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Abstract In the context of the surveillance of the maritime traffic, a major challenge
is the automatic identification of traffic flows from a set of observed trajectories, in or-
der to derive good management measures or to detect abnormal or illegal behaviours
for example. In this paper, we propose a new modelling framework to cluster se-
quences of a large amount of trajectories recorded at potentially irregular frequencies.
The model is specified within a continuous time framework, being robust to irregular
sampling in records and accounting for possible heterogeneous movement patterns
within a single trajectory. It partitions a trajectory into sub-trajectories, or movement
modes, allowing a clustering of both individuals’ movement patterns and trajecto-
ries. The clustering is performed using non parametric Bayesian methods, namely
the hierarchical Dirichlet process, and considers a stochastic variational inference to
estimate the model’s parameters, hence providing a scalable method in an easy-to-
distribute framework. Performance is assessed on both simulated data and on our
motivational large trajectory dataset from the Automatic Identification System (AIS),
used to monitor the world maritime traffic: the clusters represent significant, atomic
motion-patterns, making the model informative for stakeholders.
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1 Introduction

For the last thirty years, the tracking of movements of individuals or objects has been
eased by the increasing development of several tracking devices, such as the Global
Positioning System (GPS) that allows recording geographical positions through time.
Such devices have led to large movement databases that store trajectory data, in which
each point represents a position in space at a given time. These databases contain a
great deal of knowledge and require analysis (Demšar et al., 2015) such as the ex-
traction of movement patterns across diverse trajectories in order to perform human
mobility or traffic monitoring (Li et al., 2007; Zheng et al., 2008), motion predic-
tion (Sung et al., 2012), human action recognition (Yao et al., 2017) or detection of
abnormal behavior in maritime routes (Vespe and Mazzarella, 2016).

A striking example of large movement database comes from the worldwide mar-
itime traffic surveillance. This monitoring relies on several sources of data, in a rising
context of maritime big data (Garnier and Napoli, 2016). Among these sources lies
the Automatic Identification System (AIS), which automatically collects messages
from vessels around the world, at a high frequency. AIS data basically consist in
GPS-like data, together with the instantaneous speed and heading, and some vessel
specific static information (Clazzer et al., 2014). An example of such data is presented
in Figure 1 (left), considering 6 months of AIS data of vessels steaming in the Ushant
traffic separation scheme in Brittany, west of France (Fablet et al., 2017). These data
are characterized by their diversity as they (1) are collected at different frequencies
(2) have different lengths (3) are not necessarily regularly sampled (4) represent very
different behaviors, but (5) share common trends or similar subparts (called hereafter
movement modes).

Fig. 1 (Left) AIS data in the Ushant traffic separation scheme (Brittany, France), gathered during 6 months
(7M. GPS obs.). Source: CLS, Brest, France and ANR SESAME (Fablet et al., 2017) (Right) Three tra-
jectories extracted from the dataset, sharing common movement modes (characterized by the directions
West-South-West and South-South-West). The green (+ shaped points) trajectory, however, subsequently
adopts another movement mode (South-South-East). The red (triangles) and blue (crosses) trajectories
belong to the same cluster, which is different from the one of the green (+ shaped) trajectory.
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One major challenge in this context is the extraction of movement patterns emerg-
ing from the observed data, considering trajectories that share similar movement
modes (see Figure 1 (right)). This issue can be restated from a machine learning point
of view as a large-scale clustering task involving the definition of clustering methods
that can handle such complex data while being efficient on large databases, and that
are able to both cluster trajectories as a whole and detect common sub-trajectories.

Regarding the problem of clustering entire trajectories, existing methods in the
literature follow two main trends:

– The first class of methods is a density-based clustering framework that relies on
the definition of typical motions in the trajectories (Ester et al., 1996; Rinzivillo
et al., 2008; Yang et al., 2020). Similarities between full trajectories are consid-
ered to take into account local details in the segments.

– An other category of methods relies on distance computation between trajecto-
ries, clustering together trajectories that are similar. The most classical distances
used in this context are Dynamic Time Warping (Sakoe and Chiba, 1978) or
LCSS (Vlachos et al., 2002), among others.

– The last class of methods is a rule-based clustering framework, that relies on pre-
conceived decision rules to build each cluster (Vespe and Mazzarella, 2016). The
main advantage of these methods is their simplicity, but they suppose the prior
knowledge of decision rules, and afterwards make strong independence assump-
tion on observed points, that might not hold in practice.

In a more parametric approach, one can aim at modelling the heterogeneous nature of
movement data (Nathan, 2008) to define a proper normality model, whose structure
is made of clusters.

In this context, trajectories would belong to a cluster, and, moreover, a trajectory
could be the bringing together of different moving patterns or movement modes.

In this context, different trajectories may share similar movement modes in a
given portion. To learn common sub-trajectories in the clustering process, Lee et al.
(2007) propose a partition-and-group framework based on a dedicated distance. Wang
et al. (2011b) propose the definition of a normality model for trajectories through an
unsupervised clustering framework inspired by topic models (Steyvers and Griffiths,
2007). Initially developed in the field of text analysis, topic models aim at classifying
documents depending on their main topics. The clustering approach then estimates
the different topics in each document as well as clusters documents together regarding
their topics. In the transposition of topic models to trajectory analysis, Wang et al.
(2011b) consider trajectories as documents and quantized GPS observations (position
and velocity) as words. It is assumed that each point of the trajectory belongs to a
semantic region (a topic), called hereafter a movement mode. A movement mode is
therefore a specific distribution to be estimated from trajectory data. Trajectories are
then considered as a mixture of movement modes, and a trajectory cluster is a set
of trajectories with a common mixture distribution. Estimation of both movement
modes and trajectory clusters is performed on a discretized space within a Bayesian
framework using Gibbs sampling. If this approach still assumes independence of GPS
observations (conditionally to their semantic region), it takes into account different
heterogeneity levels for movement data. However, it requires a quantization of the
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space whose influence over results is not investigated, and relies on Gibbs sampling
for inference, which is known to be hardly scalable (Blei et al., 2017).

Nevertheless, none of the aforementionned methods are able to deal with large
databases, neither consider the continuous nature of the data. For an in-depth re-
view of spatial trajectory clustering algorithms, one can refer to Yuan et al. (2017) or
(Zheng, 2015, Section 6).

Given the challenges mentionned above, we propose in this paper a novel model,
based on topic models, to cluster large and complex trajectory datasets in a scalable
framework.

Following these works, the approach proposed here distinguishes yet from exist-
ing works in the definition of GPS observations distributions as it is now assumed
that (1) the distribution lives in a continuous space, avoiding the quantization of the
(position/velocity) space, and (2) within a movement mode (or a topic), observations
are not independent. Each movement mode is modeled through the bivariate veloc-
ity as a continuous time Gaussian process, namely the Ornstein Uhlenbeck Process
(OUP) (Uhlenbeck and Ornstein, 1930), that has been proposed in movement ecol-
ogy as a flexible framework to model the fundamental units of movement (Gurarie
et al., 2017). Thanks to its continuous time formulation, the OUP allows handling ir-
regularly sampled data. Moreover, as a Gaussian process, it accounts for observation
autocorrelation. The unsupervised clustering is made in a non parametric Bayesian
context using a Hierarchical Dirichlet Process framework (Teh et al., 2006). To per-
form movement mode estimation in a scalable approach, we use asymptotic proper-
ties of the OUP together with stochastic variational inference (Hoffman et al., 2013).
Contrary to MCMC methods that obtain samples from the posterior distribution, the
variational approach solves an optimization problem, allowing the use of distributed
computation and stochastic optimization to scale and speed up inference (Blei et al.,
2017).

