
HAL Id: hal-02617506
https://hal.science/hal-02617506v1

Submitted on 25 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Message Orderings Beyond Causality
Adam Shimi, Aurélie Hurault, Philippe Quéinnec

To cite this version:
Adam Shimi, Aurélie Hurault, Philippe Quéinnec. Asynchronous Message Orderings Beyond Causal-
ity. The 21st International Conference on Principles of Distributed Systems (OPODIS 2017), Dec
2017, Lisboa, Portugal. pp.1-20. �hal-02617506�

https://hal.science/hal-02617506v1
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is a publisher’s version published in: https://oatao.univ-toulouse.fr/22157

To cite this version:

Shimi, Adam and Hurault, Aurélie and Quéinnec, Philippe
Asynchronous Message Orderings Beyond Causality. (2018) In: The
21st International Conference on Principles of Distributed Systems
(OPODIS 2017), 18 December 2017 - 20 December 2017 (Lisboa,
Portugal).

Open Archive Toulouse Archive Ouverte

Official URL :
https://doi.org/10.4230/LIPIcs.OPODIS.2017.29

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22157
https://doi.org/10.4230/LIPIcs.OPODIS.2017.29

Asynchronous Message Orderings Beyond
Causality
Adam Shimi1, Aurélie Hurault2, and Philippe Quéinnec3

1 IRIT - Université de Toulouse, 2 rue Camichel, F-31000 Toulouse, France
2 IRIT - Université de Toulouse, 2 rue Camichel, F-31000 Toulouse, France
3 IRIT - Université de Toulouse, 2 rue Camichel, F-31000 Toulouse, France

Abstract
In the asynchronous setting, distributed behavior is traditionally studied through computations,
the Happened-Before posets of events generated by the system. An equivalent perspective consid-
ers the linear extensions of the generated computations: each linear extension defines a sequence
of events, called an execution. Both perspective were leveraged in the study of asynchronous
point-to-point message orderings over computations; yet neither allows us to interpret message
orderings defined over executions. Can we nevertheless make sense of such an ordering, maybe
even use it to understand asynchronicity better?

We provide a general answer by defining a topology on the set of executions which captures
the fundamental assumptions of asynchronicity. This topology links each message ordering over
executions with two sets of computations: its closure, the computations for which at least one
linear extension satisfies the predicate; and its interior, the computations for which all linear ex-
tensions satisfy it. These sets of computations represent respectively the uncertainty brought by
asynchronicity – the computations where the predicate is satisfiable – and the certainty available
despite asynchronicity – the computations where the predicate must hold. The paper demon-
strates the use of this topological approach by examining closures and interiors of interesting
orderings over executions.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Asynchronous computations, Point-to-point message orderings, Causal-
ity, Topology, Interior, Closure

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.29

1 Introduction

1.1 Motivation
What can we know about the ordering of events in an asynchronous world? Only the
causal order, answered Lamport’s seminal work [20]. This insight grounds the description
of asynchronous behavior through computations, the posets generated by events with their
causal order – or equivalently through the linear extensions of these computations, sequences
of events called executions.

It follows that message orderings defined over computations have been well studied,
because they capture the type of constraints allowed by causality. One prominent example is
the causal message ordering: it enforces that two messages whose send events are causally
ordered and which share the same destination peer, must be received in the order they were

1 This work was supported by project PARDI ANR-16-CE25-0006.

© Adam Shimi, Aurélie Hurault, and Philippe Quéinnec;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 29; pp. 29:1–29:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Asynchronous Message Orderings Beyond Causality

sent. Charron-Bost et al. [8] offer multiple equivalent characterizations of this ordering, as
well as its place in a hierarchy with other orderings. Murty and Garg [22] prove that causal
ordering is the most constrained ordering implementable using only messages tags – that is,
without altering the causal order through control messages. Numerous works, among others
Fidge [14], Mattern [21], Schwarz and Mattern [25], Raynal et al.[23] and Kshemkalyani and
Singhal [19], explore the means of implementation of causal ordering.

But predicates over computations have drawbacks: they are defined on posets, objects
less intuitive than sequences; and they do not capture every interesting constraint. For
example, Fifon−n ordering formalized in Chevrou et al. [11] requires that all receptions follow
the same order as their respective sends, even if neither pair of events is causally ordered.
Fifon−n’s definition is simple, and it reduces asynchronous communication to a single FIFO
queue. But since it demands a stronger order than the causal one, it conflicts with the very
foundations of asynchronous distributed systems. As we will see, there is a general way to
consider any predicate over executions in an asynchronous setting, which gives us both a
powerful tool and a deeper understanding of asynchronicity.

1.2 Computations and Executions
I Definition 1 (Events). Let MES the set of messages and PEERS the set of communicat-
ing peers. Then EVENTS , {send, receive} ×MES × PEERS, where the components
correspond respectively to the type of events, the message and the peer where the event
happens.

We write peer(e) for the projection of an event into its peer component. Since in the
following we will only consider sets of events where multiple sends and/or receptions of the
same message are forbidden, events are considered uniquely characterized by their type and
their message. We thus abuse notation by writing s(m) and r(m) instead of 〈send,m, peer〉
and 〈receive,m, peer〉 respectively. Note that we do not take into account internal events,
since we are only interested in the order of communication ones.

I Definition 2 (Computation). Let X be a set of events containing at most one reception by
message and one send event by message. Then the partially ordered set (or poset) x = (X,≺xc)
is a computation iff
≺xc is a causal order on X, that is the smallest partial order such that peer(e1) = peer(e2) =⇒ e1 ≺xc e2 ∨ e2 ≺xc e1 (Peer order)

∃m : e1 = s(m) ∧ e2 = r(m) =⇒ e1 ≺xc e2 (Message transfer)
∃e ∈ X : e1 ≺xc e ∧ e ≺xc e2 =⇒ e1 ≺xc e2 (Transitivity)

 .

Any received message has been sent: ∀m ∈MES : r(m) ∈ x =⇒ s(m) ∈ x.
No message is sent to oneself: ∀m ∈MES : peer(r(m)) 6= peer(s(m)).

The peer order ≺xp is defined as the projection of ≺xc on pairs of events happening on the
same peer. When two events e1 and e2 are not causally ordered, we write e1 ‖xc e2. We note
Comp the set of all computations over subsets of EV ENTS. Finally, for b a predicate over
computations, Comp(b) is the set of computations satisfying b.

I Definition 3 (Execution). Let Σ be a set of events containing at most one reception by
message and one send event by message. Then the totally ordered set σ = (Σ,≺σ) is an
execution iff ∃x = (X,≺xc) ∈ Comp such that Σ = X and ≺σ is a linear extension of ≺xc .
By the minimality of the causal order, such x is unique.

A. Shimi, A. Hurault, and P. Quéinnec 29:3

We write comp(σ) for x, ≺σc for ≺xc and ≺σp for ≺xp . We note Exec the set of all executions
over subset of EV ENTS. Finally, for b a predicate over executions, Exec(b) is the set of
executions satisfying b.

Both are represented with so-called space-time diagrams, where each peer is represented
by a vertical line, events at a peer are ordered from left to right and messages are drawn by
connecting a send event with the corresponding reception. For example, Figure 3 defines the
execution s(m1)r(m1)s(m2)r(m2) as well as the computation over the same events and with
partial order {(s(m1), r(m1)), (s(m2), r(m2)), (s(m1), s(m2)), ((s(m1), r(m2)))}.

1.3 Message Orderings
We conclude these preliminary definitions by introducing predicates over computations and
executions. Since we consider only communication events, we will call these predicates
message orderings. Table 1 states the message orderings we will study in the following. They
are given as in Chevrou et al. [11] (except for RSC, where our definition is equivalent and
easier to manipulate).

Fifo1−1 ordering is the classical Fifo ordering between every pair of peers.
Causal ordering is the ordering where messages to the same peer and with causally
ordered send events are received according to their send order.
Fifon−1 ordering is the "mailbox" ordering that is used notably by [2], where messages to
a peer are put into its mailbox, and the peer retrieves them according to their send order.
Fifo1−n ordering is the dual of Fifon−1. It can be thought of as a "sending box" by peer, in
which each peer put messages it sends, and from which receivers fetch messages according
to their send order.
Fifon−n ordering is the ordering where all messages are received according to their send
order, even if when neither their send events nor their receptions are causally ordered.
RSC ordering (Realizable with Synchronous Communication) requires that every reception
is immediately preceded by its corresponding send event.

The sets of executions defined by these models form a hierarchy, as stated and proved
in [11].

