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Abstract

Fast Incremental Expectation Maximization was introduced to design Expectation-
Maximization (EM) for the large scale learning framework involving finite-sum
and possibly non-convex optimization. In this paper, we first recast this iterative
algorithm and other incremental EM type algorithms in the Stochastic Approx-
imation within EM framework. Then, we provide non asymptotic convergence
bounds as a function of the number of examples n and of the maximal number
of iterations Kmax. We propose two strategies for achieving an ε-approximate
stationary point: either with Kmax = O(n2/3ε−1) or with Kmax = O(

√
nε−3/2),

both strategies relying on a random termination rule before Kmax and on a con-
stant step size in the Stochastic Approximation step. Our bounds are explicit
and improve over previous results. We provide a complexity bound which scales
as
√
n which improves over the bounds obtained so far; it is at the cost of a larger

dependence upon the tolerance ε thus making this control relevant for small to
medium accuracy with respect to the number of examples n. For the n2/3-rate,
our bounds show a numerical improvement thanks to a tighter definition of crucial
quantities playing a role in the efficiency of the algorithm.

∗This work is partially supported by the Fondation Simone et Cino Del Duca through the project
OpSiMorE, and by the French Agence Nationale de la Recherche (ANR), project under reference
ANR-PRC-CE23 MASDOL.
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1 Introduction

Expectation Maximization (EM) is a popular algorithm introduced by Dempster et al.
(1977) to solve non linear programming on Θ ⊆ Rd when the function F to be
minimized is defined through an integral:

F (θ) = − 1

n
log

∫
Zn

G(z; θ) dµn(z) , (1)

for n ∈ N \ {0}, a positive function G and a σ-finite positive measure µn on a mea-
surable set (Zn,Zn). EM is a Majorize-Minimization (MM) algorithm which, based
on the current value of the iterate θcurr, defines a majorizing function θ 7→ Q(θ, θcurr)
given, up to an additive constant, by

Q(θ, θcurr) = − 1

n

∫
Zn

logG(z, θ) G(z, θcurr) exp(nF (θcurr)) µn(dz) ;

then, the new point is chosen as the/a minimum of Q(·, θcurr). Each iteration of EM
is divided into two steps: the definition of the surrogate function is called the E step
(expectation step), and its optimization is the M step (maximization or minimization
step, depending on the convention). The computation of a function at each iteration
can be greedy and even intractable; in many models, logG has a special form: there
exist explicit functions φ : Θ → Rq and S : Z → Rq such that n−1 logG(z, θ) =
〈S(z), φ(θ)〉. In these cases, the function Q is defined by a vector s̄(θcurr), equal to
the expectation of the function S with respect to (w.r.t.) the probability distribution

dπθcurr
def
= G(·; θcurr) exp(nF (θcurr))dµn.

This paper is concerned with the optimization of a function F when Zn = Zn,
S(z) = n−1

∑n
i=1 si(zi), dµn(z) = ⊗ni=1dµ(zi) so that

F (θ) =
1

n

n∑
i=1

fi(θ), fi(θ)
def
= − log

∫
Z

exp(〈si(z), φ(θ)〉) dµ(z) ; (2)

it addresses the finite-sum setting in the case n is large so that the computation of
the full sum s̄(θcurr) = n−1

∑n
i=1

∫
sidπθcurr has to be avoided.

This framework is motivated by computational problems in large scale learning
when the n available data are modeled as independent; the function fi stands for a
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non-convex loss associated to the example #i and it can also include a penalty (or a
regularization) term. For finite-sum optimization, the existing EM-based algorithms
are incremental: at each iteration, a single example or a mini-batch is selected and
the E step uses this new information in an iterative updating mechanism of the Q-
quantity. The time to convergence of these incremental procedures is always a trade-
off between a loss of information since only part of the data are used per iterations,
and a quicker exploitation of the new information since the parameter is updated
more often without waiting the full scan of the data set.

A pioneering work in this vein is the incremental EM by Neal and Hinton (1998):
the data set is divided into B blocks and one block is visited per EM iteration chosen
through a deterministic cycle or through a random selection. The Q-quantity of
incremental EM is again a sum over n terms, but each E step consists in updating
only one term (or a block) in this sum while the original EM would update the n
terms. The role of the size of the blocks is studied for some specific applications (see
e.g. Ng and McLachlan (2003) for an application to inference of Gaussian mixture
models).

The online EM algorithm, proposed by Cappé and Moulines (2009), can be easily
adapted to the framework of an incremental processing of a large data set even if
originally, is was designed to process a stream of data. It is derived in the case the
function G is of the form exp(〈S(z), φ(θ)〉), which in the statistical context when F is
the negative normalized log-likelihood of the observations in a latent variable model,
means that the complete likelihood G is from the exponential family. In that case,
as explained above, the E step of EM is equivalent to the construction of expected
sufficient statistics s̄(θcurr); when this integration is intractable, Delyon et al. (1999)
proved that the successive E steps can be replaced with a Stochastic Approximation
(SA) procedure targeting the roots of a mean field h. Exploiting the parallel between
SA and gradient descent algorithms, online EM mimes what Stochastic Gradient De-
scent (see e.g. Bottou and Le Cun (2004)) is for finite-sum optimization. Going
further in this parallel, Chen et al. (2018) and Karimi et al. (2019c) proposed resp.
Stochastic EM with Variance Reduction (sEM-vr) and Fast Incremental EM (FIEM)
as variance reduction techniques within online EM as an echo to Stochastic Vari-
ance Reduced Gradient (SVRG, Johnson and Zhang (2013)) and Stochastic Averaged
Gradient (SAGA, Defazio et al. (2014)) introduced as variance reduction techniques
within Stochastic Gradient Descent.

In this paper, we aim to study such incremental EM methods combined with a
Stochastic Approximation approach. The first goal of this paper is to cast online EM,
incremental EM and FIEM into a framework called hereafter Stochastic Approxima-
tion within EM approaches; see subsection 2.3. We show that the E step of FIEM
can be seen as the combination of a SA update and of a control variate; we propose
to optimize the balance between these two quantities yielding to the optimized FIEM
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algorithm; this new algorithm is numerically explored in section 4.
The second and main objective of this paper, is to derive non asymptotic conver-

gence bounds for FIEM (see section 3).
Following Ghadimi and Lan (2013) (see also Allen-Zhu and Hazan (2016), Reddi

et al. (2016), Fang et al. (2018), Zhou et al. (2018) and Karimi et al. (2019c)), we pro-
pose to fix a maximal length Kmax and terminate a path {θk, k ≥ 0} of the algorithm
at some random time K uniformly sampled in the range {0, . . . ,Kmax − 1} prior the
run and independently of it; our convergence bounds control E

[
‖∇F (θK)‖2

]
and as a

corollary, we discuss how to fixKmax as a function of the sample size n in order to reach

an ε-approximate stationary point i.e.to find θ̂K,ε such that E
[
‖∇F (θ̂K,ε)‖2

]
≤ ε.

Such a property is sometimes called ε-accuracy in expectation (see e.g. (Reddi et al.,
2016, Definition 1)).

Karimi et al. (2019c) established that incremental EM, which picks at random
one example per iteration, reaches ε-accuracy by choosing Kmax = O(nε−1): even if
the algorithm is terminated at a random time K, this random time is chosen as a
function of Kmax which has to increase linearly with the size n of the data set. Karimi
et al. (2019b) and Karimi et al. (2019c) provide the same analysis for online EM and
FIEM showing that for both methods, ε-approximate stationarity is reached with
Kmax = O(n2/3ε−1) - here again, with one example picked at random per iteration.
For these reasons, online EM and FIEM are preferable especially when n is large (see
section 5 for a numerical illustration). Our major contribution in this paper is to show
that for FIEM, the rate depends on the choice of some design parameters. By choosing
a constant step size sequence in the SA step, depending upon n as O(n−2/3), then ε-
accuracy requires Kmax = O(n2/3ε−1); we therefore retrieve the conclusions of Karimi
et al. (2019c) but provide a value of the step size and a value of the convergence bounds
which improve on Karimi et al. (2019c) - as numerically illustrated in section 4. We
then prove that such an ε-accuracy is possible with Kmax = O(

√
nε−3/2) and another

strategy for the definition of the step size. To our best knowledge, this second result is
new: it provides a weaker dependence on n but a larger dependence on the tolerance
ε; the second approach is preferable for small to medium accuracy ε w.r.t. the size of
the data set n.

2 Stochastic Approximation within EM algorithms for
non-convex optimization

Notations. 〈a, b〉 denotes the standard Euclidean scalar product on R`, for ` ≥ 1;
and ‖a‖ the associated norm. For a matrix A, AT is its transpose. For a smooth
function φ, φ̇ denotes its gradient.
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2.1 A non-convex finite-sum optimization problem

This paper deals with EM-based algorithms to solve

Argminθ∈Θ F (θ), F (θ)
def
=

1

n

n∑
i=1

Li(θ) + R(θ) , (3)

where

Li(θ)
def
= − log

∫
Z
h̃i(z) exp (〈si(z), φ(θ)〉) µ(dz) , (4)

under the following assumption:

H 1. Θ ⊆ Rd is a measurable convex subset. (Z,Z) is a measurable space and µ
is a σ-finite positive measure on Z. The functions R : Θ → R, φ : Θ → Rq and
h̃i : Z → R+, si : Z → Rq for i ∈ {1, . . . , n} are measurable functions. Finally, for
any θ ∈ Θ and i ∈ {1, . . . , n}, −∞ < Li(θ) <∞.

Under H1, for any θ ∈ Θ and i ∈ {1, . . . , n}, the quantity pi(z; θ)µ(dz) where

pi(z; θ)
def
= h̃i(z) exp (〈si(z), φ(θ)〉+ Li(θ)) ,

defines a probability distribution on Z. We assume below that

H2. For all θ ∈ Θ and i ∈ {1, . . . , n}, the expectation

s̄i(θ)
def
=

∫
Z
si(z) pi(z; θ)µ(dz)

exists and is computationally tractable.

Define

s̄
def
=

1

n

n∑
i=1

s̄i . (5)

The framework defined by (3) and (4) covers many computational learning problems
such as empirical risk minimization with non-convex losses: R may include a regular-
ization condition on the parameter θ, n−1

∑n
i=1 Li is the empirical loss and Li is the

loss function associated to example #i.
Among applications concerned with the form (4) of the loss function, let us cite

the normalized negative log-likelihood in a latent variable models (see e.g. Little and
Rubin (2002)), when the complete data likelihood is from a curved exponential family
(see e.g. Brown (1986); Sundberg (2019) for properties of exponential families): the
additive form of the global loss n−1

∑n
i=1 Li(θ) is the consequence of an independence
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assumption on the n observations; in such models, the likelihood of the observation
#i is of the form

y 7→
∫
Z
h̃(y, z) exp(〈T (y, z), φ(θ)〉 − ψ(θ)) dµ(z)

which corresponds to (4) by setting h̃i(z)
def
= h̃(y, z) and si(z)

def
= T (y, z). The nor-

malizing constant exp(−ψ(θ)) can be part of the term R(θ) in (3).

2.2 A Majorize-Minimization approach based on EM

Given θ′ ∈ Θ, define the function F (·, θ′) : Θ→ R by

F (θ, θ′)
def
= −

〈
s̄(θ′), φ(θ)

〉
+ R(θ) +

1

n

n∑
i=1

Ci(θ′) ,

Ci(θ′)
def
= Li(θ′) +

〈
s̄i(θ

′), φ(θ′)
〉
.

The following result shows that {F (·, θ′), θ′ ∈ Θ} is a family of majorizing function
of the objective function F from which a Majorize-Minimization approach for solving
(3) can be derived under the following assumption:

H 3. For any s ∈ Rq, Argminθ∈Θ (−〈s, φ(θ)〉+ R(θ)) exists and is unique. It is
denoted by T(s).

When θ 7→ − 〈s, φ(θ)〉+R(θ) is continuous and either Θ is compact or the function
is coercive1 on Θ, then T(s) exists.

Proposition 1. Assume H1 and H2.

1. For any i ∈ {1, · · · , n} and θ′ ∈ Θ, Li(·) ≤ −〈s̄i(θ′), φ(·)〉+ Ci(θ′).

2. For any θ′ ∈ Θ, F ≤ F (·, θ′), and F (θ′, θ′) = F (θ′).

3. Assume also H3. Given θ0 ∈ Θ, the sequence defined by θk+1 def
= T ◦ s̄(θk) for

any k ≥ 0, satisfies F (θk+1) ≤ F (θk).

The proof is provided for completeness in subsubsection 6.1.1.
The algorithm described by item 3 of Proposition 1, is the EM algorithm: upon

noting that (3) is equivalent to the maximization of

θ 7→ log

∫
Zn

(
n∏
i=1

h̃i(zi)

)
exp

(〈
n∑
i=1

si(zi), φ(θ)

〉)
µ(dz1) . . . µ(dzn)− nR(θ) ,

1for any A > 0, there exist ρ,B > 0 such that if θ ∈ Θ and either ‖θ‖ ≥ B or d(θ,Θc) ≤ ρ, then
| − 〈s, φ(θ)〉+ R(θ)| ≥ A.
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the E step of the EM algorithm would compute the auxiliary quantity

Q(θ, τk)
def
=

∫
Zn

〈
n∑
i=1

si(zi), φ(θ)

〉
n∏
i=1

pi(zi; τ
k)µ(dzi)− nR(θ)

= n
〈
s̄(τk), φ(θ)

〉
− nR(θ) ,

given the current parameter τk; and then the M step would update the parameter by
setting τk+1 ∈ Argmaxθ∈Θ Q(θ, τk). It is easily seen that this mechanism is equal to
τk+1 = T ◦ s̄(τk).

The map T defined in H3 is therefore the maximization map of the M step in EM.
We assume that T is explicit even if the optimization may be constrained.