The remainder of this paper is organized as follows: in Section 2, the hierarchical
parametric framework that models trajectory data is fully specified, and the proposed
scalable approach to estimate model parameters from data is described in Section 3.
The method is evaluated in Section 4, both on simulated data sets, to assess inference
performance, and on a new dataset of current AIS data that is released with the paper,
to show the interest of our scalable approach in a realistic context.

2 Movement model

In this section, we define a parametric framework to model trajectory data, i.e. se-
quences of geographical positions recorded through time.

In the following, the fundamental modelling of movement is first described, con-
sidering the individual’s velocity process. Velocity is observed directly (as in the AIS
context) or is at least computed from the successive geographical locations of the in-
dividuals. The positions and velocities of an individual are modeled as two continuous
time processes in R2, denoted by (Xt)t≥0 and (Vt)t≥0. Following a common paradigm,
we assume that a moving individual’s trajectory might be the collection of heteroge-
neous patterns (Nathan, 2008), namely the movement modes. Different movement
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modes along a trajectory refer to different ways of moving in terms of velocity dis-
tribution, reflecting different behaviors, activities, or routes. It is assumed that the
set of possible movement modes of tracked individuals during their trajectories is
countable, and that a given movement mode can be adopted by several individuals.

Then, the modelling framework aims to account for two levels of heterogeneity
possibly present in trajectory data: (1) heterogeneity of an individual’s movement
within a single trajectory, and (2) heterogeneity between observed trajectories of sev-
eral individuals.

Fundamental unit of movement Similarly to Gurarie et al. (2017), a movement mode
is assumed to be characterized by a specific correlated velocity model, defined in a
continuous-time framework. Formally, during a time segment [τ1;τ2], if an individual
adopts the movement mode k, then its velocity process (Vt)τ1≤t≤τ2 is assumed to be
the solution of the following Stochastic Differential Equation (SDE) (see Øksendal
(2003) for a formal definition of SDEs):

dVt =−Γk (Vt −µk)dt +ΣkdWt , τ1 ≤ t ≤ τ2,

Vτ1 = vτ1

(1)

where:

– µk ∈ R2 is the asymptotic mean velocity of the k-th movement mode;
– Γk is a 2× 2 real-valued matrix, and is an autocorrelation parameter, modelling

the recall force of the process towards the mean µk;
– Σk is a 2×2 real-valued matrix, and is a diffusion term, modelling the variability

of the process around the mean µk;
– Wt is a bivariate standard Brownian motion, modelling the stochasticity of the

individual’s velocity process;
– vτ1 is the initial condition of the SDE: the individual’s velocity at time τ1.

The solution to Eq. (1) is a well known continuous time stochastic process, the Orn-
stein Uhlenbeck Process (OUP) (Uhlenbeck and Ornstein, 1930), also known as the
mean reverting process. This mean reverting property is controlled by the recall pa-
rameter Γk and makes the OUP suitable to describe movement modes of individuals,
that are often characterized by a mean velocity regime, which is reached by rapid
and brutal accelerations (or decelerations, see Figure 2). The OUP satisfies the three
following properties:

1. (Vt)τ1≤t≤τ2 is a continuous time Markov process;
2. (Vt)τ1≤t≤τ2 is a Gaussian process, i.e. the law of the random variable Vt |Vτ1 = vτ1

is Gaussian, with explicit mean and covariance (given in Appendix A);
3. if both eigenvalues of Γk are positive, then (Vt)t≥τ1 is an asymptotically stationary

Gaussian Process, i.e., the law of Vt |Vτ1 = vτ1 satisfies:

Vt |Vτ1
t→∞−→N (µk,Λk) , (2)

where Λk is the asymptotic covariance matrix of the OUP (given in Appendix A).
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Fig. 2 Five realizations of bivariate Ornstein Ulhenbeck Processes of parameters µ , Γ and Σ , solution of
the SDE eq.(1), starting at position v0 = (0,0) (top right corner).

As discussed in Gurarie et al. (2017), the OUP offers a flexible framework to
model wide range of autocorrelated velocity processes, such as highly directed move-
ments or rotational ones. Knowing the individual’s velocity process, its position pro-
cess, starting at position xτ1 , is obtained by deterministic integration over time:

Xt = Xτ1 +
∫ t

τ1

Vsds.

The resulting process (Xt)τ1≤t≤τ2 is known as an Integrated Ornstein Ulhenbeck Pro-
cess (IOUP), which remains a Gaussian Process.

Within trajectories heterogeneity To account for heterogeneous ways of moving dur-
ing a single trajectory, we assume that an individual’s trajectory in a time segment
[0,T ] is a sequence of IOUPs. Formally, there exists a sequence of times τ0 = 0 <
τ1 < · · ·< τL = T such that the trajectory is a sequence of L successive IOUPs, each
IOUP being defined over a time segment [τl ,τl+1]. A simulated example of such a
sequence is shown on Figure 3.

Therefore, a trajectory is characterized by (1) the movement modes adopted within
the trajectory, (2) the time spent by the tracked individual within each movement
mode and (3) the transitions from one movement mode to another. Here, we do not
impose specific modelling for the last two points. Our first main goal is then to esti-
mate the different movement modes within trajectories from a given dataset.

Between trajectories heterogeneity In addition to this segmentation problem, we as-
sume that the dataset is composed of different (unknown) clusters of (entire) trajec-
tories. A cluster is characterized by similar distributions over movement modes. In
other words, two trajectories belong to the same cluster if they are composed of the
same movement modes in similar proportions. This clustering problem is illustrated
in Figure 4. Our second main goal is then to cluster together such trajectories.

To summarize, the overall modelling framework for the two level clustering is
depicted on Figure 5.
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Fig. 3 (Left) Simulation of a sequence of Ornstein Uhlenbeck Processes defining a trajectory. The red
triangle marks the starting velocity. The trajectory is made of two movement modes (identified by their
colors and line styles), characterized by two different sets of parameters for the velocity process from
Eq. (1). (Right) Bivariate velocity processes, together with the instant τ1 at which parameters change
(vertical lines).

Fig. 4 Simulation of three different trajectories with the same model as in Figure 3. The left panel shows
the position processes, the right panel shows the velocity processes. All processes start from (0, 0). (Left)
Two trajectories (in plain lines) are made of the same movement modes so they belong to the same cluster.
The other trajectory (dashed line) has a different distribution over movement modes so it belongs to another
cluster. (Right) The trajectories are plotted on the bivariate velocity space, showing the three possible
movement modes. Two of them (red and blue) are shared by the two trajectory clusters.

3 Scalable two step clustering

The following three problems must be solved:

1. Characterizing different movement modes present in the dataset;
2. For each GPS observation, estimating in which movement modes it belongs;
3. Clustering together trajectories that have the same distribution over movement

modes.