I Lemma 4 (Ordering hierarchy over executions).
1. Exec(RSC) (Exec(Fifon−n) (Exec(Fifo1−n) (Exec(Causal) (Exec(Fifo1−1)
2. Exec(RSC) (Exec(Fifon−n) (Exec(Fifon−1) (Exec(Causal) (Exec(Fifo1−1)
3. Exec(Fifon−1) 6⊂ Exec(Fifo1−n) and Exec(Fifo1−n) 6⊂ Exec(Fifon−1)

Turning to computations, only Fifo1−1 and Causal are well-defined over them, since they
are defined only in terms of causal and peer order. Those two orderings obey the same
hierarchy as their execution-based counterparts, as shown in Charron-Bost et al. [8].

I Lemma 5. Comp(Causal) (Comp(Fifo1−1)

1.4 Overview of the Results
Our results are threefold.

First, we leverage elementary topology to link any message ordering over executions with
two sets of computations: its closure, corresponding to existential quantification over
linear extensions of the ordering; and its interior, corresponding to universal quantification.
Both sets provide a mean to study the message ordering in an asynchronous context,
where computations are the least distinguishable unit.

OPODIS 2017

29:4 Asynchronous Message Orderings Beyond Causality

Table 1 Ordering predicates over executions.

Name Expression

Fifo1−1 ∀m1,m2 ∈MES :

 r(m1), r(m2) ∈ σ
∧ peer(r(m1)) = peer(r(m2))
∧ s(m1) ≺σp s(m2)

 =⇒ r(m1) ≺σp r(m2)

Causal ∀m1,m2 ∈MES :

 r(m1), r(m2) ∈ σ
∧ peer(r(m1)) = peer(r(m2))
∧ s(m1) ≺σc s(m2)

 =⇒ r(m1) ≺σp r(m2)

Fifon−1 ∀m1,m2 ∈MES :

 r(m1), r(m2) ∈ σ
∧ peer(r(m1)) = peer(r(m2))
∧ s(m1) ≺σ s(m2)

 =⇒ r(m1) ≺σp r(m2)

Fifo1−n ∀m1,m2 ∈MES :
(

r(m1), r(m2) ∈ σ
∧ s(m1) ≺σp s(m2)

)
=⇒ r(m1) ≺σ r(m2)

Fifon−n ∀m1,m2 ∈MES :
(

r(m1), r(m2) ∈ σ
∧ s(m1) ≺σ s(m2)

)
=⇒ r(m1) ≺σ r(m2)

RSC ∀m1,m2 ∈MES :
(

r(m1) ∈ σ
∧ s(m1) ≺σ s(m2)

)
=⇒ r(m1) ≺σ s(m2)

Second, we characterize the closures of our message orderings (see Figure 1) by forbidden
patterns in the causal order. This in turn yields a precise understanding of whether they
can be distinguished at the computation level, as well as their comparative discriminating
power.
Third, we turn to interiors of the aforementioned orderings, and characterize them through
the concept of chain (see Figure 2). Such characterizations expand our understanding
of the orderings implementation: they provide system-level guidelines that allows us to
circumvent the result of [22] for ensuring a message ordering.

The rest of the paper is organized as follows. Section 2 develops the topological approach
to message orderings over executions. Then the closures and interiors of the message orderings
mentioned above are studied respectively in Sections 3 and 4. Finally, Section 5 surveys
related works while conclusions and perspectives are drawn in Section 6.

2 A Topological Bridge

Recall that a message ordering over executions characterizes a set of executions. On the other
hand, we know from [20] that the only meaningful sets of executions in an asynchronous
world correspond to the sets of all the linear extensions of a given computation, or the union
of such sets. The subtlety here stems from the "all": a truncated set of linear extensions asks
for an order with more discriminating power than the causal one. Making sense of any set of
executions in terms of computations – and by extension in terms of causal order – will allow
us to interpret any message ordering in the asynchronous setting.

First, we need a formal definition of what we call meaningful sets of executions, that is the
sets defined by all the linear extensions of a given computation. They can be characterized
as the equivalence classes from the causal equivalence relation.

I Definition 6 (Causal Equivalence). Let σ, σ′ ∈ Exec. Then σ ≡c σ′ , comp(σ) = comp(σ′).
We say σ and σ′ are causally equivalent and write [σ]≡c

for the equivalence class of σ.

A. Shimi, A. Hurault, and P. Quéinnec 29:5

Clos(RSC)

Clos(Fifon−n)

Clos(Fifon−1)

= Clos(Fifo1−n)With

causal knots

(size ≥ 2)

Clos(Causal) = Exec(Causal)

Clos(Fifo1−1) = Exec(Fifo1−1)

Figure 1 The closures of our message order-
ings.

Int(RSC)

Int(Fifon−n)Int

(Fifon−1)

Int

(Fifo1−n)

Int(Causal) = Exec(Causal)

Int(Fifo1−1) = Exec(Fifo1−1)

Figure 2 The interiors of our message order-
ings.

The quotient set of Exec by causal equivalence is thus isomorphic with Comp. The causal
equivalence classes are only the building block: any union of such blocks is also a meaningful
set for our endeavors. These properties correspond to the topological concept of an open set,
and motivate our introduction of the following simple topology over Exec.

I Definition 7 (Open Set). Let S ⊆ Exec. Then S is an open set in the Computation
Topology iff ∃X ∈ P(Exec) such that S =

⋃
x∈X [x]≡c

, where P(Exec) is the powerset of
Exec.

A property of our topology that will prove useful is that any open set is also a closed
one. Indeed, by definition of an equivalence relation, any union of equivalence classes is the
complement of a union of equivalence classes; thus every open set is also closed. This might
strike the reader used to more classical topologies as odd. Yet it allows us to state in terms
of open sets both the closure and interior of a set, the two basic operations in elementary
topology.

These extensions can be interpreted respectively as existential and universal quantification
over equivalence classes: the set of equivalence classes (or equivalently, of computations)
containing at least one execution from the original set; and the set of equivalence classes
containing only executions from the original set. Intuitively, this translates respectively into
the set of computations where a message ordering might hold, and the set of computations
where it necessarily holds.

I Definition 8 (Interior and Closure). Let S ⊆ Exec.
Clos(S), the closure of S, is the smallest closed set such that S ⊆ Clos(S).
Int(S), the interior of S, is the greatest open set such that Int(S) ⊆ S.
We write Clos(b) and Int(b) for the closure and interior of the set of executions defined

by the predicate b.

I Lemma 9 (Collapse Lemma). Let S ⊆ Exec. Then S = Clos(S) ⇐⇒ S = Int(S).

Proof. (⇒) Since S = Clos(S), S is a closed set. Given our topology, it is thus also an open
set. It is therefore the greatest open set contained by itself.

(⇐) Since S = Int(S), S is an open set. Given our topology, it is thus also a closed set.
It is therefore the smallest closed set containing itself. J

OPODIS 2017

29:6 Asynchronous Message Orderings Beyond Causality

p1

p2

p3

s(m1) s(m2)

r(m1)

r(m2)

Figure 3 Fifo1−n does not
collapse.

p1

p2

p3

s(m1)

s(m2)

r(m2)r(m1)

Figure 4 Fifon−1 does not
collapse.

p1

p2

p3

p4

s(m1)

s(m2)r(m1)

r(m2)

Figure 5 Fifon−n and RSC
do not collapse.

We now show that the collapse described by Lemma 9 happens for Fifo1−1 and Causal
but not the other orderings. Our topology thus captures the distinction between message
orderings on executions which translate straightforwardly over computations, and message
orderings on executions "asking" for more than causal order.

I Theorem 10 (Collapse of Fifo1−1 and Causal).
1. Exec(Fifo1−1) = Int(Fifo1−1) = Clos(Fifo1−1)
2. Exec(Causal) = Int(Causal) = Clos(Causal)

Proof.
1. Fifo1−1 is defined only in terms of peer order, which is a projection of the causal

order. It is therefore invariant by causal equivalence. We conclude that Exec(Fifo1−1) =
Clos(Fifo1−1), which by Lemma 9 entails Exec(Fifo1−1) = Int(Fifo1−1) = Clos(Fifo1−1).

2. Causal is invariant by causal equivalence for the same reason as Fifo1−1. We conclude that
Exec(Causal) = Clos(Causal), which by Lemma 9 gives us Exec(Causal) = Int(Causal)
= Clos(Causal). J

I Theorem 11 (No collapse for Fifon−1, Fifo1−n, Fifon−n and RSC).
1. Int(Fifo1−n) (Exec(Fifo1−n) (Clos(Fifo1−n)
2. Int(Fifon−1) (Exec(Fifon−1) (Clos(Fifon−1)
3. Int(Fifon−n) (Exec(Fifon−n) (Clos(Fifon−n)
4. Int(RSC) (Exec(RSC) (Clos(RSC)

Proof. We only consider the cases where EV ENTS is non trivial, which here means that it
contains at least two send events and two receptions.

