndividual values were 489 

significantly higher in MGv than in CNIC and in CN (unpaired t-test, p<0.01) with the CN 490 

exhibiting the lowest MI values at the subcortical level. The MIIndividual values were also 491 

significantly lower in VRB than in AI (p = 0.037). Recordings in MGv displayed the highest 492 

MIIndividual mean values, suggesting that, on average, thalamic neurons discriminate better the 493 

four original whistles than the other auditory structures. As shown in figure 3G, in each 494 

auditory structure, high MIIndividual values were strongly correlated with high values of trial-to-495 

trial temporal reliability (indexed by the CorrCoef value; 0.77 < r < 0.88; p<0.001). Finally, 496 
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MI was also computed based on the temporal patterns obtained from two to sixteen 497 

simultaneous multiunit recordings to determine whether the discrimination performance of 498 

neural networks confirm the results obtained at the individual (i.e., single recording) level. 499 

MIPopulation quantifies how well the four whistles can be discriminated based on temporal 500 

patterns expressed by neuronal populations distributed on the tonotopic map. The MIPopulation 501 

computed from 9 simultaneous multiunit recordings shows that neural populations in 502 

subcortical structures discriminate the four original whistles better than the cortical 503 

populations (unpaired t-test, highest p value p<0.002 between CN and VRB) without any 504 

statistical difference between the three subcortical structures (Fig. 3F). 505 

We next investigated the diversity of the MIIndividual and MIPopulation values obtained in the 506 

different structures. The distributions of MIIndividual values were plotted as a function of 507 

temporal precision for each structure (Fig. 4 A1-A5). It showed that whatever the temporal 508 

precision, there were more curves with high MIIndividual values in the subcortical structures 509 

than in the cortical areas (see red curves on Fig. 4 A1-A5). The examination of the evolution 510 

of the MIPopulation as a function of the number of simultaneous multiunit recordings in the 511 

different structures revealed that the growth functions rapidly reached high values in all 512 

subcortical structures, whereas there were only a few of such curves in AI and VRB whatever 513 

the number of recordings considered (Fig. 4 B1-B5). 514 

With a temporal resolution of 8 ms, we presented the cumulative percentages of neurons for 515 

the MIIndividual (Fig. 5A) and the MIPopulation values (Fig. 5B) in each structure. Above a value 516 

of 1.5 bits (indicating that at least 3 stimuli can be discriminated), there were 39% of MGv 517 

neurons, 18% and 14% of the neurons in CNIC and CN respectively; but only 3.5% and 2% 518 

of the neurons in A1 and VRB respectively. This proportion was significantly higher in MGv 519 

than in CN and CNIC (p=0.017 and p=0.04) and was also significantly higher in subcortical 520 

structures compared with the cortical ones (all p values <0.01). The same conclusions were 521 

reached for the MIPopulation values: More than 90% of the MGv neuronal populations were 522 

above 1.5 bits, 83 % and 75% of the populations in CNIC and CN respectively, whereas these 523 

populations represented less than 40% at the cortical level (36 % and 34% in A1 and VRB 524 

respectively). 525 

Thus, both at the level of individual recordings, and at the population of simultaneous 526 

multiunit recordings, subcortical neurons are more accurate in discriminating the four original 527 

whistles than cortical ones. 528 

 529 

 530 
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 531 

Modest effects of tone vocoding 532 

 533 

Figure 6A displays rasters of recordings obtained in the five structures in response to the 534 

original and tone-vocoded vocalizations using 38 (Voc38), 20 (Voc20) and 10 (Voc10) 535 

frequency bands. As illustrated by the rasters and the PSTHs presented in figure 6B, in all 536 

structures, neurons still vigorously responded to the vocoded stimuli even for 10-band 537 

vocoded stimuli.  538 

Figure 6C-F summarizes the vocoding effects on the four parameters quantifying neuronal 539 

responses. Compared to the responses to the original vocalizations, the evoked firing rate 540 

obtained in all structures in response to vocoded stimuli only showed modest variations (Fig. 541 

6C): apart from an increase in firing rate in the CN with the 38-band vocoded stimuli, a 542 

significant decrease in evoked firing rate in response to the 10-band vocoded vocalizations 543 

was only found at the subcortical level (for all subcortical structures, one-way ANOVA: 544 

FCN(3,1995)=22.6; FCNIC(3,1543)=8.85; FMGv(3,1047)=6.55, p<0.001; with post-hoc paired t tests, 545 

p<0.05), whereas there was no decrease in either AI or VRB. Vocoding also decreased the 546 

CorrCoef mean values in every structure except in VRB (Fig. 6D). This decrease was 547 

significant with the 10-band vocoded vocalizations in CN, MGv and in AI (one-way 548 

ANOVA: FCN(3,1930)=26.48; FMGv(3,889)=7.7; FA1(3,1125)=3.42, highest p value, p<0.02; with 549 

post-hoc paired t tests, p<0.05). The decrease in CorrCoef value was already significant with 550 

20-band vocoded vocalizations in the CNIC (one-way ANOVA: F(3,1391)=26.19, p<0.001; with 551 

post-hoc paired t tests, p<0.05). 552 

Similarly, vocoding decreased the MIIndividual values in each structure except in VRB (Fig. 553 

6E). Here too, the decrease was significant with the 10-band vocoded vocalizations in CN, 554 

MGv and AI (one-way ANOVA: FCN(3,1445)=12.23, FMGv(3,810)=3.75, FA1(3,720)=3.59, highest p 555 

value, p<0.02; with post-hoc paired t tests, p<0.05) and it was already significant with 20-556 

band vocoded vocalizations in the CNIC (one-way ANOVA: FCNIC(3,1231)=13.17, p<0.001; 557 

with post-hoc paired t tests, p<0.05). At the population level (MIPopulation), compared to the 558 

values obtained in response to the original vocalizations, the MIPopulation values computed with 559 

the 10-band vocoded vocalizations were significantly lower in the subcortical structures (one-560 

way ANOVA: FCN(3,127)=6.46, FCNIC(3,115)=6.28, FMGv(3,67)=4.62, highest p value, p<0.005; with 561 

post-hoc paired t tests, p<0.05) but not at the cortical level (Fig. 6F). The evolution of 562 