In the previous section, we defined a realistic framework to model movement
data, introducing a continuous time autocorrelated model over velocity process. The
resulting framework therefore consists in a continuous time regime switching diffu-
sion model. Estimating both parameters and movement mode assignation of data is
in this case a statistical challenge, even in the case of a single trajectory (Patterson
et al., 2017). For instance, Blackwell et al. (2016) use thinning Poisson process and
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Fj

Z j
1 Z j

2
. . . Z j

L j

V j
0 V j

1
. . . V j

i V j
i+1

. . .

Hidden movement modes
dynamics

Observed Ornstein Uh-
lenbeck dynamics

Hidden trajectory cluster j = 1, . . . ,J

Fig. 5 Modelling framework for the two level clustering of our movement data set (consisting in J trajec-
tories). Equations for the Ornstein-Uhlenbeck dynamics are given in section (2). Hidden movement mode
dynamics are not fully specified, as a simplified independant model will be used for inference. Classical
modelling framework would be a Markov chain or a semi Markov chain. Notations used in this Figure are
detailed in Section 3.

MCMC methods to perform parameter estimation from movement data, resulting in
highly time demanding approach. A big challenge for estimation methods therefore
remains their scalability, especially in the dual clustering context we target here.

In order to perform scalable parameter inference and clustering of both trajecto-
ries and GPS observations (into movement modes), we adopt a pragmatic two-step
approach that takes advantage of the inherent properties of the OUP and are described
with more details hereafter:

Step-1 A first dual clustering is performed based on a simpler independent Gaussian
mixture model, in order to estimate potential movement modes and trajectory
clusters: it allows getting rid of within mode autocorrelation in the inference, and
therefore eases the computations. The Gaussian hypothesis in this case is rather
natural, as the OUP stationary distribution is Gaussian.

Step-2 Among the estimated movement modes, only those meeting a temporal con-
sistency constraint are kept. Parameters of these consistent movement modes are
then estimated, and used to reassign observations that were assigned to incon-
sistent movement modes. It ensures that only trajectory segments for which this
stationary distribution was reached are kept to estimate movement modes.

Finally, we discuss the algorithmic complexity of the proposed two-steps proce-
dure, justifying that the procedure remains tractable for large datasets while using a
continuous time framework ine the movement modes modelling.
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3.1 Step 1: simplified model based on an independence assumption

3.1.1 Hierarchical model

The data set is composed of J independent trajectories that we aim to cluster into C
groups. This number of clusters is unknown and has to be inferred from data. Each
trajectory j is a sequence of n j velocities (V j

i )i=1,...,n j .
For a trajectory j, we denote Fj = c if it belongs to the cluster c (1≤ c≤C). We

suppose that:
P(Fj = c) = wc

where wc is an unknown parameter to be estimated and we denote w = (w1, . . . ,wC).
In this first step, it is assummed that each cluster c is a Gaussian mixture distribution
having K components and mixture weights πc = (πc

1 , . . . ,π
c
K). Again, this number

K is unknown and has to be inferred from data. Each mixture component models a
movement mode. For each V j

i , we denote Z j
i = k if the velocity belongs to the k-

th movement mode. Conditionnally to the cluster assignation of the trajectory j, we
therefore have:

P
(

Z j
i = k|Fj = c

)
= π

c
k

We denote π =
(
π1, . . . ,πC

)
the set of all unknown movement modes weights to be

estimated.
In this simplified model, conditionnally to their movement mode, all the velocities

are mutually independent (as assumed in Wang et al., 2011b). This strong hypothesis
eases the computation and ensures the scalability of the method as a first step, but
will be relaxed in the second step. We therefore suppose that:

V j
i |
{

Z j
i = k

}
∼N

(
µk,Λ

−1
k

)
, 1≤ k ≤ K

where µk ∈R2 (resp. Λk ∈M2×2) is the mean velocity (resp. the precision matrix) of
the k-th movement mode. The set of unknown movement parameters {(µk,Λk)}k=1···K
is denoted T .

The movement parameter set T , the trajectory clusters weights w and, for each
cluster c, the movement mode weights πc are the global variables (reusing the termi-
nology used in Hoffman et al. (2013)) of the model that have to be estimated. More-
over, for each trajectory j, the cluster label Fj has to be estimated. Finally, for each
observation V j

i , the movement mode label Z j
i has to be estimated. Sets F =

{
Fj
}

1≤ j≤J

and Z =
{

Z j
i

}
1≤ j≤J, 1≤i≤n j

are the local variables of the model to be estimated. The

resulting hierarchical structure of this model is depicted on Figure 6. The next section
describes the scalable inference approach to estimate both local and global variables
from the data.

3.1.2 Bayesian estimation of the parameters using stochastic variational inference

In the first step, the inference of the local and global variables is made within a
Bayesian context, considering unknown parameters as random variables. The infer-
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w π T Global variables

Fj

Z j
iLocal variables V j

i

Cluster level

Observations

Trajectory levelj = 1, . . . ,J

i = 1, . . . ,n j

Fig. 6 Graphical representation of the hierarchical structure of the simplified model of Section 3.1.

ence therefore aims at obtaining the joint posterior distribution of local and global
variables, denoted by p(T ,w,π,F ,Z|V ).

Together with the prior specification, a classical problem in Bayesian clustering
is to set the number of clusters. In the following, we adopt a Bayesian non parametric
approach by considering a possibly infinite set of movement modes and clusters in
the data.

First, for a given movement k, we consider as prior distribution for (µk,Λk) a
Gaussian-Whishart having hyperparameters m0,ρ0,γ0 and W0. This distribution is a
common prior for Gaussian parameters as it provides nice conjugacy properties that
we’ll use in our scalable purpose. The hyperparameters m0 and W0 are location hyper-
parameters for the mean and the precision matrix, while ρ0 and γ0 are concentration
parameters, setting the amount of information carried by the prior.

As we do not specify a priori the number of possible movement modes, we as-
sume that this number is infinite.

Each trajectory cluster c is therefore an infinite mixture distribution whose com-
ponents are Gaussian distributions. The mixture weights prior is given by a stick
breaking distribution, denoted by GEM(1,β ), where β is a concentration hyperpa-
rameter (see Sethuraman, 1994 as well as Appendix B.2 for details).

Finally, the amount of such clusters is itself infinite, and the prior distribution over
cluster weights is again a stick breaking distribution GEM(1,α) where α is a con-
centration hyperparameter. The full prior specification is then given by the following
equations: 

(
µk,Λ

−1
k

) i.i.d.∼ GW (m0,ρ0,γ0,W0) k ≥ 1
w ∼ GEM(α)

πc i.i.d.∼ GEM(β ) c≥ 1

Fj|w
i.i.d.∼ w 1≤ j ≤ J

Z j
i |π,Fj

i.i.d.∼ πFj 1≤ j ≤ J, 1≤ i≤ n j

The model depicted in Figure 6 together with these priors is known as a Hierar-
chical Dirichlet Process (Teh et al., 2006). In this Bayesian context, the expression
of the posterior density p(T ,w,π,F ,Z|V ) has no known analytical form. A classical
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way to obtain Bayesian estimators of quantities of interest would be alternatively to
obtain samples from this posterior distribution. This can be done using MCMC meth-
ods, that can be implemented for Dirichlet processes using a Gibbs sampler (Neal,
2000), and were used in Wang et al. (2011b) for the inference in their discrete-space
framework. However, it is known that the Gibbs sampler does not scale properly Blei
et al. (2017), and therefore could not be used in the context of this paper.