The assumption that T is defined for any s ∈ Rq may be restrictive for some
applications. When deriving theoretical analysis of EM-based algorithms, it is some-
times assumed that T is defined on a convex subset (and sometimes also compact)
S ⊆ Rq (see e.g. (Delyon et al., 1999, Assumption M5), (Fort and Moulines, 2003, As-
sumption M2), (Kuhn and Lavielle, 2004, Theorem 1), (Cappé and Moulines, 2009,
Assumption 1), (Allassonnière et al., 2010, Theorem 1), (Le Corff and Fort, 2013,
Section 4.1), (Karimi et al., 2019c, Assumption H4)). While in many applications,
it is difficult to prove that the argument of T remains in S - and often is not even
discussed - it is often observed that a smart implementation - such as a convenient
initialization - may make the conditions to be satisfied numerically (see e.g. Donnet
and Samson (2007), Cappé and Moulines (2009)). For the theoretical results derived
hereafter, we assume H3 which is the easiest way to cover the EM-based algorithms
studied here; it is out of the scope of this paper to address a more general case.

Starting from the current point θk, the iterative scheme θk+1 = T ◦ s̄(θk) first
computes a point in s̄(Θ) through the expectation s̄, and then apply the map T to
obtain the new iterate θk+1. It can therefore be described in the s̄(Θ)-space, a space
sometimes called the expectation space, being equivalently defined as follows: define
{s̄k, k ∈ N} by s̄0 ∈ Rq and for any k ≥ 0, and is

s̄k+1 def
= s̄ ◦ T(s̄k) . (6)

This approach in the expectation space comes up more naturally in the derivation of
incremental algorithms designed for the large scale learning setting; it will be adopted
throughout this paper.

Before deriving incremental EM-based methods, we conclude this section by a
discussion on the limiting points of the iterative method (6). Sufficient conditions for
the characterization of the limit points of any instance {s̄k, k ≥ 0} as the critical points
of F ◦T, for the convergence of the functional along the sequence {F ◦T(s̄k), k ≥ 0}, or
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for the convergence of the iterates {s̄k, k ≥ 0} towards the critical points of F ◦T exist
in the literature (see e.g. Wu (1983); Lange (1995); Delyon et al. (1999) in the EM
context and Zangwill (1967); Csiszár and Tusnády (1984); Gunawardana and Byrne
(2005); Parisi et al. (2019) for general iterative Majorize-Minimization algorithms).
Proposition 2 characterizes the fixed points of T◦s̄ and of s̄◦T under a set of conditions
which will be adopted for the convergence analysis in Section 3.

H4. 1. The functions φ and R are continuously differentiable on Θv where Θv def
=

Θ if Θ is open, or Θv is a neighborhood of Θ otherwise. T is continuously
differentiable on Rq.

2. The function F is continuously differentiable on Θv and for any θ ∈ Θ,

Ḟ (θ) = −
(
φ̇(θ)

)T
s̄(θ) + Ṙ(θ) .

3. For any s ∈ Rq, B(s)
def
= ˙(φ ◦ T)(s) is a symmetric q × q matrix with positive

minimal eigenvalue.

Under H1 to H4-item 1 and the assumption that Θ and φ(Θ) are open subsets of
resp. Rd and Rq, then Lemma 8 in subsubsection 6.1.3 shows that H4-item 2 holds
and the functions Li are continuously differentiable on Θ for all i ∈ {1, . . . , n}.

Under H1, H3 and the assumptions that (i) T is continuously differentiable on

Rq and (ii) for any s ∈ Rq, τ 7→ Q(s, τ)
def
= −〈s, φ(τ)〉 + R(τ) is twice continuously

differentiable on Θv (defined in H4-item 1), then for any s ∈ Rq, ∂2
τQ(s,T(s)) is

positive-definite and

B(s) =
(
Ṫ(s)

)T
∂2
τQ(s,T(s))

(
Ṫ(s)

)
;

see Lemma 9 in subsubsection 6.1.3. Therefore, B(s) is a symmetric matrix and if
rank(Ṫ(s)) = q = q ∧ d, its minimal eigenvalue is positive.

Proposition 2. Assume H1, H2 and H3. Define the measurable functions V : Rq →
R and h : Rq → Rq by

V (s)
def
= F ◦ T(s) , h(s)

def
= s̄ ◦ T(s)− s .

1. If s? is a fixed point of s̄◦T, then θ?
def
= T(s?) is a fixed point of T◦s̄. Conversely,

if θ? is a fixed point of T ◦ s̄ then s?
def
= s̄(θ?) is a fixed point of s̄ ◦ T.

2. Assume in addition H4. Then for all s ∈ Rq, V̇ (s) = −B(s) h(s); and the zeros
of h are the critical points of V .
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The proof is in subsubsection 6.1.2. As a conclusion, the EM algorithm summa-
rized in algorithm 1, is designed to converge to the zeros of

s 7→ h(s)
def
= s̄ ◦ T(s)− s , (7)

which, for some models, are the critical points of F ◦ T.
However, the computational cost per iteration of EM is proportional to the num-

ber n of examples, since it requires the computation of s̄ i.e. a sum over n terms.
It is therefore intractable in the large scale learning framework. We review in sub-
section 2.3 few alternatives based on an incremental approach, and proposed in the
literature to overcome this intractability.

Data: Kmax ∈ N, s̄0 ∈ Rq
Result: The EM sequence: s̄k, k = 0, . . . ,Kmax

1 for k = 0, . . . ,Kmax − 1 do
2 s̄k+1 = s̄ ◦ T(s̄k)

Algorithm 1: The EM algorithm in the expectation space

2.3 Stochastic Approximation within EM approaches

It was proposed in Delyon et al. (1999) to overcome the intractability of the expecta-
tion s̄ by substituting the induction s̄k+1 = s̄ ◦T(s̄k) with the definition of a random
sequence {Ŝk, k ≥ 0} satisfying

Ŝk+1 = Ŝk + γk+1

(
sk+1 − Ŝk

)
, (8)

where {γk, k ≥ 1} is a [0, 1]-valued deterministic positive sequence of step sizes (also
called learning rates) chosen by the user and sk+1 is a Monte Carlo approximation
of s̄ ◦ T(Ŝk); the definition of sk+1 is such that the updating rule (8) is a Stochastic
Approximation (SA) algorithm designed to target the zeros of the mean field h(s)
(see (7)); see e.g. Benveniste et al. (1990); Borkar (2008) for a general review on SA.
Many stochastic perturbations of EM can be described by (8): let us cite for example
the Stochastic EM Celeux and Diebolt (1985), or the Monte Carlo EM (introduced by
Wei and Tanner (1990) and studied by Fort and Moulines (2003)) which corresponds
to γk+1 = 1.

We review below some stochastic perturbations of EM, recently introduced to
overcome the large scale learning intractability. The originality of this review is to
recast these algorithms in a SA framework. For this purpose, the key observation is
the equality

h(s) = E [s̄I ◦ T(s)− s+ V ] (9)

9



where I is a uniform random variable on {1, . . . , n} and V is a zero-mean random
vector. Such an expression gives insights for the definition of SA schemes, including
the combination with a variance reduction techniques through an adequate choice of
V (see e.g. (Glasserman, 2004, Section 4.1.) for an introduction to control variates).
Since I is finitely sampled, the mean field h is from the finite-sum family of functions.

2.3.1 Online EM

A first natural idea is given by algorithm 2: at iteration (k+ 1), sk+1 is to sample at
random an example #Ik+1 ∈ {1, . . . , n} and to compute the expectation s̄Ik+1

◦T(Ŝk).
Each iteration only requires the computation of one expectation s̄i. This algorithm,

Data: Kmax ∈ N, Ŝ0 ∈ Rq, γk ∈ (0,∞) for k = 1, . . . ,Kmax

Result: The Online EM sequence: Ŝk, k = 0, . . . ,Kmax

1 for k = 0, . . . ,Kmax − 1 do
2 Sample Ik+1 uniformly on {1, . . . , n} ;

3 Ŝk+1 = Ŝk + γk+1

(
s̄Ik+1

◦ T(Ŝk)− Ŝk
)

.

Algorithm 2: The Online EM algorithm

hereafter called Online EM, corresponds to a SA scheme: Ŝk+1− Ŝk = γk+1Hk+1 with

Hk+1
def
= s̄Ik+1

◦T(Ŝk)− Ŝk satisfying E [Hk+1|Fk] = h(Ŝk); the filtration Fk is defined

by Fk
def
= σ(Ŝ0, I1, · · · , Ik). It is a natural extension of the online EM by Cappé and

Moulines (2009).
Different variants were proposed: instead of sampling a single observation among

a batch of size n (or incorporating a single new observation in a data stream), a
mini-batch of examples can be used: line 3 would get into

Ŝk+1 = Ŝk + γk+1

N−1
∑

i∈Ik+1

s̄i ◦ T(Ŝk)− Ŝk


where Ik+1 is a set of integers of cardinal N , sampled uniformly and with replacement
in {1, . . . , n}. Convergence of the iterates in the long-time behavior (Kmax →∞) for
online EM is addressed in Cappé and Moulines (2009); similar convergence results in
the mini-batch case for the ML estimation of exponential family mixture models were
recently established by Nguyen et al. (2020). Karimi et al. (2019a) and Kuhn et al.
(2019) also proposed an asymptotic convergence result, in the mini-batch case for the
ML estimation in latent variable models from the exponential family, combined with
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a Monte Carlo approximation of the expectations s̄i. Finally, non asymptotic error
rates are derived in Karimi et al. (2019b).

Note that an algorithm close to Online EM is proposed in Nowlan (1991): it
corresponds to an update of the statistic of the form Ŝk+1 = γŜk + s̄Ik+1

◦ T(Ŝk). A
convenient choice of γ seems to favor an exponential forgetting of out-of-date statistics;
and convergence to the same limiting value of EM is observed - when convergence is
observed which is not guaranteed.

2.3.2 The incremental EM algorithm

The Incremental EM (iEM) algorithm is described by algorithm 3. Lines 4 to 7 are

Data: Kmax ∈ N, Ŝ0 ∈ Rq, γk ∈ (0,∞) for k = 1, . . . ,Kmax

Result: The iEM sequence: Ŝk, k = 0, . . . ,Kmax

1 S0,i = s̄i ◦ T(Ŝ0) for all i = 1, . . . , n;

2 S̃0 = n−1
∑n

i=1 S0,i;
3 for k = 0, . . . ,Kmax − 1 do
4 Ik+1 ∼ U({1, . . . , n}) ;
5 Sk+1,i = Sk,i for i 6= Ik+1 ;

6 Sk+1,Ik+1
= s̄Ik+1

◦ T(Ŝk) ;

7 S̃k+1 = S̃k + n−1
(
Sk+1,Ik+1

− Sk,Ik+1

)
;

8 Ŝk+1 = Ŝk + γk+1(S̃k+1 − Ŝk)

Algorithm 3: The iEM algorithm

a recursive computation of

S̃k+1 = n−1
n∑
i=1

Sk+1,i , (10)

where for k ≥ 0,

Sk+1,i
def
=

{
s̄Ik+1

◦ T(Ŝk) if i = Ik+1 ,
Sk,i otherwise .

(11)

It avoids the implementation of a sum over n terms. The sequence {Ŝk, k ≥ 0} is not
a SA sequence but the bivariate sequence {(Ŝk,Sk,·), k ≥ 0} is: we have Sk+1,·−Sk,· =

11



n−1H
(1)
k+1 and Ŝk+1 − Ŝk = γk+1H

(2)
k+1 where

E
[
H

(1)
k+1|Fk

]
=

s̄1 ◦ T(Ŝk)
· · ·

s̄n ◦ T(Ŝk)

− Sk,· ,

E
[
H

(2)
k+1|Fk

]
= h(Ŝk) + (n−1 − 1)

(
s̄ ◦ T(Ŝk)− S̃k

)
;

here again, Fk
def
= σ(Ŝ0, I1, . . . , Ik). If there exists (s?,S?,·) such that limk(Ŝ

k,Sk,·) =
(s?,S?,·), then it may be seen (with no rigorous proof) that it satisfies n−1

∑n
i=1 S?,i =

s̄ ◦ T(s?) = s?. This observation and the following equality obtained from lines 5 to
8 of algorithm 3

Ŝk+1 = Ŝk +
γk+1

n

{
s̄Ik+1

◦ T(Ŝk)− Ŝk + S̃k − Sk,Ik+1
+ (n− 1)

(
S̃k − Ŝk

)}
,

show that (i) the update mechanism for {Ŝk, k ≥ 0} is of the form (9) with a random

variable V correlated to I whose conditional expectation is (n− 1)
(
S̃k − Ŝk

)
; (ii) if

convergence holds, a convergence of {Ŝk, k ≥ 0} to a fixed point of h is expected and
the conditional expectation of V vanishes to zero.

algorithm 3 generalizes the original incremental EM proposed by Neal and Hinton
(1998), which corresponds to the case γk+1 = 1 and to a deterministic visit to the
successive examples. With γk+1 = 1 for any k ≥ 0, we have Ŝk = S̃k = n−1

∑n
i=1 Sk,i.

algorithm 3 can be adapted in order to use a mini-batch of examples per iteration: the
data set is divided into B blocks prior running iEM: per iteration, the examples of only
a block are processed for the update of Ŝk (see line 6) and along iterations, either the
blocks are visited in turn or they are chosen randomly through a mechanism possibly
depending on the fluctuations of the current iterate. The efficiency of iEM is therefore
a trade-off between the size of the block which is related to the computational cost of
a full scan of the data, and the fewer number of total scans required for convergence
since iEM exploits information more quickly. Ng and McLachlan (2003) provide a
numerical analysis of the role of B when iEM is applied to fitting a normal mixture
model with fixed number of components. Gunawardana and Byrne (2005) provides
sufficient conditions for the convergence to stationary points of F in the case the data
set is processed through B blocks visited according to a deterministic cycling.

When γk+1 = 1 for any k ≥ 0 and the examples are chosen randomly at each
iteration, the sequence {Ŝk, k ≥ 0} is the same as the one given by a Majorize-
Minorization algorithm based on the inequality, at iteration (k + 1)

F (θ) ≤ 1

n

n∑
i=1

{
−
〈
s̄i(θ

k,i), φ(θ)
〉

+ R(θ) + Ci(θk,i)
}
,

12



where θk,i
def
= T(Ŝk) if i = Ik+1 and θk,i

def
= θk−1,i otherwise (see subsection 2.2 and

Proposition 1 for the definition of Ci and the properties of these surrogate functions).
This point of view and its link with Minimization by Incremental Surrogate Opti-
mization (MISO, introduced by Mairal (2015)) is observed by Karimi et al. (2019c).
Sufficient conditions for the asymptotic convergence of the functional and of the iter-
ates, in the non-convex case, can be deduced from the convergence analysis of MISO
(Mairal, 2015, Proposition 2.5); it is also addressed in Karimi et al. (2019a). Karimi
et al. (2019c) provide non asymptotic convergence rates for iEM (case γk+1 = 1).
Asymptotic convergence analysis of iEM (with γk+1 = 1) is also addressed by Srivas-
tava et al. (2019) in the case of a asynchronous distributed implementation of the
algorithm.