The inclusions then follow directly from the definition of Int and Clos. As for strictness,
counter-examples separating either the interior or the closure with the initial sets are enough:
Lemma 9 then yields the strictness of inclusion for both.
1. Figure 3 is in Exec(Fifo1−n) but not in its interior: the execution s(m1)s(m2)r(m2)r(m1)

is causally equivalent to it while breaking the Fifo1−n predicate. Thus Exec(Fifo1−n) 6=
Int(Fifo1−n).

2. Figure 4 is in Exec(Fifon−1) but not in its interior: the execution s(m2)s(m1)r(m1)r(m2)
is causally equivalent to it while breaking the Fifon−1 predicate. Thus Exec(Fifon−1) 6=
Int(Fifon−1).

3. Figure 5 is in Exec(Fifo1−n) but not in its interior: the execution s(m1)s(m2)r(m2)r(m1)
is causally equivalent to it, while breaking the Fifon−n predicate. Thus Exec(Fifon−n) 6=
Int(Fifon−n).

4. Figure 5 is also in Exec(RSC) and not in its interior: the execution exhibited in the
previous case breaks RSC too. Thus Exec(RSC) 6= Int((RSC)). J

A. Shimi, A. Hurault, and P. Quéinnec 29:7

3 Closures

3.1 Characterization of the Closure of RSC
When we apply the closure operation on our RSC over executions, we obtain the set of
computations with at least one RSC linear extension. This in turn corresponds to the
RSC over computations from Charron-Bost et al. [8]. We thus reuse the characterization of
Clos(RSC) by Charron-Bost et al., through forbidden patterns in the causal order named
crowns.

I Definition 12 (Crown). Let σ an execution. Then a set of messages m1, ..,mn forms a
crown of size n ⇐⇒ ∀i ∈ [1, n] : s(mi) ≺σc r(mi+1), where mn+1 = m1.

For instance, Figure 6 is a crown of size 2.

I Theorem 13 (Crown Characterization). Let σ ∈ Exec. Then σ ∈ Clos(RSC) ⇐⇒
σ contains no crown.

Proof. See [8]. J

3.2 Characterization of Clos(Fifon−1) and Clos(Fifo1−n)
A similar negative characterization of Clos(Fifon−1) and Clos(Fifo1−n) is given by special
crowns we call causal knots.

I Definition 14 (Causal knot). Let σ an execution. Then a set of messages m1, ..,m2s forms

a causal knot of size s ⇐⇒ ∀i ∈ [1, 2s] :
(
i ≡ 1 mod 2 : s(mi) ≺σc s(mi+1)
i ≡ 0 mod 2 : r(mi) ≺σc r(mi+1)

)
,

where m2s+1 = m1.

Figure 7 is an example of a causal knot of size 2. We show in the rest of this section that
causal knots characterize Clos(Fifon−1) and Clos(Fifo1−n). Let us start with Clos(Fifon−1):
we first define a relation for each causal equivalence class characterizing the additional
constraints on executions of this class to satisfy Fifon−1.

I Definition 15 (N-1 order). Let σ ∈ Exec and Σ the underlying set of events. Then
/σn−1 , {(s(m1), s(m2)) ∈ Σ× Σ | r(m1) ≺σp r(m2)}. And ≺σn−1,≺σc ∪/σn−1.

Then the next Lemma reduces the membership of an execution σ in Clos(Fifon−1) to
whether or not ≺σn−1 contains a cycle.

I Lemma 16. Let σ ∈ Exec. Then σ ∈ Clos(Fifon−1) ⇐⇒ ≺σn−1 is antisymmetric.

Proof. (⇒) We show the contrapositive: If ≺σn−1 contains a cycle, then σ /∈ Clos(Fifon−1).
Let σ ∈ Exec such that ≺σn−1 contains a cycle. Then its transitive closure is not a partial

order: it has no linear extensions. From that fact, we now prove that no execution in [σ]≡c

satisfies Fifon−1, and thus that σ /∈ Clos(Fifon−1).
Let σ′ ≡c σ. By our hypothesis that ≺σn−1 contains a cycle, we have ≺σn−1 6⊂≺σ

′ . But
since σ′ ≡c σ, we have ≺σc⊂≺σ

′ . We thus conclude that /σn−1 6⊂≺σ
′ . Thus ∃m1,m2 such that

r(m1) ≺σp r(m2)∧s(m1) 6≺σ′ s(m2). By totality of ≺σ′ , we have r(m1) ≺σp r(m2)∧s(m2) ≺σ′

s(m1), and thus σ′ violates Fifon−1.
(⇐) Let σ ∈ Exec such that ≺σn−1 is antisymmetric. Then the transitive closure of ≺σn−1

is reflexive (because ≺σc is reflexive), transitive and antisymmetric. It is therefore a partial
order, who has a linear extension agreeing both with ≺σc and /σn−1. This linear extension
defines an execution σ′ ≡c σ (because ≺σc⊂≺σ

′) such that σ′ satisfies Fifon−1 (because
/σn−1 ⊂≺σ

′). We conclude that σ ∈ Clos(Fifon−1). J

OPODIS 2017

29:8 Asynchronous Message Orderings Beyond Causality

I Theorem 17 (Causal Knot Criterion for Fifon−1). Let σ ∈ Exec. Then σ ∈ Clos(Fifon−1)
⇐⇒ σ contains no causal knot.

Proof. By Lemma 16 and the transitivity of equivalence, we only need to prove that ≺σn−1
is antisymmetric ⇐⇒ σ contains no causal knot.

(⇒) We prove the contrapositive: if σ contains a causal knot, then ≺σn−1 is not antisym-
metric. Let σ ∈ Exec with a causal knot of size k. By definition of causal knots, there are

2k messages m1, ..,m2k such that ⇐⇒ ∀i ∈ [1, 2k] :
(
i ≡ 1 mod 2 : s(mi) ≺σc s(mi+1)
i ≡ 0 mod 2 : r(mi) ≺σc r(mi+1)

)
,

where m2k+1 = m1. We define another sequence of messages m′1, ..,m′2k from the messages
of the causal knot: ∀i ∈ [1, 2k] :

i ≡ 1 mod 2 : m′i = mi

i ≡ 0 mod 2 : if r(mi) ≺σp r(mi+1)
then m′i = mi

else m′i = m,where m ∈MES : r(mi) ≺σc s(m) ≺σc r(m) ≺σp r(mi+1)

,

where m′2k+1 = m′1. The case i ≡ 0 mod 2 is well-defined since the causal order cor-
responds to either the peer order or a chain of messages. We then have ∀i ∈ [1, 2k] :(
i ≡ 1 mod 2 : s(m′i) ≺σc s(m′i+1)
i ≡ 0 mod 2 : s(m′i) /σn−1 s(m′i+1)

)
, where m′2k+1 = m′1. Thus ≺σn−1 contains a cycle

and is not antisymmetric.
(⇐) We prove the contrapositive: if ≺σn−1 contains a cycle, then σ contains a causal knot.
Let σ ∈ Exec such that ≺σn−1 contains a cycle. Since both ≺σc and /σn−1 are partial orders,

they are both antisymmetric: a minimal cycle thus consists of an alternation of those two.
Considering such a minimal cycle of size s, we can deduce by transitivity of ≺σc and /σn−1

that it is composed of s events e1, .., es such that ∀i ∈ [1, s] :
(
i ≡ 1 mod 2 : ei ≺σc ei+1
i ≡ 0 mod 2 : ei /σn−1 ei+1

)
,

where es+1 = e1. By minimality of the cycle and e1 ≺σc e2, we have es /σn−1 e1 and thus
s = 0 mod 2. Let k = s/2.

Recall that /σn−1 only orders send events: e1, .., es are thus send events. Their messages are
distinct, by minimality of the cycle. Then the previous characterization can be rewritten as

∃m1, ..,m2k ∈ MES such that ∀i ∈ [1, 2k] :
(
i ≡ 1 mod 2 : s(mi) ≺σc s(mi+1)
i ≡ 0 mod 2 : s(mi) /σn−1 s(mi+1)

)
, where

ms+1 = m1. By definition of /σn−1, this is a causal knot of size k. J

Clos(Fifo1−n) is also negatively characterized by causal knots. Thus Clos(Fifon−1) =
Clos(Fifo1−n).

I Theorem 18 (Causal Knot Criterion for Fifo1−n). Let σ ∈ Exec. Then σ ∈ Clos(Fifo1−n)
⇐⇒ σ contains no causal knot.

Proof. The proof follows the exact same lines as the Causal knot criterion for Fifon−1, except
that we substitute /σ1−n = {(r(m1), r(m2)) ∈ Σ × Σ | s(m1) ≺σp s(m2)} for /σn−1. It was
moved to Appendix A due to space constraints. J

This surprising result shows that at the level of computations, those two message orderings
cannot be separated.