A more scalable alternative to this simulation-based approach is the use of vari-
ational inference (see Blei et al. (2017) for a recent review). Variational methods
reduce the inference to an optimization problem by minimizing a divergence (typ-
ically the Kullback-Leibler divergence (Kullback and Leibler, 1951)) between the
target posterior distribution and the members of a simpler family of distributions,
the variational family. An appropriate and common variational family Q is the one
which satisfies the mean field assumption, i.e. the set of q distributions that can be
fully factorized. Our variational family is therefore such that:

q(T ,w,π,F ,Z) = q(w)∏
c

q(πc)∏
k

q(µk,Λk)∏
j

q(Fj)∏
i, j

q(Z j
i ). (3)

The mean field inference problem reduces to find q∗ such that:

q∗ = argmax
q∈Q

{
Eq [log p(T ,w,π,F ,Z,V )]−Eq [logq(T ,w,π,F ,Z)]

}
, (4)

where Eq[·] denotes the expectation with respect to the p.d.f. q. The right hand side
of (4) is known as the evidence lower bound (ELBO), and can be computed for ap-
propriate families of distributions Q, and thus can be maximized.

In addition to this mean field property, the variational approximation of the pos-
terior distribution is restricted to finite sets of parameters. Formally, the posterior
distributions of the infinite cluster (resp. movement mode) weights are approximated
by a distribution on a finite set of weights having Cmax (resp. Kmax) elements. Here,
Cmax and Kmax are variational parameters given by the user. This variational approx-
imation is known as the truncated stick breaking distribution (Hoffman et al., 2013)
(see Appendix B for details).

A known algorithm to compute q∗ is the coordinate ascent variational inference
(CAVI, Bishop (2006)). This iterative algorithm starts from an initial guess q(0) for
the optimal variational distribution, and successively updates each of its components
by supposing the others known, and computes an expectation with respect to their dis-
tribution (Algorithm 1). For the model presented in Section 3.1 and the chosen prior
distributions, all needed expectations can be computed explicitly (see Appendix B for
details).

As described in Hoffman et al. (2013), this algorithm can be seen as a gradi-
ent ascent, and is therefore suitable for stochastic approximations, resulting in the
stochastic variational inference (SVI).

The estimation algorithm therefore reduces to:

1. sample uniformly a batch from the data set,
2. compute the expectations (as given in Appendix B) using only this batch,
3. update variational distributions using these expectations, as described in Hoffman

et al. (2013).
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Algorithm 1 Coordinate ascent variational inference algorithm
1: Denote p = p(V,w,π,θ ,F ,Z)
2: Set q(0) = q(0)w (·)q(0)π (·)q(0)T (·)q(0)F (·)q(0)Z
3: while convergence is not reached do
4: Local variables update
5: logq(i+1)

Z (·) = E
q(i)w q(i)π q(i)T q(i)F

[log p]

6: logq(i+1)
F (·) = E

q(i)w q(i)π q(i)T q(i+1)
Z

[log p]

7: Global variables update
8: logq(i+1)

w (·) = E
q(i)π q(i)T q(i+1)

F q(i+1)
Z

[log p]

9: logq(i+1)
π (·) = E

q(i+1)
w q(i)T q(i+1)

F q(i+1)
Z

[log p]

10: logq(i+1)
T (·) = E

q(i+1)
w q(i+1)

π q(i+1)
F q(i+1)

Z
[log p]

11: At last iteration M, set q∗ = q(M)
w (·)q(M)

π (·)q(M)
T (·)q(M)

F (·)q(M)
Z

This procedure can be performed online, therefore with no need of storing the data
(Wang et al., 2011a). Performances of these stochastic methods are widely discussed
in Wang et al. (2011a) and Hoffman et al. (2013).

It is worth noting here that all the needed computations can naturally be dis-
tributed (thanks to the independance simplification), as they are essentially a sum
over simple operations involving single observations. Therefore, the SVI algorithm
proposed here for the simplified model is widely scalable, unlike Gibbs sampling
procedures.

As the optimization is done in a high dimensional space, and the algorithm only
guarantees convergence to a local optimum, it is crucial to initialize the algorithm
from different starting points, to ensure a good exploration of the space1. Again,
different runs of the algorithm can be distributed.

3.2 Step 2: Estimation of OUP parameters from clustering outputs

The previous section described the first step of our two-step approach to perform
trajectory clustering and inference of movement modes. In this section, we define how
the parameters of the movement modes, defined by Ornstein Uhlenbeck processes,
are re-estimated from this first step.

This first step gives as an output the set of optimal variational distributions,
namely:

– q∗T , the posterior distribution of {(µk,Λk)}1≤k≤Kmax
, the parameters (under the

Gaussian mixture assumption) of the Kmax possible movement modes in the data
set;

– q∗w, the posterior distribution of the weights of the Cmax possible trajectory clusters
in the data set;

– q∗π = {q∗πc}1≤c≤Cmax
the posterior distribution of the weights of the Kmax possible

movement modes in each trajectory cluster c in the data set;

1 In this purpose also, it should be pointed out that any stochastic approach is better than the fully
deterministic CAVI algorithm, as discussed in Hoos and Stützle (2004), for instance.
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Algorithm 2 Estimation of OUP parameters and final movement mode assignation
Require: δ : a user-input minimal sequence length
1: ∀k,A[k] = {} . Sets of Assigned sequences for each movement mode k
2: U = {} . Set of Unassigned sequences
3: for each trajectory j do . Filter out inconsistent sequences
4: for each mode-coherent sequence of consecutive observations

(
V j

i1
, · · · ,V j

im

)
do

5: if tim − ti1 ≥ δ then
6: Add sequence

(
V j

i1
, · · · ,V j

im

)
to set A[Z j

i1
]

7: else
8: Add sequence

(
V j

i1
, · · · ,V j

im

)
to set U

9: for each movement mode k do . OUP parameter estimation
10: Estimate µk , Γk and Σk from all sequences in A[k] (cf. Appendix A)
11: for each inconsistent sequence in U do . Re-assignment
12: Reallocate the sequence to the most likely movement mode

– q∗F =
{

q∗Fj

}
1≤ j≤J

for each trajectory j, the posterior probability of being in each

possible trajectory cluster;

– q∗Z =

{
q∗

Z j
i

}
1≤ j≤J,1≤i≤n j

for each observation i of trajectory j, the posterior prob-

ability of being in each possible movement mode.

From the last two distributions, one can get estimators of clusters and movement
modes present in the data. A classical estimator would be the maximum a posteriori
(MAP), i.e. the cluster (resp. movement mode) label giving the maximum weight of
the posterior multinomial distribution q∗Fj

(resp. q∗
Z j

i
).