In algorithm 3, the computational cost of each iteration is the draw of one example
#Ik+1, the computation of the expectation s̄Ik+1

(Ŝk) and the update (and storage)
of an auxiliary quantity Sk+1,· ∈ Rqn; the initialization step also requires the com-
putation of a sum over the n examples. Observe that the Kmax integers Ik can be
sampled before running the algorithm, so the space cost for the storage of Sk,· can be
reduced to q(n ∧Kmax).

2.3.3 The Fast Incremental EM algorithm

The Fast Incremental EM (FIEM), introduced by Karimi et al. (2019c), is defined
by algorithm 4. Each iteration selects two examples independently, say #Ik+1 and

Data: Kmax ∈ N, Ŝ0 ∈ Rq, γk ∈ (0,∞) for k = 1, . . . ,Kmax

Result: The FIEM sequence: Ŝk, k = 0, . . . ,Kmax

1 S0,i = s̄i ◦ T(Ŝ0) for all i = 1, . . . , n;

2 S̃0 = n−1
∑n

i=1 S0,i;
3 for k = 0, . . . ,Kmax − 1 do
4 Ik+1 ∼ U({1, . . . , n}) ;
5 Sk+1,i = Sk,i for i 6= Ik+1 ;

6 Sk+1,Ik+1
= s̄Ik+1

◦ T(Ŝk);

7 S̃k+1 = S̃k + n−1
(
Sk+1,Ik+1

− Sk,Ik+1

)
;

8 Jk+1 ∼ U({1, . . . , n}) ;

9 Ŝk+1 = Ŝk + γk+1(s̄Jk+1
◦ T(Ŝk)− Ŝk + S̃k+1 − Sk+1,Jk+1

)

Algorithm 4: The Fast Incremental EM (FIEM) algorithm

#Jk+1, and computes the expectations s̄Ik+1
(Ŝk) and s̄Jk+1

(Ŝk); as in iEM, FIEM

computes the sum S̃k+1 = n−1
∑n

i=1 Sk+1,i (see (11)) in a recursive way, avoiding a

13



sum over n terms at each iteration (see line 4 to line 7 of algorithm 4). Then, this
auxiliary quantity is used in the update mechanism of the sequence (see line 9). Here
again, the sequence {Ŝk, k ≥ 0} is not a SA sequence, but {(Ŝk,Sk,·), k ≥ 0} is. We

have Sk+1,· − Sk,· = n−1H
(1)
k+1 and Ŝk+1 − Ŝk = γk+1H

(2)
k+1 where

E
[
H

(1)
k+1|Fk

]
=

s̄1 ◦ T(Ŝk)
· · ·

s̄n ◦ T(Ŝk)

− Sk,· , E
[
H

(2)
k+1|Fk+1/2

]
= h(Ŝk) ;

we set Fk
def
= σ(Ŝ0, I1, J1, . . . , Jk−1, Ik, Jk) and Fk+1/2

def
= σ(Fk ∪ {Ik+1}). It is easily

seen that if there exists (s?, S?,·) such that limk(Ŝ
k,Sk,·) = (s?,S?,·), then it satisfies

n−1
∑n

i=1 S?,i = s̄◦T(s?) = s?. This observation shows that (i) the update mechanism

for {Ŝk, k ≥ 0} is of the form (9) with a random variable V , conditionally centered,
and correlated to I; (ii) if convergence holds, a convergence of {Ŝk, k ≥ 0} to a fixed
point of h is expected.

The introduction of such a variable V can be seen as a variance reduction tech-
nique, inherited from the Stochastic Averaged Gradient (SAGA, by Defazio et al.
(2014)) which was proposed to improve convergence properties of incremental stochas-
tic gradient methods. A similar idea is developed in Chen et al. (2018), a paper which
adapts Stochastic Variance Reduced Gradient (SVRG, Johnson and Zhang (2013))
to incremental EM algorithms: their motivation is to improve on online EM (see
subsubsection 2.3.1) which surpasses EM in the burn-in phase but is penalized by the
large variance when approximating the E step in the convergence phase.

To our best knowledge, the convergence analyses of FIEM are only given in Karimi
et al. (2019c): non asymptotic convergence rates for FIEM are derived. The novel
theoretical contribution of our paper, detailed in section 3, is to complement and
improve on these results.

On the computational side, each iteration of FIEM requires two draws from {1, . . . , n}
and two computations of an expectation of the form s̄i(θ); as for iEM, there is a space
complexity through the storage of the auxiliary quantity Sk,· - its size being propor-
tional to q(2Kmax∧n) (in some specific situations, see the comment in (Schmidt et al.,
2017, Section 4.1), the size can be reduced). The initialization step also requires the
computation of a sum over the n examples.

2.3.4 An optimized FIEM algorithm, opt-FIEM

From (9), line 9 of algorithm 4 and the control variate technique, we explore here the
idea to modify the original FIEM as follows (compare to line 9 in algorithm 4)

Ŝk+1 = Ŝk + γk+1

(
s̄Jk+1

◦ T(Ŝk)− Ŝk + λk+1

(
S̃k+1 − Sk+1,Jk+1

))
(12)
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where λk+1 ∈ R is chosen in order to minimize the conditional fluctuation

γ−2
k+1 E

[
‖Ŝk+1 − Ŝk‖2|Fk+1/2

]
.

Upon noting that E
[
Ŝk+1 − Ŝk|Fk+1/2

]
= γk+1h(Ŝk), it is easily seen that equiva-

lently, λk+1 is chosen as the minimum of the conditional variance

E
[
‖γ−1

k+1

(
Ŝk+1 − Ŝk

)
− h(Ŝk)‖2|Fk+1/2

]
.

We will refer to this technique as the optimized FIEM (opt-FIEM) below. Observe
that Online EM corresponds to the choice λk+1 = 0 for any k ≥ 0 (see algorithm 2);
and FIEM corresponds to the choice λk+1 = 1 for any k ≥ 0 (see algorithm 4).

Upon noting that, given two random variables U, V such that E[‖V ‖2] > 0,
the function λ 7→ E

[
‖U + λV ‖2

]
reaches its minimum at a unique point given by

λ?
def
= −E

[
UTV

]
/E
[
‖V ‖2

]
, the optimal choice for λk+1 is given by (remember that

conditionally to Fk+1/2, S̃k+1 − Sk+1,Jk+1
is centered),

λ?k+1
def
= −

Tr Cov
(
s̄J ◦ T(Ŝk), S̃k+1 − Sk+1,J |Fk+1/2

)
Tr Var

(
S̃k+1 − Sk+1,J |Fk+1/2

) (13)

where J is a uniform random variable on {1, . . . , n}, independent of Fk+1/2, Tr denotes
the trace of a matrix, and Cov, Var are resp. the covariance and variance matrices.
With this optimal value, it holds from (12)

γ−2
k+1 E

[
‖Ŝk+1 − Ŝk‖2|Fk+1/2

]
= Tr Var

(
s̄J ◦ T(Ŝk)− Ŝk|Fk+1/2

)
· · ·

×
(

1− Corr2
(
s̄J ◦ T(Ŝk), S̃k+1 − Sk+1,J |Fk+1/2

))
, (14)

where Corr(U, V )
def
= TrCov(U, V )/{TrVar(U) TrVar(V )}1/2. If the opt-FIEM algo-

rithm {(Ŝk, Sk,·), k ≥ 0} converges to (s?, S?,·), we have n−1
∑n

i=1 S?,i = s? = s̄◦T(s?)
and S?,i = s̄i ◦ T(s?) (see subsubsection 2.3.2 and subsubsection 2.3.3 for a similar
discussion) thus showing that asymptotically, λ?k ≈ 1 (which implies that the corre-
lation is 1 in (14)). This value is the value proposed in the original FIEM: therefore,
asymptotically opt-FIEM and FIEM should be equivalent and opt-FIEM should have
a better behavior in the transient phase. We will compare numerically Online EM,
FIEM and opt-FIEM in section 4.
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Upon noting that

λ?k+1 = −
n−1

∑n
j=1

〈
s̄j ◦ T(Ŝk), S̃k+1 − Sk+1,j

〉
n−1

∑n
j=1 ‖S̃k+1 − Sk+1,j‖2

,

= −
n−1

∑n
j=1

〈
s̄j ◦ T(Ŝk), S̃k+1 − Sk+1,j

〉
n−1

∑n
j=1 ‖Sk+1,j‖2 − ‖S̃k+1‖2

.

the computational cost of λ?k+1 is proportional to n: it is therefore an intractable
quantity in the large scale learning setting considered in this paper. A numerical
approximation has to be designed: for example, a Monte Carlo approximation of the
numerator; and a recursive approximation (along the iterations k) of the denominator,
miming the same idea as the recursive computation of the sum S̃k = n−1

∑n
i=1 Sk,i in

online-EM and FIEM.

3 Non asymptotic convergence bounds

3.1 A general result

In this non-convex setting, convergence is characterized by the behavior of the gradient
of the objective function along the path, or in the EM setting, by a ”distance” of the
path to the set of the roots of h. Under our assumptions, both quantities are related
as stated in 3.

The convergence bounds are obtained by strengthening H4 with the following
assumptions

H5. 1. There exist 0 < vmin ≤ vmax < ∞ such that for all s ∈ Rq, the spectrum
of B(s) is in [vmin, vmax]; B(s) is defined in H4.

2. For any i ∈ {1, . . . , n}, s̄i ◦ T is globally Lipschitz on Rq with constant Li.

3. The function s 7→ V̇ (s) = −B(s)h(s) is globally Lipschitz on Rq with constant
LV̇ .

Finding a point θ̂ε such that F (θ̂ε) − minF ≤ ε is NP-hard in the non-convex
setting (see Murty and Kabadi (1987)). Hence, in non-convex deterministic opti-
mization of a smooth function F , convergence is often characterized by the quantity
inf1≤k≤Kmax ‖∇F (θk)‖ along a path of length Kmax; in non-convex stochastic opti-
mization, the quantity inf1≤k≤Kmax E

[
‖∇F (θk)‖2

]
is sometimes considered when the

expectation is w.r.t. the randomness introduced to replace intractable quantities with
oracles. Nevertheless, in many frameworks such as the finite-sum optimization one
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we are interested in, such a criterion can not be used to define a termination rule for
the algorithm since ∇F is intractable. Given a maximal number of iterations Kmax,
and a random variable K taking values in {0, . . . ,Kmax − 1}, define

E0
def
=

1

v2
max

E
[
‖V̇ (ŜK)‖2

]
,

E1
def
= E

[
‖h(ŜK)‖2

]
,

E2
def
= E

[
‖S̃K+1 − s̄ ◦ T(ŜK)‖2

]
,

where K is a random termination rule, chosen independently of the path: upper
bounds of these quantities provide insights on the behavior of FIEM when stopped at a
random time. Except in subsection 3.4, below K is the uniform r.v. on {0, . . . ,Kmax−
1}.

The quantities E0 and E1 are classical in the literature: they stand for a way to
measure resp. a distance to a stationary point of the objective V = F ◦ T, and a
distance to the fixed points of EM. E2 is specific to FIEM: it quantifies how far the
control variate S̃k+1 is from the intractable mean s̄◦T(Ŝk) (see (10) for the definition
of S̃k+1).

From Proposition 2-item 2, we trivially have (the proof is omitted)

Proposition 3. Assume H1, H2, H3, H4 and H5-item 1. Then for any s ∈ Rq,〈
h(s), V̇ (s)

〉
≤ −vmin‖h(s)‖2 and E0 ≤ E1.

Theorem 4 is a general result for the control of quantities of the form

Kmax−1∑
k=0

αkE
[
‖h(Ŝk)‖2

]
+

Kmax−1∑
k=0

δkE
[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
where αk ∈ R and δk > 0. In subsection 3.2 and subsection 3.3, we discuss how
to choose the step sizes {γk, k ≥ 1} such that for any k ∈ {0, . . . ,Kmax − 1}, αk is

non-negative and such that AKmax

def
=
∑Kmax−1

k=0 αk is positive. We then deduce from
Theorem 4 an upper bound for

Kmax−1∑
k=0

αk
AKmax

E
[
‖h(Ŝk)‖2

]
+

Kmax−1∑
k=0

δk
AKmax

E
[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
(15)

such that the larger AKmax is, the better the bound is. (15) is then used to obtain
upper bounds on E1 and E2; which provides also an upper bound on E0 by Proposi-
tion 3.
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Theorem 4. Assume H1, H2, H3, H4 and H5. Define L2 def
= n−1

∑n
i=1 L

2
i .

Let Kmax be a positive integer, {γk, k ∈ N} be a sequence of positive step sizes
and Ŝ0 ∈ Rq. Consider the FIEM sequence {Ŝk, k ∈ N} given by algorithm 4. Set

∆V
def
= E

[
V (Ŝ0)

]
− E

[
V (ŜKmax)

]
.

For any positive numbers β1, . . . , βKmax−1, we have

Kmax−1∑
k=0

αk E
[
‖h(Ŝk)‖2

]
+

Kmax−1∑
k=0

δkE
[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
≤ ∆V ,

where for any k = 0, . . . ,Kmax − 1,

αk
def
= γk+1vmin − γ2

k+1

(
1 + ΛkL

2
) LV̇

2
, δk

def
= γ2

k+1

(
1 +

Λkβk+1L
2

(1 + βk+1)

)
LV̇
2

,

with ΛKmax−1 = 0 and for k = 0, . . . ,Kmax − 2,

Λk
def
=

(
1 +

1

βk+1

) Kmax−1∑
j=k+1

γ2
j+1

j∏
`=k+2

(
1− 1

n
+ β` + γ2

`L
2

)
.

Proof. The detailed proof is provided in Section 6.2; let us give here a sketch of proof.
Define Hk+1 such that Ŝk+1 = Ŝk + γk+1Hk+1. V is regular enough so that

V (Ŝk+1)− V (Ŝk)− γk+1

〈
Hk+1, V̇ (Ŝk)

〉
≤ γ2

k+1

LV̇
2
‖Hk+1‖2 .

