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NUMERICAL STUDY OF THE SERRE-GREEN-NAGHDI

EQUATIONS AND A FULLY DISPERSIVE COUNTERPART

VINCENT DUCHÊNE AND CHRISTIAN KLEIN

Abstract. We perform numerical experiments on the Serre-Green-Naghdi

(SGN) equations and a fully dispersive “Whitham-Green-Naghdi” (WGN)

counterpart in dimension 1. In particular, solitary wave solutions of the WGN
equations are constructed and their stability, along with the explicit ones of

the SGN equations, is studied. Additionally, the emergence of modulated os-

cillations and the possibility of a blow-up of solutions in various situations is
investigated.

We argue that a simple numerical scheme based on a Fourier spectral

method combined with the Krylov subspace iterative technique GMRES to
address the elliptic problem and a fourth order explicit Runge-Kutta scheme

in time allows to address efficiently even computationally challenging prob-
lems.

1. Introduction

1.1. Motivation. The Serre-Green-Naghdi (SGN) model is a popular model for
the propagation of surface gravity waves in coastal oceanography. It is expected
to provide a reasonable approximation of the response to gravity forces of a layer
of homogeneous incompressible fluid with a free surface (hereafter referred to as
the water waves problem) in the so-called shallow-water regime, that is for weakly
dispersive but possibly strongly nonlinear flows. It has been derived and studied
by many authors, including [9, 10, 14, 18, 35, 38, 43, 46, 49, 54, 63, 69, 72–74, 78]. Its
rigorous justification as an asymptotic model in the shallow-water limit has been
obtained in [4, 36, 47, 60, 61]. In addition to its validity as a model for the water
waves problem, the SGN equations have attracted interest as they are natural
dispersive generalizations of the equations for isentropic compressible flows and
as such can be studied through the Lagrange formalism [37, 39, 40]. In addition,
in the irrotational framework they can be obtained through canonical Hamilton’s
equations [24, 69], consistently with Zakharov’s Hamiltonian formulation of the
water waves problem [80]. Shortly put, the SGN system enjoys strong structural
properties.

In this work, we numerically compare the SGN equations with a model intro-
duced by the first author and collaborators in [25]. The model is obtained using
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2 VINCENT DUCHÊNE AND CHRISTIAN KLEIN

Hamilton’s equations with a modified Hamiltonian, and hence preserves at least
part of the structure of the SGN equations, while having the additional property
that the dispersion relation of the system coincides exactly with the one of the
water waves problem. Models with such properties are often said to be fully dis-
persive, and have been advocated by G. B. Whitham [79] as a way to reproduce
—at least qualitatively— in a better way some key properties of the water waves
problem, such as wavebreaking and non-smooth travelling waves of extreme height.
The price to pay is that the equations include non-local pseudodifferential operators
(Fourier multipliers). Whitham’s prediction turned out to be valid at least for the
unidirectional model which bears his name, as shown by [30, 44, 70, 77]. This fact
triggered renewed activity on bidirectional models (systems), and we refer to the
surveys [15,22,51] for more information. The aforementioned model refines systems
studied therein (sometimes called Whitham-Boussinesq systems) so as to offer im-
proved precision in strongly nonlinear situations. We refer to it in this work as
the Whitham-Green-Naghdi (WGN) model. It has been rigorously justified among
other fully dispersive models in [27,33].1

In this work, we numerically investigate properties of the SGN and WGN equa-
tions in extreme situations. More precisely, we will investigate features and stability
of solitary waves with large height and large velocity, as well as solutions whose evo-
lution produces steep gradients. It must be emphasized that both the SGN and
WGN systems are expected to provide poor approximations to the water waves
problem in the above scenarii since we voluntarily depart from the shallow-water
regime of validity (δ � 1). Our motivation is theoretical as we aim at extracting
information on the role of dispersive properties for such fully nonlinear models.
We choose the SGN and WGN equations as our subject of investigations in order
to step out of the world of unidirectional scalar (nonlinear and dispersive) equa-
tions for which similar studies have been realized [1, 41, 42, 50, 52], while retaining
strong structural properties. In particular, solitary waves can be identified with
critical points of functionals which directly derive from the aforementioned Hamil-
tonian structure [26]. Moreover, the two systems of equations can (and will) be
numerically approximated using identical numerical strategies, specifically Fourier
pseudospectral methods.

1.2. The equations. In the (horizontal) one-dimensional setting and flat-bottom
framework, the SGN equations read (see e.g. [24])
(SGN) ∂tζ + ∂x(hu) = 0,

∂t
(
u− 1

3h∂x(h3∂xu)
)

+ g∂xζ + u∂xu = ∂x
(
u
3h∂x(h3∂xu) + 1

2h
2(∂xu)2

)
.

1More precisely, it is proved to be an approximate model to the water waves system of order
O(εδ4) in the sense of consistency, where ε is the “nonlinearity” dimensionless parameter defined
as the ratio of the typical amplitude of the wave to the reference layer depth, and δ is the
“shallowness” dimensionless parameter defined as the ratio of the reference layer depth to the
typical horizontal wavelength. The corresponding precision of the SGN equations is O(δ4), and the

one of Whitham-Boussinesq equations is O(εδ2). The improvement between the WGN predictions
and SGN predictions can be witnessed in [26, Figures 3 and 4] in the context of small-amplitude
solitary waves and in [27, §I.5] for time-evolving profiles.