In order to estimate the OUP parameters of the k-th movement mode, as defined
in Section 2, a filter is applied on movement mode sequences based on their temporal
consistency. Formally, for a trajectory j, let us consider a sequence of m successively
recorded velocities V j

i1
, . . . ,V j

im , that were all estimated to belong to a same movement
mode k. This sequence is said to be temporally consistent if its length tim−ti1 is larger
than δ , a user chosen parameter, representing the minimal time lag for a movement
mode. All consistent sequences estimated in a same movement mode are considered
as independent realizations of OUP with common parameters. From the Markov and
Gaussian properties of the OUP, the likelihood related to this data set can be easily
maximized to obtain estimates of parameters µk, Γk and Σk (see Appendix A). If an
estimated movement mode k (i.e. a movement mode containing at least one observa-
tion) has no consistent sequence, this movement mode is considered as inconsistent.
Finally, to refine the movement modes classification, observation sequences belong-
ing to inconsistent movement modes are reallocated to the consistent movement mode
whose parameters maximize their likelihood. The overall procedure is summarized in
Algorithm 2.

Note that this second step depends on a parameter δ , which value is surely data
dependent, but has a clear interpretation. Therefore, depending on the context, its
value can easily be discussed with relevant experts or stakeholders.

The resulting consistent movement mode concept allows one to (1) have a good
estimation of OUP parameters within a movement mode (as a consistent sequence
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will often be related to a large amount of points) and (2) filter out “noise” movement
modes gathering few observations in a temporally inconsistent manner.

3.3 Algorithmic complexity

The goal of the two-step inference scheme is to make the approach tractable while
still using fine-grained continuous time models inside movement modes.

Time complexity for our first step is at worse O(J×tmax×Kmax+J×Cmax) where
tmax is the maximal number of time steps for a trajectory in the data set. It should
be pointed out that our approach relies on a variational approximation of the stick
breaking distribution, that imposes to set two parameters Kmax and Cmax, as the max-
imal number of movement modes and trajectory clusters present in the data. These
numbers should increase with n. It is worth noting that for our prior specification, a
Dirichlet process of parameter α , the expected number of classes in a n data set is
α logn (Ghosal and Van der Vaart, 2017, Proposition 4.8). The time complexity for
this first step is hence O(βn logn+αJ logJ) where n = ∑ j n j is the total number of
points in the data set.

Then, estimating OU parameters for a given movement mode in the second step
of our process is linear in the number of observations assigned to this movement
mode. Since this has to be done for all movement modes, complexity for this second
step is linear in the total number of observations in the dataset.

Overall, computational complexity of the inference step is then quasilinear in n
and, as discussed above, parts of the computations involved can be distributed. We
show in Section 4 that these two properties allow tackling large scale datasets of GPS
data in reasonable time.

4 Experiments

4.1 Experiments on simulated data

To ensure that the inference proposed in Section 3 suits the model defined in Sec-
tion 2, a numerical experiment is performed on simulated data.

Simulation set up. A data set of 40 trajectories containing overall 8,000 observations
is simulated, according to a model with 2 trajectory clusters, the two clusters being
composed of respectively 2 and 3 movement modes.

Within each movement mode, velocities are drawn from an OUP whose parame-
ters are movement mode dependent. All trajectories start at velocity (0,0) and spend
50% of the whole time in the first movement mode before switching to a second
movement mode. Trajectories of the first cluster spend then the remaining time in
the second movement mode. The trajectories in the second cluster spend 12.5% in
the second movement mode before switching to the third movement mode for the
remaining time (37.5% of the overall time). Simulated data are shown in Figure 7.
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Movement mode estimation: results after the first step. A first clustering is performed
using the variational inference approach within a hierarchical Dirichlet process, as
described in Section 3.1. The variational approximations of the stick breaking distri-
butions are made with truncated breaking distribution with Cmax = 5 and Kmax = 12.
Optimization is made independently from 200 starting points chosen randomly, per-
forming 1 000 iterations of the SVI, with a decreasing gradient step along iterations.
The best estimate is chosen as the final point maximizing the ELBO defined in Eq. (4).
The estimated movement mode for a velocity V j

i is computed as the maximum a pos-
teriori of the weights distribution q∗

Z j
i
. It results that among the Kmax = 12 possible

movement modes, only 5 of them contain at least one observation. Overall, 88.3% of
the points are attributed to the correct movement mode (Table 1). However, two extra
movement modes are estimated, corresponding to the transition phases towards the
light blue movement mode and leaving from it (see Figure 8).

It is worth noting here that this first phase is a continuous space version of the
work of Wang et al. (2011b). This first phase of the presented approach, however,
already improves on this baseline since it does not require to decide on a space quan-
tization grid.

Movement mode estimation: results after the second step. Including the second step
described in Section 3.2, movement modes for inconsistent sequences are re-estimated.
Using δ -consistent sequences, OUP parameters are estimated and used to reallocate
inconsistent ones. This results in a good reallocation of the problematic transitory
phases having now an overall 96.1% good classification rate, as shown in Figure 8
and Table 1.

One can see here that coming back to the OU property enables correct classifica-
tion of transitory phases of the movement. This is due to the recall force in the OU
that enables attaching any observed velocity that is not close to the mean velocity
in the movement mode as soon as there is a trend for velocities to move toward that
asymptotic mean.

Trajectory clusters estimation. As expected on such a simple example, the trajectory
cluster assignation is 100% right. It is worth noting here that it would not be the
case on trickier examples (not shown here), for instance, when the clusters are distin-
guished by the order of movement modes sequence, which cannot be captured by the
HDP for Gaussian mixtures used here.

Table 1 Contingency table (counting the number of points) between true movement modes (in row) and
estimated movement modes (in columns, the label assignment was made a posteriori), after the first step.

True MM Est. MM: Step 1 Est. MM: Step 2
1 2 3 4 5 1 2 3

1 3406 0 0 634 0 4026 12 2
2 203 2506 0 0 31 213 2517 10
3 0 74 1186 0 0 0 74 1186
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Fig. 7 Simulated trajectory data. Three movement modes are shared by two clusters. Each cluster corre-
sponds to two different routes. The black triangle denotes the beginning of each trajectory. The first two
movement modes are present in both clusters.

Fig. 8 Estimated movement modes (in the bivariate velocity space) after one step (left) and two steps
(middle). The ground truth is shown on the right. After one step, 5 movement modes are present in data,
after step 2, only three are remaining. The related contingency table for good labelling is shown on Table 1

4.2 Experiments on maritime traffic data

Dataset. We now validate our clustering approach by analysing real data. The con-
sidered dataset records 6 months of AIS data of vessels steaming in the area of the
Ushant traffic separation scheme (in Brittany, West of France). This is an area with
one of the highest maritime traffic density in the world, with a clear separation scheme
of two navigation lanes. Different kinds of vessels are sailing in the area, from cargos
and tankers with high velocity and straight routes to sailboats or fishing vessels with
lower speed and different sailing directions. As such, the area is highly monitored to
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Fig. 9 Movement modes estimated distributions (on the velocity space). Each ellipsoid represents a move-
ment mode distribution, the dot being the expected mean, and the contour the 50% centered quantile. The
transparency shows the estimated relative weight. The dotted lines show the 0 values.

avoid collision or grounding, and a better analysis and understanding of the different
ship behaviors is of prime importance.