MIPopulation as a function of the number of simultaneous multiunit recordings (Fig. 7 A-E) 563 

showed that in each subcortical structure, the curves rapidly reached high MIPopulation values 564 
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(close to the maximal value of 2 bits) in each vocoding conditions, whereas in AI and VRB 565 

the curves slowly reached the maximum MIPopulation values. 566 

In conclusion, for the five auditory structures, the neuronal responses to 10-band vocoded 567 

vocalizations were slightly weaker, temporally less accurate and less discriminative than the 568 

responses to the original vocalizations. Nonetheless, on average, subcortical neurons still 569 

maintained the highest discrimination performance between tone-vocoded vocalizations, both 570 

at the level of individual recordings and at the population level.   571 

 572 

Pronounced effects of masking noise on neuronal discrimination 573 

 574 

The rasters presented in figure 8A illustrate the effects induced by presenting the original 575 

vocalizations against a vocalization-shaped stationary noise at three SNRs (+10, 0 and -10 576 

dB). As illustrated by the rasters and the PSTHs presented in figure 8B, masking noise 577 

attenuated neuronal responses at each level of the auditory system. However, the auditory 578 

structures were differentially affected by noise. The responses in the CNIC did not change up 579 

to a 0 dB SNR, decreasing only at a -10 dB SNR. This was not the case in the other auditory 580 

structures where the responses decreased either at a +10 dB SNR (MGv and CN) or at a 0 dB 581 

SNR (AI and VRB).  582 

Figure 8C-F summarizes the effects of masking noise on the different parameters quantifying 583 

neuronal responses. Masking noise significantly reduced the evoked firing rate in each 584 

auditory structure already at the +10 dB SNR (Fig. 8C, one-way ANOVA: FCN(3,1995)=309.33, 585 

FCNIC(3,1543)=220.64, FMGv(3,1047)=155.07, FA1(3,1415)=96.27, p<0.001; with post-hoc paired t 586 

tests, p<0.05), except in VRB.  587 

At the subcortical level, masking noise strongly reduced the CorrCoef values in CN and MGv 588 

at the highest SNR (+10 dB) tested here (Fig. 8D; one-way ANOVA: FCN(3,1884)=382.22, 589 

FMGv(3,791)=155.82, p<0.001; with post-hoc paired t tests, p<0.05) whereas in the CNIC, this 590 

reduction was significant only at the 0 dB SNR (one-way ANOVA: FCNIC(3,1357)=154.12, 591 

p<0.001; with post-hoc paired t tests, p<0.05). At the cortical level, the CorrCoef values were 592 

significantly reduced in AI at the +10 dB SNR and in VRB at the 0 dB SNR (one-way 593 

ANOVA: FA1(3,1093)=60.83, FVRB(3,335)=29.56, p<0.001; with post-hoc paired t tests, p<0.05).  594 

At the subcortical level, noise reduced the MIIndividual values but again, there was a marked 595 

difference between the CNIC and the other subcortical structures: the MIIndividual mean value 596 

in CN and MGv was significantly reduced at the +10 dB SNR (Fig. 8E; one-way ANOVA: 597 

FCN(3,819)=56.75, FMGv(3,621)=63.61, p<0.001; with post-hoc paired t tests, p<0.05), whereas the 598 
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MIIndividual value in the CNIC was only significantly reduced at the 0 dB SNR (one-way 599 

ANOVA: F(3,1078)=32.08, p<0.001; with post-hoc paired t tests, p<0.05). At the cortical level, 600 

noise significantly reduced the average MIIndividual in AI only at the -10 dB SNR (one-way 601 

ANOVA: F(3,649)=9.49, p<0.001; with post-hoc paired t tests, p<0.05) whereas the average 602 

MIIndividual in VRB remained unchanged (Fig 8E).  603 

The effects of masking noise on the network discrimination performance were quantified with 604 

the MIPopulation (Fig. 8F). At the cortical level, there was a significant reduction of MIPopulation 605 

values only at the -10 dB SNR (one-way ANOVA: FA1(3,111)=16.63, FVRB(3,23)=11.41, p<0.001; 606 

with post-hoc paired t tests, p<0.05) whereas there was a significant decrease in CN already at 607 

the +10 dB SNR (one-way ANOVA: FCN(3,127)=51.49, p<0.001; with post-hoc paired t tests, 608 

p<0.05). In MGv and CNIC, neuronal populations still displayed the highest discrimination 609 

performance although the decrease in MIPopulation value was significant at the 0 dB SNR (one-610 

way ANOVA: FMGv(3,67)=41.59, FCNIC(3,115)=22.59, p<0.001; with post-hoc paired t tests, 611 

p<0.05).  612 

Note that, in VRB, the CorrCoef and MIPopulation were much more decreased in the noise 613 

conditions than in the vocoding conditions, suggesting that the lack of significant decreases in 614 

vocoding conditions was not a “floor effect” due to the low initial values.  615 

The evolution of the MIPopulation as a function of the number of simultaneous multiunit 616 

recordings in the different structures (Fig. 9A-E) revealed that regardless of the number of 617 

neurons considered, noise effects were similar up to the 0 dB SNR: the population curves in 618 

CNIC and MGv grew up relatively rapidly and reached higher values than the curves obtained 619 

in CN and in the two cortical areas. At the -10 dB SNR, the MIPopulation from the CNIC 620 

remained higher (regardless of the number of neurons considered) than in the other structures; 621 

whereas there was no increase of the MIPopulation with the number of neurons in VRB. 622 

One puzzling result came from the fact that on average, the values of MIIndividual and 623 

MIPopulation decreased more for CN recordings than for the two subsequent subcortical relays. 624 