3.3 Inclusion of closures
We lack a characterization of Clos(Fifon−n) in terms of forbidden patterns akin to crowns or
causal knots. We can nonetheless separate it from Clos(Fifon−1) = Clos(Fifo1−n), and from
Clos(RSC).

A. Shimi, A. Hurault, and P. Quéinnec 29:9

p1

p2

s(m1)

s(m2) r(m1)

r(m2)

Figure 6 A crown of size 2.

p1

p2

p3

p4

s(m1)s(m2)

s(m3)s(m4)

r(m1)
r(m2)r(m3)

r(m4)

Figure 7 A causal knot of
size 2.

p1

p2

p3

p4

s(m1)
s(m2) s(m3)

s(m4)

r(m1)

r(m2)
r(m3)
r(m4)

Figure 8 Not in
Clos(Fifon−n); in Clos(Fifon−1)
= Clos(Fifo1−n).

I Theorem 19 (Inclusion of closures). Clos(RSC) (Clos(Fifon−n) (Clos(Fifo1−n) =
Clos(Fifon−1)

Proof. The inclusions follow straight from the hierarchy over executions and the definition of
an open set: for A,B ∈ Exec, A (B implies that Clos(A) ⊆ Clos(B). The first strictness
follows from the fact that Figure 6 defines an execution in Clos(Fifon−n) with a crown,
thus not in Clos(RSC). The second strictness follows from the fact that Figure 8 defines
an execution σ in Exec(Fifo1−n) (and thus in Clos(Fifo1−n)), yet this execution is not in
Clos(Fifon−n).

Assume the contrary: ∃σ′ ≡c σ such that Fifon−n(σ′). Then s(m4) ≺σ′ s(m1) ∧
r(m2) ≺σ′ r(m3), since r(m4) ≺σp s(m1) ∧ s(m2) ≺σp s(m3). By s(m1) ≺σp r(m2) ∧ r(m3) ≺σp
s(m4), this yields r(m2) ≺σ′ r(m3) ≺σp s(m4) ≺σ′ s(m1) ≺p r(m2). Contradiction. J

3.4 Interpretation of closures
Closures capture a fundamental part of asynchronicity: the loss of knowledge it entails.
Expanding the exact set of executions characterized by a message ordering to its closure
introduces the additional uncertainty that comes with the non-determinism of asynchronicity.

First, closures yield a general method to check the distinguishability of a distributed
system with message ordering A from one with message ordering B. For example, we
deduce from the causal knot criterion that Fifon−1 and Fifo1−n are indistinguishable in the
asynchronous world. There is no computation one can exhibit to separate them, showing
with certainty which one is implemented.

Second, let us consider the complement of a closure. It represents certainty amidst
asynchronicity: assurance of the non-satisfiability of the predicate. This yields a technique
for ensuring that forbidden executions do not arise in a distributed system. Take the set of
computations with a causal knot of size ≥ 2 as an example. These are "just causal": despite
the inherent uncertainty stemming from asynchronicity, we know for sure that a system
generating any of these computations cannot have a Fifon−1 or Fifo1−n (let alone Fifon−n or
RSC) execution. Since algorithms and implementations alike usually work better with more
constrained message orderings, the less constrained a computation, the more susceptible it is
to cause an error or a failure. Just causal computations are thus good candidates for testing
and debugging.

4 Interiors

Interiors were defined above as universal quantification over linear extensions: they thus
characterize computations where, despite the inherent uncertainty of asynchronous communi-
cation, the ordering in question necessarily holds. Through chains, a simple concept from
order theory, we characterize and interpret our orderings’ interiors.

OPODIS 2017

29:10 Asynchronous Message Orderings Beyond Causality

I Definition 20 (Chain). Let (A,≺A) a poset. Then S ⊆ A is a chain if its elements are
totally ordered for ≺A: ∀a, b ∈ S, a ≺A b ∨ b ≺A a.

We write that an execution is a chain when its set of events is a chain for its causal order.

4.1 The Interior of RSC
The interior of RSC is characterized by executions which are necessarily a chain with regard
to causality. This means that all events of an execution in Int(RSC) are fully ordered by
causality. Before stating the theorem, we introduce a result from dimension theory, and its
corollary for inverting events in an execution while staying in the causal equivalence class.

I Lemma 21 (Interpolation). Let (A,≺A) a poset, S ⊂ A and ≺l a linear extension of ≺A|S
(where ≺A|S is the projection of ≺A on S ×S). Then ∃ ≺l′ a linear extension of ≺A such that
≺l′|S=≺l.

Proof. It is a classical result from dimension theory. See Trotter [28] Chapter 1. J

I Corollary 22 (Interpolation of executions). Let σ an execution, Σ the underlying set of
events, S ⊂ Σ and ≺l a linear extension of ≺σc|S. Then ∃σ′ ≡c σ such that ≺σ′|S=≺l.

Proof. It follows immediately from Lemma 21 and the fact that a linear extension of a causal
order defines an execution. J

I Theorem 23 (Characterization of Int(RSC)). Let σ an execution with at least one reception.
Then σ ∈ Int(RSC) ⇐⇒ σ ∈ Exec(Causal) ∧ σ is a chain.

Proof. (⇒) Let σ ∈ Int(RSC) with at least one reception. By the hierarchy of message
orderings and the definition of interiors, σ ∈ Exec(Causal); we show that σ is a chain.

Let s(m1), s(m2) ∈ σ such that s(m1) ≺σ s(m2). By considering all the possible cases
concerning their receptions, we show that all events in σ form a chain.
1. r(m1) ∈ σ. We prove by contradiction that r(m1) ≺σc s(m2) and thus that s(m1) ≺σc

r(m1) ≺σc s(m2).
Assume the contrary: r(m1) 6≺σc s(m2). Then ≺l defined by s(m1) ≺l s(m2) ≺l r(m1)
is a linear extension of ≺σc|{s(m1),s(m2),r(m1)}. Thus Corollary 22 ensures the existence of
σ′ ≡c σ such that s(m1) ≺σ′ s(m2) ≺σ′ r(m1). Since σ′ violates RSC, we conclude that
σ /∈ Int(RSC). Contradiction.
We conclude that s(m1) ≺σc r(m1) ≺σc s(m2).

2. r(m2) ∈ σ. Then the same reasoning by contradiction than above, here assuming
s(m1) 6≺σc s(m2), yields s(m1) ≺σc s(m2) and thus s(m1) ≺σc s(m2) ≺σc r(m2).

3. r(m1) /∈ σ ∧ r(m2) /∈ σ. Yet by hypothesis, σ contains at least one reception. We split by
cases depending on where this reception is placed according to s(m1) and s(m2).
∃m ∈MES : s(m1) ≺σ r(m) ≺σ s(m2). Since σ ∈ RSC, we have s(m1) ≺σ s(m) ≺σ
r(m) ≺σ s(m2). By case 1 above we have s(m1) ≺σc r(m), and by case 2 above we
have r(m) ≺σc s(m2). Transitivity then yields s(m1) ≺σc s(m2).
{m ∈MES | s(m1) ≺σ r(m) ≺σ s(m2)} = ∅∧∃m ∈MES : r(m) ≺σ s(m1) ≺σ s(m2).
We take m such that it is the last received message before both send events. Then by
the case 1 above, r(m) ≺σc s(m1) ∧ r(m) ≺σc s(m2). By definition of m, this gives us
r(m) ≺σp s(m1) ∧ r(m) ≺σp s(m2).
We conclude s(m1) ≺σp s(m2) and thus s(m1) ≺σc s(m2).

A. Shimi, A. Hurault, and P. Quéinnec 29:11

{m ∈MES | s(m1) ≺σ r(m) ≺σ s(m2)} = ∅∧∃m ∈MES : s(m1) ≺σ s(m2) ≺σ r(m).
We take m such that it is the first received message after both send events. The same
reasoning as in the previous case, using case 2 instead of case 1, yields s(m1) ≺σp s(m2)
and thus s(m1) ≺σc s(m2).