Then, the next step is to prove that

E
[
V (Ŝk+1)

]
− E

[
V (Ŝk)

]
+ γk+1

(
vmin − γk+1

LV̇
2

)
E
[
‖h(Ŝk)‖2

]
≤ γ2

k+1

LV̇
2

E
[
‖Hk+1 − E

[
Hk+1|Fk+1/2

]
‖2
]
,

which, by summation from k = 0 to k = Kmax − 1, yields

Kmax−1∑
k=0

γk+1

(
vmin − γk+1

LV̇
2

)
E
[
‖h(Ŝk)‖2

]
≤ E

[
V (Ŝ0)

]
− E

[
V (ŜKmax)

]
+
LV̇
2

Kmax−1∑
k=0

γ2
k+1E

[
‖Hk+1 − E

[
Hk+1|Fk+1/2

]
‖2
]
.
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The most technical part is to prove that the last term on the RHS is upper bounded
by

LV̇
2

Kmax−1∑
k=0

γ2
k+1L

2
{

ΛkE
[
‖h(Ŝk)‖2

]
−
(
1 + (1 + β−1

k+1)−1Λk
)
E
[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]}
.

This concludes the proof.

3.2 A uniform random stopping rule for a n2/3-complexity

The main result of this section establishes that by choosing a constant stepsize se-
quence and a termination rule K sampled uniformly on {0, · · · ,Kmax − 1}, an ε-

approximate stationary point can be reached before Kmax = O(n2/3ε−1L
1/3

V̇
L2/3) iter-

ations. In the Stochastic Gradient Descent literature, complexity is evaluated in terms
of Incremental First-order Oracle introduced by Agarwal and Bottou (2015), that is,
roughly speaking, number of calls to an oracle which returns a pair (fi(x),∇fi(x)).
In our case, the equivalent cost is the number of computations of an expectation s̄i(θ)
- see H2. Kmax iterations of FIEM calls 2Kmax computations of such expectations.
As a consequence, the complexity analyses consist in discussing how Kmax has to be
chosen as a function of n and ε.

For λ ∈ (0, 1), C > 0 and n such that n−1/3 < λ/C, define

fn(C, λ)
def
=

(
1

n2/3
+

C

λ− Cn−1/3

(
1

n
+

1

1− λ

))
. (16)

Proposition 5 (application of Theorem 4). Let µ ∈ (0, 1). Choose λ ∈ (0, 1) and
C ∈ (0,+∞) such that

√
Cfn(C, λ) = 2µvmin

L

LV̇
. (17)

Let {Ŝk, k ∈ N} be the FIEM sequence given by algorithm 4 run with the constant
step size

γ` = γFGM
def
=

√
C

n2/3L
=

2µvmin

fn(C, λ)n2/3LV̇
. (18)

For any n > (C/λ)3 and Kmax ≥ 1, we have

E1 +
µ

(1− µ)fn(C, λ)n2/3
E2 ≤

n2/3

Kmax

LV̇ fn(C, λ)

2µ(1− µ)v2
min

∆V , (19)

where the errors Ei are defined with a random variable K sampled uniformly on
{0, · · · ,Kmax − 1}.
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The proof of Proposition 5 is given in subsubsection 6.2.2. A first suggestion to
solve the equation (17) is to choose λ = C and C ∈ (0, 1) such that

√
Cfn(C,C) =

2µvminL/LV̇ . This equation possesses an unique solution in (0, 1) which is upper
bounded by C+ given by

C+ def
=

√
1 + 16µv2

minL
2L−2

V̇
− 1

4µvminLL
−1
V̇

The consequence is that, given ε ∈ (0, 1), by setting

M
def
=

LV̇
µ(1− µ)v2

min

f2(C+, C+) ,

we have

Kmax = M n2/3ε−1 =⇒ E1 +
LV̇
2L

√
C

vminn2/3
E2 ≤ ε∆V ;

see subsubsection 6.2.2 for a detailed proof of this comment.
Another suggestion is to exploit how (16) behaves when n → +∞; we prove in

subsubsection 6.2.2 again that, there exists N? depending only upon L,LV̇ , vmin such
that for any n ≥ N?,

E1 +
4

3

C

n2/3

(
LV̇
Lvmin

)4/3

E2 ≤
n2/3

Kmax

8

3

L

vmin

(
LV̇
Lvmin

)1/3

∆V ,

by choosing C ← 0.25
(
vminL/LV̇

)2/3
in the definition of the step size γFGM.

The conclusions of Proposition 5 confirm and improve previous results in the
literature: (Karimi et al., 2019c, Theorem 2) proves that for FIEM run with the
constant size

γK
def
=

vmin

max(6, 1 + 4vmin) max(LV̇ , L1, . . . , Ln) n2/3
, (20)

it holds

E1 ≤
n2/3

Kmax

(max(6, 1 + 4vmin))2 max(LV̇ , L1, . . . , Ln)

v2
min

∆V . (21)

We improve on this result by first showing that the RHS in (19) controls a larger
quantity than E1. In addition, numerical explorations (see e.g. section 4) show that
our step size γFGM is larger than the step size γK thus providing a more aggressive step
size which may have a beneficial effect on the numerical implementation. It also shows
that Proposition 5 provides a tighter control of convergence. In both contributions
however, the step size depends on n as O(1/n2/3) and, the explicit control increases
at the rate n2/3 and decreases at the rate 1/Kmax. The rate of the step size is the
same as what is observed for Stochastic Gradient Descent (see e.g. Allen-Zhu and
Hazan (2016)).
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3.3 A uniform random stopping rule for a
√
n-complexity

In subsubsection 6.2.3, we prove the following control obtained, here again, along a
FIEM path run with a constant stepsize sequence and stopped at a random time K
sampled uniformly on {0, · · · ,Kmax−1}: an ε-stationary point can be reached before
Kmax = O(

√
nε−3/2) iterations.

Define

f̃n(C, λ)
def
=

1

(nKmax)1/3
+ C

(
1

n
+

1

1− λ

)
. (22)

Proposition 6 (application of Theorem 4). Let µ ∈ (0, 1). Choose λ ∈ (0, 1) and
C > 0 such that √

Cf̃n(C, λ) = 2µvmin
L

LV̇
. (23)

Let {Ŝk, k ∈ N} be the FIEM sequence given by algorithm 4 run with the constant
step size

γ` = γ̃FGM
def
=

√
C

n1/3K
1/3
maxL

=
2µvmin

LV̇ f̃n(C, λ)n1/3K
1/3
max

. (24)

Then for any n,Kmax ≥ 1 such that n1/3K
−2/3
max ≤ λ/C, we have

E1 +
µ

(1− µ)f̃n(C, λ)

1

(nKmax)1/3
E2 ≤

n1/3

K
2/3
max

LV̇ f̃n(C, λ)

2µ(1− µ)v2
min

∆V ,

where the errors Ei are defined with a random variable K sampled uniformly on
{0, · · · ,Kmax − 1}.

The proof of Proposition 6 is given in subsubsection 6.2.3. From this upper bound,
it can be shown (see subsubsection 6.2.3) that for any τ > 0, there exists M > 0
depending upon L,LV̇ , vmin, µ and τ such that for any ε > 0,

Kmax ≥
(√

nτ3/2
)
∨
(
M
√
nε−3/2

)
=⇒ n1/3

K
2/3
max

LV̇ f̃n(λτ, λ)

2µ(1− µ)v2
min

≤ ε .

To our best knowledge, this is the first result in the literature which establishes a
non asymptotic control for FIEM at such a rate: the upper bound is an increasing

function of n at the rate n1/3 and a decreasing function of Kmax at the rate K
−2/3
max .

As a corollary of Proposition 5 and Proposition 6, we have two upper bounds of

the errors E1,E2: the first one is O(n2/3K−1
max) and the second one is O(n1/3K

−2/3
max ).

Given a tolerance ε > 0, the first or second strategy will be chosen depending on how√
nε−3/2 and n2/3ε−1 compare: for any A > 0,

√
nε−3/2 < An2/3ε−1 iff n−1/3 < εA2.
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WhenKmax = A
√
nε−3/2, then γ̃FGM =

√
C
√
ε/(LA1/3√n). In the case

√
nε−3/2 <

Ãn2/3ε−1, we have γ̃FGM >
√
C/(LA1/3Ãn2/3) thus showing that the step size is lower

bounded by O(n−2/3) (see γFGM in Proposition 5). We have γ̃FGM ∝ 1/
√
n when

Kmax ∝
√
n: the result of Proposition 6 is obtained with a slower step size (seen as a

function of n) than what was required in Proposition 5.
We now discuss a choice for the pair (C, λ) which exploits how (22) behaves

when n → +∞; we prove in subsubsection 6.2.3 that for any τ > 0, there exists N?

depending only upon L,LV̇ , vmin, τ such that for any N? ≤ n ≤ τ3K2
max,

E1 +
24/3(1− λ?)−1/3µ2

f̃2
n(λ?τ, λ?)

(
Lvmin

LV̇

)2/3 1

(nKmax)1/3
E2

≤ n1/3

K
2/3
max

4

3

(
2L2LV̇
v4

min

)1/3

(1− λ?)−1/3 ∆V ,

where λ? is the unique solution of (vminL)2 τ3(1− λ?)2 = (2LV̇ )2λ3
?.

3.4 A non-uniform random stopping rule

Given a distribution p0, . . . , pKmax−1 for the r.v. K, we show how to fix the step sizes
γ1, . . . , γKmax in order to deduce from Theorem 4 a control of the errors E1 and E2.
For λ ∈ (0, 1), C > 0 and n > (C/λ)3, define the function Fn,C,λ

Fn,C,λ : x 7→
LV̇

2L2n2/3
x

(
vmin

2L

LV̇
− xfn(C, λ)

)
,

where fn is defined by (16). Fn,C,λ is positive, increasing and continuous on
(
0, vminL/(LV̇ fn(C, λ))

]
.

Proposition 7 (application of Theorem 4). Let K be a {0, . . . ,Kmax − 1}-valued
random variable with positive weights p0, . . . , pKmax−1. Choose λ ∈ (0, 1) and C > 0
such that √

C fn(C, λ) = vmin
L

LV̇
. (25)

For any n > (C/λ)3 and Kmax ≥ 1, we have

E1 +
L2
V̇

v2
min

n2/3 maxkpk fn(C, λ)

Kmax−1∑
k=0

γ2
k+1E

[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
≤ n2/3 maxkpk

2LV̇ fn(C, λ)

v2
min

∆V ,
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where the FIEM sequence {Ŝk, k ∈ N} is obtained with

γk+1 =
1

n2/3L
F−1
n,C,λ

(
pk

max`p`

v2
min

2LV̇ fn(C, λ)

1

n2/3

)
.

The proof of Proposition 7 is in subsubsection 6.2.4.
Since

∑
k pk = 1, we have maxkpk ≥ 1/Kmax thus showing that among the dis-

tributions {pj , 0 ≤ j ≤ Kmax − 1}, the term maxkpk is minimal with the uniform
distribution. In that case, the results of Proposition 7 can be compared to the re-
sults of Proposition 5: both RHS are increasing functions of n at the rate n2/3; both
are decreasing functions of Kmax at the rate 1/Kmax; the constants C, λ solving the
equality in (17) in the case µ = 1/2 are the same as the constants C, λ solving (25):
as a consequence,

2LV̇ fn(C, λ)

v2
min

=
LV̇ fn(C, λ)

2µ(1− µ)v2
min

, µ = 1/2.

Finally, when k 7→ pk is constant, the step sizes given by Proposition 7 are constant
as in Proposition 5; and they are equal since

F−1
n,C,λ

(
v2

minn
−2/3

2LV̇ fn(C, λ)

)
=
√
C =

vminL

LV̇ fn(C, λ)
.

Hence Proposition 7 and Proposition 5 are the same when pk = 1/Kmax for any k.
As already commented in subsection 3.2, if we choose C = λ, then (25) gets into

√
C

(
1

n2/3
+

1

1− n−1/3

(
1

n
+

1

1− C

))
=
vminL

LV̇
.

There exists an unique solution C?, which is upper bounded by a quantity which
only depends upon L,LV̇ , vmin; hence, so fn(C?, C?) is and the control of Ei given in
Proposition 7 has the same behavior in n,Kmax as n2/3 maxkpk.

If we choose λ = 1/2, the constant C satisfies (see subsubsection 6.2.4)

C ≤
(
vminL

4LV̇

)2/3

,

and the non asymptotic control given by Proposition 7 is available for 8n > (vminL/LV̇ )2.

4 A toy example

In this section, we consider a very simple optimization problem which does not require
the incremental EM machinery to be solved 2

2The numerical applications are developed in MATLAB by the first author of the paper. They
will be publicly available from her webpage https://perso.math.univ-toulouse.fr/gfort/ by July 1st
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4.1 Description

n Ry-valued observations are modeled as the realization of n vectors Yi ∈ Ry whose
distribution is described as follows: conditionally to (Z1, . . . , Zn), the r.v. are in-
dependent with distribution Yi ∼ Ny(AZi, Iy) where A ∈ Ry×p is a deterministic
matrix and Iy denotes the y × y identity matrix; (Z1, . . . , Zn) are i.i.d. under the

distribution Np(Xθ, Ip), where θ ∈ Θ
def
= Rq and X ∈ Rp×q is a deterministic ma-

trix. Here, X and A are known, and θ is unknown; the objective is estimate θ,
as a solution of a (possibly) penalized maximum likelihood estimator, with penalty

term ρ(θ)
def
= υ‖θ‖2/2 for some υ ≥ 0. If υ = 0, it is assumed that the rank of X

and AX is resp. q = q ∧ y and p = p ∧ y. In this model, the r.v. (Y1, . . . , Yn)
are i.i.d. with distribution Ny(AXθ; Iy + AAT ). The minimum of the function

θ 7→ F (θ)
def
= −n−1 log g(Y1:n; θ) + ρ(θ), where g(Y1:n; ·) denotes the likelihood of

the vector (Y1, . . . , Yn), is unique and is given by

θ?
def
=
(
υIq +XTAT

(
Iy +AAT

)−1
AX

)−1
XTAT

(
Iy +AAT

)−1
Y n,

Y n
def
=

1

n

n∑
i=1

Yi.

