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Biosketch 38 
Tamara Münkemüller studies the ecological processes that drive community assembly, the resilience 39 
of communities to environmental change and feedbacks between the plant and soil compartment. Her 40 
work builds on different types of models (from mechanistic simulation models to statistical models 41 
integrating multiple species) and on different types of data (from observational data to experimental 42 
data). 43 
 44 
  45 



Abstract 46 

Aim: More than ever, ecologists seek to understand how species are distributed and have 47 

assembled into communities using the ‘filtering framework’. This framework hypothesizes that 48 

local assemblages result from a series of abiotic and biotic filters applied to regional species 49 

pools, and that these filters leave predictable signals in observed diversity patterns. In theory, 50 

statistical comparisons of expected and observed patterns enable data-driven tests of assembly 51 

processes. However, so far this framework has fallen short in delivering generalizable 52 

conclusions, challenging whether (and how) diversity patterns can be used to better characterize 53 

and understand underlying assembly processes.  54 

Methods: By synthesizing the previously raised critiques and suggested solutions in a 55 

comprehensive way, we identify ten pitfalls that can lead to flawed interpretations of α-diversity 56 

patterns, summarize solutions developed to circumvent these pitfalls and provide general 57 

guidelines. 58 

Results: We find that most issues arise from an overly simplistic view of potential processes 59 

that influence diversity patterns, that is often motivated by practical constraints on study design, 60 

focal scale and methodology. We outline solutions for each pitfall, such as methods spanning 61 

over spatial, environmental or phylogenetic scales, and suggest guidelines for best scientific 62 

practices in community ecology. Among key future challenges are the integration of 63 

mechanistic modeling and multi-trophic interactions. 64 

Conclusion: Our conclusion is that the filtering framework still holds promise, but only if 65 

researchers successfully navigate major pitfalls, foster the integration of mechanistic modelling 66 

and multi-trophic interactions and directly account for uncertainty in their conclusions. 67 

 68 
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1. Introduction 71 

The diversity of ecological communities is increasingly compromised by ongoing global 72 

changes (Pereira, Navarro & Martins, 2012). Mitigating these threats requires to understand the 73 

distribution of diversity along geographic, abiotic and biotic gradients and the underlying 74 

assembly processes (Lavergne, Mouquet, Thuiller & Ronce, 2010; HilleRisLambers, Adler, 75 

Harpole, Levine & Mayfield, 2012). A focal question is whether abiotic constraints or rather 76 

biotic interactions drive the taxonomic and trait structure of communities. In community 77 

ecology, this question has historically been addressed by experiments, with the limitation that 78 

these methods are typically constrained to small scales and few species. Thus, to study 79 

community assembly at large spatial scales, ecologists have assembled increasingly large 80 

community datasets spanning broad spatial extents with both trait and phylogenetic information 81 

(Diaz, Kattge, Cornelissen, Wright, Lavorel et al., 2016; Kunstler, Falster, Coomes, Hui, 82 

Kooyman et al., 2016, see Fig. 1a, b ). Trait diversity describes the within-community variation 83 

of species’ characteristics relevant for their performance, while phylogenetic diversity describes 84 

the evolutionary history. Combining data on distribution, traits and phylogeny in a meaningful 85 

way holds promise for a revolution in community ecology by opening the door to large-scale 86 

analyses of assembly processes (Webb, Ackerly, McPeek & Donoghue, 2002; Mc Gill, Enquist, 87 

Weiher & Westoby, 2006). The idea is to harness the information on species niches contained 88 

in phylogenetic and trait data. For example, under the assumption that a set of traits represents 89 

species’ niches well, we could move from a simple species-based description of communities 90 

towards a functional characterization, using community weighted mean traits as an estimate of 91 

the community niche optimum, and trait diversity as an estimate of species niche overlap (see 92 

below for more detail, Violle, Navas, Vile, Kazakou, Fortunel et al., 2007; Kraft, Valencia & 93 

Ackerly, 2008).  94 



In practice, this idea has mostly been implemented through the filtering framework 95 

(Diamond, 1975; Keddy, 1992) that builds on the assumption that both abiotic (e.g. climate or 96 

land use) and biotic factors (e.g. competition) define species’ carrying capacities and/or growth 97 

rates and thus influence their occurrences and abundances (Fig. 1d). The abiotic conditions 98 

define the environmental filters selecting species from a regional species pool, originally shaped 99 

by biogeographical history (Carstensen, Lessard, Holt, Krabbe Borregaard & Rahbek, 2013), 100 

into the local species pool containing all species adapted to the local conditions. Then, biotic 101 

interactions influence which species from the local pool can eventually coexist in the 102 

community (Shmida & Ellner, 1984; Chesson, 2000). This deterministic view assumes that 103 

different ecological filters should lead to distinct and predictable patterns in diversity and 104 

composition. Comparing these expected patterns with observed diversity across abiotic and 105 

biotic gradients should then allow for deducing underlying community assembly processes, 106 

thus moving large-scale community ecology from a purely descriptive discipline to a more 107 

process-based understanding (Leibold, Holyoak, Mouquet, Amarasekare, Chase et al., 2004; 108 

Vellend, 2010; Morin, Fahse, Scherer-Lorenzen & Bugmann, 2011). 109 

Relatively early on, studies that began to apply the framework used trait diversity patterns 110 

(e.g. including behavioural, life-history, morphological and physiological traits, Violle et al., 111 

2007) and phylogenetic relatedness (Webb et al., 2002) to account for species’ niche 112 

similarities. Doing so assumes that measured traits are relevant for assembly processes 113 

(Mayfield, Boni & Ackerly, 2009) and that closely related species in the phylogeny are 114 

ecologically more similar than distantly related ones (Burns & Strauss, 2011). Trait-phylogeny 115 

relationships different from these assumptions would lead to different relationships between 116 

niche similarity and phylogenetic relatedness patterns (Webb et al., 2002). To infer assembly 117 

processes, observed patterns of trait and phylogenetic diversity within a community (i.e. α-118 

diversity) are commonly compared to null expectations (i.e. patterns under random assembly, 119 



Fig. 1c). Low trait or phylogenetic α-diversity is assumed to indicate ecological processes that 120 

foster the co-occurrence of species with similar niches, such as environmental filtering (Fig.1b, 121 

community A, see also Appendix S1 in Supporting Information). Conversely, high trait or 122 

phylogenetic α-diversity can reveal ecological processes that result in limiting similarity, such 123 

as competition due to niche overlap (Fig.1b, community B, see also Appendix S1, Mac Arthur 124 

& Levins, 1967).  125 

An increasingly large number of studies apply the filtering framework (see Appendix S2). 126 

However, first reviews and meta-analyses of empirical (Emerson and Gillespie 2008, Vamosi 127 

et al. 2009, Götzenberger et al. 2012, HilleRisLambers et al. 2012) and simulation experiments 128 

(Münkemüller, de Bello, Meynard, Gravel, Lavergne et al., 2012; Gallien, Carboni & 129 

Münkemüller, 2014; Miller, Farine & Trisos, 2017) have strongly dampened the enthusiasm, 130 

as they demonstrate that no simple general conclusion can be drawn from the sole observation 131 

of trait and phylogenetic diversity patterns. One prominent example is the ongoing debate on 132 

the role of competition: While the filtering framework often fails to pinpoint signals of 133 

competition, theoretical and empirical research underscores its importance even at broad scales 134 