However, at least 20% of the CN recordings at the +10 dB SNR maintained MIIndividual values 625 

above 1 bit (Fig. 10A, red curves) and MIPopulation values above 1.5 bits (Fig. 10C, red curves), 626 

suggesting that a sub-population of CN neurons were still able to send information about the 627 

vocalization identity at higher brainstem centers. This also suggests that the discrimination 628 

performed by a group of a fixed number of neurons deteriorates with noise faster in the CN 629 

and consequently, more CN neurons are necessary to obtain an equivalent amount of 630 

information observed in CNIC. 631 
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The distributions of the TFRP parameters (best frequency, bandwidth, response duration, 632 

response strength) from this specific sub-population of CN neurons did not differ from the 633 

neurons exhibiting MIIndividual values below 1 bit at the +10 dB SNR in terms of best 634 

frequency and bandwidth but significantly differ in terms of response duration and response 635 

strength (chi-square tests; p<0.05, Fig. 10B). More precisely, the CN recordings exhibiting 636 

higher MIIndividual values at +10 dB SNR had longer duration responses and stronger evoked 637 

firing rate to pure tones. 638 

A more general question is to evaluate whether the TFRP characteristics in the different 639 

auditory structures (see examples in Fig. 11A) influenced the noise effects quantified by the 640 

MIIndividual values (Fig. 11B-C). As indicated in figure 11, there was no relationship between 641 

the best frequency values and the changes in MIIndividual values (Fig. 11B) and no relationship 642 

between the frequency bandwidth and the changes in MIIndividual values (Fig. 11C). Thus, in all 643 

structures, the noise-induced alterations in MIIndividual values seem to be independent from the 644 

characteristics of pure tone responses. 645 

To summarize, masking noise differently impacted the neurons’ discrimination performance 646 

at the subcortical and cortical levels. Although cortical neurons were more resistant to 647 

changes in noise level, the thalamic and collicular neurons maintained higher MI values, with 648 

the CNIC neurons displaying the highest discrimination performance both at the individual 649 

and population level in the most challenging condition (i.e., at the -10 dB SNR). 650 

 651 

Alteration of slow amplitude modulations as one of the factors explaining the changes in 652 

neuronal discrimination 653 

 654 

Masking noise produced spectro-temporal degradations: it reduced the AM cues in the 655 

different audio-frequency bands, introduced irrelevant envelope fluctuations and altered the 656 

temporal fine structure (TFS) of the sound. Tone vocoding removed almost all the TFS but 657 

also progressively filtered out the fast AM. As a vast literature demonstrated that slow AM 658 

cues are crucial for speech understanding in normal and degraded conditions (Houtgast and 659 

Steeneken, 1985; Drullman et al., 1994, 1995; Shannon et al., 1995; Dubbelboer and 660 

Houtgast, 2007; Jorgensen and Dau, 2011), we quantified the alterations of AM cues (due to 661 

masking noise and to vocoding) and looked for potential relationships with the alterations in 662 

neural discrimination (MIPopulation) in the five structures. 663 

The AM spectra obtained in vocoding and noise conditions showed that the AM cues were 664 

attenuated compared to the original condition (Fig. 12A). The +10 dB SNR condition 665 
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produced a flattening of the AM modulation spectrum, which was further accentuated in the 0 666 

dB and -10 dB SNR conditions. In these two most degraded conditions, noise also introduced 667 

non-relevant fluctuations at high rates. In contrast, vocoding preserved the general shape of 668 

the AM spectra while progressively filtering out the AM fluctuations. 669 

We investigated the relationships between these degradations of AM cues and neural 670 

discrimination (MIPopulation) in the five structures for each experimental condition (Fig. 12B). 671 

More precisely, for all conditions, figure 12B shows the changes in MIPopulation for each 672 

auditory structure as a function of the attenuation of AM cues (computed as the mean 673 

modulation index between 1 and 20 Hz). Figure 12B reveals that in all structures other than 674 

the CN, MIPopulation is barely affected as long as the reduction of the AM index (Δmodulation 675 

index) remains lower than 25%; beyond this limit, the MIPopulation is reduced (i.e., at the 0 dB 676 

and -10 dB SNR). The straightforward conclusion is that the reduction of slow AM cues is 677 

one of the factors controlling the decrease in MIPopulation at the cortical and subcortical levels. 678 

In the cochlear nucleus, the decrease on the MIPopulation is much larger than in the other 679 

structures, suggesting that the alteration of AM cues has more impact on the MIPopulation at the 680 

most peripheral level. Alternatively, one should keep in mind that the neuronal discrimination 681 

in noise can be based upon other acoustic cues such as the FM cues (in particular pitch cues), 682 

spectral regularity and harmonicity cues, and the simultaneous rising slope of energy across 683 

channels. Thus, in the cochlear nucleus, but also in the other structures, the strong decrease in 684 

MIPopulation can potentially result from alterations of one, or several, of these parameters.  685 

Dissecting the contributions of each of these parameters to neuronal discrimination and its 686 

decrease in degraded conditions will require manipulations of controlled stimuli in 687 

independent conditions. Confirming that the slow AM cues are the main factor for 688 

discrimination in degraded conditions could theoretically be achieved by keeping the exact 689 

same AM cues and modifying only one of the acoustic parameter listed above. Using a 690 

computational model of the peripheral auditory system will help to estimate the respective 691 

representations of the envelope and temporal fine structure after acoustic degradations (Moon 692 

et al., 2014; Wirtzfeld et al., 2017). For example, the search for "equivalent" experimental 693 

conditions in terms of amounts of neural degradation of AM and FM cues could be performed 694 

by using the FAME vocoder (Zeng et al., 2005) to alter systematically AM and FM 695 

parameters (i.e., cutoff frequency, modulation strength, modulation phase) of the 696 

vocalizations used as stimuli. The results of this type of experiments should also be 697 

generalized with other categories of guinea pig calls, other types of communication sounds 698 

from other species and should included in other types of masking noises.   699 
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Discussion 700 

 701 

Here, we demonstrated that for each acoustic distortion, subcortical neurons displayed the 702 

highest level of discrimination performance of natural vocalizations, either at the collicular 703 

level (in masking noise conditions) or at the thalamic level (in vocoder conditions). More 704 

precisely, background noise markedly reduces neural discrimination performance in all 705 

auditory structures with larger effects in the cochlear nucleus, whereas the vocoder induced 706 

little effect in each auditory structure. Interestingly, the discrimination performance of cortical 707 

neurons was less impacted making these neurons more robust to all acoustic alterations. 708 