NUMERICAL STUDY OF THE SGN AND WGN EQUATIONS 3

Here, d > 0 is the reference layer depth, g > 0 is the gravitation constant,2 and
u(t, x) represents the layer-averaged horizontal velocity, ζ(t, x) (or rather its graph)
represents the surface deformation and h(t, x) = d + ζ(t, x) represents the water
depth at time t and horizontal position x ∈ R. We refer to [24] for a description
of its canonical Hamiltonian structure. Known conserved quantities of (SGN) are∫
R fi dx (i = 1, . . . , 4) with densities

(1) f1 = ζ, f2 = hu, f3 = gζ2 + hu2 +
1

3
h3(∂xu)2, f4 = u− 1

3h
∂x(h3∂xu)

representing respectively the mass, momentum (or horizontal impulse), total energy
and the rescaled tangential fluid velocity at the free interface [38].

The fully dispersive model introduced in [25] (when restricted to the one-layer
case and neglecting surface tension) is
(WGN) ∂tζ + ∂x(hu) = 0,

∂t
(
u− 1

3h∂xF(h3∂xFu)
)

+ g∂xζ + u∂xu = ∂x
(
u
3h∂xF(h3∂xFu) + 1

2h
2(∂xFu)2

)
,

where F is the Fourier multiplier defined by

∀ϕ ∈ L2(R), F̂ϕ(ξ) = F (d|ξ|)ϕ̂(ξ) where F (k) =

√
3

|k| tanh(|k|)
− 3

|k|2
.

Known conserved quantities of (WGN) are
∫
R fi dx (i = 1, . . . , 4) with densities

(2) f1 = ζ, f2 = hu, f3 = gζ2+hu2+
1

3
h3(∂xFu)2, f4 = u− 1

3h
∂xF(h3∂xFu).

Our convention for the Fourier transform is the one for which the following
identities hold for sufficiently regular and localized functions g:

∀k ∈ R, ĝ(k) :=
1

(2π)1/2

∫
R
e−ikx g(x) dx,

∀x ∈ R, g(x) =
1

(2π)1/2

∫
R
e+ikx ĝ(k) dk.

1.3. Outline. Let us now present the structure of this manuscript. In section 2 we
numerically construct solitary wave solutions to the WGN equations. In section 3
we present our numerical approach for the numerical solution of the initial-value
problem for the SGN and WGN equations, and test its validity on solitary wave
solutions. The stability of solitary waves for both SGN and WGN equations is
numerically investigated in section 4. In section 5 we study the emergence of zones
of rapid modulated oscillations within solutions to both equations starting from
unidirectional, long, smooth and localized initial data. Based on the relationship
between the SGN equations and the Camassa-Holm equation, we study in section 6
the behaviour of solutions to the former with initial data leading to finite-time
blow-up for the latter. In section 7, we study the possibility of a blow-up for initial
data near cavitation, that is vanishing depth. We summarize our findings and add
some concluding remarks in section 8.

2By scaling arguments (specifically setting ζ(x, t) = dζ̃( 1
d
x,

√
gd
d
t), u(x, t) =

√
gdũ( 1

d
x,

√
gd
d
t))

it is always possible to set g = d = 1, and we shall do so in the following.
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2. Solitary waves

In this section we study solitary wave solutions to the (fully dispersive) Whitham-
Green-Naghdi equations (WGN), that is solutions of the form

(3) ζ(t, x) = ζc(x− ct) u(t, x) = uc(x− ct), lim
|x|→∞

|ζc|(x) + |uc|(x) = 0

where the constant c ∈ R is the solitary wave velocity.
It is well-known that for any supercritical velocity c > 1 (recall we set g = d = 1),

there exists a smooth solitary wave solution to (SGN) with explicit formula 3

(4) ζc(x) = (c2 − 1) sech2
(√

3
2

√
c2−1
c2 x

)
, uc(x) =

cζc(x)

1 + ζc(x)
.

The functions ζc and uc are smooth, even and positive and have a unique non-
degenerate maximum at the origin. Such an explicit formula is of course unexpected
for the fully dispersive system (WGN). However, the following result has been
shown in [26]:

Proposition 2.1. There exists (ζ(q), u(q))q>0 a one-parameter family of smooth

square-integrable functions such that for all q > 0, (ζcq , ucq ) := (ζ(q), u(q)) provides
a solitary wave solution to (WGN) with velocity cq > 1, and

cq → 1 and
∥∥(c2q − 1)−1ζ(q)((c2q − 1)−1/2·)− sech2(

√
3
2 ·)
∥∥
H1 → 0 (q → 0).

We also refer to [26] for numerical computations of WGN solitary waves with
small velocities 0 < c − 1 � 1. In the following we numerically investigate the
existence and behavior of WGN solitary waves for large velocities. Based on these
numerical experiments we conjecture the following.

Conjecture 2.2. For all c > 1, there exist smooth and rapidly decaying solitary
wave solutions to the Whitham-Green-Naghdi system (WGN) with velocity c and
such that the following holds.

(1) For all c > 1, the profiles ζc, uc are positive on the real line.
(2) For all c > 1, the profiles ζc, uc have a unique critical point corresponding

to their maximum, and it is non-degenerate.
(3) For all c > 1, the profiles ζc, uc are symmetric about their maximum.
(4) max ζc ∼ c2 and maxuc ∼ c as c→∞.

This is in sharp contrast to the celebrated result [6] on the existence of (peaked)
solitary waves of extreme height for the water waves problem, and the corresponding
result obtained on the Whitham equation [30,77] (see also [52] and references therein
for a numerical investigation), and invalidates the naive thinking that this feature
relies only on the dispersion relation of the equations linearized about the rest state.