(see Appendix S3 for a detailed discussion). Seemingly, we are not much further than 20 years 135 

ago when Lawton concluded that community ecology is a ‘mess’ (Lawton, 2000). The lingering 136 

question is why the filtering framework does not provide general results even though it is built 137 

on strong ecological theories (Chesson, 2000; Leibold et al., 2004).  138 

Here, we address this question by pinpointing the major pitfalls linked to the different steps 139 

of the standard filtering approach (Fig. 1). While many of the limitations of this framework 140 

have already been pointed out in previous reviews with various foci and levels of detail, and 141 

sometimes also in combination with possible solutions (e.g. Gerhold, Cahill, Winter, Bartish & 142 

Prinzing, 2015; Lopez, Burgio, Carlucci, Palmquist, Parada et al., 2016; Pontarp, Brännström 143 

& Petchey, 2019), an overarching synthesis and a set of general guidelines for correctly 144 



applying the filtering framework is still lacking. Building on existing work, we provide a novel 145 

comprehensive and structured overview of the different pitfalls and the solutions that have been 146 

developed (Tab. 1). We use the ongoing debate on the ecological importance of biotic 147 

interactions at large scales as an exemplary showcase (Appendix S3). Based on the integration 148 

of reviewed work we then suggest step-by-step guidelines for correctly applying the filtering 149 

framework that should result in better interpretable results in community ecology.   150 

 151 

2. Common Pitfalls   152 

Applying the filtering framework requires (1) choosing the study design with focal spatial, 153 

environmental and organism-level scales, (2) collecting information and (3) choosing 154 

methodological approaches relevant to the research question. Finally, (4) conclusions are drawn 155 

from the results while accounting for study limitations. In the following, we review 10 different 156 

pitfalls lying in wait along these steps. 157 

 158 

2.1 Study design 159 

The key aim of studies applying the filtering framework is to identify non-random processes in 160 

observed diversity patterns. One of the most discussed cases of non-random diversity patterns 161 

that exist despite the evident absence of directional environmental or biotic filters are neutral 162 

dynamics. Neutral theory suggests that many of the diversity patterns observed in nature may 163 

result from purely stochastic demographic processes that emerge from strong competition and 164 

dispersal limitation of functionally equivalent species and thus without any directional filter 165 

(Hubbell, 2001; Münkemüller et al., 2012; Boucher, Thuiller, Davies & Lavergne, 2014). 166 

However, whether neutral dynamics lead to non-random diversity patterns depends on the focal 167 

scale of a study, and this is true for directional assembly processes as well. It is thus a pitfall to 168 



assume that: (P1) spatial, environmental and organism-level scale choices have no influence on 169 

study results (Fig. 1). 170 

(P1) Certain processes may never be detected if we chose an inappropriate scale. First, 171 

ignoring large-scale factors, such as climate gradients, dispersal barriers, historical 172 

contingencies and evolutionary history can mask outcomes of smaller-scale processes such as 173 

local abiotic filters and competition (Cavender-Bares, Keen & Miles, 2006; Swenson, Enquist, 174 

Pither, Thompson & Zimmerman, 2006; Vamosi, Heard, Vamosi & Webb, 2009; Cardinale, 175 

Gross, Fritschie, Flombaum, Fox et al., 2013). Second, ignoring small-scale factors, such as 176 

intraspecific variation in trait values (Albert, de Bello, Boulangeat, Pellet, Lavorel et al., 2012; 177 

Siefert, Violle, Chalmandrier, Albert, Taudiere et al., 2015) and the fine scale spatial 178 

arrangement of individuals (Diekmann, Law & Metz, 2000), can lead to overlooking the 179 

underlying processes as their effects may not scale up to large-scale diversity patterns (Thuiller, 180 

Gallien, Boulangeat, de Bello, Munkemuller et al., 2010; Araujo & Rozenfeld, 2014; Turcotte 181 

& Levine, 2016). For example, it has been shown that trait plasticity increases niche differences 182 

in communities and thereby stabilize coexistence and promote diversity (Pérez-Ramos, Matías, 183 

Gómez-Aparicio & Godoy, 2019). This biotic filtering mechanism would remain unnoticed 184 

when relying solely on species’ mean traits. Third, ignoring small-scale environmental variation 185 

within the community and study site may lead to high diversity in low-resolution studies and 186 

can then be easily misinterpreted as a signal of limiting similarity (Price, Tamme, Gazol, Bello, 187 

Takkis et al., 2017).  188 

 189 

2.2 Collecting information 190 

Trait and phylogenetic diversity are often used as proxies for niche overlap, yet this common 191 

practice is often challenged (Cadotte, Albert & Walker, 2013; Gerhold et al., 2015; Li, Ives & 192 



Waller, 2017). It is thus a pitfall to assume that: (P2) trait and phylogenetic diversity are always 193 

good proxies for species niche overlap (Fig. 1). 194 

(P2) A first set of questions with regard to trait diversity is whether we are able to identify 195 

and measure the traits of ecological relevance for each (Mc Gill et al., 2006; Funk, Larson, 196 

Ames, Butterfield, Cavender-Bares et al., 2017), whether traits are closely enough linked to 197 

species niches (D'Andrea, Ostling & O'Dwyer James, 2018) and whether we can avoid 198 

irrelevant traits that might confound the patterns and lead us to spurious conclusions (Kraft, 199 

Godoy & Levine, 2015). This task is facilitated by former work (e.g. Leps, de Bello, Lavorel 200 

& Berman, 2006) and some more recent advancements: For some clades and ecological 201 

processes, guidelines for the identification of relevant traits and database standards are now 202 

available (Luck, Lavorel, McIntyre & Lumb, 2012; Diaz et al., 2016; Gravel, Albouy & 203 

Thuiller, 2016; Schneider, Jochum, Le Provost, Ostrowski, Penone et al., 2018), open-access 204 

databases are improving (Kattge, Díaz, Lavorel, Prentice, Leadley et al., 2011; Wilman, 205 

Belmaker, Simpson, de la Rosa, Rivadeneira et al., 2014), and trait syndromes (i.e. observed 206 

covariations in traits) can help to reduce trait space to a few relevant dimensions (Wright, Reich, 207 

Westoby, Ackerly, Baruch et al., 2004; Diaz et al., 2016). However, in many aspects, trait 208 

science still remains incomplete (Yang, Cao & Swenson, 2018): (i) frameworks to link traits 209 

and niche dimensions are still under development for most clades (e.g. for fungi, Crowther, 210 

Maynard, Crowther, Peccia, Smith et al., 2014), (ii) even in well-studied clades, some traits are 211 

better studied than others (e.g. plant leaf traits over root traits, Funk et al., 2017), (iii) it is not 212 

obvious at what level traits need to be measured (individual or population, Albert et al., 2012), 213 

and (iv) the relative importance of traits can change over the life cycle (Kunstler et al., 2016). 214 

Another question is whether it is more informative to analyse each trait separately or in 215 

combination. The main argument for the former is that different traits may drive different 216 

processes, and that analyses should thus be process and trait specific (Bernard-Verdier, Navas, 217 



Vellend, Violle, Fayolle et al., 2012; Gross, Boerger, Soriano-Morales, Le Bagousse-Pinguet, 218 