(⇐) We prove the contrapositive: σ /∈ Int(RSC) =⇒ σ /∈ Exec(Causal) ∨ σ not a chain.
Let σ an execution with at least one reception such that σ /∈ Int(RSC). Thus ∃σ′ ≡c σ

such that ∃m1,m2 ∈MES : s(m1) ≺σ′ s(m2) ≺σ′ r(m1). We then have two possible cases.
s(m1) ≺σc s(m2) ≺σc r(m1). Then ∃m ∈ MES such that either s(m1) ≺σc s(m2) ≺σc
s(m) ≺σc r(m) ≺σp r(m1) or s(m1) ≺σc s(m) ≺σc r(m) ≺σp s(m2) ≺σp r(m1), since the
causal order corresponds to either the peer order or a chain of messages and since
peer(s(m1)) 6= peer(r(m1)) by definition of a computation. From s(m1) ≺σc s(m) ≺σc
r(m) ≺σp r(m1), we conclude σ /∈ Exec(Causal).
s(m1) 6≺σc s(m2)∨s(m2) 6≺σc r(m1). Since s(m1) ≺σ′ s(m2) ≺σ′ r(m1), we have s(m2) 6≺σc
s(m1) ∧ r(m1) 6≺σc s(m2). Thus σ is not a chain. J

All executions in Int(RSC) are therefore totally determined by their causal order (except
the degenerate ones without receptions). This is an extraordinarily strong condition, since it
means the causal equivalence class of the execution is the singleton of the execution itself!

4.2 The Interior of Fifon−n

By relaxing the previous characterization, we derive a characterization for Int(Fifon−n) based
on two chains: one for the send events of received messages, and one for receptions. This
results in two differences with Int(RSC). First, send events of never received messages are
not constrained. Second, consecutive send events are possible even when the corresponding
messages are eventually received. In this case, the send events must happen on the same
peer; the corresponding receptions must also happen on the same peer.

I Theorem 24 (Characterization of Int(Fifon−n)). Let σ ∈ Exec, rσ = {r(m) ∈ σ}, and
sσ = {s(m) ∈ σ | r(m) ∈ σ}. Then σ ∈ Int(Fifon−n) ⇐⇒ σ ∈ Exec(Causal) ∧ rσ is a
chain ∧ sσ is a chain.

Proof. This proof and the next two follow the same scheme as the proof of theorem 23 (see
Appendix B). J

4.3 The Interiors of Fifon−1 and Fifo1−n

The characterization of Int(Fifon−n) is itself weakened in two distinct ways to yield those of
Int(Fifon−1) and Int(Fifo1−n): in Int(Fifon−1), only send events to a same peer are required
to form chains, while in Int(Fifo1−n) it is the receptions from the same peer that need to
form chains.

I Theorem 25 (Characterization of Int(Fifon−1)). Let σ ∈ Exec, and sσ(p) = {s(m) ∈ σ |
r(m) ∈ σ ∧ peer(r(m)) = p}. Then σ ∈ Int(Fifon−1) ⇐⇒ σ ∈ Exec(Causal) ∧ ∀p ∈
PEERS, sσ(p) is a chain.

I Theorem 26 (Characterization of Int(Fifo1−n)). Let σ ∈ Exec, and rσ(p) = {r(m) ∈ σ |
peer(s(m)) = p}. Then σ ∈ Int(Fifo1−n) ⇐⇒ σ ∈ Exec(Causal) ∧ ∀p ∈ PEERS, rσ(p) is
a chain.

OPODIS 2017

29:12 Asynchronous Message Orderings Beyond Causality

p1

p2

s(m1) s(m2)

r(m1) r(m2)

Figure 9 In Int(RSC); not in Int(Fifon−n)

p1

p2

s(m1)

s(m2) r(m1)

r(m2)

Figure 10 In Int(Fifon−n); not in
Int(Fifo1−n) or Int(Fifon−1)

p1

p2

p3

s(m1) s(m2)

r(m1)
r(m2)

Figure 11 In Int(Fifon−1); not in
Int(Fifo1−n)

p1

p2

p3

s(m1)
s(m2)

r(m1)r(m2)

Figure 12 In Int(Fifo1−n); not in
Int(Fifon−1)

4.4 Inclusion of FIFO Interiors
We close this study of interiors by showing the various inclusions between them. These turn
out to form the same hierarchy as the initial orderings.

I Theorem 27.
1. Int(RSC) (Int(Fifon−n) (Int(Fifo1−n)
2. Int(RSC) (Int(Fifon−n) (Int(Fifon−1)
3. Int(Fifon−1) 6⊂ Int(Fifo1−n) and Int(Fifo1−n) 6⊂ Int(Fifon−1)

Proof. The inclusions follow straight from the hierarchy over executions and the definition
of an open set: for A,B ∈ Exec, A (B implies that Int(A) ⊆ Int(B). For the strictness, it
is enough to give examples separating the characterizations.
1. Figure 9 separates Int(RSC) with Int(Fifon−n) by giving an execution σ where sσ and

rσ are both chains, but σ itself is not one. Similarly, Figure 10 separates Int(Fifon−n)
with Int(Fifo1−n) giving an execution σ where rσ(p1) and rσ(p2) are chains but not σ.

2. Here we only need to prove the separation of Int(Fifon−n) with Int(Fifon−1): Figure 10
represents an adequate execution σ where sσ(p1) and sσ(p2) are chains but not σ.

3. Incomparability is shown by the executions from Figure 11 (where rσ(p1) is not a chain
but sσ(p1), sσ(p2) and sσ(p3) are) and Figure 12 (where sσ(p3) is not a chain, but
rσ(p1), rσ(p2) and rσ(p3) are). J

4.5 Interpretation of interiors
Whereas closures expand the initial set of executions to account for additional uncertainty,
interiors trim it down to introduce certainty. In interiors, the message ordering is enforced
by the causal order itself, ensuring it despite the non-determinism of asynchronicity. Such
certainty can be leveraged as a mean of implementation, by ensuring that a given system
only generates computations in the interior of a message ordering.

Let us take Int(Fifon−n) as an example: due to its characterization (Theorem 24), its
computations must ensure both causal ordering and that all messages simultaneously in
transit are between the same pair of peers. This description fits the definition of a token
network, where the peer holding the token is the only one allowed to send (to a single
destination peer). It then sends the token along in its last message, and on again. Similar

A. Shimi, A. Hurault, and P. Quéinnec 29:13

characterizations can be worked out for the other interiors: Int(RSC) defines a token model
where the token is sent with each message, and Int(Fifon−1) and Int(Fifo1−n) respectively
defines token models with a send token for each peer in one case and a receive token for each
peer in the other. Thus a distributed system using any of these token models implements
the corresponding interior.

One apparent contradiction with the literature is that our interiors cannot be implemented
in the sense of Murty and Garg [22]. Indeed, the latter paper shows that any message ordering
(over computations) implementable by an inhibitory protocol must contain a specific subset of
computations, which is equivalent to our Clos(RSC): our interiors don’t satisfy this condition.
By inhibitory protocol, [22] means a protocol only able to delay both send events requested
by the user and deliveries of received messages. Even if our token-based conditions do not
help building an inhibitory protocol, they do implement the interiors in a different way: such
systems only generate computations in the corresponding interiors, and thus executions in
the corresponding orderings over executions.

5 Related Work

Message orderings over computations. The Fifo1−1 ordering (traditionally called FIFO)
dates back to the first distributed algorithms, such as Chandy-Lamport Snapshot [5]. The
latter paper exemplifies the treatment of this ordering: it is brushed aside in one sentence,
not even given a proper name.

Causal ordering has a deeper history. Following the connection drawn by Lamport
between Happened-Before and potential causality [20], the former was used as a basis for
causal broadcast ordering by Birman et al. [4]. But the broadcast part blurred the exact
definition and eased the implementation: a point-to-point formalization by Schiper and
al. [24] followed. It made use notably of multiple vector clocks (independently invented by
Fidge [14] and Mattern [21]) to track potential causality beyond the logical clocks introduced
by Lamport [20]. Following this line of research, Schwarz and Mattern [25] motivated the
general problem of detecting the needed causality, while Kshemkalyani and Singhal [19]
proved necessary and sufficient conditions for implementing Causal ordering, as well as an
optimal implementation based on these.

Clos(RSC) (usually simply called RSC) is a late invention compared to the two previous
orderings: it was introduced independently by Soneoka and Ibaraki [26] and Charron-Bost et
al. [8] after almost all the papers mentioned above. By being non-blocking yet allowing each
message to be alone in transit, Clos(RSC) represents the best approximation of synchronous
(or rendez-vous) communication in an asynchronous setting.

Causal ordering and Clos(RSC) were used for characterizing implementability of message
orderings by inhibitory protocols: Murty and Garg [22] showed that an ordering must contain
Causal to be implementable without control messages, and the equivalent of Clos(RSC) to
be implementable at all. Charron-Bost et al. [8] also used these three orderings as a basis for
their hierarchy.

Beyond Happened-Before. Following Birman et al. [4] definition and implementation
of causal broadcast ordering, Cheriton and Skeen [10] shed light into the limitations of
Happened-Before as causality. Namely, that local events are always totally ordered by the
Happened-Before relation while they might be causally independent. This in turn causes
additional latency: if two send events are causally independent but ordered by Happened-
Before, one reception might unnecessarily wait for the other.