Moreover, comparison of neural data collected in response to noisy versus vocoded 709 

vocalizations suggests that the transmission of slow (< 20 Hz) amplitude modulation 710 

information is one of the factors contributing to the neural discrimination decrease in noise at 711 

the cortical and subcortical levels.  712 

 713 
Subcortical structures represent natural vocalizations more precisely than primary and 714 

non-primary cortical areas  715 

 716 

In contrast with previous cortical studies, which have quantified the discrimination between 717 

calls that belong to different categories making the discrimination easy for cortical neurons 718 

(Narayan et al., 2006, 2007; Ter-Mikaelian et al., 2013; Ni et al., 2017), we used four 719 

vocalizations that belong to the same category making the discrimination more difficult for 720 

cortical neurons. We showed that on average subcortical populations discriminated the 721 

original vocalizations better than cortical populations. Moreover, smaller populations of 722 

subcortical neurons compared to cortical ones were sufficient to discriminate between the 723 

stimuli used in this study. These results corroborate the finding by Chechik and colleagues 724 

(2006) that the MGB and AI responses contain 2-to-4 fold less information than the responses 725 

of IC neurons. Here, the discrimination performance in MGv was closer than the ones 726 

displayed by the other subcortical structures. A potential explanation is that Chechik and 727 

colleagues (2006) recorded from all MGB divisions, including the medial and dorsal 728 

divisions, whereas our thalamic recordings were limited to MGv and exhibited tonic 729 

responses to vocalizations similar to those observed in the CNIC and the CN (Fig. 3A and 730 

5A). The stimulus sets also differ, as we used four utterances of the same category (the 731 

Whistle), whereas Chechik and colleagues (2006) used three birds’ chirps and variants of 732 

these stimuli leading potentially to an easier classification between groups of stimuli 733 
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compared to our protocol. An interesting result was that the optimal bin size for computing 734 

MI was similar for all structures (8 ms bin, Fig. 2B). Importantly, with a smaller or a larger 735 

bin, the mutual information would have been underestimated, but this would not have 736 

changed the differences reported here: whatever the bin size, subcortical neurons will still 737 

discriminate better the original vocalizations than the cortical areas (Fig. 2B). Potentially, the 738 

optimal bin size depends more upon the stimuli durations than upon the auditory structure. 739 

When computing mutual information from IC, MGB and A1 neuronal responses, Chechik and 740 

colleagues (2006) usually found an optimal bin size of 4 ms, different from ours, probably 741 

because their stimulus durations are shorter than our stimuli (67-111 ms vs. to 280-363 ms 742 

here). Recently, we also found shorter optimal bin size when computing MI with shorter (12-743 

65 ms) communication sounds (Royer et al., 2019). 744 

Our original stimuli differed in terms of temporal envelope and, as a consequence, the most 745 

efficient way to discriminate them is probably to follow the time course of AM cues. It is well 746 

known that when progressing from the lower to the upper stages of the auditory system, the 747 

neurons’ ability to follow AM cues considerably changes (Joris et al, 2004; Escabi and Read, 748 

2005). Brainstem neurons phase-lock on AM modulations up to hundreds of Hertz (Frisina et 749 

al., 1990; Rhode and Greenberg, 1994), whereas thalamic neurons do so for a few tens of 750 

Hertz (Creutzfeldt et al., 1990; Preuss and Müller-Preuss, 1990) and cortical neurons for even 751 

lower rates (Gaese and Ostwald, 1995; Schreiner and Urbas, 1998). As a consequence, 752 

subcortical neurons, (but not cortical ones) can follow the largest and fastest AM cues (7-15 753 

Hz) contained in the original vocalizations (see the peak of the black curve in AM spectra, 754 

Fig. 12A). This likely explains why subcortical neurons better discriminate the original 755 

stimuli both at the individual and population levels. Cortical neurons only follow the weakest 756 

and slowest AM cues (1-5 Hz) of the original vocalizations, which potentially explains why 757 

cortical neurons weakly discriminate the original stimuli and tend to encode them as a single 758 

category (Mesgarani et al., 2014b).  759 

 760 

Alterations of slow amplitude modulation cues is one of the factors explaining the 761 

changes in cortical and subcortical discrimination 762 

 763 

Previous studies using vocoded vocalizations reported that cortical responses were not 764 

drastically reduced even with two frequency bands (Nagarajan et al., 2002; Ranasinghe et al., 765 

2012; Ter-Mikaelian et al., 2013; Aushana et al., 2018). At the level of AI, studies have 766 
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pointed out the relationships between the noise impact on the cortical and behavioral 767 

discrimination performance. In bird field L (homologous to AI), neuronal responses to song 768 

motifs were strongly reduced by three types of masking noises, and the neural discrimination 769 

performance was progressively reduced when the SNR decreased, in parallel with the 770 

behavioral performance (Narayan et al., 2007). Our VRB results are reminiscent of those 771 

obtained in area NCM (homologous to a secondary area) where feed-forward inhibition 772 

allowed the emergence of invariant neural representations of target songs in noise conditions 773 

(Schneider and Woolley, 2013). Similarly to the results by Ranasinghe and colleagues (2012), 774 

our IC neuronal responses were found to be resistant to drastic spectral degradations.  775 

Only one study directly compared the impact of vocoding and masking noise on cortical 776 

responses to vocalizations (Nagarajan et al., 2002). In this study, auditory cortex responses 777 

were robust to spectral degradations even in response to 2-band vocoded vocalizations. Also, 778 

broadband white noise reduced neuronal responses at 0 dB SNR. Last, temporal-envelope 779 

degradations strongly reduced the evoked firing rate and the neural synchronization to the 780 

vocalization envelope. Importantly, band-pass filtering the vocalizations between 2-30 Hz did 781 

not reduce firing rate and neural synchronization to the vocalization envelope. This is in 782 

agreement with the results in our conditions: when the Δmodulation index (computed between 783 