Quero et al., 2013; Spasojevic, Copeland & Suding, 2014). On the other hand, ecological niches 219 

are multidimensional and, consequently, multi-trait diversity is more likely to capture niche 220 

overlap between species across multiple niche dimensions (Kraft et al., 2015). Moreover, traits 221 

are correlated as a result of physiological trade-offs. Ignoring these trade-offs may lead to 222 

spurious conclusions (Wüest, Münkemüller, Lavergne, Pollock & Thuiller, 2018). However, 223 

recent work shows that at least some community patterns are robust to the negligence of a 224 

relevant niche axis (D'Andrea et al., 2018). 225 

Using phylogenetic diversity in the filtering approach assumes that phylogenetic relatedness 226 

is a good proxy for overlap in the multidimensional niche space (Burns & Strauss, 2011; 227 

Anacker & Strauss, 2016). However, phylogeny does not always represent relationships of traits 228 

that are relevant for species’ niches (Blomberg, Garland & Ives, 2003; Saito, Cianciaruso, 229 

Siqueira, Fonseca-Gessner & Pavoine, 2016), and phylogenetic signal of relevant traits should 230 

be tested, rather than assumed. Yet, this poses severe methodological problems (as discussed 231 

in detail in Gerhold et al., 2015). Moreover, relevant traits for this test are often not available 232 

and if they are available it is not evident how they should be combined to represent species 233 

‘niches’ and how strong the signal should be (Mason & Pavoine 2013). Most importantly, if all 234 

niche-relevant traits were known and available, phylogenetic proxies would not be needed. 235 

 236 

2.3 Methodological approach 237 

It has been demonstrated that different methodological choices can give different answers 238 

(Münkemüller, Gallien, Lavergne, Renaud, Roquet et al., 2014; Perronne, Munoz, Borgya, 239 

Reboud & Gaba, 2017). Thus, pitfalls three, four and five are to assume that (P3) all supposedly 240 

similar diversity indices give the same results and that the construction of (P4) adequate species 241 



pools and (P5) randomization algorithms for testing deviations from expectations is obvious 242 

and straightforward (Fig. 1). 243 

(P3) A common pitfall is to assume that different diversity indices can be used 244 

interchangeably. While some diversity indices are indeed highly redundant, others quantify 245 

different aspects of diversity (Mouchet, Villéger, Mason & Mouillot, 2010; Tucker, Cadotte, 246 

Carvalho, Davies, Ferrier et al., 2017). Changing the diversity index can thus change or even 247 

invert the observed pattern of diversity (Chalmandrier, Münkemüller, Lavergne & Thuiller, 248 

2015; Mazel, Davies, Gallien, Groussin, Münkemüller et al., 2016; Perronne et al., 2017). 249 

Indices can differ in whether they account for (i) species abundances or not (Hill, 1973; Chao, 250 

Chiu & Jost, 2010; Leinster & Cobbold, 2012), (ii) intraspecific variability or not (Violle, 251 

Enquist, McGill, Jiang, Albert et al., 2012; Pavoine & Izsak, 2014) (iii) different phylogenetic 252 

(e.g. species, family vs. order level) or functional scales (e.g. species vs. functional groups), 253 

and (iv) different dimensions of the structure of assemblages, such as richness, divergence and 254 

regularity (Villeger & Mouillot, 2008; Tucker et al., 2017). While classification schemes for 255 

available diversity metrics can help choose an appropriate index (Pausas & Verdu, 2010; 256 

Pavoine, Vela, Gachet, de Bélair & Bonsall, 2011; Tucker et al., 2017), it is not always evident 257 

which index is the most appropriate for a specific research question.  258 

(P4) The species pool is generally defined as the set of all species existing in a given region 259 

that could colonize a focal community (Srivastava, 1999), but other definitions exist (Cornell 260 

& Harrison, 2014). In practice, the species pool often is the list of species in the studied dataset, 261 

often the result of practical constraints rather than ecological hypotheses. However, ideally, it 262 

should be defined based on the focal filtering process that the study sets out to test. Thus, it 263 

should include all species that would be selected in the community both with the focal process 264 

(filtering) and without it (randomly), but should not include any additional species resulting 265 

from another process not of interest. The choice of the species pool affects the null hypothesis 266 



associated with the null model and consequently can change the results of the analyses (Lessard, 267 

Belmaker, Myers, Chase & Rahbek, 2012; Pigot & Etienne, 2015). For example, competition 268 

can be overlooked when it resulted in the complete exclusion of species from the pool ("dark 269 

diversity", Pärtel, Szava-Kovats & Zobel, 2011). In addition, the spatial extent at which the 270 

species pool is defined changes the detectability of certain assembly rules. Typically, signals of 271 

competition are prone to be overwritten by strong environmental filtering when the study area 272 

includes steep environmental gradients (Willis, Halina, Lehman, Reich, Keen et al., 2010). 273 

Importantly, not only species richness but also trait diversity in the species pool influences 274 

patterns of diversity in local communities (Patrick & Brown, 2018). 275 

(P5) The randomization scheme used to create a null distribution of diversity values also has 276 

a critical impact on the outcome of the analysis (Gotelli, 2000; Miller et al., 2017). 277 

Randomization breaks down patterns in the data that are caused by ecological processes. 278 

Ideally, a chosen randomization algorithm would only break down the patterns that are 279 

supposed to be generated by the process(es) of interest. However, algorithms often randomize 280 

several patterns at the same time, including those that are not of interest, and thus test several 281 

null hypotheses simultaneously. A significant result indicates only that at least one of the null 282 

hypotheses can be rejected, but we do not know which one. For example, a high signal of 283 

phylogenetic α-diversity obtained from a null model randomizing the sites can indicate 284 

competition but also that the abundance distribution in the phylogenetic tree is non-random 285 

(testing implicitly another null hypothesis, Hardy, 2008). Thus, the interpretation of a non-286 

random pattern is not always straightforward. This problem of non-specific randomization 287 

algorithms has launched the development of more constraining algorithms (Hardy, 2008; Miller 288 

et al., 2017), often at the expense of statistical power. 289 

 290 

2.4 Drawing conclusions 291 



The most basic shortcoming of the filtering approach is inherent to most observational 292 

studies in ecology—it is impossible to deduce a process from an observed pattern in the strict 293 

sense. However, given the complexity of nature, ecological research often uses pattern 294 

observations to formulate hypotheses or to conclude that a pattern is in (dis)agreement with 295 

hypothesized processes. The three major related pitfalls are to assume: (P6) that one pattern can 296 

only emerge from one single process, (P7) that one major process dominates the observed 297 

pattern and (P8) that biotic interactions are simple (Fig. 1).  298 

(P6) Traditionally, clustered diversity patterns (i.e. coexisting species being in phylogenetic 299 

and trait space more similar than expected by chance) have been attributed to an environmental 300 

filter (Fig. 1). However, competitive hierarchies can produce a similar pattern (Ågren & 301 

Fagerström, 1984; Mayfield & Levine, 2010; Kunstler et al., 2016, Appendix S1). Conversely, 302 

symmetric niche competition is assumed to produce overdispersed diversity (i.e. co-existing 303 

species being in phylogenetic and trait space more distant than expected by chance), but 304 

facilitation can also produce overdispersed diversity patterns (Valiente-Banuet & Verdu, 2007; 305 

McIntire & Fajardo, 2014, Appendix S1).  306 

(P7) When multiple processes interplay, interpreting biodiversity patterns can be misleading 307 