As a follow-up, Tarafdar and Garg [27] developed the idea of potential causality for
approximating true causality in the same way Happened-Before order approximates real time.

OPODIS 2017

29:14 Asynchronous Message Orderings Beyond Causality

The difference stems from the local ordering of events: whereas the Happened-Before relation
totally orders them, potential causality orders local events using an applicative and thus
domain-dependent criterion. It can therefore dodge false causality. Tarafdar and Garg [27]
also provided an example of potential causality applied to predicate detection, a problem
where false causality causes both false positives and false negatives.

Finally, Ben-Zvi and Moses [3] extended the Happened-Before relation to the synchronous
case. Their Syncausality captures the ability, when communication is bounded, to detect
that no message was sent at a given time by a given peer. And their Bound Guarantees
captures that if one knows a message was sent and the bound of the channel, then one knows
after which point the message was necessarily received.

Knowledge About Uncertainty. Both closures and interiors provide additional knowledge
about the computation: whether it might follow the ordering and whether it must, respectively.

Cooper and Marzullo [12] also treat knowledge through existential and universal quan-
tification, but this time on path of consistent cuts. They define the Possibly and Definitely
operators for predicates over observations (consistent cuts): Possibly φ means that there is a
path in the lattice of observations passing through an observation satisfying φ; Definitely
φ means that all paths pass through an observation satisfying φ. In a subsequent paper,
Charron-Bost et al. [7] showed that these two operators were temporal analogous to the local
knowledge operator Knows. They leveraged this analogy to prove a temporal counterpart to
Chandy and Misra’s Knowledge Change Theorem [6].

The latter paper by Chandy and Misra [6] was part of the effort to formalize knowledge
in distributed systems. As almost all concurrent and subsequent efforts, it was based on
the notion of indistinguishability: a process knows a predicate valuation if and only if this
valuation is constant over all possible "worlds" the process cannot distinguish. Halpern
and Moses [15] anchored this possible worlds semantics with axiomatisations of different
knowledge characterizations, using Kripke structures as models. The interested reader is
directed to Fagin et al. [13] for a thorough treatment of the subject.

Topology in distributed systems. Lastly, our approach is based on topology. The charac-
terization of Liveness and Safety by Alpern and Schneider [1] can be considered the first
application of topology to distributed computing: although their topology on the execution
space is not specific to distributed systems, their characterizations play a significant role in
proving correctness and efficiency of distributed algorithms. A version taking into account
failures was subsequently proposed by Charron-Bost et al. [9].

Another application of topology concerns wait-freeness. A wait-free algorithm, following
Herlihy’s definition [16], is one where each process must terminate within a finite number of
steps. Waiting for another process is thus not possible, which makes wait-free algorithms a
powerful tool for fault-tolerance. Herlihy and Shavit [18] applied algebraic topology to the
problem of solving tasks in a wait-free way. They showed that both the possible input and
output of a task could be represented as simplicial complexes, mathematical structures from
algebraic topology. Then the possibility or impossibility of wait-freely solving a task can be
rephrased as the existence or nonexistence of a specific map from the input complex to the
output one. We direct the interested reader to Herlihy et al. [17] for an ample treatment of
this applications of algebraic topology to distributed computability.

A. Shimi, A. Hurault, and P. Quéinnec 29:15

6 Conclusion and Perspectives

Through our topology, we offered an analysis of asynchronous message orderings over
executions. Their closures precisely characterize the additional uncertainty brought by
asynchronicity, allowing us to show that orderings are indistinguishable at the level of
computations. Interiors, on the other hand, characterize the necessary reduction to ensure
the message ordering despite the non-determinism of asynchronicity. This in turn can be
used as an operational constraint for implementing the ordering.

Far from putting an end to this line of research, we feel this work opens up interesting
directions for further inquiry.

First, finding a characterization for Clos(Fifon−n) will precise the distinguishability
condition between message orderings, as well as give another tool for distributed systems
programmers to decide the ordering they need.
Multicast and broadcast message orderings are also predicates over computations and
executions. Thus the topological approach introduced in this paper can be applied to
them too.
The interpretation of interiors brought up the question of implementation. Is there a
more general definition than the existence of an inhibitory protocol? If so, then it will
need to account for our implementations through system-level constraints such as tokens.
Message orderings over executions which do not collapse ask for a stronger order than the
causal one, thus more knowledge about the ordering of events. Studying this additional
knowledge will precise the respective power of message orderings.

References
1 Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,

1985. doi:10.1016/0020-0190(85)90056-0.
2 Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for verification of

asynchronously communicating systems. In Viktor Kuncak and Andrey Rybalchenko, ed-
itors, Verification, Model Checking, and Abstract Interpretation - 13th International Con-
ference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceedings, vol-
ume 7148 of Lecture Notes in Computer Science, pages 56–71. Springer, 2012. doi:
10.1007/978-3-642-27940-9_5.

3 Ido Ben-Zvi and Yoram Moses. Beyond lamport’s Happened-before: On time bounds and
the ordering of events in distributed systems. J. ACM, 61(2):13:1–13:26, 2014. doi:10.
1145/2542181.

4 Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of
failures. ACM Trans. Comput. Syst., 5(1):47–76, 1987. doi:10.1145/7351.7478.

5 K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985. doi:10.1145/214451.
214456.

6 K. Mani Chandy and Jayadev Misra. How processes learn. Distributed Computing, 1(1):40–
52, 1986. doi:10.1007/BF01843569.

7 Bernadette Charron-Bost, Carole Delporte-Gallet, and Hugues Fauconnier. Local and tem-
poral predicates in distributed systems. ACM Trans. Program. Lang. Syst., 17(1):157–179,
1995. doi:10.1145/200994.201005.

8 Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous, asyn-
chronous, and causally ordered communication. Distributed Computing, 9(4):173–191, 1996.
doi:10.1007/s004460050018.

9 Bernadette Charron-Bost, Sam Toueg, and Anindya Basu. Revisiting safety and liveness
in the context of failures. In Catuscia Palamidessi, editor, CONCUR 2000 - Concurrency

OPODIS 2017

http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1145/2542181
http://dx.doi.org/10.1145/2542181
http://dx.doi.org/10.1145/7351.7478
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1007/BF01843569
http://dx.doi.org/10.1145/200994.201005
http://dx.doi.org/10.1007/s004460050018

29:16 Asynchronous Message Orderings Beyond Causality

Theory, 11th International Conference, University Park, PA, USA, August 22-25, 2000,
Proceedings, volume 1877 of Lecture Notes in Computer Science, pages 552–565. Springer,
2000. doi:10.1007/3-540-44618-4_39.

10 David R. Cheriton and Dale Skeen. Understanding the limitations of causally and totally
ordered communication. SIGOPS Oper. Syst. Rev., 27(5):44–57, 1993. doi:10.1145/
173668.168623.

11 Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. On the diversity of asyn-
chronous communication. Formal Asp. Comput., 28(5):847–879, 2016. doi:10.1007/
s00165-016-0379-x.

12 Robert Cooper and Keith Marzullo. Consistent detection of global predicates. SIGPLAN
Not., 26(12):167–174, dec 1991. doi:10.1145/127695.122774.

13 Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and Yoram Moses. Reasoning About
Knowledge. MIT Press, Cambridge, MA, USA, 1995.

14 Colin J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
Proceedings of the 11th Australian Computer Science Conference, 10(1):56–66, 1988.

15 Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549–587, 1990. doi:10.1145/79147.79161.

16 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991. doi:10.1145/114005.102808.

17 Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann Publishers Inc., 1st edition, 2013.

18 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
J. ACM, 46(6):858–923, 1999. doi:10.1145/331524.331529.

19 Ajay D. Kshemkalyani and Mukesh Singhal. Necessary and sufficient conditions on informa-
tion for causal message ordering and their optimal implementation. Distributed Computing,
11(2):91–111, 1998. doi:10.1007/s004460050044.

20 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

21 Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel
and Distributed Algorithms, pages 215–226. North-Holland, 1989.

22 Venkatesh V. Murty and Vijay K. Garg. Characterization of message ordering specifications
and protocols. In Proceedings of the 17th International Conference on Distributed Com-
puting Systems, Baltimore, MD, USA, May 27-30, 1997, pages 492–499. IEEE Computer
Society, 1997. doi:10.1109/ICDCS.1997.603392.

23 Michel Raynal, André Schiper, and Sam Toueg. The causal ordering abstraction and
a simple way to implement it. Inf. Process. Lett., 39(6):343–350, 1991. doi:10.1016/
0020-0190(91)90008-6.

24 André Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to implement causal
ordering. In Jean-Claude Bermond and Michel Raynal, editors, Distributed Algorithms,
3rd International Workshop, Nice, France, September 26-28, 1989, Proceedings, volume
392 of Lecture Notes in Computer Science, pages 219–232. Springer, 1989. doi:10.1007/
3-540-51687-5_45.