1 and 20 Hz) revealed modest AM alterations, there was little effect on the neuronal 784 

discrimination, but when the AM alterations reached about 20-30% or more, the neuronal 785 

discriminations were reduced (Fig. 12B). Thus, our results are consistent with the hypothesis 786 

that one of the factors constraining auditory discrimination at the cortical and subcortical level 787 

is the fidelity of transmission and processing of slow AM cues. 788 

When quantifying how different noise levels alter neuronal coding in the auditory system, it 789 

was found that the neural representation of natural sounds becomes progressively independent 790 

of the level of background noise from the auditory nerve to the IC and AI (Rabinowitz et al., 791 

2013). It was proposed that this tolerance to background noise results from an adaptation to 792 

the noise statistics, which is more pronounced at the cortical than at the subcortical level. In 793 

agreement with this study, we found that populations of cortical neurons (AI and VRB) were 794 

more resistant to noise than subcortical ones. However, we did not observe a monotonic 795 

evolution of resistance to noise in the auditory system: at the subcortical level, the 796 

discrimination performance of CN neuronal populations drastically dropped as early as +10 797 

dB SNR, the populations of CNIC neurons maintained the highest discrimination performance 798 

even at the -10 dB SNR, those of thalamic ones largely decreased at 0 dB SNR, whereas 799 
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cortical neurons showed the lowest discrimination performance at all SNRs but were more 800 

robust to noise. In the IC, previous work showed that background noise changes the shape of 801 

the temporal modulation transfer function of individual neurons from bandpass to lowpass 802 

(Lesica and Grothe, 2008). The CNIC is a massive hub receiving probably the highest 803 

diversity of inhibitory and excitatory inputs (Malmierca, 2004; Ayala et al., 2016) and 804 

potentially the large diversity of these inputs allows this structure to extract crucial temporal 805 

information about the stimulus temporal envelope, even at relatively low SNR. 806 

 807 
Limitations of the study 808 
 809 
We previously did not find evidence for higher cortical discrimination in awake animals 810 

compared with anesthetized animals (Huetz et al., 2009): with normal and reversed whistle 811 

stimuli, the percentage of cortical cells with significant MI values was higher in anesthetized 812 

(71%) than in awake animals (44%, Table 1 in Huetz et al., 2009). In addition, the Hmax 813 

value (equivalent of MI) was higher in anesthetized than in awake animals (0.38 vs. 0.24, 814 

Table 2 in Huetz et al., 2009). Last, the trial-to-trial temporal reliability of cortical cells to 815 

whistle calls was not different in anesthetized and awake guinea pigs (anesthetized 0.48 vs. 816 

awake 0.42; Fig. 8 in Huetz et al., 2009). A recent study (Town et al., 2018) revealed that the 817 

cortical discrimination performance between vowels observed in awake animals using 818 

acoustic degradations were similar in anesthetized animals (Bizley et al., 2009). Therefore, 819 

based on these two studies, the cortical discrimination performance can only be slightly lower 820 

or similar in awake compared to anesthetized animals. At the subcortical level, it seems that 821 

there is not a large difference between the phase-locking properties of neurons in anesthetized 822 

and awake animals (Joris et al., 2004). Temporal properties of IC neurons are only mildly 823 

affected by anesthesia (Ter-Mikaelian et al., 2007), indicating that collicular neurons will still 824 

be far better than cortical ones to follow the 10-20 Hz temporal cues contained in the four 825 

vocalizations. Together, these studies suggest that the hierarchy between cortical and 826 

subcortical structures in discriminating communication sounds should be more pronounced or 827 

should remained the same in awake animals. 828 

Another limitation of the present study lies in the use of a limited set of stimuli that is 829 

restricted to the four same whistles. However, the four whistles used here were clearly 830 

representative of our whole database of whistles in terms of frequency range, duration, range 831 

of frequency and amplitude modulations. Changing the four whistles from one recording to 832 

another can help generalizing the results, but the main advantage of using exactly the same 833 

four whistles is that from one recording to the next, and from one structure to another, we 834 
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were sure that the same acoustic cues were available for the neural discrimination. However, 835 

the whistles are a subset of the guinea pig repertoire, and therefore the present results may not 836 

generalize to other communication sounds, and larger sets of stimuli should be used to 837 

confirm that the slow AM cues control the neural discrimination. Even if amplitude 838 

modulations seem the main cues for speech understanding (Drullman et al., 1994; Shannon et 839 

al., 1995), other factors (the pitch, the frequency modulation, the harmonicity cues) can also 840 

be involved.  841 

As our results are based on multiunit recordings, we do not know whether the same number of 842 

neurons were present in the cluster recordings from the different structures, and whether the 843 

individual discrimination performance of the cell types found in each structure are equivalent. 844 

On the other hand, the MI evaluated here is the reflection of a local computation performed 845 

by a small population of individual neurons, which gives us a good estimation of the whole 846 

discrimination performance of a given structure. 847 

 848 

Functional implications 849 

In humans, speech sounds (such as phonemes) showing similar acoustic properties trigger 850 

similar responses and are represented as a single category in the superior temporal gyrus 851 

(Mesgarani et al., 2014b). As already proposed by Chechick and Nelken (2012), auditory 852 

cortex neurons extract abstract auditory entities rather than detailed spectro-temporal features. 853 

Obviously, this urges to define the acoustic features that form a category of auditory objects. 854 

It is relatively easy to delimit broad categories such as environmental sounds, animal 855 

vocalizations, music and speech (Gygi and Shafiro, 2013; Gygi et al., 2004, 2007; Woolley et 856 

al., 2005; Singh and Theunissen, 2003) in terms of modulation cues, but within these 857 

categories, defining invariant features is a difficult task. Here, the use of vocalizations 858 

belonging to the same category of the guinea pig repertoire, i.e. “whistles”, may explain both 859 

the relatively poor discrimination abilities of cortical neurons compared to subcortical ones 860 

and the robustness of cortical responses to vocoding and background noise.  861 

From the present study, it appears that the subcortical structures engage significantly more 862 

neurons (20-40%) with high discrimination performance than the cortical areas (2-3% see Fig. 863 

5A), confirming that the neural code is rather sparse at the cortical level (Hromádka et al., 864 