2.1. The equations for solitary waves. Plugging (3) into (WGN) yields for the
first equation

(5) ζc =
hcuc
c

=
uc

c− uc
, hc = 1 + ζc =

c

c− uc
,

and for the second

(6)
uc − c

3hc
∂xF(h3c∂xFuc) +

1

2
h2c(∂xFuc)

2 + cuc − ζc −
u2c
2

= 0.

3In this work we consider only smooth solitary waves maintaining positive depth; see e.g. [48].
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From (5) we infer

(7) uc =
cζc
hc
,

and plugging (7) into (5) yields a single equation for ζc, namely

(8)
−1

3h2c
∂xF(h3c∂xF

ζc
hc

) +
1

2
h2c(∂xF

ζc
hc

)2 +
ζc
hc
− ζc
c2
− ζ2c

2h2c
= 0.

Similarly, we may use (7) with (6) to produce a single equation for uc, namely

(9) − (c− uc)2

3c
∂xF

(
( c
c−uc

)3∂xFuc
)

+ 1
2 ( c
c−uc

)2(∂xFuc)
2 + cuc−

uc
c− uc

− 1
2u

2
c = 0.

Finally, we find it convenient to solve (9) using the variable ηc = uc

c = ζc
hc

:

(10)
−(1− ηc)2

3
∂xF

( ∂xFηc
(1− ηc)3

)
+

1

2(1− ηc)2
(
∂xFηc

)2
+ηc−

ηc
c2(1− ηc)

− 1
2η

2
c = 0.

Remark 2.3. Equation (8) can be written as δζcL = 0 with

L :=

∫
R
`(ζc, c

ζc
1+ζc

) dx

where

`(ζ, u) :=
1

2
ζ2 − 1

2
(1 + ζ)u2 − 1

6
(1 + ζ)3(∂xFu)2

is the Lagrangian density naturally associated with the Hamiltonian formulation
of the equations, and physically corresponds to the difference between the potential
energy and the kinetic energy. In particular, the Jacobian of δL is, by definition,
symmetric for the L2-inner product.

2.2. Numerical construction of solitary waves. We seek numerical approxi-
mations of solitary waves for (WGN) with fixed velocity c > 1 through zeroes of a
finite-dimensional vector-field accounting for the left-hand side of (9) or (10):

(11) F(u) = 0.

The vector u = (u(x1), . . . , u(xn)) represents values of the function u at collocation
points xn = −πL+ n2πL/N , n = 1, . . . , N for x ∈ L[−π, π]. Nonlinear operations
are naturally computed at collocation points, while ∂xF is approximated via a dis-
crete Fourier transform computed efficiently with a Fast Fourier transform (FFT)
and multiplication in Fourier space, that is

∀v ∈ RN , ∂̂xFvk := ikk F (kk) v̂k

where we denote v̂ = (v̂−N/2+1, . . . , v̂N/2) the coefficients of the Fast Fourier trans-
form of v (which we slightly incorrectly refer to as Fourier coefficients in the fol-
lowing), and kk = (k/L), k = −N/2 + 1, . . . , N/2 the discrete Fourier modes. Here
L > 0 is a constant chosen such that u and its relevant derivatives decrease to
machine precision (roughly 10−16 in double precision) and N will be chosen such
that the ûk decreases to machine precision for large |k|. In the results presented
here, multiplying N or LN by a factor 2 or 4 neither improves nor deteriorates the
accuracy. For more information on Fourier spectral methods, the reader is referred
to [76] and the literature cited therein.
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The system of N nonlinear equations (11) will be solved iteratively by a standard
Newton iteration,

(12) u(m+1) = u(m) − δu(m),

with

(13) Jac(F(u))|u=u(m)δu(m) = F(u(m)),

where u(m) denotes the mth iterate, and where JacF(u) is the Jacobian of F(u)
with respect to u. The initial iterate u(0) will be chosen as the SGN solitary wave
given by (4) at collocation points. It may also be constructed by extrapolating from
previously computed solitary waves and Lagrange polynomials. For the iteration,
we apply and compare two strategies: first we test a Newton-GMRES method, i.e.,
we solve (13) with the Krylov subspace iterative method GMRES [68] as for instance
in [52]. Alternatively we solve (13) through standard LU factorization. Notice that
due to the translation invariance of the problem, the Kernel of the Jacobian of
the continuous (infinite-dimensional) vector-field is non-empty when evaluated at
a non-trivial solution u, since ∂xu is an element of its nullspace. The correspond-
ing spectral projection can be inferred from the symmetry property mentioned in
Remark 2.3. Correspondingly, Jac(F(u(m))) has an extremely small eigenvalue as
u(m) converges towards the desired solution. However, by symmetry considerations,
we can ensure that at each iterate u(m) and therefore F(u(m)) are even, and as a
consequence its spectral projection onto the corresponding eigenspace vanishes (up
to machine precision). Yet we find it advisable to add the aforementioned spectral
projection to the Jacobian when solving (13), although in practice we mostly ob-
serve a slight phase shift on the numerical approximation if the spectral projection
is not added.