The whole trajectory dataset is shown on Figure 1 and is available online2. It con-
sists in 18,603 trajectories, gathering at all more than 7 millions GPS observations.
Only trajectories having more than 30 points are kept, time lag between two consec-
utive observations ranges between 5 seconds and 15 hours, with 95% of time lags
below 3 minutes.

Two step movement modes estimation. Model fit is performed considering a maxi-
mum of 90 movement modes and 30 trajectory clusters, using non-informative priors.
200 runs of 50,000 iterations for SVI are performed independently, each run taking
approximately 8 hours with SVI computations parallelized on a 8-core machine. The
run leading to the highest ELBO is kept as the estimate.

The SVI leads to the estimation of 81 different movement modes containing (in
the sense of maximum a posteriori probability) at least one observation, with 50
movement modes containing 95% of observations. The shapes (mean and covari-
ance) of these movement modes are shown on Figure 9. One can note that a lot of
movement modes lead to a same steaming direction, but at different speeds. In this
context, choosing more informative prior or adding a penalty on movement modes
covariance parameters in the ELBO optimization could lead to a model with less
movement modes.

Trajectory clusters estimation. In addition to the movement modes estimated above,
29 (non-empty) trajectory clusters are identified. Three emblematic clusters are rep-
resented on Figure 10, plotting 50 randomly chosen trajectories with the same colour

2 https://github.com/rtavenar/ushant_ais

https://github.com/rtavenar/ushant_ais
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Fig. 10 50 trajectories of three estimated trajectory clusters, see the text for details. Colors correspond to
those of Fig. 9.

code as in Figure 9. The first two subfigures present the largest clusters (gathering
respectively 18% and 12% of trajectories) and are composed of two preponderant
movement modes: they represent the two main marine roads of the Ushant traffic
separation scheme, the first one entering the English Channel, the second one exit-
ing it. The third cluster gathers 5% of trajectories, and mostly puts together trips that
are performed at low speed (below 5 knots), involving both sailing boats and fishing
vessels.

Comparison with other clustering method. Our algorithm can be seen as an improved
(continuous-space) version of the method presented in Wang et al. (2011b). As such,
in order to validate the results of the clustering, we rather rely on a k-means algo-
rithm using Dynamic Time Warping (DTW, Sakoe and Chiba, 1978) as a distance
between trajectories considering them as sequences of 2D velocity vectors (using
DTW Barycenter Averaging method from Petitjean et al. (2011) for centroid esti-
mation). It is worth mentionning here that this method has a complexity at worse
O(JCmax× t2

max) (where tmax is the maximal number of points for a trajectory in the
data set). Thus, running this algorithm on the full dataset was too costly and we
subsampled one tenth of the original dataset to feed the clustering. We used the im-
plementation from the python library tslearn (Tavenard et al., 2017). We also run
our algorithm on the same dataset and we obtain a Normalized Mutual Information
between the clusterings equal to 0.63. The resulting five main clusters are presented
in Figure 2 in the Appendix, together with a confusion matrix between those five clus-
ters. As no ground truth is available, we cannot determine which solution fits better
but we note by a visual inspection of the clusters that the DTW-based clustering fails
at differenciating ships that follow the same traffic lane (i.e. identifying sub-routes
in the main traffic lanes). One should also note that, by assigning movement modes
to the observations, our methods provides extra explanation for cluster assignments,
compared to k-means that solely relies on inertia minimization. For instance, we show
on Figure 11 typical trajectories from two significant clusters (respectively 4th and
5th in terms of size). This example illustrates the relevance of our modelling frame-
work in this context, where these two clusters differ in the initial route (one coming
from southwest, the other from the south), thus differing in one movement mode, but
then share two movement modes, for the rest of the route.
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Fig. 11 Typical trajectories from two estimated clusters. Trajectories starts at the south, and ends at the
North East. In the first part of the trajectories, clusters are differentiated by the movement mode (South
West to North East for on the left, South East to North West on the right). Then, all trajectories follow the
same route.

Fig. 12 Example of result of the proposed second step in movement mode estimation. Both the velocity
(left) and position (right) processes are shown (units are of no importance here). The red cross shows
the first point of both processes. Colors correspond to different movement modes. The purple phase in
the middle of the trajectory is inconsistent (as defined in the text). It is a transitory phase in the vessel’s
velocity process. After the second step, it is assigned as the beginning of the second movement mode.

Interest of the post-filtering step. The post filtering step was performed whith a δ

parameter of 2 hours. In the present case, the main advantage of the second step,
which consists in a re-estimate of inconsistent sequences, is to avoid the estimation
of transitory movement modes. Figure 12 shows a trajectory belonging to the central
cluster of Figure 10. The transitory phase of the vessel, corresponding to its change
of direction, is first assigned a specific movement mode at step 1 (as would be done
by the baseline from Wang et al. (2011b)). As this transition is brief and the corre-
sponding observations can be considered consistent with the OUP attached with the
blue movement mode, these observations are reassigned to that movement mode.
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5 Conclusion

In this work, we have defined a generic framework for the clustering of large trajec-
tory data sets.

In our modelling, a trajectory is described by both the successive positions and
velocities. Each trajectory is seen as a succession of movement modes in which a
Ornstein Uhlenbeck process is used to model the velocity. A cluster of trajectories is
then characterized by a its distribution over movement modes.

This framework is then specified in continuous time and space, which makes its
formulation insensitive to GPS sampling, relaxing assumptions of previous models
of the literature that are based on space quantization.

Inference is done in a two-step scalable approach using stochastic variational
inference for a conjugate hierarchical Dirichlet process. This framework is easy to
distribute as demonstrated experimentally, and has a quasilinear complexity in the
number of observations.

Besides, we provide a dataset of several millions of observations in the AIS con-
text to both validate our model and allow future competitive methods to compare on a
real-world large-scale trajectory dataset. Note however that the proposed framework
is generic and suits, to our opinion, to a wide range of trajectory data sets.

Future works include extension of our framework to model sojourn time in move-
ment modes and/or transitions between modes. This would make anomaly detection
possible, both at the observation level (abnormal observation given the estimated
movement mode) and at the trajectory level (abnormal trajectory as an unlikely se-
quence of movement modes). Such an extended model could also be used as a fully
generative model.