2008), which might not be the case at the subcortical level. However, it is also possible that 865 

top-down projections coming from auditory cortex and reaching the thalamus, inferior 866 

colliculus and cochlear nucleus (Jacomme et al., 2003; Malmierca and Ryugo, 2011) 867 
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influence the neural discrimination at the subcortical level, especially in awake, behaving, 868 

animals. Thus, we can envision that in behaving animals, learning-induced cortical plasticity 869 

also contributes to enhancing the subcortical neural discrimination via the corticofugal 870 

projections. Further studies are required to determine to what extent these subcortical 871 

representations influence auditory abilities in animals and humans. 872 

 873 
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 1089 
 1090 

  
CN Lemniscal pathway 

Non-
lemniscal 
pathway 

CNIC MGv A1 VRB 

Number of animals 10 11 10 11 5 

Number of recordings tested 672 478 448 544 192 

TFRP only 560 421 285 455 126 

TFRP and significant response to at 
least one vocalization 499 386 262 354 95 

TFRP quantifications 

BF Range (kHz): min-max 0.18 - 18 0.34 - 36 0.33 - 33 0.14 - 36 0.67 - 36 

Mean bandwidth (octave) 3.91 2.88 4.16 2.07 1.79 

Mean response duration (ms) 26.83 35.37 17.31 43.73 44.83 

Response strength (AP/sec) 77.23 82.25 41.61 37.69 19.97 
 1091 

 1092 
Table 1. Summary of the number of animals, number of selected recordings and TFRP 1093 
quantifications in each structure. 1094 
 1095 
 1096 
 1097 
 1098 