Let us now present our results, starting with the case of small and slow solitary
waves. For c = 1.1, we treat the equation (9) for x ∈ 20[−π, π] and use N =
29 collocation points. We use a Krasny filter of the order of 10−14, which puts
to zero Fourier coefficients with modulus smaller than 10−14. We also apply a
preconditioner of the form M = Diag((1+k2/3)) —which is motivated by the linear
dispersion of the SGN equations— i.e., instead of solving iteratively with GMRES
Ax = b the equation (13) in Fourier space, we solve M−1Ax = M−1b. The
Newton-GMRES code converges within 3 iterations with a residual

∥∥F(u(3))
∥∥
`∞

of the order of 10−13. The residual of the initial iterate,
∥∥F(u(0))

∥∥
`∞

with u(0)

the SGN solitary wave, is of the order of 10−2, GMRES converges in 21 iterations
with a relative residual of 10−11. The resulting Newton iterate,

∥∥F(u(1))
∥∥
`∞

has a

residual of 10−4, GMRES again converges within 20 iterations to a relative residual
of 10−11. The residual of the subsequent Newton iteration,

∥∥F(u(2))
∥∥
`∞

is then of

the order of 10−7. In the next step, GMRES stagnates with a relative residual of
the order of 10−7, which is explained by the smallness of the previous residual of
the Newton iteration. The ensuing residual of the Newton iteration,

∥∥F(u(3))
∥∥
`∞

,

is of the order of 10−13, and the iteration is stopped. The iteration thus shows
the well-known quadratic convergence of a Newton iteration, loosely speaking the
number of correct digits doubles in each iteration. The resulting solitary wave can
be seen in Fig. 1 on the left. The WGN solitary wave for c = 1.1 is very close to
the SGN solitary wave for the same velocity shown in red in the same figure. On
the right of the same figure, the modulus of the Fourier coefficients shows that the
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solution is numerically resolved to the order of the Krasny filter. We also observe
that the exponential decay rate of Fourier coefficients with large Fourier modes is
slightly smaller for the WGN solitary wave than it is for the SGN solitary wave.

-20 -10 0 10 20
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0

0.05

0.1

0.15

0.2

u

-15 -10 -5 0 5 10 15
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-20

-15

-10

-5

0

5

Figure 1. Left: solitary wave for the WGN equations for c = 1.1
in blue and the SGN equations for the same velocity in red; right:
Fourier coefficients for both solitary waves on the left.

Now we consider a larger value of the velocity, c = 2 and use N = 210 collocation
points for x ∈ 20[−π, π]. The Newton-GMRES code converges in 4 iterations with
a residual of the order of 10−12. The resulting solitary wave is shown in Fig. 2 on
the left. Again the solution is very close to the SGN solitary wave shown in the
same figure in red. The solution is well resolved in Fourier space as can be seen on
the right of Fig. 2, and we observe once more that the exponential decay rate of
Fourier modes is smaller. The Newton-GMRES iteration behaves similarly to what
is described before. Note that it does not converge without a preconditioner due
to issues for the high Fourier modes. For even larger values of the velocity such as
c = 3, the iteration no longer converges because of GMRES problems for the high
Fourier modes.
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Figure 2. Left: solitary wave for the WGN equations for c = 2
in blue and the SGN equations for the same velocity in red; right:
Fourier coefficients for the solitary waves on the left.

Therefore we switch for larger values of the velocity c to a Newton iteration with
a direct numerical factorization of the Jacobian. Still with N = 210 collocation
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points on x ∈ 10[−π, π], we consider the case c = 3. The Newton iteration con-
verges with a direct inversion of the Jacobian in 3 iterations to a residual of the
order of 10−9. After further iterations, the minimal residual reachable with this
method appears to be of the order of 10−13. For c = 20 and the same parameters
as before, iteration converges normally to the order of 10−7. The solution and its
Fourier coefficients can be seen in Fig. 3. The deviation from the SGN solitary wave
in red is now clearly visible. We again observe a lower rate of decay of Fourier coef-
ficients of the WGN solitary wave, however only for higher Fourier modes (the lower
decay rate is apparent starting from much smaller Fourier modes when plotting the
corresponding figures for the surface deformation, ζc). The Fourier coefficients sat-
urate at the order of 10−10 indicating problems in the conditioning of the Jacobian
which we investigate later on. Part of this can be attributed to the presumption
motivated by formula (4) that ζc —and hence hc = 1 + ζc = c

c−uc
— scales as c2 for

large c.
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Figure 3. Left: solitary wave for the WGN equations for c = 20
in blue and the SGN equations for the same velocity in red; right:
Fourier coefficients on the left.

For even larger values of the velocity as c = 100, these problems become worse
and the Newton iteration does not converge. There is however no indication that
the solitary wave might become singular or might not exist for such values. Since
uc is proportional to c, we look at the rescaled quantity ηc = uc/c = ζc/(1+ζc) and
consider the equation (10). Using again the same parameters as before, the optimal
residual for the iteration in this case is of the order of 10−6. The solution can be
seen in Fig. 4 on the left. The Fourier coefficients on the right of the same figure
saturate at the order of 10−8 which partly explains why no lower residual can be
achieved. The lower exponential rate of decay of the WGN solitary wave Fourier
coefficients is no longer visible, presumably because it occurs for higher Fourier
modes than the numerically well-resolved ones. It is apparent when plotting the
corresponding figures for the surface deformation, ζc.