Nevertheless, using the above description of the distribution of Yi, this optimization
problem can be cast into the general framework described in Section 2.1. The loss
function (see (4)) is the normalized negative log-likelihood of the distribution of Yi
and is of the form (4) with

φ(θ)
def
= θ, R(θ)

def
=

1

2
θT (XTX + υIq)θ, si(z)

def
= XT z.

Under the stated assumptions on X, the function θ 7→ − 〈s, φ(θ)〉 + R(θ) is defined
on Rq and for any s ∈ Rq, it possesses an unique minimum given by

T(s)
def
= (υIq +XTX)−1s.

Define

Π1
def
= XT (Ip +ATA)−1AT ∈ Rq×y ,

Π2
def
= XT (Ip +ATA)−1X(υIq +XTX)−1 ∈ Rq×q .

The a posteriori distribution pi(·, θ)dµ of the latent variable Zi given the observation
Yi is a Gaussian distribution

Np
(
(Ip +ATA)−1(ATYi +Xθ), (Ip +ATA)−1

)
,

2020; and are also available upon request until this free access.
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so that for all i ∈ {1, . . . , n},

s̄i(θ)
def
= XT (Ip +ATA)−1(ATYi +Xθ) = Π1Yi +XT (Ip +ATA)−1Xθ ∈ Rq,

s̄i ◦ T(s) = Π1Yi + Π2s.

Therefore, the assumptions H1, H2, H3 and H4-item 1,item 2 are satisfied. Since
φ◦T(s) = T(s) then B(s) = (υIq +XTX)−1 for any s ∈ Rq, H4-item 3 and H5-item 1
hold with

vmin
def
=

1

υ + max eig(XTX)
, vmax

def
=

1

υ + min eig(XTX)
;

here, max eig and min eig denotes resp. the maximum and the minimum of the
eigenvalues. s̄i ◦T(s) = Π1Yi + Π2s thus showing that H5-item 2 holds with the same
constant Li = L for all i. Finally, s 7→ BT (s) (s̄ ◦ T(s)− s) is globally Lipschitz with
constant

LV̇
def
= max

∣∣eig
(
(υIq +XTX)−1(Π2 − Iq)

)∣∣ ;
here eig denotes the eigenvalues. This concludes the proof of H5-item 3.

4.2 The algorithms

Given the current value Ŝk, one iteration of EM, Online EM, FIEM and opt-FIEM are
given by algorithm 5 and algorithm 6.

All the algorithms (except EM) require Kmax random draws from {1, . . . , n} per
run of length Kmax iterations; FIEM and opt-FIEM require 2×Kmax draws. For a fair
comparison of the algorithms along one run, one vector of integers is sampled prior
the runs and is common to all the algorithms. Such a protocol allows to compare the
strategies by ”freezing” the randomness due to the random choice of the examples, and
to really explain the different behaviors only by the values of the design parameters
(the step size, for example) or by the updating scheme specific to each algorithm.

All the paths, whatever the algorithms, are started at the same value Ŝ0.

Data: Ŝk ∈ Rq, Π1, Π2 and Y n

Result: Ŝk+1
EM

1 Ŝk+1
EM = Π1Y n + Π2Ŝ

k

Algorithm 5: Toy example: one iteration of EM.
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Data: Ŝk ∈ Rq, S ∈ Rqn, S̃ ∈ Rq; a step size γk+1 ∈ (0, 1] and a coefficient
λk+1; the matrices Π1, Π2; the examples Y1, · · · , Yn

Result: Ŝk+1
FIEM

1 Sample independently Ik+1, Jk+1 ∼ U({1, · · · , n}) ;
2 Store s = SIk+1

;

3 Update SIk+1
= Π1YIk+1

+ Π2Ŝ
k ;

4 Update S̃ = S̃ + n−1(SIk+1
− s) ;

5 Update Ŝk+1
FIEM = Ŝk + γk+1

(
Π1YJk+1

+ Π2Ŝ
k − Ŝk + λk+1

{
S̃ − SJk+1

})
Algorithm 6: Toy example: one iteration of Online EM (λk+1 = 0), FIEM

(λk+1 = 1) and opt-FIEM.

4.3 Numerical analysis

We choose Yi ∈ R15, Zi ∈ R10 and θtrue ∈ R20. The entries of the matrix A (resp.
X) are obtained as a stationary Gaussian auto-regressive process: the first column
is sampled from

√
1− ρ2N15(0; I) (resp. from

√
1− ρ̃2N10(0; I)) with ρ = 0.8 (resp.

ρ̃ = 0.9). θtrue is sparse with 40% of the components set to zero; and the other ones
are sampled uniformly in [−5, 5].

The regularization parameter υ is set to 0.1.

FIEM: the step sizes and the non asymptotic controls. The first analysis is to
compare the non asymptotic bounds and the constant step sizes provided by Propo-
sition 5, Proposition 6 and (Karimi et al., 2019c, Theorem 2) (see also (20) and (21)):
the bounds are of the form

na

Kb
max

B ∆V ;

the numerical results below correspond to ∆V = 1 and are obtained with a data set
of size n = 1e6. Figure 1 shows the value of the constant C solving (17) when λ is
successively set to {0.25, 0.5, 0.75} and as a function of µ ∈ (0.01, 0.9). Figure 2 shows
the same analysis for the constant C solving (23). Figure 3 and Figure 4 display the
quantity B as a function of µ and when (λ,C) is fixed to λ ∈ {0.25, 0.5, 0.75} and C
solves resp. (17) and (23). The role of λ looks quite negligible; the bound B seems to
be optimal with µ ≈ 0.25. Note that the constants C and B given by Proposition 6
also depends on Kmax: the results displayed here correspond to Kmax = n but we
observed that the plots are the same with Kmax = 1e2n and Kmax = 1e3n (remember
that n = 1e6).

Figure 5 displays the step sizes as a function of µ ∈ (0.01, 0.9), when λ = 1/2
and for different strategies of Kmax: Kmax ∈ {n, 1e2n, 1e3n}. Figure 6 displays the
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Figure 1: For λ ∈ {0.25, 0.5, 0.75} and µ ∈ (0.01, 0.9), evolution of the constant C
solving (17)

quantity naK−bmaxB. Case 1 (resp. Case 2) corresponds to the definition given in
Proposition 5 (resp. Proposition 6). For Case 1 and Karimi et al, (a, b) = (2/3, 1)
and for Case 2, (a, b) = (1/3, 2/3). The first conclusion is that our results improve
on those by Karimi et al. (2019c): we provide a larger step size (improved by a factor
up to 55, with the strategy Case 1, µ = 0.25, λ = 0.5) and a tighter bound (reduced
by a factor up to 235, with the strategy Case 1, µ = 0.25, λ = 0.5). The second
conclusion is about the comparison of Proposition 5 and Proposition 6: as already
commented (see subsection 3.3), the first strategy is preferable when the tolerance
level ε is small (w.r.t. n−1/3).

Comparison of Online EM, FIEM and opt-FIEM. The algorithms are run with
the same constant step size given by (18) when C solves (17) with µ = 0.25 and
λ = 0.5. The size of the data set is n = 1e3 and the maximal number of iterations
is Kmax = 20n. Since the non asymptotic convergence bounds are essentially based

on the control of γ−2
k+1 E

[
‖Ŝk+1 − Ŝk‖2

]
(see the sketch of proof of Theorem 4 in

section 3), we first compare the algorithms through this criterion: the expectation is
approximated by a Monte Carlo sum over 1e3 independent runs. The second criterion
for comparison is a distance of the iterates to the unique solution θ? via the expectation
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Figure 2: For λ ∈ {0.25, 0.5, 0.75} and µ ∈ (0.01, 0.9), evolution of the constant C
solving (23)

E
[
‖θk − θ?‖

]
and the standard deviation std

(
‖θk − θ?‖

)
again approximated by a

Monte Carlo sum over the same 1e3 independent runs.
Figure 7 displays the evolution of k 7→ λ?k+1, the optimal coefficient given by

(13); in this toy example, it is computed explicitly. We have λ?k+1 ≈ 1 for large
iteration index k: FIEM and opt-FIEM are expected to be equivalent in the con-

vergence phase. The ratio of the expectations E
[
‖θkopt FIEM − θ?‖

]
/E
[
‖θkalg − θ?‖

]
and of the standard deviations std(‖θkopt FIEM − θ?‖)/std(‖θkalg − θ?‖) are displayed
on Figure 8 when alg is FIEM and Online EM. They are shown as a function of k ∈
{1e2, 5e2, 1e3, 1.5e3, . . . , 6e3, 7e3, . . . , 20e3}. The plot illustrates that if opt-FIEM and
FIEM are equivalent in expectation, opt-FIEM surpasses FIEM in the transient phase
by reducing the variance up to 22%. It also shows that Online EM has a really poor
behavior w.r.t. opt-FIEM (and therefore also with FIEM) in the convergence phase,
Online EM reduces the variability of opt-FIEM up to 18% in the transient phase, but
opt-FIEM provides a drastic variability reduction in the first iterations. Since we
advocate to stop FIEM at a random time K sampled in the range {0, . . . ,Kmax − 1},
opt-FIEM gives insights on how to improve the behavior of incremental EM algo-

rithms in the transient phase. Figure 9 shows k 7→ γ−2
k+1E

[
‖Ŝk+1 − Ŝk‖2

]
for the
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Figure 3: For λ ∈ {0.25, 0.5, 0.75} and µ ∈ (0.01, 0.9), evolution of the quantity B
given by Proposition 5

three algorithms, in the transient phase k ∈ [1.5e3, 5e3]. The plot illustrates again
that opt-FIEM improves on FIEM during this phase of the algorithm; and improves
drastically on Online EM.

5 Mixture of Gaussian distributions

In this section 3, FIEM is applied to solve the Maximum Likelihood inference in a
mixture of L Gaussian distributions centered at µ` and sharing the same covari-
ance matrix Σ (see Frühwirth-Schnatter et al. (2019) for a recent review on mix-
ture models): given n Rp-valued observations y1, . . . , yn, find a point θ̂ML

n ∈ Θ

satisfying F (θ̂ML
n )

def
= R(θ̂ML

n ) + n−1
∑n

i=1 Li(θ̂ML
n ) ≤ F (θ) for any θ ∈ Θ where

θ
def
= (α1, . . . , αL, µ1, . . . , µL,Σ),

Θ
def
=

{
α` ≥ 0,

L∑
`=1

α` = 1

}
× RpL × (M+

p ) ⊆ RL+pL+(p×p) ;

3The numerical applications are developed in MATLAB by the first author of the paper. They
will be publicly available from her webpage https://perso.math.univ-toulouse.fr/gfort/ by July 1st
2020; and are also available upon request until this free access.
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Figure 4: For λ ∈ {0.25, 0.5, 0.75} and µ ∈ (0.01, 0.9), evolution of the quantity B
given by Proposition 6

M+
p denotes the invertible p× p covariance matrices. In addition,

R(θ) +
1

n

n∑
i=1

Li(θ) = − 1

n

n∑
i=1

log

L∑
`=1

α` Np(µ`,Σ)[yi] ,

where we set (the term p log(2π)/2 is omitted)

R(θ)
def
=

1

2
log det(Σ) +

1

2n

n∑
i=1

yTi Σ−1yi =
1

2

(〈
Σ−1,

1

n

n∑
i=1

yiy
T
i

〉
− log det(Σ−1)

)
.

In this example, we have Li(θ) = − log
∑L

z=1 exp(〈si(z), φ(θ)〉) with

si(z) = Ayi

1z=1

· · ·
1z=L

 ∈ RL+pL , Ay
def
=

[
IL

IL ⊗ y

]
;

⊗ stands for the Kronecker product. We use the MNIST dataset 4. The data are
pre-processed as in Nguyen et al. (2020): the training set contains n = 6e4 images of

4available at http://yann.lecun.com/exdb/mnist/
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Figure 5: Value of the constant step size given by Karimi et al., Proposition 5 (Case
1) and Proposition 6 (Case 2). The step size is shown as a function of µ ∈ (0.01, 0.9).
In Case 2, different strategies for Kmax are considered.
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Figure 6: Value of the control naK−bmaxB given by Proposition 5 (Case 1, with a circle),
Proposition 6 (Case 2, with a cross) and Karimi et al. (no markers). The control is
displayed as a function of µ ∈ (0.01, 0.9) and for different values of Kmax: Kmax = n
(solid line), Kmax = 1e2n (dash-dot line) and Kmax = 1e3n (dashed line).
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Figure 7: The coefficient λ?k (see (13)) as a function of the number of iterations k; it
is a random variable, and the solid line is the mean value (the dashed lines are resp.
the quantiles 0.25 and 0.75) over 1e3 independent paths.
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Figure 8: For k ∈ {1e2, 5e2, 1e3, 1.5e3, . . . , 6e3, 7e3, . . . , 20e3}, ratio of the expecta-

tions (Exp) E
[
‖θkopt−FIEM − θ?‖

]
/E
[
‖θkAlg − θ?‖

]
when Alg is FIEM (solid line with

circle) and then Online EM (solid line with cross); and the standard deviations (std)
std(‖θkoptFIEM−θ?‖)/std(‖θkFIEM−θ?‖) when Alg is FIEM (dashed line with circle) and
then Online EM (dashed line with cross). The expectations and standard deviations
are approximated by a Monte Carlo sum over 1e3 independent runs.
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Figure 9: Monte Carlo approximation (over 1e3 independent runs) of k 7→
γ−2
k+1E

[
‖Ŝk+1 − Ŝk‖2

]
for Online EM, FIEM and opt-FIEM.

size 28× 28; among these 784 pixels, 67 are non informative since they are constant
over all the pictures so they are removed yielding to n observations of length 717;
each feature is centered and standardized (among the n observations) and a PCA
of the associated 717 × 717 covariance matrix is applied in order to summarize the
features by the first p = 20 principal components. In the numerical applications, we
fix L = 12 components in the mixture.

The maximization step θ̂ = T(s) is given by (see the supplementary material for
the detailed computations)

α̂`
def
=

s`∑L
u=1 su

, ` = 1, . . . , L ,

µ̂`
def
=

sL+(`−1)p+1:`p

s`
, ` = 1, . . . , L ,

Σ̂
def
=

1

n

n∑
i=1

yiy
T
i −

L∑
`=1

s` µ̂` µ̂`
T ,

where s
def
= (s1, . . . , sL+pL). Since we want θ̂ ∈ Θ, T is defined at least on S ⊂ RL+pL
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(see the supplementary material):

S def
=

{
n−1

n∑
i=1

Ayiρi : ρi = (ρi,1, . . . , ρi,L), ρi,` ≥ 0,
L∑
`=1

ρi,` = 1

}
.