(Spasojevic & Suding, 2012). This problem occurs not only when multiple processes act jointly 308 

on the same species but also if different processes drive different groups of species in the 309 

community (e.g. rare vs. common species, Maire, Gross, Börger, Proulx, Wirth et al., 2012). 310 

For example, signals of environmental filtering are often stronger than those of competition and 311 

thus competition can be easily overlooked as an important driver of assembly (e.g. the overall 312 

diversity pattern is clustered while environmentally binned sub-tests would reveal 313 

overdispersed diversity patterns,  Chalmandrier, Münkemüller, Gallien, de Bello, Mazel et al., 314 

2013; Gallien et al., 2014).  315 



(P8) Ignoring the complex nature of biotic interactions and assuming that the only relevant 316 

biotic filter is symmetric competition is another common pitfall. After Mayfield and Levine 317 

(2010) highlighted that large parts of coexistence theory were commonly ignored, more and 318 

more contributions have developed expectations for diversity patterns structured by biotic 319 

interactions other than symmetric niche competition (HilleRisLambers et al., 2012; Adler, 320 

Fajardo, Kleinhesselink & Kraft, 2013, Appendix S1). For example, for hierarchical 321 

competition, clustering of species in trait or phylogenetic space could emerge from competition 322 

for one limiting resource because only species with adapted traits for this resource will survive 323 

(e.g. when species compete for light only tall species will survive, Mayfield & Levine, 2010). 324 

In contrast, overdispersion is expected to emerge from competition for multiple resources when 325 

the respective adaptive traits are different for the different resources (Scheffer & van Nes, 326 

2006). Contrasting diversity patterns are also expected to depend on the type of facilitative 327 

interactions that take place in a community (Appendix S1). For example, if species facilitate 328 

each other symmetrically via the same mechanism (e.g. flowers of similar colour attract 329 

common pollinators; mutualism), species with similar traits should coexist, leading to trait 330 

clustering. However, if one “benefactor” species facilitates others with different life strategies 331 

(e.g. commensalism), species with different traits could coexist, resulting in overdispersion or 332 

random patterns (Valiente-Banuet & Verdu, 2007; Gallien, Zurell & Zimmermann, 2018). 333 

Furthermore, complex indirect interactions, such as multi-species indirect facilitation and 334 

intransitive competition (competition as in the rock-paper-scissors game, without competitive 335 

hierarchies; Gilpin, 1975; May & Leonard, 1975), may also be important drivers of community 336 

structure (Allesina & Levine, 2011; Vandermeer, 2011). For these interactions it may be 337 

impossible to generate clear expectations for emerging diversity patterns, especially when 338 

multispecies coexistence processes are not the mere sum of their pairwise interaction outcomes 339 

(Barabas, Michalska-Smith & Allesina, 2016; Gallien, 2017; but see Maynard, Bradford, 340 



Lindner, van Diepen, Frey et al., 2017). Moreover, multi-trophic biotic interactions are so far 341 

largely ignored (Grilli, Barabas, Michalska-Smith & Allesina, 2017). There are a few first 342 

example studies investigating bipartite interaction networks (Van der Plas, Anderson & Olff, 343 

2012; Ibanez, Arene & Lavergne, 2016). However, the great challenge lies in extrapolating 344 

concepts of niche matching, associated trait and phylogenetic diversity patterns and cascading 345 

feedbacks from bipartite to multi-trophic communities (Levine, Bascompte, Adler & Allesina, 346 

2017).  347 

 348 

Beyond these pitfalls inherent to the investigated processes, there are further pitfalls 349 

associated to unrelated processes but influential to the studied patterns and thus to the final 350 

conclusions. A common misconception of the filtering framework is that we can test for a 351 

selection of ecological assembly processes while ignoring background factors. In reality, 352 

biogeography, evolution and ecological processes jointly influence species’ distributions 353 

(Warren, Cardillo, Rosauer & Bolnick, 2014). Common pitfalls are to assume that (P9) 354 

dispersal and historical contingencies can be ignored and that (P10) communities are at 355 

equilibrium (Fig. 1).  356 

 (P9) While they can shape the richness and functional-trait diversity of regional species 357 

pools (see also P4), diversification and historical contingencies are commonly ignored in 358 

community ecology studies (Warren et al., 2014). These processes are often thought to act at 359 

regional rather than local scales (i.e. driving the evolution of regional species pools), but long-360 

standing evidence shows that this simplistic dichotomy of different processes acting exclusively 361 

at particular scales is fraught with exceptions in the real world (Johnson & Stinchcombe, 2007). 362 

Regional species pools and the processes that led to their establishment can sometimes be more 363 

important for local community composition than assembly processes (Ricklefs, 1987; 364 

Chalmandrier, Albouy & Pellissier, 2017; Lawing, Eronen, Blois, Graham & Polly, 2017). In 365 



some cases, both evolutionary and ecological processes occur at the same local community 366 

scale (Pollock, Bayly & Vesk, 2015). This problem is even more complicated by the fact that 367 

some ecological and biogeographical processes can create the same taxonomic or phylogenetic 368 

patterns. For example, from a community ecology standpoint, ‘phylogenetic dispersion’ in a 369 

clade can be interpreted as a sign of competitive exclusion, while from a biogeographic 370 

perspective, this same pattern can be interpreted as allopatric speciation (Warren et al., 2014).  371 

 (P10) The fundamental assumption that communities are at equilibrium underlies most 372 

efforts to understand community assembly (Gerhold et al., 2015). However, in the era of the 373 

Anthropocene, many observed communities are already exposed to changing environmental 374 

conditions and/or the invasion of alien species and thus represent a transient phase. In a transient 375 

phase, rapid changes in abiotic and biotic conditions can lead species to not completely fill their 376 

potential range, or to occur in unsuitable habitats (Ackerly, 2003). Thus, in these transient 377 

communities current diversity patterns may not well reflect ongoing assembly processes but 378 

rather responses to past conditions (Mittelbach & Schemske, 2015; Chang & HilleRisLambers, 379 

2016). For example, a recent study shows that climatic legacies can explain a relevant part of 380 

the variation in current community assembly (Delgado-Baquerizo, Eldridge David, Travers 381 

Samantha, Val, Oliver et al., 2018). 382 

 383 

3. Solutions 384 

By now it is well acknowledged that the filtering approach alone will not bring the hoped-for 385 

revolution in large-scale community ecology (Ricklefs, 2008, see also discussion in Appendix 386 

S3 on the importance of competition at large spatial scales as a showcase). Here, we first review 387 

proposed solutions organized along the different steps commonly used in the filtering 388 

framework (comparable to the pitfall section) and point out how each of these solutions can 389 

solve (or partly solve) the different pitfalls (Tab. 1). Next, we highlight novel methods, 390 



theoretical advances and newly available data that could prove their utility for community 391 

assembly questions. 392 

 393 

3.1 Study design 394 

We have seen that the filtering approach requires a number of choices and that each of these 395 

choices can affect (or even invert) the results (Münkemüller et al., 2014). It is therefore 396 

especially important that, at the beginning of a study, the general research question is translated 397 

into specific hypotheses and testable predictions (Fig. 2). Based on these, the study design can 398 

be developed. 399 

The scale dependence of assembly processes was recognized early on, with most studies 400 

focusing on the effects of spatial scales (Kraft & Ackerly, 2010; Carboni, Münkemüller, 401 