Let us briefly comment on this decay rate. It is well-known that it relates to the
maximal width of the strip around the real axis for which the analytic extension
of the function is free of singularities (see e.g. [3, Theorem 7.1]). The authors have
no clear understanding on how such properties can be related to the balancing of
dispersion and nonlinearity of the corresponding equation. The exponential decay
rate of the Fourier transform of the surface deformation of the SGN solitary waves
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can be explicitly inferred from formula (4). Such is not the case for the velocity
variable, to the authors’ knowledge, due to the fact that the function z 7→ z/(1+z) is
not entire (see e.g. [3, Proposition 7.10]), although numerical computations indicate
that the decay rate is the same. The decay rate for the surface deformation and
velocity variables of the WGN solitary waves also appear to be the same. They are
close to the ones of the SGN solitary waves for small values of the velocity c ≈ 1,
and quickly deviate for larger values (about c = 2) to approximately half the ones of
the SGN solitary waves. This interesting question will certainly need to be studied
more in the future.
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Figure 4. Left: solitary wave for the WGN equations for c = 100
in blue and the SGN equations for the same velocity in red; right:
Fourier coefficients on the left.

One reason for the problems in the iterations are due to the function ζc being of
the order c2. We show these functions for c = 20 and c = 100 in Fig. 5. It can be
seen that this function is always more peaked than the corresponding one for the
SGN equations with the same velocity, given by the explicit formula (4).
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Figure 5. The function ζ for the solitary wave for the WGN equa-
tions in blue and the SGN equations for the same velocity in red:
left c = 20, right c = 100.

To understand the difficulties in the Newton iterations, we look at the Jaco-
bian for the initial iterate (the SGN solitary wave) for c = 100 which is shown
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in Fig. 6. We denote the discrete Fourier transform of this Jacobian (from the

left and from the right) by Ĵ . It can be seen that it is, except for a peak near
the center, essentially constant along the diagonal. In addition there is a plateau
of the order of 10−5 seemingly due to rounding errors since the maximum is of
the order of 1010. Note that the dominant contribution to the Jacobian is due to

Ĵ∗ := −(1−ηc)2
3 ∂xF

(
1

(1−ηc)3 ∂xF
)

which we refer to as the ‘non diagonal’ part.

Figure 6. Left: discrete Fourier transform of the Jacobian for the
initial iterate (SGN solitary wave) for c = 20; right: non diagonal

part Ĵ∗ on the left.

Thus it appears that the problems in the computation of the solitary waves
for very high velocities are due to machine precision errors being increased by the
multiplication in physical space by the function 1

(1−ηc)3 taking large values (of order

c6), and by the application of ∂xF which multiplies Fourier modes by ikk F (kk) ∼
i
√

3|kk| for large k. But there is no indication of a maximal velocity for the solitary
wave solutions to (WGN). The conclusions of the numerical investigation in this
section are summarized in the form of Conjecture 2.2.

3. Time evolution

In this section we present and validate the numerical scheme we employ for
integrating in time the equations (SGN) and (WGN). In principle we adapt here a
classic code for the KdV equation (code 27 in [76]) to the equations studied here.
The main new aspect is the inversion of the elliptic operator via GMRES, and
we concentrate on this aspect whilst refering to [76] for general properties of the
numerical approach. Let us first recall the SGN and WGN equations with a slight
reformulation: sufficiently regular solutions to (WGN) satisfy (once again, we set
g = d = 1)

(14)

 ∂tζ + ∂x(hu) = 0,

∂tv + ∂x
(
ζ + uv − 1

2u
2 − 1

2h
2(∂xFu)2

)
= 0

where we recall that h = 1 + ζ and F is the Fourier multiplier operator with symbol

F (k) =
√

3
|k| tanh(|k|) −

3
|k|2 ; and v and u are related through the elliptic equation

(15) v = u− 1

3h
∂x
(
h3∂xFu

)
.
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Sufficiently regular solutions to (SGN) satisfy the above, replacing F by the identity.
By standard elliptic theory [53, Lemma 5.45], u is uniquely determined by (15) from
sufficiently regular (v, ζ) with infR(1 + ζ) > 0, and we can solve (14) as evolution
equations for (ζ, v). Incidentally, notice v represents a rescaled tangential fluid
velocity at the free interface, the fourth quantity in (1) and (2).

3.1. The numerical scheme. Many numerical schemes have been proposed for
solving the SGN equations; see for instance [2, 7, 11, 17, 23, 29, 39, 56, 57, 64, 65, 67].
The presence of Fourier multipliers in the WGN equations naturally leads to Fourier
pseudospectral methods, already employed in [29] and described thereafter. One of
the difficulties when integrating in time the SGN equations (and in a similar way the
WGN equations) is that we are led to solve the elliptic problem (15) at each time-
step. The aforementioned issue is addressed in particular in [21,28,55] (see also [34]
and references in [27] for relaxation approaches) where different approximate models
are introduced. In this work, we stick with the original equations and simply
note that, thanks to the efficiency of pseudospectral methods, it is not too costly
—at least in our one-dimensional framework— to solve the elliptic problem at
each time step while maintaining high resolution. To this aim, we observe in our
experiments that the aforementioned Krylov subspace iterative method GMRES
is highly efficient and converges within a few iterations to the desired accuracy,
although the choice of preconditioner may turn out to be crucial. Only for extreme
situations not studied here and far from the range of applicability of the equations
an inversion via standard LU factorization is found necessary.

Let us now be more precise. We use the same Fourier pseudospectral approach as
outlined in the previous section, i.e., we approximate the solution u, ζ via discrete
Fourier transforms. This means we can treat initial data which are smooth and
periodic or in the Schwartz class of rapidly decreasing functions (the latter can
be treated within the finite numerical precision as periodic on sufficiently large
domains) with spectral accuracy, i.e., with a numerical error exponentially decaying
with the number N of Fourier modes.