This model is used to go beyond the theoretical framework adopted in this paper.
The first extension concerns the domain of T: H3 assumes that T is defined on Rq
(here, q = L+ pL) while the above description shows that it is not always true. This
gap between theory and application is classical for mixture of Gaussian distributions
(see the comments in subsection 2.2); while ρ`,i may be a signed quantity or while

we may have
∑L

`=1 ρi,` 6= 1 for the considered algorithms (see supplementary material

for a detailed derivation), numerically we always obtained input quantities Ŝk which
were in S.

The second extension concerns the use of mini-batches at each iteration of in-
cremental EM algorithms: instead of sampling one example per iteration (see e.g.
line 2, line 4 and line 4, line 8 resp. in algorithm 2, algorithm 3 and algorithm 4)
a mini-batch of size b is used - sampled at random from the n available examples,
possibly with replacement. While, as usual in the literature, the theoretical analyses
are derived in the case of a single example (b = 1), the numerical applications use
b > 1; we do the same here. The supplementary material provides a description of
iEM, Online EM and FIEM in the case b > 1, when applied to the current application
of inference in a mixture of Gaussian distributions.

EM, iEM, Online EM and FIEM are compared when used to solve the above Max-
imum Likelihood inference problem. All the paths of these algorithms are started
from the same point θ0 ∈ Θ defined by the randomization scheme described in

(Kwedlo, 2015, section 4); we then set Ŝ0 def
= n−1

∑n
i=1 s̄i(θ

0); the normalized log-
likelihood −F (θ0) is equal to −58.3097 (equivalently, the unnormalized log-likelihood
is −3.4986 e+6). Note that, as mentioned below, the evaluation of the log-likelihood
does not include the constant +p log(2π)/2.

Each iteration of iEM, Online EM (resp. FIEM) calls a mini-batch of b = 100 exam-
ples (resp. 2b = 200 examples) sampled uniformly from {1, . . . , n} with replacement;
for a fair comparison of the paths produced by these algorithms, the same seed is
used.

The paths are seen as cycles of epochs, an epoch being defined as the processing
of n examples: for EM, an epoch is one iteration; for iEM and Online EM, an epoch
is n/b iterations; for FIEM, an epoch is n/(2b) iterations. Below, the paths are run
until 100n examples are processed, which means 100 iterations or epochs for EM,
and 100n/b iterations (or 100 epochs) for both iEM and Online EM. Instead of a
pure FIEM algorithm, we implement h-FIEM, an hybrid algorithm obtained by first
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running kswith epochs of Online EM and then switching to epochs of FIEM: we choose
kswitch = 6 so that h-FIEM processes 100n examples after 6n/b iterations (or 6
epochs) of Online EM and 94n/(2b) iterations (or 94 epochs) of FIEM. The use of
h-FIEM is to explicitly illustrate the variance reduction of the FIEM iterations when
compared to the Online EM ones.

iEM is run with the constant step size γk+1 = 1; Online EM and FIEM are run with
γk+1 = 5 e−3.

Figure 10 and Figure 11 display the normalized log-likelihood along a path of EM,
iEM, Online EM and h-FIEM, resp. for the first epochs (from 1 to 25) and by dis-
carding the first ones (from 15 to 100). The first conclusion is that the incremental
methods forget the initial value far more rapidly than EM, which is the consequence of
the incremental processing of the observations which allow many updates of the pa-
rameter θk (or equivalently, of the statistic Ŝk) before the call to n examples (which
is equivalent to the learning cost of one iteration of EM). The second conclusion is
that the incremental EM-based methods perform a better maximization of the nor-
malized log-likelihood −F . Finally, Online EM and h-FIEM are better than iEM: the
log-likelihood converges resp. to −1.9094 e+6, −1.9080 e+6 and −1.9100 e+6 (the
plot displays the normalized log-likelihood); and it is clear that h-FIEM reduces the
variability of the Online EM path. The same conclusions are drawn from different
runs; the supplementary material provides a similar plots when the curves are the
average over 10 independent paths; Table 1 reports the mean value and the standard
deviation of the log-likelihood over these 10 runs.

A fluctuation of 1% (resp. 1 ‰) around the optimal normalized log-likelihood
corresponds to a lower bound of −32.1184 (resp. −31.8322): for EM such an accuracy
is reached after 12 iterations (resp. is never reached); for iEM, it is reached after 11
epochs (resp. is never reached); for Online EM, after 4 epochs (resp. 23 epochs); for
h-FIEM, after 4 epochs (resp. 34 epochs). An accuracy of 1 ‱ is never reached by
Online EM and is reached after 36 epochs for h-FIEM.

Figure 12 shows the estimation of the L = 12 weights α` along a path of length 100
epochs. The comparison of Online EM (bottom left) and h-FIEM (bottom right) shows
that h-FIEM acts as a variability reduction technique along the path, without slowing
down the convergence rate. Figure 13 displays the limiting value of these paths i.e.
the estimate of the weights α1, . . . , αL defined as the value of the parameter at the
end of 100 epochs; the weights are sorted in descending order. Online EM and h-FIEM

provide similar estimates.
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Figure 10: Evolution of the normalized log-likelihood along one path of length 100
epochs: only the epochs 1 to 25 are displayed. All the paths start from the same
value at time t = 0, with a normalized log-likelihood equal to −58.31.

#1 #15 #25 #50 #100

EM −3.4102e+1 −3.2033e+1 −3.1896e+1 −3.1890e+1 −3.1889e+1
- - - - -

iEM −3.3672e+1 −3.1982e+1 −3.1869e+1 −3.1843e+1 −3.1827e+1
(4.90e−3) (5.33e−2) (1.87e−2) (1.87e−2) (1.38e−2)

Online EM -3.2999e+1 -3.1872e+1 -3.1828e+1 −3.1823e+1 −3.1823e+1
(2.67e−2) (5.14e−2) (4.67e−2) (4.68e−2) (4.50e−2)

h-FIEM −3.2999e+1 −3.1900e+1 −3.1853e+1 -3.1806e+1 -3.1804e+1
(2.67e−2) (5.31e−2) (6.94e−2) (5.18e−2) (5.25e−2)

Table 1: Normalized log-likelihood along a EM, iEM, Online EM and h-FIEM path,
at epoch #1, 15, 25, 50, 100. The value is the average over 10 independent runs (the
standard deviation is in parenthesis). The log-likelihood is obtained by multiplying
by n = 6e+4.
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Figure 11: Evolution of the normalized log-likelihood along one path of length 100
epochs: the first 14 epochs are discarded. All the paths start from the same value at
time t = 0, with a normalized log-likelihood equal to −58.31.
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Figure 12: Evolution of the L = 12 weights along one path of length 100 epochs. All
the paths start from the same value at time t = 0. EM (top left), iEM (top right),
Online EM (bottom left) and h-FIEM (bottom right).
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Figure 13: Estimation of the L = 12 weights of the mixture model. The estimator is
the value of the parameter obtained at the end of a single path of length 100 epochs.

6 Proof

6.1 Proof of section 2

6.1.1 Proof of Proposition 1

(proof of item 1). From the Jensen’s inequality, it holds

Li(θ)− Li(θ′) ≤ −
∫
Z

〈
si(z), φ(θ)− φ(θ′)

〉
pi(z; θ

′)µ(dz) = −
〈
s̄i(θ

′), φ(θ)− φ(θ′)
〉

;

which concludes the proof. (proof of item 2) From (3) and item 1, it holds

F (θ) ≤ −
〈
s̄(θ′), φ(θ)

〉
+

1

n

n∑
i=1

Ci(θ′) + R(θ) .

(proof of item 3) From item 2 and the definition of T, it holds

F (T ◦ s̄(θk)) ≤ F (T ◦ s̄(θk), θk) ≤ F (θk, θk) = F (θk) .
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6.1.2 Proof of Proposition 2

(Proof of item 1). The statements are trivial and we only prove the first claim: if
s? = s̄ ◦ T(s?) then by applying T (under the uniqueness assumption H3), we have
T(s?) = (T ◦ s̄) ◦ T(s?) and the proof follows.

(Proof of item 2). For θ ∈ Θv, set Dφ(θ)
def
=
(
φ̇(θ)

)T
. By H4-item 2 and a chain

rule,

V̇ (s) =
(
Ṫ(s)

)T {
Ṙ(T(s))−Dφ(T(s)) s̄ ◦ T(s)

}
.

Moreover, using H3 and H4-item 1, the minimum T(s) is a critical point of θ 7→
− 〈s, φ(θ)〉+ R(θ): we have for any s ∈ Rq, Ṙ(T(s))−Dφ(T(s)) s = 0. Hence,

V̇ (s) = −
(
Ṫ(s)

)T
Dφ(T(s)) h(s) = − (B(s))T h(s) .

H4-item 3 implies that BT = B and the zeros of h are the zeros of V̇ .

6.1.3 Auxiliary results

Lemma 8. Assume that Θ and φ(Θ) are open; and φ is continuously differentiable
on Θ. Then for all i ∈ {1, . . . , n}, Li is continuously differentiable on Θ.

If in addition H1, H2, H3 and H4-item 1 hold, then F (resp. V
def
= F ◦ T) is

continuously differentiable on Θ (resp. on Rq) and for any θ ∈ Θ,

Ḟ (θ) = −
(
φ̇(θ)

)T
s̄(θ) + Ṙ(θ) .

Proof. H1 and (Sundberg, 2019, Proposition 3.8) (see also (Brown, 1986, Theorem
2.2.)) imply that Li : τ 7→

∫
Z hi(z) exp (〈si(z), τ〉)µ(dz) is continuously differen-

tiable on the interior of the set {τ ∈ Rq,
∫
Z hi(z) exp (〈si(z), τ〉)µ(dz) < ∞} and its

derivative is ∫
Z
si(z) hi(z) exp (〈si(z), τ〉)µ(dz) .

This set contains φ(Θ) under H1. The equality Li = − log(Li ◦ φ) and the differen-
tiability of composition of functions conclude the proof of the first item. The second
one easily follows.

Lemma 9. Assume H1 and H3. Assume also that for any s ∈ Rq, τ 7→ Q(s, τ)
def
=

−〈s, φ(τ)〉 + R(τ) is twice continuously differentiable on Θv where Θv def
= Θ if Θ is

open, or Θv is a neighborhood of Θ otherwise. Then for any s ∈ Rq, ˙φ ◦ T is a
symmetric q × q matrix satisfying

˙φ ◦ T(s) =
(
Ṫ(s)

)T
∂2
τQ(s,T(s))

(
Ṫ(s)

)
.
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Proof. The proof is adapted from the one of (Delyon et al., 1999, Lemma 2). H3 and
the regularity conditions on Q imply that for any s ∈ Rq:

∂τQ(s,T(s)) = −
(
φ̇(T(s))

)T
s+ Ṙ(T(s)) = 0

and (from the uniqueness assumption) s 7→ ∂2
τQ(s,T(s)) Ṫ(s)−

(
φ̇(T(s))

)T
is positive-

definite. This concludes the proof.

Lemma 10. Assume H1, H2 and H3. Assume in addition that (i) there exists Li,p
such that for any θ, θ′ ∈ Θ

sup
z∈Z

∣∣pi(z; θ)− pi(z; θ′)∣∣ ≤ Li,p ‖θ − θ′‖;
(ii) T is globally Lipschitz on Rq, and (iii)

∫
Z ‖si‖dµ < ∞. Then there exists a

constant 0 < Li <∞ such that for all s, s′ ∈ Rq, ‖s̄i ◦T(s)− s̄i ◦T(s′)‖ ≤ Li ‖s− s′‖.

Proof. Let s, s′ ∈ Rq. We have

s̄i ◦ T(s)− s̄i ◦ T(s′) =

∫
Z
si(z)

[
pi(z;T(s))− pi(z;T(s′))

]
µ(dz)

so that

‖s̄i ◦ T(s)− s̄i ◦ T(s′)‖ ≤
∫
Z
‖si(z)‖

∣∣pi(z;T(s))− pi(z;T(s′))
∣∣µ(dz)

≤ Lp ‖T(s)− T(s′)‖
∫
Z
‖si(z)‖µ(dz) .

6.2 Proofs of section 3

For any k ≥ 0 and i ∈ {1, . . . , n}, we define Ŝ<k,i such that

S̃k =
1

n

n∑
i=1

s̄i ◦ T(Ŝ<k,i) ;

it means Ŝ<0,i def
= Ŝ0 for all i ∈ {1, . . . , n} and for k ≥ 0,

Ŝ<k+1,i = Ŝ`,


` = k if Ik+1 = i,
1 ≤ ` ≤ k − 1 if Ik+1 6= i, Ik 6= i, . . . , I`+1 = i,
` = 0 otherwise.

(26)
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Define the filtrations, for k ≥ 0,

Fk
def
= σ(Ŝ0, I1, J1, . . . , Ik, Jk), Fk+1/2

def
= σ(Ŝ0, I1, J1, . . . , Ik, Jk, Ik+1) ;

note that Ŝk ∈ Fk and Sk+1,· ∈ Fk+1/2. Set

Hk+1
def
= s̄Jk+1

◦ T(Ŝk)− Ŝk +
1

n

n∑
i=1

Sk+1,i − Sk+1,Jk+1
.

6.2.1 Proof of Theorem 4

By Proposition 2 and H5-item 3, V̇ is LV̇ -Lipschitz, and we have

V (Ŝk+1) ≤ V (Ŝk) +
〈
Ŝk+1 − Ŝk, V̇ (Ŝk)

〉
+
LV̇
2
‖Ŝk+1 − Ŝk‖2

≤ V (Ŝk) + γk+1

〈
Hk+1, V̇ (Ŝk)

〉
+ γ2

k+1

LV̇
2
‖Hk+1‖2.