Gallien, Lavergne, Acosta et al., 2013), less on the level of description of organisms (e.g. 402 

functional group vs. species vs. individual level) or different life-stages (Conti, Block, Parepa, 403 

Münkemüller, Thuiller et al., 2018), and very few on temporal scales (Chang & 404 

HilleRisLambers, 2016). To deal with scale dependence, studies have compared diversity 405 

patterns across different scales to separately test for signals of small- vs. large-scale processes 406 

(solution S1, Tab. 1). A straightforward approach is a sampling design across different spatial 407 

grains and extents, levels of description of organisms and temporal scales (Cavender-Bares et 408 

al., 2006; Weithoff, Rocha & Gaedke, 2015), including space-for-time substitutions (Bhaskar, 409 

Dawson & Balvanera, 2014). Sampling and studying diversity patterns across several scales 410 

(either using a multi-scale sampling design or a posteriori data aggregation approaches) is an 411 

obvious solution when scale choices are important but not easy to make (pitfall P1), for example 412 

when influential background factors are scale-dependent as well (e.g. dispersal, P9). This 413 

approach can also help to disentangle processes that create similar patterns at one scale but 414 

contrasting patterns at others (P6, P8), and to identify the interplay of processes that act at 415 



different scales (P7). For example, for trait diversity of plant communities there is some 416 

evidence for the dominance of competitive interactions at fine spatial scales and prevalent 417 

environmental filtering at coarser scales (Cavender-Bares et al., 2006; Carboni et al., 2013). 418 

Applying the filtering approach to dynamic response variables (S2, Tab. 1), such as 419 

demographic rates, is a well-known solution for several pitfalls but mostly hampered by data 420 

availability. Instead of asking ‘do species occur more often with similar or different species?’ 421 

we ask ‘do species perform better with similar or different species in the neighbourhood?’, 422 

thereby relating the measured performance of focal individuals to their trait and phylogenetic 423 

(dis)similarity with their neighbours. At larger spatial scales this has been tested in systems 424 

where time-series of species performance are available, like in long-term forest plots (Kunstler, 425 

Lavergne, Courbaud, Thuiller, Vieilledent et al., 2012), or in systems that provide natural 426 

experiments, such as invaded communities (Carboni, Münkemüller, Lavergne, Choler, Borgy 427 

et al., 2016). More recently, researchers set up experiments to test for the link between 428 

community assembly and trait or phylogenetic diversity patterns (Fayle, Eggleton, Manica, 429 

Yusah & Foster, 2015; Conti et al., 2018). Experimentally manipulating the environmental and 430 

biotic factors that drive assembly filters allows controlling a number of influential background 431 

factors (P9-10) and scale dependencies (P1). In such experiments, individual success is not 432 

approximated by a single presence or abundance measure, but is captured via demographic rates 433 

at different stages (Li, Guo, Cadotte, Chen, Kuang et al., 2015; Conti et al., 2018). Performance 434 

is often more responsive to ecological drivers than survival and may thus be more suited to 435 

measure responses in non-equilibrium situations. Moreover, long time-series can reveal insights 436 

into community assembly and provide solutions for non-equilibrium situations (P9-10). For 437 

example, time series can be used to estimate the relative importance of environmental filtering, 438 

historical legacies and new biotic interactions in the species composition of a community in the 439 

face of past, current, and future climates (Blonder, Nogues-Bravo, Borregaard, Donoghue, 440 



Jorgensen et al., 2015). They can also be used to better understand the turnover of processes 441 

during succession (Letten, Keith & Tozer, 2014).  442 

 443 

3.2 Collecting information 444 

Because numerous pitfalls can bias results when focusing solely on one partial aspect of 445 

biodiversity (e.g. P2-3), community ecologists started early on to consider complementary 446 

facets of diversity (S3, Tab. 1), by comparing diversity indices between phylogenetic scales and 447 

at different levels of trait similarity, e.g. close to the root vs. tips in a trait-based tree (Swenson, 448 

Erickson, Mi, Bourg, Forero-Montana et al., 2012; Graham, Storch & Machac, 2018), between 449 

richness, regularity and divergence components (Raevel, Violle & Munoz, 2012), as well as by 450 

varying the importance of species abundances (Chalmandrier et al., 2015; Götzenberger, Botta-451 

Dukát, Lepš, Pärtel, Zobel et al., 2016) and intraspecific variability (Pavoine & Izsak, 2014; 452 

Chalmandrier, Münkemüller, Colace, Renaud, Aubert et al., 2017). Guidelines for choosing the 453 

right trait and phylogenetic information come from studies from related fields. For example, 454 

studies applying the concept of trait syndromes and accounting for several traits simultaneously 455 

can aid the choice of trait combinations (Diaz et al., 2016). However, because different traits 456 

drive different processes, there is now reasonable consensus that analysing multiple traits 457 

separately can uncover important signals in the data that would have remained undetected if all 458 

traits had been analysed together (Saito et al., 2016). Moreover, complementing trait diversity 459 

indices with community-weighted mean (CWM) traits can inform about differences in 460 

functional strategies between communities and thus can allow teasing apart drivers that leave 461 

the same signal in trait diversity. For example, while both environmental filtering for infertile 462 

soils and hierarchical competition for light should result in clustering (Appendix S1), the former 463 

should select for slow-growing, small species while the latter should select for fast-growing, 464 

taller species (Kunstler et al., 2012). 465 



For phylogeny-based analyses, approaches that account for the uncertainty of the phylogeny 466 

(Rangel, Colwell, Graves, Fucikova, Rahbek et al., 2015) and the uncertainty concerning the 467 

underlying trait evolution process (Gerhold et al., 2015) can aid in more correctly interpreting 468 

phylogenetic pattern analyses. Ultimately, because trait and phylogenetic information might not 469 

give equivalent information on species niches (P2), considering them jointly probably 470 

represents the most sensible course of action. For example, one may complement phylogenetic 471 

measures with trait information (Pavoine & Bonsall, 2011; Lopez et al., 2016; de Bello, 472 

Smilauer, Diniz, Carmona, Lososova et al., 2017; Gianuca, Declerck, Cadotte, Souffreau, De 473 

Bie et al., 2017), or integrate trait and phylogenetic information in a single measure in order to 474 

converge as close as possible to the multidimensional niche (Cadotte et al., 2013). In sum, 475 

moving forward from traditional single-metric analyses, a combination of different trait and 476 

phylogenetic metrics can help to disentangle processes and to detect multiple interacting 477 

processes, including different modes of competition (P6-8) and ecological vs. evolutionary 478 

processes (P9, Weinstein, Tinoco, Luis Parra, Brown, McGuire et al., 2014).  479 

 480 

3.3 Methodological approach 481 

In our description of pitfalls P4 and P5, we highlighted that the choice of species pools and 482 

randomization schemes can decisively influence the outcomes of an analysis (Ulrich & Gotelli, 483 

2013). Often different choices are (more or less) implicitly linked to different ecological 484 

hypotheses (Gotelli & Ulrich, 2012). Thus, by explicitly linking each ecological hypothesis 485 

with the correct combination of species pool and randomization we can develop a set of tests 486 

for disentangling different ecological scenarios (S4, Tab. 1). This approach offers a direct 487 

solution to the methodological pitfalls (P3-5) and can help circumvent the challenge of 488 

disentangling patterns and processes by providing multiple-pattern comparisons (P6-7). For 489 

example, depending on the ecological hypothesis to be tested, it can be important to account 490 



explicitly for the dynamic nature of the species pool, recognizing that it is shaped by 491 

metacommunity dynamics as well as speciation, extinction, and dispersal (Mittelbach & 492 