With this spatial discretization, both SGN and WGN are finite dimensional
systems of ODEs coupled with a system of equations of the form

(16)



dζ̂

dt
= G1(ζ̂, û),

dv̂

dt
= G2(ζ̂, û, v̂),

M(ζ̂)û = v̂

,

where ζ̂(t), û(t), v̂(t) are N -dimensional vectors, and M(ζ̂) is an N -by-N matrix.
The two ODEs in system (16) will be integrated with the standard explicit fourth
order Runge-Kutta method (RK4). Note that this is not trivial since the system
will be stiff because of the three derivatives with respect to x on the right hand
side of (SGN). The stiffness implies that explicit schemes as the ones applied
here can become inefficient because of restrictive stability conditions on the time
step. We briefly recall the basic concepts of Dahlquist’s stability theory, for more
details see Chapter 10 of [76] and references therein. The basic idea is to consider
a linear model problem y′ = λy, λ ∈ C, where λ is some characteristic parameter.
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If <λ ≤ 0, the exact solution of the model problem is bounded for positive times,
and a numerical solution is called stable if it also bounded for positive times. For
explicit time evolution schemes as the one used here, this condition defines a domain
of stability in the complex z := λh plane (with h the time step), see output 25 in
Chapter 10 of [76] for RK4. Considering now an ODE system y′ = f(t,y) (in

our case, y would be formed by the vectors of the Fourier coefficients ζ̂ and v̂),
one has to choose a time step h so that for all eigenvalues λ of linearizations, λh
is in the stability domain. Since for the SGN equations (and similarly for the
WGN equations), the dominant contribution to the linearization is due to order-
one operators4 and since we use a Fourier discretisation where F∂x = ik with
k = −N/2+1, . . . , N/2, the dominant contribution to λ is of the order of N/2. Thus
we have to make sure that h = O(1/N) which is always ensured in our examples.
In our numerical experiments we do not encounter any instability issues which
would be marked by exponentially growing modes in time, see again Chapter 10
in [76]. Note that if the stiffness lies in the linear part of the equations as for the
Korteweg-de Vries equation, many efficient time integration schemes are known,
see for instance [50] and references therein and the mentioned code 27 in [76], but
here the stiffness is (also) in the nonlinear part.

The system of linear equations in (16) is a convolution in the space of Fourier

coefficients: the matrixM(ζ̂) is constructed using (inverse) Fast Fourier Transform
and multiplication in physical space. As already mentioned, the inversion will be
done with the Krylov approach GMRES [68]. For high accuracy, we use GMRES
with up to 100 iterations and a stopping criterion of the iteration of a relative
residual of the order of machine precision. As we will show below at examples,
GMRES is less of a problem than in the inversion of the Jacobian in the Newton
iteration, though we use, unless otherwise stated, the same preconditioner as there.

3.2. Validation. The accuracy of the code will be validated as discussed in [50]:
the spatial resolution is controlled via the decay of the Fourier coefficients which
is known to be exponential for analytical functions. Thus the order of magnitude
of the highest Fourier coefficients gives an indication of the numerical error. The
resolution in time will be controlled via conserved quantities of the equations. As
mentioned in the introduction, both equations studied here have conserved quan-
tities which will depend during the numerical computation on time because of
unavoidable numerical errors. The numerical conservation of these quantities will
give an estimation of the numerical error (it generally underestimates this error by
1-2 orders of magnitude, see the discussion in [50]). We shall use here the third
quantity in, respectively, (1) and (2).

To test the code we consider the solitary waves with velocity c = 2 as an example.
First we consider the SGN equations with the initial data (4) for c = 2. We use
N = 29 Fourier modes for x ∈ 10[−π, π] and Nt = 2000 time steps for t ∈ [0, 1]. The
relative conservation of the quantities in (1) is of the order of 10−14. The Fourier
coefficients can be seen on the left of Fig. 7. They decrease to the order of 10−13.
The difference between the numerical and the exact solution for t = 1 can be seen
on the right of Fig. 7. It is of the order of 10−12, and the numerical error is thus

4while the SGN and WGN equations involve operators of order 3, the formulation (14) (thanks

to the regularizing effect of inverting the elliptic problem (15) and similarly to the Camassa-Holm
equation (21)) shows that the SGN and WGN equations can be considered as (quasilinear) systems
involving operators of order at most one.
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just an order of magnitude larger than what is indicated by the Fourier coefficients
and the conserved quantities.
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Figure 7. Left: modulus of the Fourier coefficients of the numer-
ical solution to the SGN equations for solitary wave initial data
with c = 2 at t=1; right: the difference between this solution to
the SGN equations and the exact solution.

To test the WGN equations in a similar way, we first numerically construct the
solitary wave for c = 2 with N = 210 Fourier modes. Then we use this numerical
solution as initial data for the WGN equations. This also assesses the accuracy with
which the solitary wave is numerically constructed. Again we apply Nt = 2000 time
steps for t ∈ [0, 1]. The conserved quantities are relatively conserved to the order
of 10−13. The Fourier coefficients of the solution at the final time can be seen on
the left of Fig. 8, the difference with the numerically constructed solitary wave on
the right. Obviously we reach the same accuracy as in the SGN case both in terms
of resolution in space as indicated by the decay of the Fourier coefficients for large
Fourier modes and the difference between numerical and exact solution.
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Figure 8. Left: modulus of the Fourier coefficients of the numer-
ical solution to the WGN equations for solitary wave initial data
with c = 2 at t=1; right: the difference between this solution to
the WGN equations and the exact solution.