 1099 
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Figure Legends 1100 
 1101 
Figure 1. Spectrograms, spectra and temporal envelopes of the acoustic stimuli. A-C. 1102 
Spectrograms (A), spectra (B) and temporal envelopes (C) of the four original whistles used 1103 
in this study. D-F. From left to right, spectrograms (D), spectra (E) and temporal envelopes 1104 
(F) of the four vocoded whistles using 38, 20 and 10 frequency bands. G-I. From left to right, 1105 
spectrograms (G), spectra (H) and temporal envelopes (I) of the four original whistles 1106 
embedded in a vocalization-shaped stationary noise at three SNRs (+10, 0 and -10 dB).  1107 
 1108 
Figure 2. Evolution of the CorrCoef and MI mean values as a function of temporal 1109 
precision in each structure. A. The trial-to-trial temporal reliability, quantified by the 1110 
CorrCoef, was calculated from responses to original vocalizations with a width Gaussian 1111 
window varying from 1 to 50 ms in CN (in black), CNIC (in green), MGv (in orange), A1 (in 1112 
blue) and VRB (in purple). In our study, a 10-ms width Gaussian window (dashed black line) 1113 
was selected for the data analysis in each structure. B. Mutual information (in bits) was 1114 
calculated from neuronal responses to original vocalizations with a bin size varying from 1 to 1115 
40 ms in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in purple). 1116 
In this study, the value of 8 ms was selected for the data analysis because in each structure, 1117 
the MI value was maximal (dashed black line). This hold true also in the different conditions 1118 
of acoustic alterations, both in noise and vocoded conditions (data not shown). 1119 
 1120 
Figure 3. Subcortical neurons discriminate better the original vocalizations than cortical 1121 
neurons. A. From bottom to top, neuronal responses were recorded in CN, CNIC, MGv, A1 1122 
and VRB simultaneously under 16 electrodes but only two are represented here, with 1123 
alternated black and red colors. Each dot represents the emission of an action potential and 1124 
each line corresponds to each presentation of one of four original whistles. The grey part of 1125 
rasters corresponds to evoked activity. For each example, the values of the best frequency (BF 1126 
in kHz) and of the bandwidth (BW in octave) obtained when testing the responses to pure 1127 
tones are indicated in the left side. The waveforms of the four original whistles are displayed 1128 
under the rasters. B. Peristimulus time histograms (PSTHs) of each neuronal response 1129 
presented in A. For each neuronal recording, the four PSTHs of the four original whistles 1130 
have been overlayed.  1131 
C-F. The panels show the mean values of (C) the evoked firing rate (spikes/sec), (D) the trial-1132 
to-trial temporal reliability quantified by the CorrCoef value, (E) the neuronal discrimination 1133 
assessed by the mutual information (MI) computed at the level of the individual recording 1134 
(MIIndividual, bits) and (F) the neuronal discrimination at the population level (MIPopulation, bits) 1135 
with populations of 9 simultaneous multiunit recordings obtained with the four original 1136 
vocalizations in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in 1137 
purple). The evoked firing rate corresponds to the total number of action potentials occurring 1138 
during the presentation of the stimulus minus spontaneous activity (200 ms before each 1139 
acoustic stimulus). In each structure, error bars represent the SEM of the mean values and 1140 
black lines represent significant differences between the mean values (unpaired t test, 1141 
p<0.05). The evoked firing rate decreases from the CN to VRB but both the trial-to-trial 1142 
temporal reliability (CorrCoef) and the discrimination performance (MI) reach a maximal 1143 
value in MGv. Note also that at the population level, all the subcortical structures discriminate 1144 
better the original vocalizations than cortical areas. G. Scatter plots showing in each structure, 1145 
the strong correlations (0.77<r<0.88) between the CorrCoef and the MIIndividual (bits) values 1146 
obtained in original conditions.  1147 
 1148 
 1149 
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Figure 4. Diversity of neuronal discrimination performance in quiet for each structure 1150 
at the individual and population level. 1151 
A. Neural discrimination performance in response to original vocalizations in each 1152 
auditory structure. Waterfall plots show the mutual information (MI, bits) as a function of 1153 
temporal resolution (1 to 256 ms) for the selected recordings in CN (A1), CNIC (A2), MGv 1154 
(A3), A1 (A4) and VRB (A5). In each structure, the units are ranked by the mean MI value 1155 
obtained for all bin sizes. Note that there was a larger proportion of neurons with high values 1156 
of MI (close from the maximal value of 2 bits) in MGv, CNIC and CN (red curves) compared 1157 
to a much lower proportion in the cortical areas AI and VRB. 1158 
B. Population information quickly reaches high values with simultaneous multiunit 1159 
recordings at the subcortical but not cortical level. For each auditory structure, each thin 1160 
line represents a particular case of simultaneous recording with a maximum number of 1161 
electrodes (maximum 16 simultaneous multiunit recordings) and each thick line represents the 1162 
mean value of MIPopulation in CN (B1, in black), CNIC (B2, in green), MGv (B3, in orange), A1 1163 
(B4, in blue) and VRB (B5, in purple). Note that the mean MIPopulation value quickly reaches 1164 
high values close from the maximum value of 2 bits in the subcortical structures (CN, CNIC 1165 
and MGv) compared to the two cortical areas (A1 and VRB). 1166 
 1167 
Figure 5. High discrimination performance neurons are more numerous in subcortical 1168 
structures than in auditory cortex in original conditions. A. Cumulative percentage of the 1169 
neuronal discrimination performance obtained in original vocalizations assessed by the 1170 
mutual information (MI) computed at the level of the individual recordings (MIIndividual, bits) 1171 
and (B) at the population level (MIPopulation, bits) with populations of 9 simultaneous multiunit 1172 
recordings in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in 1173 
purple). 1174 
 1175 
Figure 6. Vocoding slightly alters neuronal responses at each stage of the auditory 1176 
system. A. From left to right, examples of raster plots representing the responses to the four 1177 
original whistles (Original) and their vocoded versions (Voc38, Voc20 and Voc10). The grey 1178 
part of rasters corresponds to evoked activity. From bottom to top, neuronal responses were 1179 
recorded in CN, CNIC, MGv, A1 and VRB. For each example, the values of the best 1180 
frequency (BF in kHz) and of the bandwidth (BW in octave) obtained when testing the 1181 
responses to pure tones are indicated in the left side. For each example, the mean evoked 1182 
firing rate (spikes/sec) obtained in each condition is indicated below the rasters. B. 1183 
Peristimulus time histograms (PSTHs) of each neuronal response presented in A. For each 1184 
neuronal recording, the four PSTHs of the original and vocoded conditions have been 1185 
overlayed. The grey part of the PSTHs corresponds to evoked activity. C-F. The mean values 1186 
(±SEM) represent the vocoding effects on (C) the evoked firing rate (spikes/sec), (D) the 1187 
temporal reliability represented by the CorrCoef value, (E) the neuronal discrimination 1188 
assessed by the mutual information (MI) computed at the level of the individual recordings 1189 
(MIIndividual, bits) and (F) the neuronal discrimination at the population level (MIPopulation, bits) 1190 
with populations of 9 simultaneous multiunit recordings in CN (in black), CNIC (in green), 1191 
MGv (in orange), A1 (in blue) and VRB (in purple) (one-way ANOVA, P < 0.05; with post-1192 
hoc paired t tests, *P <0.05). The evoked firing rate corresponds to the total number of action 1193 
potentials occurring during the presentation of the stimulus minus spontaneous activity (200 1194 
ms before each acoustic stimulus). At the population level, the discrimination performance 1195 
significantly decreased only for 10 frequency bands in subcortical structures and did not 1196 
decrease in cortical areas.  1197 
 1198 
 1199 
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Figure 7. Vocoding effects on the MIPopulation growth functions in each auditory 1200 
structure. The curves display the average growth functions of the MIPopulation for each 1201 
structure in each vocoding condition (indicated by a gradient colors) in CN (A, in black). 1202 
CNIC (B, in green), MGv (C, in orange), A1 (D, in blue) and VRB (E, in purple). In each 1203 
structure, the vocoding slightly reduced the MIPopulation values. At the cortical level, the 1204 
reduction induced by vocoding was similar at 38 and 20 bands, then a stronger reduction was 1205 
observed at 10 bands. At the thalamic level, there was almost no change in the growth 1206 
function of the MIPopulation with 38 and 20 bands vocalizations, but there was a large decrease 1207 
in MIPopulation with the 10-band vocoded stimuli. In the CNIC, the vocoding only induced a 1208 
reduction of the MIPopulation for 20 and 10 bands; a similar scenario was observed at the CN 1209 
level.  1210 
 1211 
Figure 8. Noise strongly reduces neuronal responses in all structures but to a lesser 1212 
extent in the central nucleus of the inferior colliculus. A. From left to right, raster plots of 1213 
responses of four original whistles (Original) and their noisy versions embedded in the 1214 
vocalization-shaped stationary noise at three SNRs: +10, 0 and -10 dB. The grey part of 1215 
rasters corresponds to evoked activity. From bottom to top, neuronal responses were recorded 1216 
in CN, CNIC, MGv, A1 and VRB. For each example, the values of the best frequency (BF in 1217 
kHz) and of the bandwidth (BW in octave) obtained when testing the responses to pure tones 1218 
are indicated in the left side. For each example, the mean evoked firing rate (spikes/sec) 1219 
obtained in each condition is indicated below the rasters. The green dashed box indicates a 1220 
typical example of CNIC neuronal responses that are resistant to the noise addition. B. 1221 
Peristimulus time histograms (PSTHs) of each neuronal response presented in A. For each 1222 
neuronal recording, the four PSTHs of the original and noisy conditions have been overlayed. 1223 
The grey part of the PSTHs corresponds to evoked activity. C-F. The mean values (±SEM) 1224 
represent the noise effects on (C) the evoked firing rate (spikes/sec), (D) the temporal 1225 
reliability represented by the CorrCoef value, (E) the neuronal discrimination assessed by the 1226 
mutual information (MI) computed at the level of the individual recordings (MIIndividual, bits) 1227 
and (F) the neuronal discrimination at the population level (MIPopulation, bits) with populations 1228 
of 9 simultaneous multiunit recordings in CN (in black), CNIC (in green), MGv (in orange), 1229 
A1 (in blue) and VRB (in purple) (one-way ANOVA, P < 0.05; with post-hoc paired t tests, *P 1230 
<0.05). The evoked firing rate corresponds to the total number of action potentials occurring 1231 
during the presentation of the stimulus minus spontaneous activity (200 ms before each 1232 
acoustic stimulus). At the population level, the discrimination performance significantly 1233 
decreased in all structures when the SNR decreased, with on average the CNIC populations 1234 
still able to discriminate 2 out of 4 stimuli (MIPopulationvalue >1bit).  1235 
 1236 
Figure 9. Noise effects on the MIPopulation growth functions in each auditory structure. 1237 
The curves display the noise effects on the MIPopulation growth functions for each structure and 1238 
at each SNR (indicated by a gradient colors) in CN (A, in black), CNIC (B, in green), MGv 1239 
(C, in orange), A1 (D, in blue) and VRB (E, in purple). In general, background noise largely 1240 
altered the growth functions of the MIPopulation in each structure (but to a lesser extent in the 1241 
CNIC). In the CN, noise induced a stronger reduction of the MIPopulation, which was clearly a 1242 
function of SNR. In the CNIC, noise induced SNR-dependent reduction in the MIPopulation 1243 
values, the reduction being modest at a +10 and 0 dB SNR but more important at a -10 dB 1244 
SNR. In the MGv, noise progressively lowered the curves of the MIPopulation. In the cortex, the 1245 
MIPopulation growth functions were not strongly impacted except at the -10 dB SNR. 1246 