Schemske, 2015). Indeed, Lessard et al. (2016) have demonstrated that the implementation of 493 

several process-based species pools, i.e. species pools that already account for selected 494 

processes and thus can be used to test for the remaining candidates, allows the identification of 495 

otherwise hidden filters of biotic interactions. Manipulations of the species pools can also be 496 

used to simulate cross-scale sampling instead of investing the time and money to actually 497 

sample across different scales (Chalmandrier et al., 2013). For example, aggregating 498 

communities or cutting out smaller study areas can create ranges of spatial scales, whereas 499 

aggregating species or transforming phylogenies can create ranges of different levels of 500 

description of organisms (Münkemüller et al., 2014). Following a similar logic, it is also 501 

possible to build reduced functional species pools already accounting for environmental and 502 

dispersal limitation filters at broader scales that can then be used to test simultaneously acting 503 

processes at community-scale (de Bello, Price, Münkemüller, Liira, Zobel et al., 2012). In 504 

addition, manipulations of the randomization algorithm can be used to account for dispersal 505 

limitations by down-weighting species that do not occur in the larger surroundings (P9), and 506 

improve the detection of biotic interactions by down-weighting species for which the local 507 

environment is not suitable (Peres-Neto, Olden & Jackson, 2001; Chalmandrier et al., 2013).  508 

More recently, community ecologists started to validate their methods and models with the 509 

“virtual ecologist” approach, where simulated data are used to mimic real species and how they 510 

are “virtually” observed and analysed (Zurell, Berger, Cabral, Jeltsch, Meynard et al., 2010). 511 

This validation allows testing the reliability and power of metrics, species pool and 512 

randomization choices (Münkemüller et al., 2012; Botta-Dukat & Czucz, 2016; Miller et al., 513 

2017). Additionally, it allows investigating how interacting processes and constraints 514 

(including biotic interactions, scale-dependency, trait choices and confounding background 515 



factors) influence results of the filtering framework (Trisos, Petchey & Tobias, 2014). Thus, 516 

this approach does not provide direct solutions for any pitfall, but – when using appropriate 517 

simulation models – is a powerful tool to further develop or test the filtering approach and to 518 

carefully interpret observed signals in diversity data (S5, Tab. 1). The limitation of this 519 

approach inherently depends on the quality of the simulated data, and its conclusions are 520 

restricted to cases that are comparable to these virtual data (see Zurell et al., 2010 for more 521 

detail). 522 

To avoid P7 (assuming that one process dominates the patterns), more and more approaches 523 

are being developed to jointly model multiple processes instead of testing for a single, dominant 524 

process (S6, Tab. 1). The range of approaches is large. Some are simple extensions of the 525 

original filtering framework. For instance, it is possible to account simultaneously for 526 

environmental filtering and symmetric competition by relying on the (strong) assumption that 527 

this should lead to a pattern where species are not too similar (i.e. due to competitive exclusion) 528 

and not too dissimilar (due to environmental filtering) to each other at the same time and by 529 

testing for this pattern (e.g. with a quadratic term in a regression model, Gallien et al., 2014). 530 

Another possibility is to build elaborate null models that allow the inclusion of multiple 531 

ecological and evolutionary processes (see also S3). Van der Plas et al. (2015) introduced static, 532 

stepwise algorithms of community assembly that simulate processes such as dispersal, 533 

environmental filtering or competition and allow estimating their relative importance. Pigot and 534 

Etienne (2015) developed a dynamic null model of assembly that allows estimating the effect 535 

of allopatric speciation, colonization and local extinction. Ultimately, the idea is to build more 536 

mechanistic, dynamic models of community assembly (Connolly, Keith, Colwell & Rahbek, 537 

2017; Pontarp, Brännström, et al., 2019) that are general enough to include and contrast 538 

different ecological theories and processes and can be parameterized inversely with a selection 539 

of complementary diversity patterns (Cabral, Valente & Hartig, 2017). The logic of this inverse 540 



parameterization, in simple terms, is to run the model across the relevant parameter space, to 541 

compare simulated patterns with observed patterns using appropriate summary statistics, and 542 

to choose the parameter combinations that lead to the best match between simulated and 543 

observed patterns (Grimm, Revilla, Berger, Jeltsch, Mooij et al., 2005; Hartig, Calabrese, 544 

Reineking, Wiegand & Huth, 2011). A coherent and efficient statistical method for this inverse 545 

parameterization of complex ecological and evolutionary models is approximate Bayesian 546 

computation (Csilléry, Blum, Gaggiotti & François, 2010). Interpretation of the identified best 547 

parameter values allows quantifying the relative influence of the different ecological, 548 

biogeographic and evolutionary processes (Pontarp, Bunnefeld, Cabral, Etienne, Fritz et al., 549 

2019). Very importantly, the parameterized model could also be used to account for transient 550 

dynamics (P10) and to make predictions, so far largely unattained aims in large-scale 551 

community ecology. Examples of such mechanistic models exist already (Kalyuzhny, Kadmon 552 

& Shnerb, 2015; Cazelles, Mouquet, Mouillot & Gravel, 2016; Lohier, Jabot, Weigelt, Schmid 553 

& Deffuant, 2016) but many  processes and process combinations are still understudied in this 554 

young research field (Cabral et al., 2017). Interestingly, developing and applying such 555 

mechanistic models in community ecology will strongly benefit from the solutions outlined 556 

here (S1-4) as these provide a range of partly independent diversity patterns (e.g. trait vs. 557 

phylogenetic patterns, abundance weighted patterns, small vs. large-scale patterns), an 558 

indispensable requisite for inverse parameterization (Grimm, Frank, Jeltsch, Brandl, 559 

Uchmanski et al., 1996). Even though this approach of jointly modelling different processes of 560 

assembly is very promising, substantial challenges remain (Cabral et al., 2017). For example, 561 

calibration and validation are data hungry, computationally demanding, and requires strong 562 

expert knowledge.  563 

 564 

3.4 Drawing conclusions  565 



Observational approaches, including the filtering framework, were never meant to provide 566 

final answers to questions about ecological mechanisms and processes, but to feed an ongoing 567 

scientific process of generating knowledge and general theories (Garland, 2015). Observational 568 

studies are supposed to help refine, alter, expand and test hypotheses and to inform further 569 

observations, experiments and mechanistic models (see Fig. 2). In a single observational study, 570 

it is typically not possible to sample all the necessary data or to apply all the above outlined 571 

solutions. For very complex filters (e.g. complex biotic interactions that differ for different 572 

species pairs) there may not exist solutions at all. This is not a problem per se as long as these 573 

limitations are considered in the conclusions drawn from results. Ultimately, a combination of 574 

studies using observations, experiments and mechanistic models with different strengths and 575 

limitations will advance our understanding of ecological processes and their importance in 576 

realistic vs. laboratory environments.  577 

 578 

3.5 Future developments and challenges 579 

Novel methods, theoretical advances and newly available data offer opportunities, but also pose 580 

challenges to the study of community assembly. Their application for inferring assembly rules 581 

from diversity patterns has just started. While broad-scale testing remains to be undertaken, we 582 

highlight here general ideas and the potential benefits to community assembly research in each 583 

of these areas: 584 

(1) One strong, and certainly in most cases wrong, assumption of the filtering approach is 585 

that all species interact with each other (and based on the same underlying processes). Species 586 

distribution modelling techniques that allow estimating the covariation of species while 587 

modelling their response to abiotic variables may help to relax this assumption (e.g. joint 588 

species distribution models, Clark, Gelfand, Woodall & Zhu, 2014; Pollock, Tingley, Morris, 589 