Note that in both examples here, a further increase in resolution both in space
or time does not lead to higher accuracy.
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4. Stability of the solitary waves

In this section we study the behavior of solutions to both the SGN and the WGN
equations set initially as various perturbations of the solitary waves. Let us describe
existing results in the literature. In [58, 59], Li investigates the linear stability of
the explicit solitary waves of the SGN equations. The first observation is that
while solitary waves are critical points of a functional immediately stemming from
the Hamiltonian structure of the equation, the second variational derivative of the
functional has an infinite-dimensional (essential) negative spectrum, hence standard
tools for the nonlinear stability analysis do not apply. This comment also applies
to the WGN equations. Then Li proves that solitary waves of the SGN equations
with sufficiently small velocity 0 < c − 1 � 1 are (orbitally) linearly stable (see
details therein) for infinitely small and exponentially decaying perturbations. The
proof is not easily extended to the WGN equations since the differential nature of
the operators is used. Let us also mention that Carter and Cienfuegos numerically
studied in [16] the linear stability of cnoidal waves and found that sufficiently large
or steep cnoidal waves exhibit linear instability, with relatively small growth rate.
By nature, since the unstable modes are periodic with the period being a multiple
of the period of the cnoidal wave, the results do not apply to solitary waves; see the
discussion in [16]. Finally, let us also mention the work [31] where the modulational
stability of small-amplitude bores of the SGN equations is found.

In this section we consider the case of perturbations of solitary waves with mod-
erate up to large amplitudes (we show figures for velocities c = 2, c = 4 and c = 10)
and —consistently with the related numerical experiments provided in [64]— find
that these solitary waves appear asymptotically orbitally stable.

We consider first perturbations of the solitary waves with velocity c = 2. We
work with N = 210 Fourier modes for x ∈ 10[−π, π] and Nt = 2000 time steps for
the time interval t ∈ [0, 10]. The relative conservation of the third quantity in (1) for
the SGN equations remains valid up to the order of 10−10, and the corresponding
one in (2) for the WGN equations up to the order of 10−9.

We first study initial data of the form (ζ(x, t = 0), u(x, t = 0) := (ζc(x), λuc(x))
with λ ∈ R where (ζc, uc) is the solitary wave with velocity c. Similar perturbations
of the initial data for ζ instead of u lead to similar results, not represented here. The
solution to the SGN equations for these initial data (with c = 2) and λ = 0.99 can
be seen in in Fig. 9. There is some radiation propagating to the left, but the final
state appears to be a solitary wave of slightly different mass than the perturbed
solitary wave.

The fact that a solitary wave is approached is even more obvious looking at
the L∞ norm of the solution (computed on collocation points and thus only an
approximation of the L∞ norm since the maximum might not be taken on a grid
point. This explains the apparent fluctuations in the subsequent figures.) plotted
on the left of Fig. 10. The L∞ norm is increasing at the beginning and after a few
oscillations appears to reach a final value. Since we approximate a situation on the
real line by a periodic setting, the radiation cannot escape to infinity here which
means that a final state cannot be reached. Extending the computation to a larger
time interval, we observe visible oscillations due to the interaction with radiation
starting about t = 17. The case λ = 1.01 is very similar in appearance to Fig. 9,
therefore we do not show the corresponding figure, just the L∞ norm on the right
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Figure 9. Solution to the SGN equations for the initial data
u(x, t = 0) = 0.99uc(x) for c = 2 and ζ(x, t = 0) = ζ2(x).

of Fig. 10. It can be seen that the norm decreases here before reaching its final
value.
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Figure 10. L∞ norms of the solutions to the SGN equations for
the initial data ζ(x, t = 0) = ζ2(x) and u(x, t = 0) = λu2(x), on
the left for λ = 0.99, on the right for λ = 1.01.

In Fig. 11 we show the L∞ norm of the SGN solution with initial data given by
(ζ(x, t = 0), u(x, t = 0)) := (ζ2(x), u2(x)± 0.01 exp(−x2)), on the left for the minus
sign in the initial data, on the right for the plus sign. The situation is very similar
to the situation of Fig. 10, the final state appears to be a solitary wave of slightly
different amplitude than the initial one.

If we consider the same perturbations for the WGN solitary wave (still with
c = 2), the resulting figures are very similar as can be seen in Fig. 12. The final
state in each example appears to be a solitary wave of slightly different amplitude
than the perturbed solitary wave.
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Figure 11. L∞ norms of the solutions to the SGN equations for
initial data ζ(x, t = 0) = ζ2(x), u(x, t = 0) = u2(x)−0.01 exp(−x2)
on the left and u(x, t = 0) = u2(x) + 0.01 exp(−x2) on the right.
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Figure 12. L∞ norms of the solutions to the WGN equations for
the initial data ζ(x, t = 0) = ζ2(x) and u(x, t = 0) = λu2(x) in the
upper row, on the left for λ = 0.99, on the right for λ = 1.01; and
for u(x, t = 0) = u2(x) ± 0.01 exp(−x2) in the lower row, for the
minus sign on the left and the plus sign on the right.

Obtaining results for c = 4 is already much more computationally demanding.
We need to augment the space domain of computation, and hence the number of
modes in order to secure a sufficient accuracy, and also the final time of computation
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before the main wave reaches a final state. Specifically we use N = 212 Fourier
modes for x ∈ 30[−π, π] and Nt = 104 time steps for t ∈ [0, 20]. We show the L∞

norms for the perturbations of the solitary wave of the form , ζ(x, t = 0) = ζ4(x)
and u(x, t = 0) = λu4(x) for λ = 0.99 and λ = 1.01 in Fig. 13. It can be seen that
the oscillations are more pronounced in this case than for the case c = 2 in Fig. 10,
but that they decrease in amplitude which seems to indicate that the solitary wave
is again stable in this case.