Acknowledgements Authors would like to thank CLS (Collecte Localisation Satellites) and Erwan Guegue-
niat for providing the raw data that allowed building the AIS dataset used in this paper.
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Petitjean F, Ketterlin A, Gançarski P (2011) A global averaging method for dynamic
time warping, with applications to clustering 44(3):678 – 693

Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G (2008)
Visually driven analysis of movement data by progressive clustering. Information
Visualization 7(3-4):225–239

Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing
26(1):43–49

Sethuraman J (1994) A constructive definition of dirichlet priors. Statistica sinica pp
639–650



22 P. Gloaguen et al.

Steyvers M, Griffiths T (2007) Probabilistic topic models. Handbook of latent seman-
tic analysis 427(7):424–440

Sung C, Feldman D, Rus D (2012) Trajectory clustering for motion prediction. In:
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, IEEE, pp 1547–1552

Tavenard R, Faouzi J, Vandewiele G, Divo F, Androz G, Holtz C, Payne M, Yurchak
R, Rußwurm M, Kolar K, Woods E (2017) tslearn: A machine learning toolkit
dedicated to time-series data. https://github.com/rtavenar/tslearn

Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical dirichlet pro-
cesses. Journal of the American Statistical Association 101(476):1566–
1581, DOI 10.1198/016214506000000302, URL https://doi.org/10.1198/

016214506000000302, https://doi.org/10.1198/016214506000000302
Uhlenbeck GE, Ornstein LS (1930) On the theory of the brownian motion. Physical

review 36(5):823
Vespe M, Mazzarella F (eds) (2016) Maritime Knowledge Discovery and Anomaly

Detection Workshop Proceedings, DOI doi:10.2788/025881
Vlachos M, Kollios G, Gunopulos D (2002) Discovering similar multidimensional

trajectories. In: Proceedings of the 18th international conference on data engineer-
ing, pp 673–684

Wang C, Paisley J, Blei D (2011a) Online variational inference for the hierarchical
dirichlet process. In: Proceedings of AISTATS, pp 752–760

Wang X, Ma KT, Ng GW, Grimson WEL (2011b) Trajectory analysis and semantic
region modeling using nonparametric hierarchical bayesian models. International
journal of computer vision 95(3):287–312

Yang Y, Cai J, Yang H, Zhang J, Zhao X (2020) Tad: A trajectory clustering algo-
rithm based on spatial-temporal density analysis. Expert Systems with Applica-
tions 139:112846

Yao T, Wang Z, Xie Z, Gao J, Feng DD (2017) Learning universal multiview dictio-
nary for human action recognition. Pattern Recognition 64:236–244

Yu SZ (2010) Hidden semi-markov models. Artificial intelligence 174(2):215–243
Yuan G, Sun P, Zhao J, Li D, Wang C (2017) A review of moving object trajectory

clustering algorithms. Artificial Intelligence Review 47(1):123–144
Zheng Y (2015) Trajectory data mining: an overview. ACM Transactions on Intelli-

gent Systems and Technology (TIST) 6(3):29
Zheng Y, Li Q, Chen Y, Xie X, Ma WY (2008) Understanding mobility based on gps

data. In: Proceedings of the 10th international conference on Ubiquitous comput-
ing, ACM, pp 312–321

A Characteristics of the Ornstein Uhlenbeck process

Notations:

– Id is the d×d identity matrix;
– For a matrix A, AT is the transposed matrix of A;
– For two 2× 2 matrices A and B, A⊕B denotes the Kronecker sum of A and B, defined by : A⊕B =

A⊗ I2 + I2⊗B, where⊗ denotes the Kronecker product. Note that in our case, A⊕B is a 4×4 matrix;
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– For a matrix A =

(
a1 a3
a2 a4

)
, vec(A) denotes the vectorization of A, i.e. the vector vec(A) =


a1
a2
a3
a4

.

Transition density Suppose that the process (Vt)τ1≤t≤τ2 is solution of equation (1), then,

∀τ1 ≤ t ≤ τ2, Vt |Vτ1 = vτ1 ∼N (m
vτ1
k,∆ ,Λk,∆ )

where ∆ = t− τ1 and

m
vτ1
k,∆ = e−Γk∆ vτ1 +(I2− e−Γk∆ )µk

vec
(
Λk,∆

)
= (Γk⊕Γk)

−1
(

I4− e−(Γk⊕Γk)∆
)

vec
(
ΣkΣ

T
k
)

Likelihood Let v be a sequence of observations vt1 = vτ1 ,vt2 , . . . ,vtn = vτ2 , discrete time observations
of a OUP starting at Vτ1 and such that Vτ1 is a random variable with p.d.f. (possibly depending on µk,Γk
and Σk) pτ1 (·). Then the likelihood of the observed sequence is given by:

L(µk,Γk,Σk;v) = pτ1 (vτ1 )
n−1

∏
i=1

φk,∆i (vti+1 ),

where ∆i = ti+1− ti and φk,∆i (vti+1 ) is the p.d.f. of a Gaussian distribution with mean m
vti
k,∆i

and covariance
Λk,∆i

Stationary distribution From above, one can see that if both e−Γk∆ and e−(Γk⊕Γk)∆ vanishes to 0
when ∆ increases, then the process (Vt)t≥τ1 is asymptotically stationary, and

Vt |Vτ1 = vτ1
distrib.−→ N (µk,Λk)

where

vec(Λk) = (Γk⊕Γk)
−1 vec

(
ΣkΣ

T
k
)
.

The vanishing condition is satisfied when both eigenvalues of Γk are positives.

B Computation for variational inference

B.1 Prior specification

Overall, the variables prior distributions are defined as follows:

(
µk,Λ

−1
k

) i.i.d.∼ GW (m0,ρ0,γ0,W0) k ≥ 1,
w ∼ GEM(α)

πc i.i.d.∼ GEM(β ) c≥ 1

Fj|w
i.i.d.∼ Mult(w) 1≤ j ≤ J

Z j
i |π,Fj

i.i.d.∼ Mult(πFj ) 1≤ j ≤ J, 1≤ i≤ n j

where GW (·) denotes the Gaussian Wishart distribution, depending on 4 hyperparameters, GEM(·) de-
notes the stick breaking distribution depending on 1 hyperparameter, and Mult(·) denotes the multinomial
distribution (with weights as parameters). The choice of these distributions is convenient as it leads to a
conjugate framework for conditional distributions, i.e., the conditional distribution of a hidden variable
given the observations and the other hidden variables.
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B.2 About the stick breaking construction

To build a prior for an infinite sequence of weights summing to one, we use the stick breaking construction.
The topic weights πc are build using an hyperparameter α:

νc
i.i.d∼ Beta(1,α) c = 1,2, . . .

π
c = νc

c−1

∏
i=1

(1−νi) Init: π
1 = ν1

Weights πc
k are sampled similarlrly, with an hyperparameter β :

η
c
k

i.i.d∼ Beta(1,β ) k = 1,2, . . .

π
c
k = η

c
k

k−1

∏
i=1

(1−η
c
i ) Init: π

c
1 = η

c
1

In the following, we rather deal with the sequence of ν and ηc, as there are i.i.d. samples. We have, for
each c and each k:

p(νc) = (1−νc)
α−1

p(ηc
k ) = (1−η

c
k )

β−1

B.3 Likelihood

Keeping the notation of the main text, the likelihood of an observation V j
i is given by:

p(Vj
i |Z

j
i ,µ,Λ) =

∞

∏
k=1

ϕ(Vj
i |µk,Λ

−1
k )

z j
i,k ,

which results, for the complete data set V

p(V|Z,µ,Λ) =
M

∏
j=1

n j

∏
i=1

∞

∏
k=1

ϕ(Vj
i |µk,Λ

−1
k )

z j
i,k

The distribution of latent allocation vectors (or local variables) Fj and Zi
j is given by an (infinite) multino-

mial distributions depending on weights w and π:

p(Z j
i |Fj,π) =

∞

∏
c=1

(
∞

∏
k=1

(πc
k )

z j
i,k

) f j,c

(5)

p(Fj|w) =
∞

∏
c=1

w
f j,c
c (6)