Golding, O'Hara et al., 2014). The estimated residual covariance matrices in JSDMs can result 590 



from model misspecification, influential but hidden abiotic variables, but could potentially also 591 

result from biotic interactions and thus be a signal of assembly rules (Ovaskainen, Tikhonov, 592 

Norberg, Blanchet, Duan et al., 2017; Tikhonov, Abrego, Dunson & Ovaskainen, 2017; Zurell, 593 

Pollock Laura & Thuiller, 2018). To better understand the ecological meaning of these residual 594 

covariance matrices, one could test them using simulated data (Zurell et al., 2018), or one could 595 

link empirically estimated covariance matrices to trait and/or phylogenetic diversity patterns 596 

assuming that a strong correlation would indicate ecological meaning. However, since they rely 597 

on correlation matrices, these approaches can only focus on testing for symmetric interactions, 598 

which strongly limit their application for inferring interactions.  599 

(2) Recent advances in multi-trophic network theory have highlighted the links of trait 600 

(Albouy, Guilhaumon, Villeger, Mouchet, Mercier et al., 2011; Crea, Ali & Rader, 2016) and 601 

phylogenetic relationships (Aizen, Gleiser, Sabatino, Gilarranz, Bascompte et al., 2016; Peralta, 602 

2016) with biotic interactions in the networks. Specific interactions are linked to specific trait 603 

combinations and thus to trait and phylogenetic diversity patterns. For example, it has been 604 

shown for plant–insect interaction networks that certain traits define sets of potentially 605 

interacting species and define clear patterns of clustering on the phylogenies of plants and 606 

insects (Ibanez et al., 2016). For food webs, Morlon et al. (2014) have suggested and applied a 607 

novel framework to estimate the strength of filters of “trophic environment” vs. food-mediated 608 

interspecific competition in community assembly. The framework uses trophic similarities, 609 

measured via shared predators or prey, and null models. In a similar approach, for multi-trophic 610 

tropical fish communities, it was recently highlighted that traits linked to feeding strategies or 611 

trophic level (measured based on stable isotope ratios) played an important role in community 612 

assembly and accordingly left significant signals in trait diversity (Fitzgerald, Winemiller, 613 

Sabaj & Sousa, 2017). Advances in this direction open the door for moving from single-trophic 614 

to multi-trophic community assembly (Gravel et al., 2016). Ultimately, integrating 615 



complementary information on species differences from traits, phylogenies and interaction 616 

networks promises a better understanding of community assembly in space and time (Morlon 617 

et al., 2014).  618 

(3) Finally, new types of data are becoming rapidly available. One example is amplicon-619 

based DNA analysis of environmental samples (i.e. metabarcoding data, eDNA, Taberlet, 620 

Prud'homme, Campione, Roy, Miquel et al., 2012; Creer, Deiner, Frey, Porazinska, Taberlet et 621 

al., 2016). These data provide new information on the potential presence of organisms for 622 

calculating diversity patterns (Martinez-Almoyna, Thuiller, Chalmandrier, Ohlmann, Foulquier 623 

et al., 2019; Calderón-Sanou, Münkemüller, Boyer, Zinger & Thuiller, 2020). Combined with 624 

databases or expert knowledge on functional traits, phylogenies or trophic meta-webs 625 

(containing information on all predator–prey interactions in a regional pool of present taxa) 626 

these diversity patterns allow to better approximate niche overlap in communities. The great 627 

advantage is the coverage of almost all prokaryote and eukaryote species present in a sample 628 

(or taxonomic units with lower resolution, depending on the reference libraries) and the 629 

integration over time (for example species are not missed only because they were not visible at 630 

the sampling time). While promising, eDNA data also bring new uncertainty with respect to 631 

traditional surveys, such as amplification errors, DNA degradation and contamination and 632 

barcode assignation (Taberlet et al., 2012), because reference databanks of DNA sequences that 633 

can be used to identify taxonomic units are still incomplete and impede the traditional use of 634 

diversity indices based on species concepts (Coissac, Taberlet, Roquet, Boleda, Gielly et al., 635 

2015). However, methodological advances in this area will help address earlier limitations (e.g. 636 

data limitation for pollination networks, Pornon, Andalo, Burrus & Escaravage, 2017; 637 

Calderón-Sanou et al., 2020), and allow studying entirely new types of ecosystems (e.g. by 638 

combining soil metabarcoding with information from trait databases one can study the interplay 639 

of fungi and bacteria with nematodes and plants, Anslan, Bahram & Tedersoo, 2016; Tedersoo, 640 



Bahram, Cajthaml, Polme, Hiiesalu et al., 2016). Another promising new type of data comes 641 

from transcriptomic and meta-transcriptomic approaches (Gotelli, Ellison & Ballif, 2012; 642 

Wang, Kong, Li & Xie, 2016). These high-throughput methods allow identifying the proteins 643 

or genes being produced by individuals or entire communities at the time of sampling (e.g. 644 

environmental proteomics). The patterns of differential protein production and expression 645 

provide a direct assessment of physiological responses to abiotic and biotic stimuli and thus to 646 

the niche use of individuals or communities. The diversity of expressed functions could help 647 

give insights into assembly processes that are much more tightly linked to the actual 648 

physiological responses than the standard trait diversity measures that are often based on “soft” 649 

traits (i.e. few easily measurable features). For example, a recent community-wide 650 

transcriptomic analysis has supported the Janzen-Connell hypothesis by demonstrating that 651 

growth rates and survival of individual trees were higher when the neighbourhood consisted of 652 

trees with dissimilar (rather than similar) defense genes (Zambrano, Iida, Howe, Lin, Umana 653 

Maria et al., 2017). However, even more than with metabarcoding, this approach adds 654 

uncertainty with respect to traditional surveys that are linked to sampling, laboratory work and 655 

interpretation of results (Wang et al., 2016). 656 

 657 

4. Guidelines  658 

Based on our critical synthesis of pitfalls and available solutions (Tab. 1), we suggest 659 

considering the following steps when applying the filtering framework: 660 

(1) Translate research question(s) into specific hypotheses and testable predictions. The 661 

expected patterns in support of each hypothesis must be identified a priori, and each hypothesis 662 

should be tested against each of these predetermined patterns (Fig. 2 and solution S4).  663 

 (2) Assemble all data necessary to answer the research question (across scales and diversity 664 

facets) but not more (S1, S3). Importantly, use existing naturalist knowledge to decide on 665 



ecologically relevant traits. Including extraneous species or irrelevant traits, or conducting the 666 

analysis at an inappropriate scale can obscure or distort any signal in the diversity patterns. 667 

 (3) Measure dynamic response variables in a spatially explicit context and consider 668 

complementing with targeted experiments if the research question and setting allow for it (S2). 669 