25 Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Distributed Computing, 7(3):149–174, 1994.
doi:10.1007/BF02277859.

26 Terunao Soneoka and Toshihide Ibaraki. Logically instantaneous message passing in
asynchronous distributed systems. IEEE Trans. Computers, 43(5):513–527, 1994. doi:
10.1109/12.280800.

27 Ashis Tarafdar and Vijay K. Garg. Addressing false causality while detecting predicates in
distributed programs. In Proceedings of the 18th International Conference on Distributed

http://dx.doi.org/10.1007/3-540-44618-4_39
http://dx.doi.org/10.1145/173668.168623
http://dx.doi.org/10.1145/173668.168623
http://dx.doi.org/10.1007/s00165-016-0379-x
http://dx.doi.org/10.1007/s00165-016-0379-x
http://dx.doi.org/10.1145/127695.122774
http://dx.doi.org/10.1145/79147.79161
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/331524.331529
http://dx.doi.org/10.1007/s004460050044
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/ICDCS.1997.603392
http://dx.doi.org/10.1016/0020-0190(91)90008-6
http://dx.doi.org/10.1016/0020-0190(91)90008-6
http://dx.doi.org/10.1007/3-540-51687-5_45
http://dx.doi.org/10.1007/3-540-51687-5_45
http://dx.doi.org/10.1007/BF02277859
http://dx.doi.org/10.1109/12.280800
http://dx.doi.org/10.1109/12.280800

A. Shimi, A. Hurault, and P. Quéinnec 29:17

Computing Systems, Amsterdam, The Netherlands, May 26-29, 1998, pages 94–101. IEEE
Computer Society, 1998. doi:10.1109/ICDCS.1998.679491.

28 William T. Trotter. Combinatorics and Partially Ordered Sets. The Johns Hopkins Uni-
versity Press, 1992.

A Proof of the causal knot criterion for Fifo1−n

We first introduce ≺σ1−n, which corresponds to ≺σc augmented with the constraints of Fifo1−n.

I Definition 28 (1-N order). Let σ ∈ Exec and Σ the underlying set of events. Then
/σ1−n , {(r(m1), r(m2)) ∈ Σ× Σ | s(m1) ≺σp s(m2)}. And ≺σ1−n,≺σc ∪/σ1−n.

Then the next Lemma reduces the membership of an execution σ in Clos(Fifo1−n) to
whether or not ≺σ1−n contains a cycle.

I Lemma 29. Let σ ∈ Exec. Then σ ∈ Clos(Fifo1−n) ⇐⇒ ≺σ1−n is antisymmetric.

Proof. (⇒) We show the contrapositive: If ≺σ1−n contains a cycle, then σ /∈ Clos(Fifo1−n).
Let σ ∈ Exec such that ≺σ1−n contains a cycle. Then its transitive closure is not a partial

order: it has no linear extensions. From that fact, we now prove that no execution in [σ]≡c

satisfies Fifo1−n, and thus that σ /∈ Clos(Fifo1−n).
Let σ′ ≡c σ. By our hypothesis that ≺σ1−n contains a cycle, we have ≺σ1−n 6⊂≺σ

′ . But
since σ′ ≡c σ, we have ≺σc⊂≺σ

′ . We thus conclude that /σ1−n 6⊂≺σ
′ . Thus ∃m1,m2 such that

s(m1) ≺σp s(m2)∧r(m1) 6≺σ′ r(m2). By totality of ≺σ′ , we have s(m1) ≺σp s(m2)∧r(m2) ≺σ′

r(m1), and thus σ′ violates Fifo1−n.
(⇐) Let σ ∈ Exec such that ≺σ1−n is antisymmetric. Then the transitive closure of ≺σ1−n

is reflexive (because ≺σc is reflexive), transitive and antisymmetric. It is therefore a partial
order, who has a linear extension agreeing both with ≺σc and /σ1−n. This linear extension
defines an execution σ′ ≡c σ (because ≺σc⊂≺σ

′) such that σ′ satisfies Fifo1−n (because
/σ1−n ⊂≺σ

′).
We conclude that σ ∈ Clos(Fifo1−n). J

We can now prove the causal knot criterion for Fifo1−n, which characterizes Clos(Fifo1−n)
by the absence of causal knots.

I Theorem 30 (Causal Knot Criterion for Fifo1−n). Let σ ∈ Exec. Then σ ∈ Clos(Fifo1−n)
⇐⇒ σ contains no causal knot.

Proof. By Lemma 29 and the transitivity of equivalence, we only need to prove that ≺σ1−n
is antisymmetric ⇐⇒ σ contains no causal knot.

(⇒) We prove the contrapositive: if σ contains a causal knot, then ≺σ1−n is not antisym-
metric.

Let σ ∈ Exec with a causal knot of size k. By definition of causal knots, there are

2k messages m1, ..,m2k such that ⇐⇒ ∀i ∈ [1, 2k] :
(
i ≡ 1 mod 2 : s(mi) ≺σc s(mi+1)
i ≡ 0 mod 2 : r(mi) ≺σc r(mi+1)

)
,

where m2k+1 = m1. We now define another sequence of messages m′1, ..,m′2k from the
messages of the causal knot: ∀i ∈ [1, 2k] :

i ≡ 1 mod 2 : if s(mi) ≺σp s(mi+1)
then m′i = mi

else m′i = m,where m ∈MES : s(mi) ≺σp s(m) ≺σc r(m) ≺σc s(mi+1)
i ≡ 0 mod 2 : m′i = mi

,

OPODIS 2017

http://dx.doi.org/10.1109/ICDCS.1998.679491

29:18 Asynchronous Message Orderings Beyond Causality

where m′2k+1 = m′1. The case i ≡ 0 mod 2 is well-defined since the causal order cor-
responds to either the peer order or a chain of messages. We then have ∀i ∈ [1, 2k] :(
i ≡ 1 mod 2 : r(m′i) /σ1−n r(m′i+1)
i ≡ 0 mod 2 : r(m′i) ≺σc r(m′i+1)

)
, where m′2k+1 = m′1. Thus ≺σ1−n contains a cycle

and is not antisymmetric.
(⇐) We prove the contrapositive: if ≺σ1−n contains a cycle, then σ contains a causal knot.
Let σ ∈ Exec such that ≺σ1−n contains a cycle. Since both ≺σc and /σ1−n are partial orders,

they are both antisymmetric: any minimal cycle consists of an alternation of those two.
Considering such a minimal cycle of size s, we can deduce by transitivity of ≺σc and /σ1−n

that it is composed of s events e1, .., es such that ∀i ∈ [1, s] :
(
i ≡ 1 mod 2 : ei /σ1−n ei+1
i ≡ 0 mod 2 : ei ≺σc ei+1

)
,

where es+1 = e1. By minimality of the cycle and e1 /
σ
1−n e2, we have es ≺σc e1 and thus

s ≡ 0 mod 2. Let k = s/2.
Recall that /σ1−n only orders receptions: e1, .., es are thus receptions. Their messages are

distinct, by minimality of the cycle. Then the previous characterization of the cycle can be

stated as ∃m1, ..,m2k ∈MES such that ∀i ∈ [1, 2k] :
(
i ≡ 1 mod 2 : r(mi) /σ1−n r(mi+1)
i ≡ 0 mod 2 : r(mi) ≺σc r(mi+1)

)
,

where m′2k+1 = m′1. By definition of /σ1−n, this is a causal knot of size k. J

B Proof of the characterizations of Int(Fifon−n), Int(Fifo1−n) and
Int(Fifon−1)

B.1 Proof of preliminary lemma
The reduction from Corollary 22 allows us to prove that when two send events (respectively
two receptions) are not causally ordered in an execution, there is a causally equivalent
execution where these two events are inverted, whereas the corresponding communication
events (the receptions for the send events and conversely) keep the same order. These
inversions correspond to potential breaking points by causal equivalence for message orderings,
a formalization of the intuition behind the counter-examples used in the proof of Theorem 11.
They will therefore constitute our main tool for showing non-membership in a given interior.