B.4 Variational approximations of the posterior distributions

Let L =
{
{Z j

i },{Fj},η ,ν ,µ,Λ
}

be the set of (local and global) hidden variables. For any hidden variable

U in L the corresponding q∗(U) is given by

lnq∗(U) = EL \U [ln p(V,Z,F,ν ,η ,µ,Λ)]+ constant (7)

The complete joint distribution can be split in simpler terms:

p(V,Z,F,ν ,η ,µ,Λ) = p(V|Z,µ,Λ)p(Z|F,η)p(F|ν)p(µ,Λ)p(η)p(ν) (8)
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B.4.1 Optimal variational distribution for ν

The variational approximation of the trajectory cluster is a truncated stick breaking distribution. It is there-
fore defined by Cmax random variables, such that the first Cmax− 1 are beta distributed, and the last one
equals to one almost surely. A simple computation using equations (7) and (8) shows that for the Cmax−1
first terms, the variational distribution of νc is given by:

q∗(νc)∼Beta

(
1+

J

∑
j=1

EqF [1Fj=c],α +
J

∑
j=1

EqF [1Fj>c]

)
,

where 1 denotes the indicator function.

B.4.2 Optimal variational distribution for η

Similarly to the clustering weights, a truncated stick breaking distribution is used. For the cluster c and the
movement mode 1≤ k ≤ Kmax−1, we have:

q∗(ηc
k )∼Beta

(
1+

J

∑
j=1

EqFj
[ f j,c]

n j

∑
i=1

Eq
Z j

i

[1
Z j

i =k
],β +

J

∑
j=1

EqFj
[ f j,c]

n j

∑
i=1

Eq
Z j

i

[1
Z j

i >k
]

)

where we have written Fj =
(

f j,1, . . . , f j,Cmax

)
.

B.4.3 Optimal variational distribution for (µ,Λ)

This computation is done in Bishop (2006). For each movement mode 1≤ k≤Kmax, the optimal variational
distribution is a G W (mk,ρk,γk,Wk) with:

ρk = ρ0 +Nk

mk =
ρ0m0 +NkV̄k

ρk

γk = γ0 +Nk

Wk =

(
W−1

0 +NkSk +
ρ0Nk

ρ0 +Nk
(V̄k)−m0)(V̄k)−m0)

)

where

Nk =
J

∑
j=1

n j

∑
i=1

Eq
Z j

i

[Z j
i,k]

V̄k =
1

Nk

J

∑
j=1

n j

∑
i=1

Eq
Z j

i

[z j
i,k]V

j
i

Sk =
1

Nk

J

∑
j=1

n j

∑
i=1

Eq
Z j

i

[z j
i,k](V

j
i − V̄k)(V

j
i − V̄k)

T

B.4.4 Optimal variational distribution for Fj

The computation results in q∗(Fj) being a multinomial distribution on the set [[1,Cmax]] with the c-th
weight proportional to:

Eqν
[log(πc)]+

n

∑
i=1

Kmax

∑
k=1

Eq
Z j

i

[z j
i,k]Eqη

[logπ
c
k ]
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Here, one can see that

Eqν
[log(πc)] = Eνc [log(νc)]+

c−1

∑
i=1

Eνi [log(1−νi)]

This expectation can therefore be computed using the two following properties of the beta distribution. If
X ∼ Beta(α1, α2), then

1. (1−X)∼Beta(α2,α1);
2. E[logX ] = ψ(α1)−ψ(α1 +α2), where ψ is the digamma function.

Of course, the same remarks hold for Eqη
[logπc

k ].

B.4.5 Optimal variational distribution for Z j
i

The computation results in q∗(Z j
i ) being a multinomial distribution on the set [[1,Kmax]] with the k-th

weight proportional to:

Cmax

∑
c=1

EqFj
[ f j,c]Eqη

[logπ
c
k ]+

1
2
EqΛk

[log(detΛk)]−
1
2
Eqµk ,Λk

[
(V j

i −µk)
T

Λk(V
j
i −µk)

]
− log2π

C Simulation design for experiments

We consider a framework with K = 12 movement modes, and C = 10 trajectory clusters. Each trajectory
cluster c is characterized by:

– Its initial movement mode density (the law of the first movement mode chosen during the cluster)
denoted by πc

0 = (πc
0,1, . . . ,π

c
0,K);

– Its transition densities between movement modes (the laws for the next movement mode after having
been in a cluster k) denoted by πc

0 = (πc
k,1, . . . ,π

c
k,K) for all 1≤ k ≤ K;

A movement mode k is characterized by:

– Its movement parameters µk,Γk,Σk , i.e. the OUP parameters;
– Its sojourn time distribution, i.e. the distribution of time spent in this movement mode, denoted by dk .

In our example, dk is the p.d.f. of gamma distribution G (∆k,
1
2 ) where ∆k is a movement mode-specific

parameter.

For each trajectory 1≤ j ≤ 500, we independently repeat the following procedure:

– Final time Sample3 a final time T j;
– Number of observations Sample4 a number of observed points n j;
– Observation times Sample independently υ1, . . . ,υn j points from a uniform U [0,T j], and sort them

to set times as t1 := υ(1), . . . tn j = υ(n j);
– Trajectory cluster Sample a trajectory cluster c with known probabilities w = (w1, . . . ,w10);
– First movement mode Sample k0 with probabilities πc

0;
– First duration Set τ0 = 0; Sample δ0 from dk0 , set τ1 = τ0 +δ0;
– First OUP sampling Set an initial value V0. Sample an OUP (Vt)τ0≤t≤τ1 starting at v0 at all observa-

tion times between τ0 and τ1 and at τ1;
– Set i = 1;
– While τi < T j

– Movement mode Sample ki with probabilities πc
ki−1

;
– Duration Sample δi from dk0 , set τi+1 = τi +δi;
– OUP sampling Sample a OUP (Vt)τi≤t≤τi+1 starting at Vτi at all observation times between τi

and τi+1, and at τi+1;
– Set i = i+1;

The resulting process is a continuous time hidden semi-Markov model (Yu, 2010) whose emission densities
are autoccorelated OU processes.

3 In our example, it was sampled uniformly in the continuous interval [80,500]
4 In our example, it was sampled uniformly in the discrete interval [50,450]
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D Additional experimental results

Table 2 represents the clusters obtained by our algorithm and those of a DTW-based k-means and Table 3
compares the results. The clusters are ordered by the number of trajectories they contain. In Table 2, one
may notice that the DTW-based k-means algorithm puts in the 2 first clusters trajectories that enter the
traffic scheme from the South. One also notices a correspondance between the clusters 1,4 (our) → 1,2
(DTW), 2 (our)→ 3 (DTW), 3 (our)→ 4 (DTW), 5 (our)→ 5 (DTW).

Table 2 First five clusters for our and DTW-based kmeans algorithm. Blue color indicates the beginning
of the trajectories, yellow color the end.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Table 3 Number of trajectories by cluster. The Normalized Mutual Information on those five clusters is
equal to 0.68.

Our/DTW 1 2 3 4 5
1 209 94 0 0 32
2 0 0 145 0 0
3 0 8 0 107 0
4 23 28 0 1 4
5 7 0 0 0 79
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