Taking the expectation yields, upon noting that Ŝk ∈ Fk

E
[
V (Ŝk+1)

]
− E

[
V (Ŝk)

]
≤ γk+1E

[〈
E [Hk+1|Fk] , V̇ (Ŝk)

〉]
+ γ2

k+1

LV̇
2

E
[
‖Hk+1‖2

]
≤ γk+1E

[〈
h(Ŝk), V̇ (Ŝk)

〉]
+ γ2

k+1

LV̇
2

E
[
‖Hk+1‖2

]
≤ −γk+1vminE

[
‖h(Ŝk)‖2

]
+ γ2

k+1

LV̇
2

E
[
‖Hk+1‖2

]
≤ −γk+1

(
vmin − γk+1

LV̇
2

)
E
[
‖h(Ŝk)‖2

]
+ γ2

k+1

LV̇
2

E
[
‖Hk+1 − h(Ŝk)‖2

]
where we used that E [Hk+1|Fk] = h(Ŝk) and Proposition 3. Set

Ak
def
= E

[
‖h(Ŝk)‖2

]
, Bk+1

def
= E

[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
.

By 11 and 12, we have for any k ≥ 0:

E
[
V (Ŝk+1)

]
− E

[
V (Ŝk)

]
≤ −γk+1

(
vmin − γk+1

LV̇
2

)
Ak − γ2

k+1

LV̇
2
Bk+1

+ γ2
k+1

LV̇
2

E
[
‖s̄Jk+1

◦ T(Ŝk)− Sk+1,Jk+1
‖2
]
≤ T1,k + T2,k+1
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by setting

T1,k
def
= −γk+1

(
vmin − γk+1

LV̇
2

)
Ak + γ2

k+1

LV̇
2

k−1∑
j=0

Λ̃j+1,kAj

T2,k+1
def
= −γ2

k+1

LV̇
2

Bk+1 +

k−1∑
j=0

Λ̃j+1,k(1 + β−1
j+1)−1Bj+1

 ;

by convention,
∑1

j=0 aj = 0. By summing from k = 0 to k = Kmax − 1, we have

Kmax−1∑
k=0

γk+1

(
vmin − γk+1

LV̇
2

)
Ak −

LV̇ L
2

2

Kmax−2∑
k=0

γ2
k+1Λk Ak

≤ ∆V −
LV̇
2

Kmax−1∑
k=0

γ2
k+1

(
L2Ξk + 1

)
Bk+1,

where for 0 ≤ k ≤ Kmax − 2 and with the convention ΛKmax−1 = ΞKmax−1 = 0,

Λk
def
=

(
1 +

1

βk+1

) Kmax−1∑
j=k+1

γ2
j+1

(
n− 1

n

)j−k j∏
`=k+2

(
1 + β` + γ2

`L
2
)

≤
(

1 +
1

βk+1

) Kmax−1∑
j=k+1

γ2
j+1

j∏
`=k+2

(
1− 1

n
+ β` + γ2

`L
2

)
,

Ξk
def
=

(
1 +

1

βk+1

)−1

Λk =
Λkβk+1

1 + βk+1
.

Hence,

Kmax−1∑
k=0

{γk+1

(
vmin − γk+1

LV̇
2

)
− γ2

k+1Λk
LV̇ L

2

2
} Ak

+

Kmax−1∑
k=0

γ2
k+1{1 + ΞkL

2}
LV̇
2
Bk+1 ≤ ∆V .

6.2.2 Proof of Proposition 5

It is a follow-up of Theorem 4; the quantities αk,Λk, δk introduced in the statement
of Theorem 4 are used below without being defined again. We consider the case when
for ` = 1, . . . ,Kmax,

β`
def
=

1− λ
nb

, γ2
`

def
=

C

L2n2cK2d
max

,
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for some λ ∈ (0, 1), C > 0 and b, c, d to be defined in the proof in such a way that
(i) αk ≥ 0, (ii)

∑Kmax−1
k=0 αk is positive and as large as possible. Since there will be

a discussion on (n,C, λ), we make more explicit the dependence of some constants
upon these quantities: αk will be denoted by αk(n,C, λ).

With theses definitions, we have

1− ρn
n

def
= 1− 1

n
+ β` + γ2

`L
2 = 1− 1

n

(
1− 1− λ

nb−1
− C

n2c−1K2d
max

)
,

and choose (b, c, d, λ, C) such that

1− λ
nb−1

+
C

n2c−1K2d
max

< 1 , (27)

which ensures that ρn ∈ (0, 1). Hence, for any 0 ≤ k ≤ Kmax − 2,

Λk ≤ nb
(

1

nb
+

1

1− λ

)
C

L2n2cK2d
max

Kmax−1∑
j=k+1

(
1− ρn

n

)j−k−1

≤
(

1

nb
+

1

1− λ

)
C

L2ρn

1

n2c−b−1K2d
max

.

From this upper bound, we deduce for any 0 ≤ k ≤ Kmax− 1: αk(n,C, λ) ≥ αn(C, λ)
where

αn(C, λ)
def
=

√
C

LncKd
max

(
vmin −

LV̇
2L

√
C

ncKd
max

−
LV̇
2L

C3/2

ρn n3c−b−1K3d
max

(
1

nb
+

1

1− λ

))
. (28)

From (27) and (28), we choose b = 1, c = 2/3, d = 0; which yields for n ≥ 1, since
ρn = λ− Cn−1/3

n2/3αn(C, λ) ≥ Ln(C, λ) ,

with

Ln(C, λ)
def
=

LV̇
√
C

2L2

(
vmin

2L

LV̇
−
√
Cfn(C, λ)

)
,

fn(C, λ)
def
=

1

n2/3
+

C

λ− Cn−1/3

(
1

n
+

1

1− λ

)
.

Let µ ∈ (0, 1). Fix λ ∈ (0, 1) and C > 0 such that (see (27) for the second condition)

√
Cfn(C, λ) = 2µvmin

L

LV̇
,

1

n1/3
<
λ

C
. (29)
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This implies that n2/3αk(n,C, λ) ≥ n2/3αn(C, λ) ≥ n2/3α?(C)
def
=
√
C(1 − µ)vmin/L.

We obtain an upper bound on E1 by

E1 ≤
1

Kmax α?(C)

Kmax−1∑
k=0

αk(n,C, λ)E
[
‖h(Ŝk)‖2

]
.

For E2, since δk ≥ LV̇ γ
2
k+1/2,

LV̇
√
C

2L(1− µ)n2/3

1

vmin
E2 ≤

LV̇ C

2L2n4/3

1

Kmax α?(C)

Kmax−1∑
k=0

E
[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
≤ 1

Kmax α?(C)

Kmax−1∑
k=0

δkE
[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
.

We then conclude by

1

Kmax α?(C)
=

n2/3

Kmax

L√
C(1− µ)vmin

, (30)

and use
√
Cfn(C, λ) = 2µvminL/LV̇ .

• The choice C = λ. Since n ≥ 2, the second condition in (29) is satisfied with
λ = C. (30) is a decreasing function of C so that by the first condition in (29), C
solves √

C

(
1

n2/3
+

1

1− n−1/3

(
1

n
+

1

1− C

))
= 2µvmin

L

LV̇

A solution exists in (0, 1) and is unique (see Lemma 14); it is denoted by C?. Since
the LHS is lower bounded by C 7→ (1 − C)−1 on (0, 1), C? is upper bounded by
C+ ∈ (0, 1) solving

√
C = 2µvmin

L

LV̇
(1− C) .

This yields C+ = (
√

1 + 4A2−1)/(2A) with A
def
= 2µvminL/LV̇ . Note that fn(C,C) ≤

f2(C,C) ≤ f2(C+, C+) for any C ∈ (0, 1).

• Another choice, for any n large enough. We have when n→∞

Ln(C, λ) ↑ L∞(C, λ)
def
=

LV̇
√
C

2L2

(
vmin

2L

LV̇
− C3/2

λ

1

1− λ

)
.
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By Lemma 15 applied with A ← vmin/L and B ← 2LV̇ /L
2, we have L∞(C, λ) ≤

L∞(C?, λ?) where

λ?
def
=

1

2
, C?

def
=

1

4

(
vminL

LV̇

)2/3

, L∞(C?, λ?) =
3

8

vmin

L

(
vminL

LV̇

)1/3

.

Set N?
def
= (vminL/LV̇ )2/8; for any n ≥ N?, the second condition in (27) is satisfied

and we have

lim
n
n2/3αk(n,C?, λ?) ≥ lim

n
n2/3αn(C?, λ?) ≥ L∞(C?, λ?) > 0 ,

thus showing that for any n large enough (with a bound which only depends upon
L,LV̇ , vmin), we have

1

Kmax
∑Kmax−1

k=0 αk(n,C?, λ?)
≤ n2/3

KmaxL∞(C?, λ?)
=

n2/3

Kmax

8

3

L

vmin

(
LV̇
vminL

)1/3

.

6.2.3 Proof of Proposition 6

It is a follow-up of Theorem 4; the quantities αk,Λk, δk introduced in the statement
of Theorem 4 are used below without being defined again.

We consider the case when, for ` = 1, . . . ,Kmax,

β`
def
=

1− λ
nb

, γ2
`

def
=

C

L2n2cK2d
max

for some λ ∈ (0, 1), C > 0 and b, c, d to be defined in the proof in such a way that
(i) αk ≥ 0, (ii)

∑Kmax−1
k=0 αk is positive and as large as possible. Since there will be

a discussion on (n,C, λ), we make more explicit the dependence of some constants
upon these quantities: αk will be denoted by αk(n,C, λ).

With theses definitions, we have

ρ
def
= 1− 1

n
+ β` + L2γ2

` = 1− 1

n

(
1− 1− λ

nb−1
− C

n2c−1K2d
max

)
,

and choose (b, c, d, λ, C) such that

1− λ
nb−1

+
C

n2c−1K2d
max

≤ 1 , (31)

which ensures that ρ ∈ (0, 1]. Hence, for any 0 ≤ k ≤ Kmax − 2,

Λk ≤ nb
(

1

nb
+

1

1− λ

)
C

L2n2cK2d
max

Kmax−1∑
j=k+1

ρj−k−1

≤
(

1

nb
+

1

1− λ

)
C

L2n2c−bK2d−1
max

.
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From this upper bound, we obtain the following lower bound for any 0 ≤ k ≤ Kmax−1:
αk(n,C, λ) ≥ αn(C, λ) where

(ncKd
max) αn(C, λ)

def
=

√
C

L

(
vmin −

√
C
LV̇
2L

{
1

ncKd
max

+
C

n3c−bK3d−1
max

(
1

nb
+

1

1− λ

)})
.

Based on this inequality and on (31), we choose b = 1 and c = d = 1/3; which yields
for n ≥ 1,

(nKmax)1/3 αn(C, λ) = Ln(C, λ)
def
=

√
CLV̇
2L2

(
vmin

2L

LV̇
−
√
Cf̃n(C, λ)

)
,

f̃n(C, λ)
def
=

1

(nKmax)1/3
+ C

(
1

n
+

1

1− λ

)
.

Let µ ∈ (0, 1). Fix λ ∈ (0, 1) and C > 0 such that (see (31) for the second condition)

√
Cf̃n(C, λ) = 2µvmin

L

LV̇
,

n1/3

K
2/3
max

≤ λ

C
. (32)

This implies that

(nKmax)1/3αk(n,C, λ) ≥ (nKmax)1/3αn(C, λ)

≥ (nKmax)1/3α?(C)
def
=
√
C(1− µ)vmin/L .

We obtain the upper bound on E1 by

E1 ≤
1

Kmax α?(C)

Kmax−1∑
k=0

αk(n,C, λ) E
[
‖h(Ŝk)‖2

]
.

For E2 and since δk ≥ LV̇ γ
2
k+1/2

LV̇
√
C

2(1− µ)Ln1/3

1

K
1/3
maxvmin

E2

≤
LV̇ C

2L2n2/3K
2/3
max

1

Kmax α?(C)

Kmax−1∑
k=0

E
[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
≤ 1

Kmax α?(C)

Kmax−1∑
k=0

δkE
[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
.
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We then conclude by

1

Kmaxα?(C)
=

n1/3

K
2/3
max

L√
C(1− µ)vmin

, (33)

and use
√
Cf̃n(C, λ) = 2µvminL/LV̇ .

Complexity. For τ > 0, set C = λτ . Then for any λ ∈ (0, 1),

√
λτf̃n(λτ, λ) =

√
λ
√
τ

(nKmax)1/3
+ λ3/2τ3/2

(
1

n
+

1

1− λ

)
,

which is a continuous increasing function of λ, which tends to zero when λ → 0
and to +∞ when λ → 1. Hence, there exists an unique λ? ∈ (0, 1), depending
upon L,LV̇ , vmin, τ, µ and n,Kmax such that

√
λ?τ f̃n(λ?τ, λ?) = 2µvminL/LV̇ . Note

however that since
√
λτf̃n(λτ, λ) ≥ λ3/2τ3/2/(1−λ) for any λ ∈ (0, 1), then λ? is upper

bounded by the unique solution λ+ ∈ (0, 1) satisfying LV̇ λ
3/2τ3/2/(2L(1−λ)) = µvmin

(see Lemma 16). Such a solution λ+ only depends upon L,LV̇ , vmin, τ, µ. Hence, for
any τ > 0,

f̃n(λτ, λ) ≤ sup
n,Kmax

f̃n(λ+(τ)τ, λ+(τ))

and the RHS does not depend on n,Kmax. There exists M > 0 depending upon
L,LV̇ , vmin, τ, µ such that for any ε > 0,

Kmax ≥
(
τ3/2√n

)
∨
(
M
√
nε−3/2

)
=⇒ n1/3

K
2/3
max

L f̃n(λτ, λ)

µ(1− µ)v2
min

≤ ε .

Another choice of (λ,C), for any n large enough. In this section, we consider

that there exists τ > 0 such that supn,Kmax
n1/3K

−2/3
max ≤ τ , and n→∞, nKmax →∞.

In this asymptotic, we have Ln(C, λ) ↑ L∞(C, λ) where

L∞(C, λ)
def
=

√
C

L

(
vmin −

LV̇
2L

C3/2

1− λ

)
.

For any (C, λ) ∈ R+ × (0, 1) s.t. τ ≤ λ/C, we have L∞(C, λ) ≤ L∞(C?(λ), λ) where

C?(λ)
def
=

(
vminL

2LV̇

)2/3

(1− λ)2/3 ;
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see Lemma 15. The condition Cτ ≤ λ implies that this inequality holds for any
λ ∈ [λ?, 1) where λ? is the unique solution of (see Lemma 16)(

vminL

2LV̇

)2

(1− λ?)2 = λ3
?/τ

3 .