I Lemma 31 (Inversion of communication events). Let σ ∈ Exec, and m1,m2 ∈MES such
that r(m1), r(m2) ∈ σ. Then:
1. s(m1) ≺σ s(m2) ∧ s(m1) 6≺σc s(m2)

=⇒ ∃σ′ ≡c σ : s(m2) ≺σ′ s(m1)∧ ≺σ′|{r(m1),r(m2)}=≺σ|{r(m1),r(m2)}
2. r(m1) ≺σ r(m2) ∧ r(m1) 6≺σc r(m2)

=⇒ ∃σ′ ≡c σ : r(m2) ≺σ′ r(m1)∧ ≺σ′|{s(m1),s(m2)}=≺σ|{s(m1),s(m2)}

Proof. Let σ ∈ Exec, and let m1,m2 ∈ MES such that r(m1), r(m2) ∈ σ. Both cases
boil down to exhibiting a σ′ ≡c σ satisfying the condition. If we had a linear extension of
≺σc|{s(m1),s(m2),r(m1),r(m2)} satisfying the condition, Lemma 22 would give us such valid σ′.
We therefore prove the existence of a suitable linear extension of ≺σc|{s(m1),s(m2),r(m1),r(m2)}
in each case.
1. Let s(m1) ≺σ s(m2) and s(m1) 6≺σc s(m2). Let ≺l a total order on
{s(m1), s(m2), r(m1), r(m2)} defined by s(m2) ≺l s(m1) ≺l r(m1), s(m2) ≺l s(m1) ≺l
r(m2) and ≺l|{r(m1),r(m2)}=≺σ|{r(m1),r(m2)}.
Since s(m1) 6≺σc s(m2) by hypothesis and ≺σc is transitive, we get r(m1) 6≺σc s(m2). This
in turn implies r(m1) 6≺σc s(m1) ∧ r(m1) 6≺σc s(m2).

A. Shimi, A. Hurault, and P. Quéinnec 29:19

On the other hand, transitivity of ≺σ yields s(m1) ≺σ r(m2). Thus r(m2) 6≺σc s(m1), and
we deduce r(m2) 6≺σc s(m1) ∧ r(m2) 6≺σc s(m2).
≺l is therefore a linear extension of ≺σc|{s(m1),s(m2),r(m1),r(m2)}.

2. The proof is similar to the previous case, with ≺l′ a total order on
{s(m1), s(m2), r(m1), r(m2)} such that s(m1) ≺l′ r(m2) ≺l′ r(m1), s(m1) ≺l′ r(m2) ≺l′
r(m1) and ≺l′|{s(m1),s(m2)}=≺σ|{s(m1),s(m2)}. J

B.2 Proof of the characterization of Int(Fifon−n)
We now prove the characterization of Int(Fifon−n) from Theorem 24

Proof. (⇒) Assume the opposite: let σ ∈ Int(Fifon−n) and rσ or sσ is not a chain
(σ ∈ Exec(Causal) necessarily).

If rσ is not a chain, ∃m1,m2 ∈ MES such that r(m1) ≺σ r(m2) and r(m1) 6≺σc r(m2).
Since σ ∈ Int(Fifon−n), we get s(m1) ≺σ s(m2). The hypothesis r(m1) 6≺σc r(m2) and
Lemma 31 then entail the existence of σ′ ≡c σ with s(m1) ≺σ′ s(m2) and r(m2) ≺σ′ r(m1).
But σ′ 6∈ Exec(Fifon−n). Hence σ /∈ Int(Fifon−n). Contradiction.
If sσ is not a chain, the same application of Lemma 31 to the case s(m1) ≺σ s(m2),
s(m1) 6≺σc s(m2) and r(m1) ≺σ r(m2) gives us a σ′′ ≡c σ with σ′′ /∈ Exec(Fifon−n).
Hence σ /∈ Int(Fifon−n). Contradiction.

(⇐) We prove the contrapositive, namely: σ /∈ Int(Fifon−n) =⇒ σ /∈ Exec(Causal) ∨sσ
not a chain ∨rσ not a chain.

Let σ ∈ Exec such that σ /∈ Int(Fifon−n). Thus ∃σ′ ≡c σ such that ∃m1,m2 ∈ MES :
s(m1) ≺σ′ s(m2) ∧ r(m2) ≺σ′ r(m1). We then have 2 cases.

s(m1) ≺σc s(m2) ∧ r(m2) ≺σc r(m1). Then by definition of the causal order, either
r(m2) ≺σp r(m1) or ∃m ∈ MES such that s(m1) ≺σc s(m2) ≺σc r(m2) ≺σc s(m) ≺σc
r(m) ≺σp r(m1). Either way, we conclude σ /∈ Exec(Causal).
s(m1) 6≺σc s(m2) ∨ r(m2) 6≺σc r(m1). Then sσ or rσ is not a chain. J

B.3 Proof of the characterization of Int(Fifon−1) and Int(Fifo1−n)
We now prove both characterizations of Int(Fifon−1) and Int(Fifo1−n) from Theorem 25
and Theorem 26 respectively.

Proof. (⇒) Assume the opposite: let σ ∈ Int(Fifon−1) and p ∈ PEERS such that sσ(p)
is not a chain (σ ∈ Exec(Causal) necessarily).

Thus ∃m1,m2 ∈ MES such that s(m1), s(m2) ∈ sσ(p), s(m1) ≺σ s(m2) and s(m1) 6≺σc
s(m2). Since σ ∈ Exec(Fifon−1) and peer(r(m1)) = peer(r(m2)), we have r(m1) ≺σp
r(m2). Then Lemma 31 implies ∃σ′ ≡c σ such that s(m2) ≺σ′ s(m1), r(m1) ≺σ′ r(m2)
and peer(r(m1)) = peer(r(m2)). But σ′ 6∈ Exec(Fifon−1), and thus σ /∈ Int(Fifon−1).
Contradiction.

(⇐) We prove the contrapositive, namely: σ /∈ Int(Fifon−1) =⇒ σ /∈ Exec(Causal)
∨∃p ∈ PEERS : sσ(p) not a chain.

Let σ ∈ Exec such that σ /∈ Int(Fifon−1). Thus ∃σ′ ≡c σ such that ∃m1,m2 ∈ MES :
s(m1) ≺σ′ s(m2) ∧ r(m2) ≺σp r(m1). We then have 2 cases.

s(m1) ≺σc s(m2). From s(m1) ≺σc s(m2) ≺σc r(m2) ≺σp r(m1), we conclude σ /∈
Exec(Causal).
s(m1) 6≺σc s(m2). Then sσ(peer(r(m1))) is not a chain. J

OPODIS 2017

29:20 Asynchronous Message Orderings Beyond Causality

Proof. (⇒) Assume the opposite: let σ ∈ Int(Fifo1−n) and p ∈ PEERS such that rσ(p)
is not a chain (σ ∈ Exec(Causal) necessarily).

Thus ∃m1,m2 ∈ MES such that r(m1), r(m2) ∈ rσ(p), r(m1) ≺σ r(m2) and r(m1) 6≺σc
r(m2). Since σ ∈ Exec(Fifo1−n) and peer(s(m1)) = peer(s(m2)), we have s(m1) ≺σp
s(m2). Then Lemma 31 implies ∃σ′ ≡c σ such that r(m2) ≺σ′ r(m1), s(m1) ≺σ′ s(m2)
and peer(s(m1)) = peer(s(m2)). But σ′ 6∈ Exec(Fifo1−n), and thus σ /∈ Int(Fifo1−n).
Contradiction.

(⇐) We prove the contrapositive, namely: σ /∈ Int(Fifo1−n) =⇒ σ /∈ Exec(Causal)
∨∃p ∈ PEERS : rσ(p) not a chain.

Let σ ∈ Exec such that σ /∈ Int(Fifo1−n). Thus ∃σ′ ≡c σ such that ∃m1,m2 ∈ MES :
s(m1) ≺σp s(m2) ∧ r(m2) ≺σ′ r(m1). We then have 2 cases.

r(m2) ≺σc r(m1). Then either r(m2) ≺σp r(m1) or ∃m ∈ MES : r(m2) ≺σc s(m) ≺σc
r(m) ≺σp r(m1), by definition of the causal order. Both cases yield σ /∈ Exec(Causal).
r(m2) 6≺σc r(m1). Since r(m2) ≺σ′ r(m1) gives us r(m1) 6≺σc r(m2), we conclude that
rσ(peer(s(m1))) is not a chain. J

	Introduction
	Motivation
	Computations and Executions
	Message Orderings
	Overview of the Results

	A Topological Bridge
	Closures
	Characterization of the Closure of RSC
	Characterization of Clos(Fifo_n-1) and Clos(Fifo_1-n)
	Inclusion of closures
	Interpretation of closures

	Interiors
	The Interior of RSC
	The Interior of Fifo_n-n
	The Interiors of Fifo_n-1 and Fifo_1-n
	Inclusion of FIFO Interiors
	Interpretation of interiors

	Related Work
	Conclusion and Perspectives
	Proof of the causal knot criterion for Fifo_1-n
	Proof of the characterizations of Int(Fifo_n-n), Int(Fifo_1-n) and Int(Fifo_n-1)
	Proof of preliminary lemma
	Proof of the characterization of Int(Fifo_n-n)
	Proof of the characterization of Int(Fifo_n-1) and Int(Fifo_1-n)