This seems especially important when focusing on biotic interactions or studying communities 670 

that are far from equilibrium.  671 

(4) Select the diversity metrics most appropriate to the question of interest based on the 672 

conceptual framework and existing naturalist knowledge (S3). 673 

(5) Choose species pools and randomization techniques such that null models only break the 674 

pattern to be tested and not additional patterns (S4). If this is not possible, use a combination of 675 

tests that together allow an unbiased answer to the research question. Test the sensibility of this 676 

methodological choice and interpret in consequence (S5).  677 

(6) If possible, test for the reliability and power of the chosen approach with simulated data 678 

(S5).  679 

(7) Test whether signals identified as significant are congruent across the a priori identified 680 

relevant patterns for each research hypothesis and always interpret them together (Fig. 2, S6). 681 

(8) If your research question is complex (e.g. implies a multitude of processes or is linked to 682 

evolutionary history) it may be necessary to build and parameterize a mechanistic simulation 683 

model that embraces the underlying complexity and allows disentangling the different drivers 684 

(S6).  685 

(9) Remember that studying causal processes in the strict sense always requires an experiment 686 

and accordingly report results of pattern analyses with the necessary care (Fig. 2).  687 

 688 

 689 

 690 



Conclusion 691 

If we are to fully exploit the filtering framework for a better understanding of community 692 

assembly, we need to: (i) ensure we rely on the solutions provided for most of the known pitfalls 693 

(Tab. 1) and follow the guidelines suggested here for good scientific practice, (ii) improve 694 

current solutions that begin to accommodate multiple confounding processes, more complex 695 

biotic interaction types, and different spatial scales, and (iii) integrate the rapidly accumulating 696 

types of new data (e.g. environmental metabarcoding) that represent more diverse and so far 697 

largely unknown communities (e.g. soil microbes) across an ever-increasing spatial scope. 698 

Adapting the filtering approach to circumvent traditional pitfalls, account for uncertainty, and 699 

accommodate new data –all while retaining core fundamental ideas– holds promise to 700 

significantly improve our understanding of the ever-widening definition of the ecological 701 

community. 702 
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Table 1249 

Table 1. Six solutions to pitfalls with examples from the literature: In green the pitfall they 1250 
directly address, in blue the pitfalls that they can indirectly help to solve; Check marks 1251 
indicate how well developed the solutions are.  1252 
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(S1) Consider alternative scales of analysis ✔✔           
• sample at different spatial and taxonomic scales [1]           
• account for temporal (e.g. seasonal) dynamics in sampling design [2] 
•  

          
• simulate a variation of spatial and taxonomic scales with adapted null models [3]           
• across environmental gradients and variation [4]           

(S2) Measure more dynamic responses ✔           
• demographic rates as response variable [2]           
• set up experiments [2]           
• invasive species as “natural experiments” [5]           
• sample time-series [6]           

(S3) Consider different biodiversity aspects and indices ✔✔           
• traits need to be adequately chosen and grouped [7] 

 
          

• integrate trait and phylogenetic diversity [8]           
• weight species by their abundances [9]           
• incorporate intra-specific variability [9]           
• compare richness, regularity and divergence [10]           
• different indices for testing symmetric vs. hierarchical competition [11]           

(S4) Consider alternative species pools and randomizations ✔✔           
• use more ecological based species pools [12]           
• partition diversity across evolutionary periods [13]           
• choose appropriate randomization algorithms [14]           

(S5) Validate and test the approaches applied ✔           
• undertake robustness analyses to identify mismatches between tests [15]           
• apply virtual ecologist approach, with tests of analyses using simulated data [16]           
• account for uncertainty in phylogenies [17]           

(S6) Model multiple processes jointly ✔           
• indirectly with regressions by accounting for non-linear responses [18]           
• estimating relative importance of env. filtering, competition and dispersal [19]           
• explicitly account for allopatric speciation, colonization and local extinction [20]           
• mechanistic models with inverse parameterization based on diversity patterns [21]           

           [1] (Cavender-Bares et al., 2006); [2] (Conti et al., 2018); [3] (Münkemüller et al., 2014); [4] (Bryant, Lamanna, Morlon, Kerkhoff, Enquist et 1253 
al., 2008); [5] (Carboni et al., 2016); [6] (Campbell & Mandrak, 2017); [7] (Leps et al., 2006); [8] (Cadotte et al., 2013); [9] (Chalmandrier et 1254 
al., 2015); [10] (Raevel et al., 2012); [11] (Kunstler et al., 2012); [12] (Lessard et al., 2016) ; [13] (Pavoine, Love & Bonsall, 2009); [14] 1255 
(Hardy, 2008); [15] (Aiba, Katabuchi, Takafumi, Matsuzaki, Sasaki et al., 2013); [16] (Münkemüller et al., 2012); [17] (Molina-Venegas & 1256 
Roquet, 2014); [18] (Gallien et al., 2014); [19] (Van der Plas et al., 2015); [20] (Pigot & Etienne, 2015); [21] (Pontarp, Brännström, et al., 1257 
2019) 1258 
 1259 
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Figure 1261 

Figure 1: Conceptual representation of the steps of the classical ecological filtering framework and related ten 1262 

common pitfalls (cf. left table and red points in the figure): (a) Identifying research question(s) and study design, 1263 

including focal organism level, spatial and temporal scales (potential pitfall 1); (b) sampling data, specifically 1264 

choice of traits and/or phylogeny (P2); (c) choice of methodological approaches, including diversity indices, null 1265 

models, species pools and statistical tests (P3-5) and, finally, (d) drawing conclusions on the potential underlying 1266 

processes, an approach with inherent problems (P6-7) but specific limitations in face of complex biotic interactions 1267 

(P8) and influential background factors (P9-10). 1268 

 1269 

Figure 2: Conceptual representation of the ongoing scientific process of generating knowledge and general 1270 

theories with the ecological filtering framework. The process often starts by an experience or undirected 1271 

observation (e.g. “plants in alpine meadows are often smaller than in sub-alpine meadows”) that leads to further 1272 

reflection about ecologically interesting questions (e.g. “why are plants smaller?”), related hypotheses (e.g. “plants 1273 

may be smaller due to environmental constraints”) and testable predictions (e.g. “plant height of alpine species is 1274 

a non-random selection from the mountain plant species pool”). To test these hypotheses, we suggest an interplay 1275 

of studies using observations, experiments, virtual ecologist approaches (to test the logic of process-pattern-1276 

predictions and methodological approaches) and/or parameterized mechanistic models to refine, alter, expand and 1277 

reject the hypotheses on ecological assembly processes. Each of the cycles can repeat many times until a hypothesis 1278 

becomes so well supported that it can advances community ecology as a corner stone of a more general theory 1279 

(inspired by the figure “The scientific method as an ongoing process” developed by Theodore Garland, University 1280 

of California, 2015). 1281 
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Common Pitfalls:  
Assuming that … 
P1 …. spatial, environmental and 

organism-level scale choices 
have no influence  

P2 …. trait and phylogenetic diversity 
are good proxies for niche 
overlap  

P3 …. all diversity indices give the 
same answer 

P4 …. construction of adequate 
species pools is obvious 

P5 …. adequate randomization is 
obvious  

P6 …. one pattern can only emerge 
from one process and 

P7 …. one major process dominates 
the observed pattern 

P8 …. biotic interactions are simple 
P9 …. dispersal and historical 

contingencies can be ignored 
P10 …. communities are at equilibrium 
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Appendix S1 Assembly processes and hypothesized diversity patterns  1292 

Appendix S2 Interest in the filtering framework over the last decade 1293 

Appendix S3 Showcase: No signal of biotic interactions? 1294 
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