Since L∞(C?(λ), λ) = 3
4

(
v4min

2L2LV̇

)1/3
(1− λ)1/3, this quantity is maximal by choosing

λ = λ?. Therefore, we have for any (C, λ) ∈ R+ × (0, 1), s.t. τ ≤ λ/C, we have

lim
n
n1/3K1/3

maxαn(C?(λ?), λ?) = L∞(C?(λ?), λ?) > 0 .

For any n large enough (with a bound which only depends upon L,LV̇ , vmin, τ), we
have

1

Kmaxα?(C?, λ?)
=

n1/3

K
2/3
max

4

3

(
2L2LV̇
v4

min

)1/3

(1− λ?)−1/3 .

6.2.4 Proof of Proposition 7

It is a follow-up of Theorem 4; the quantities αk,Λk, δk introduced in the statement
of Theorem 4 are used below without being defined again.

Let p0, . . . , pKmax−1 be positive real numbers such that
∑Kmax−1

k=0 pk = 1. We
consider the case when

β`
def
=

1− λ
nb

, γ2
`

def
=

C`
L2n2cK2d

max

,

for λ ∈ (0, 1), C` > 0, and b, c, d to be defined in the proof.
The first step consists in the definition of a function F and of a family C of vectors

C = (C1, . . . , CKmax) ∈ RKmax
+ such that αk ≥ F (Ck+1) ≥ 0, and

∑Kmax−1
`=0 F (C`+1) >

0. The second step proves that we can find C ∈ C such that pk = F (Ck+1)/
∑Kmax−1

`=0 F (C`+1)
for any k = 0, . . . ,Kmax − 1.

Such a pair (F,C) is not unique, and among the possible ones, we indicate two
strategies, all motivated by making the sum

∑Kmax−1
`=0 F (C`+1) as large as possible.

Step 1- Definition of the function F . With the definition of the sequences γ`
and β`, we have

1−
ρn,`
n

def
= 1− 1

n
+ β` + γ2

`L
2 = 1− 1

n

(
1− 1− λ

nb−1
− C`
n2c−1K2d

max

)
and choose (b, c, d, λ, C`) such that

1− λ
nb−1

+
Cmax

n2c−1K2d
max

< 1 , where Cmax
def
= max`C` , (34)
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which ensures that ρn,` ∈ (0, 1). Define

ρn
def
= min`ρn,` = 1− 1− λ

nb−1
− Cmax

n2c−1K2d
max

.

Hence, for any 0 ≤ k ≤ Kmax − 2,

Λk ≤ nb
(

1

nb
+

1

1− λ

)
1

L2n2cK2d
max

Kmax−1∑
j=k+1

Cj+1

(
1− ρn

n

)j−k−1

≤
(

1

nb
+

1

1− λ

)
Cmax

L2ρn

1

n2c−b−1K2d
max

.

From this upper bound, we obtain the following lower bound on αk, for any 0 ≤ k ≤
Kmax − 1,

αk ≥
√
Ck+1

LncKd
max

(
vmin −

LV̇
2L

√
Ck+1

ncKd
max

−
LV̇
2L

Cmax

√
Ck+1

ρn n3c−b−1K3d
max

(
1

nb
+

1

1− λ

))
.

Based on this inequality and on (34), we choose b = 1, c = 2/3, d = 0: this yields
ρn = λ− Cmaxn

−1/3 and αk ≥ αk with (see (16) for the definition of fn)

αk
def
=

√
Ck+1LV̇

2L2n2/3

(
vmin

2L

LV̇
−
√
Ck+1fn(Cmax, λ)

)
; (35)

the condition (34) gets into n−1/3 < λ/Cmax.

Define the quadratic function x 7→ F (x)
def
= Ax(vmin −Bx) where

A
def
=

1

Ln2/3
, B

def
= fn(C, λ)

LV̇
2L

; (36)

we have αk = F (
√
Ck+1). By Lemma 13, F is increasing on (0, vmin/(2B)], reaches

its maximum at x?
def
= vmin/(2B) and its maximal value is F?

def
= Av2

min/(4B). In
addition, its inverse F−1 exists on (0, F?].

Step 2- Choice of C1, . . . , CKmax. We are now looking for C1, . . . , CKmax such
that pk = F (

√
Ck+1)/

∑Kmax−1
`=0 F (

√
C`+1) or equivalently

pk
pI

=
F (
√
Ck+1)

F (
√
CI)

, I ∈ argmaxkpk . (37)

It remains to fix F (
√
CI) in such a way that F is invertible on

(
0,
√
CI
]
. Since we

also want
∑

` F (
√
C`+1) = F (

√
CI)/pI as large as possible, and F is increasing on

(0, x?], we choose √
CI =

√
Cmax = x? =

vmin

2B
. (38)
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Therefore, Cmax solves the equation
√
Cmax = vmin/(2B) or equivalently

vminL

LV̇
=
√
Cmaxfn(Cmax, λ) , (39)

under the constraint that λ ∈ (0, 1) and n−1/3 < λ/Cmax. When Cmax is fixed, we set√
Ck+1

def
= F−1

(
pk

max`pl
F (
√
Cmax)

)
.

With these definitions, we have (see (37))

1∑Kmax−1
k=0 F (

√
Ck+1)

=
max`p`

F (
√
Cmax)

.

Remember that F (
√
Cmax) = F (x?) = vmin

√
Cmax/(2Ln

2/3).
Step 3. Lower bound on δk We write

δk ≥
LV̇
2
γ2
k+1 ,

so that
δk∑Kmax−1

k=0 F (
√
Ck+1)

≥
LV̇ L

vmin
n2/3 max`p`√

Cmax
γ2
k+1 .

Case λ = C. A simple strategy is to choose n ≥ 2 and Cmax = λ solution of
vmin/2 =

√
Cfn(C,C). This solution exists and is unique, and it is upper bounded

by a quantity C+ which depends only on L,LV̇ , vmin - the same discussion is proved
in subsubsection 6.2.2.

Case λ = 1/2. fn(C, λ) controls the errors Ei and we can choose λ ∈ (0, 1) and
then C > 0 such that this quantity is minimal; to make the computations easier, we
minimize w.r.t. λ the function limn fn(C, λ): it behaves like λ−1(1− λ)−1 so that we
set λ = 1/2. The equation

√
Cfn(C, 1/2) = vminL/LV̇ possesses an unique solution

in
(
0, λn1/3

)
.

Upon noting that x 7→
√
xfn(x, 1/2) is lower bounded by x 7→ 4x3/2, the solution

to the equation
√
Cfn(C, 1/2) = vminL/LV̇ satisfies

C ≤
(
vminL

4LV̇

)2/3

,

thus showing that the constraint n−1/3 < λ/C = 1/(2C) is satisfied for any n such

that 8n >
(
vminL/LV̇

)2
.
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6.2.5 Auxiliary results

Lemma 11. Assume H1, H2 and H3. For any k ≥ 0,

E
[
‖Hk+1‖2

]
= E

[
‖Hk+1 − h(Ŝk)‖2

]
+ E

[
‖h(Ŝk)‖2

]
,

and

E
[
‖Hk+1 − h(Ŝk)‖2

]
+ E

[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
= E

[
‖s̄Jk+1

◦ T(Ŝk)− Sk+1,Jk+1
‖2
]
.

Proof. Since E
[
Hk+1

∣∣Fk+1/2

]
= h(Ŝk), we have

E
[
‖Hk+1‖2

]
= E

[
‖Hk+1 − h(Ŝk)‖2

]
+ E

[
‖h(Ŝk)‖2

]
.

In addition, upon noting that Sk+1,i ∈ Fk+1/2 for any i,

Hk+1 − h(Ŝk) = s̄Jk+1
◦ T(Ŝk)− Sk+1,Jk+1

− s̄ ◦ T(Ŝk) + S̃k+1

= s̄Jk+1
◦ T(Ŝk)− Sk+1,Jk+1

− E
[
s̄Jk+1

◦ T(Ŝk)− Sk+1,Jk+1

∣∣∣Fk+1/2

]
,

we have

E
[
‖Hk+1 − h(Ŝk)‖2

]
+ E

[
‖S̃k+1 − s̄ ◦ T(Ŝk)‖2

]
= E

[
‖s̄Jk+1

◦ T(Ŝk)− Sk+1,Jk+1
‖2
]
.

Proposition 12. Assume H1, H2, H3 and H5-item 2. Set L2 def
= n−1

∑n
i=1 L

2
i . Then

E
[
‖s̄J1 ◦ T(Ŝ0)− S1,J1‖2

]
= 0 ,

and for any k ≥ 1 and β1, . . . , βk > 0,

E
[
‖s̄Jk+1

◦ T(Ŝk)− Sk+1,Jk+1
‖2
]

≤
k∑
j=1

Λ̃j,k

{
E
[
‖h(Ŝj−1)‖2

]
−
(

1 +
1

βj

)−1

E
[
‖S̃j − s̄ ◦ T(Ŝj−1)‖2

]}
,
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where

Λ̃j,k
def
= L2

(
n− 1

n

)k−j+1

γ2
j

(
1 +

1

βj

) k∏
`=j+1

(
1 + β` + γ2

`L
2
)
.

By convention,
∏k
`=k+1 a` = 1.

Proof. For k = 0,

E
[
‖s̄J1 ◦ T(Ŝ0)− S1,J1‖2

]
=

1

n

n∑
i=1

E
[
‖s̄i ◦ T(Ŝ0)− S1,i‖2

]
= 0 .

Let k ≥ 1. We write (see (11))

Sk+1,i = Sk,i1Ik+1 6=i + s̄i ◦ T(Ŝk)1Ik+1=i = s̄i ◦ T(Ŝ<k,i)1Ik+1 6=i + s̄i ◦ T(Ŝk)1Ik+1=i,

where Ŝ<`,i is defined by (26). This yields, by H5-item 2

1

n

n∑
i=1

E
[
‖s̄i ◦ T(Ŝk)− Sk+1,i‖2

]
=

1

n

n∑
i=1

E
[
‖s̄i ◦ T(Ŝk)− s̄i ◦ T(Ŝ<k,i)‖21Ik+1 6=i

]
≤ ∆k

def
=

n− 1

n2

n∑
i=1

L2
i E
[
‖Ŝk − Ŝ<k,i‖2

]
. (40)

We have

∆k =
n− 1

n2

n∑
i=1

L2
i E
[
‖Ŝk − Ŝk−1 +

(
Ŝk−1 − Ŝ<k−1,i

)
1Ik 6=i‖

2
]

where we used in the last inequality that Ŝ<k,i = Ŝk−1
1Ik=i + Ŝ<k−1,i

1Ik 6=i. Upon

noting that 2
〈
Ũ , V

〉
≤ β−1‖Ũ‖2+β‖V ‖2 for any β > 0, we have for any G-measurable

r.v. V

E
[
‖U + V ‖2

]
≤ E

[
‖U‖2

]
+ β−1E

[
‖E [U |G] ‖2

]
+ (1 + β)E

[
‖V ‖2

]
.

Applying this inequality with β ← βk, U ← Ŝk − Ŝk−1 = γkHk and G ← Fk−1/2

yields

∆k ≤ γ2
k

n− 1

n
L2 E

[
‖Hk‖2

]
+
γ2
k

βk

n− 1

n
L2 E

[
‖E
[
Hk|Fk−1/2

]
‖2
]

+ (1 + βk)
n− 1

n2

n∑
i=1

L2
i E
[
‖Ŝk−1 − Ŝ<k−1,i‖21Ik 6=i

]
.
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By Lemma 11 and (40), we have

E
[
‖Hk‖2

]
≤ E

[
‖h(Ŝk−1)‖2

]
+ ∆k−1 − E

[
‖S̃k − s̄ ◦ T(Ŝk−1)‖2

]
;

for the second term, we use again E
[
Hk|Fk−1/2

]
= h(Ŝk−1); for the third term, since

Ik ∈ Fk−1/2, Ŝk−1 ∈ Fk−1, Ŝ<k−1,i ∈ Fk−1, then

n∑
i=1

L2
i E
[
‖Ŝk−1 − Ŝ<k−1,i‖21Ik 6=i

]
= n∆k−1.

Therefore, we established

∆k ≤
(
1 + βk + γ2

kL
2
) n− 1

n
∆k−1 + γ2

k(1 +
1

βk
)L2 n− 1

n
E
[
‖h(Ŝk−1)‖2

]
− γ2

kL
2n− 1

n
E
[
‖S̃k − s̄ ◦ T(Ŝk−1)‖2

]
.

The proof is then concluded by standard algebra upon noting that ∆0 = 0.

6.2.6 Technical lemmas

Lemma 13. Let A,B, v > 0 and define F (x)
def
= Ax(v−Bx) on R. Then the roots of

F are {0, v/B}; F is positive on (0, v/B); the maximal value of F is Av2/(4B) and

it is reached at x?
def
= v/2B.

Lemma 14. Let a, b > 0 and define F on (0, 1) by F (x) =
√
x(a + b/(1 − x)). For

any v > 0, there exists an unique x ∈ (0, 1) such that F (x) = v.

Proof. x 7→ F (x) is continuous and increasing on (0, 1), tends to zero when x → 0
and to +∞ when x → 1; therefore for any v > 0, there exists an unique x ∈ (0, 1)
such that F (x) = v.

Lemma 15. Let A,B > 0. The function F : x 7→ Ax−Bx4 defined on (0,∞) reaches

its unique maximum at x?
def
= A1/3B−1/34−1/3 and F (x?) = 3A4/3/(B44)1/3.

Proof. F ′(x) = A−4Bx3 and F ′′(x) = −12Bx2 < 0; hence, F ′ is decreasing. F ′(x) =

0 iff x3 = A/(4B), showing F ′ > 0 on (0, x?) with x?
def
= A1/3/(4B)1/3. Hence, F is

increasing on [0, x?] and then decreasing.

Lemma 16. For any v > 0, the function x 7→ (1− x)2/x3 is decreasing on (0, 1) and
there exists an unique x ∈ (0, 1) solving (1− x)2/x3 = v.

Proof. The derivative of x 7→ (1−x)2/x3 is −x−4(x−3)(x−1) thus showing that the
function is decreasing on (0, 1); it tends to +∞ when x → 0 and to 0 when x → 1.
This concludes the proof.
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