 

38 

 1247 
Figure 10. A subpopulation of CN neurons maintains good neuronal discrimination 1248 
performance at a +10 dB SNR.  1249 
A. Waterfall plot shows the mutual information (MIIndividual, bits) as a function of temporal 1250 
resolution (1 to 256 ms) for the CN recordings at +10 dB SNR. The recordings are ranked by 1251 
the mean MI value obtained for all bin sizes. Note that at this particular SNR, 20% of the CN 1252 
recordings still maintained MIIndividual values above 1 bit, indicating that some CN neurons 1253 
still send information about the vocalization identity at higher brainstem centers such as the 1254 
CNIC. B. Distributions of the Time-Frequency Response Profile (TFRP) parameters (best 1255 
frequency, bandwidth, response duration and response strength) for the two neuronal 1256 
populations in CN depending of the MI value (in grey, MI>=1bit and in black, MI<1bit). Note 1257 
that, there were significant differences in terms of response duration and the response 1258 
strength. C. The curves display the individual and average growth functions of the MIPopulation 1259 
for the simultaneous CN recordings at the +10 dB SNR. Note that despite the fact that the 1260 
mean MIPopulation value was much lower than in the original condition (see figure 4B1), about 1261 
20% of the simultaneously recorded populations reached a value of 1.5 bits with 9 neurons or 1262 
less (red curve lines). 1263 
 1264 
Figure 11. No relationship between the mutual information and the parameters of 1265 
TFRPs (the best frequency, BF and the bandwidth, BW) at each stage of the auditory 1266 
system.  1267 
A. Typical examples of Time-Frequency Response Profile (TFRP) recorded in VRB, AI, 1268 
MGv, CNIC and CN.  These TFRPs are examples of responses to pure tones and the first 1269 
column also corresponds to the same neurons as those presented in figures 3, 5 and 7. From 1270 
left to right, the maximal firing rate (in spikes/sec) was 100 and 220 in VRB, 195 and 200 in 1271 
AI, 460 and 420 in MGv, 315 and 250 in CNIC and 340 and 330 in CN. From these TFRPs, 1272 
we extracted parameters such as the best frequency (in kHz), the bandwidth (in octave), the 1273 
response duration (in ms) and the response strength (in spikes/sec). B. Noise effect on 1274 
neuronal discrimination (MIIndividual, bits) according to the best frequency (BF). Scattergrams 1275 
of the MIIndividual values obtained at the +10 dB SNR as a function of the MIIndividual values 1276 
obtained with the original vocalizations based on neuronal responses recorded in CN, CNIC, 1277 
MGv, A1 and VRB. We separated the recordings in three groups according to the best 1278 
frequency: BF< 5kHz (in red), 5<= BF <= 15 kHz (in blue) and BF > 15 kHz (in green). 1279 
MIIndividual mean values are represented with a black cross. C. Noise effect on neuronal 1280 
discrimination (MIIndividual, bits) according to the bandwidth (BW). Scattergrams of the 1281 
MIIndividual values obtained at the +10 dB SNR as a function of the MIIndividual

 

values obtained 1282 
with the original vocalizations based on neuronal responses recorded in CN, CNIC, MGv, A1 1283 
and VRB. We separated the recordings in three groups according to the bandwidth: BW <= 2 1284 
octaves (in red), 2 <= BW <= 4 octaves (in blue) and BW >= 4 octaves (in green). MIIndividual 1285 
mean values are represented with a black cross. Note that, in all structures, the decrease in 1286 
MIIndividual value from the original conditions to the +10 dB SNR occurred whatever the BF 1287 
and the BW values. 1288 
 1289 
Figure 12. Reduction of slow AM cues as one of the factors explaining the neuronal 1290 
discrimination performance at the subcortical and cortical levels. A. Vocoding and noise 1291 
effects on the amplitude-modulation (AM) spectra. The plot represents the averaged 1292 
modulation spectra of the four original vocalizations (in black), vocoded vocalizations 1293 
(Voc38, Voc20 and Voc10: red, green and blue respectively, solid lines) and vocalizations in 1294 
noise at three SNRs (+10, 0 and -10 dB: red, green and blue respectively, dashed lines). 1295 
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Vertical black dashed line corresponds to the maximum frequency (20 Hz) selected for the 1296 
data analysis. 1297 
B. Percentage of ΔMIPopulation as a function of Δmodulation index computed for each structure 1298 
from mean MIPopulation or mean modulation-index values obtained in all adverse conditions and 1299 
mean values in the original condition. Each dot represents neuronal data (ΔMIPopulation) in CN 1300 
(in black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in purple). Polynomial 1301 
curves fitting all acoustic conditions have been generated (color lines). In all conditions 1302 
(vocoding or noise), there is a limit of AM reduction from which the ΔMIPopulation decreases in 1303 
cortical and subcortical structures.  1304 
 1305 
 1306 


