Figure 13. L∞ norms of the solutions to the SGN equations for
the initial data u(x, t = 0) = λu4(x), on the left for λ = 0.99, on
the right for λ = 1.01.

The study of even larger values of c becomes even more demanding, but can still
be handled with the approach based on GMRES, which confirms it as a powerful
tool (notice we use the Fourier multiplier 1 + c4k2/3 as preconditioner). To study
the case c = 10, we use N = 211 Fourier modes for x ∈ 30[−π, π] and Nt = 104 time
steps for the indicated time intervals. On the left of Fig. 14 we show the L∞ norm
of the solution to the SGN equations for the initial data u(x, t = 0) = 1.01u10(x),
ζ(x, t = 0) = ζ10(x). The solitary wave appears to be again stable. The same
is true for a perturbation of the form u(x, 0) = u10(x) + 0.01 exp(−x2), although
the observed oscillation of the amplitude is about ten times larger than the initial
perturbation for u, and with another factor of ten for the oscillation in ζ. If we
consider a larger perturbation of the form u(x, 0) = u10(x) + 0.1 exp(−x2), the L∞

norm on the right of Fig. 14 seems to grow beyond what can be seen as a pertur-
bative regime. We expect no blow-up since the norms decrease after some time,
but the example makes clear that SGN solitary waves with large velocities c are in
applications more easily affected by perturbations than, for instance, Korteweg-de
Vries solitons.

This becomes even clearer if we look at the solutions to the SGN equations for
these initial data in Fig. 15. A strong growth especially in ζ cannot be interpreted
as a perturbation of the initial structure, yet the structures moving to the left do
not appear to be solitary waves of smaller amplitude (the bumps in the figures
cannot be fitted to a solitary wave).

In all our experiments, considering the solitary waves of the WGN equations
instead of the SGN equations yields no qualitative difference. In particular, we



18 VINCENT DUCHÊNE AND CHRISTIAN KLEIN

0 2 4 6 8

t

9.8

10

10.2

10.4

10.6

10.8

11

11.2

||
u
||

Figure 14. L∞ norms of the solutions to the SGN equations for
the initial data ζ(x, 0) = ζ10(x), and u(x, t = 0) = 1.01u10(x) on
the left and u(x, t = 0) = u10(x) + 0.1 exp(−x2) on the right.

Figure 15. Solution to the SGN equations for the initial data
u(x, t = 0) = u10(x+ 40)) + 0.1 exp(−((x+ 40)2), on the left u, on
the right ζ.

observed no coherent state — other than the main wave— emerging from the per-
turbed solitary wave, which motivates our assertion that solitary waves appear
dynamically stable.

We also performed a spectral stability analysis (not represented here) essentially
amounting to the large-period limit of that in [16] for cnoidal waves. We found
that, while the linearized SGN and WGN equations about cnoidal waves always
exhibit unstable modes, the rate of instability decreases as the period grows, and
that no unstable mode for solitary waves is captured in this way.

5. Emergence of modulated oscillations

Both the SGN and WGN equations reduce to the so-called Saint-Venant or
shallow-water system in the limit of infinitely long wavelength. This is easily seen
when considering the evolution equations of a one-parameter family of initial data
varying on a scale of order 1/δ, for times of order 1/δ, where δ � 1. Rescaling the
coordinates x 7→ δx, t 7→ δt (and once again setting g = d = 1 by similar rescaling)
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yields for the SGN equations

(17)


∂tζ + ∂x(hu) = 0,

∂t
(
u− δ2

3h∂x(h3∂xu)
)

+ ∂xζ + u∂xu =
δ2∂x

(
u
3h∂x(h3∂xu) + 1

2h
2(∂xu)2

)
,

where in an abuse of notation, we have kept the same notation for the functions
depending on δ as for the case δ = 1; and for the WGN equations

(18)


∂tζ + ∂x(hu) = 0,

∂t
(
u− δ2

3h∂xF
δ(h3∂xF

δu)
)

+ ∂xζ + u∂xu
= δ2∂x

(
u
3h∂xF

δ(h3∂xF
δu) + 1

2h
2(∂xF

δu)2
)
,

where Fδ is the Fourier multiplier defined by

∀ϕ ∈ L2(R), F̂δϕ(ξ) = F (δ|ξ|)ϕ̂(ξ) where F (k) =

√
3

|k| tanh(|k|)
− 3

|k|2
.

Formally setting δ = 0, both (17) and (18) reduce to the aforementioned shallow-
water equations

(19)

 ∂tζ + ∂x(hu) = 0,

∂tu+ ∂xζ + u∂xu = 0.

This formal derivation can be made rigorous for a class of sufficiently regular initial
data satisfying the non-cavitation assumption infR(1 + ζ) > 0, and over a time
interval of order 1 (i.e. 1/δ in non-rescaled coordinates); see [53, Section 6.1.2].
For longer times, it is well-known that (19) may generate shock singularities, and
the large wavelength assumption becomes invalid before the singularity occurs.
In this case it is well-documented that solutions to dispersive modified systems
may develop zones of rapid modulated oscillations in place of the shocks, which
may eventually evolve into fully developed dispersive shock waves or solitary wave
resolution, depending on the asymptotic properties of the data as |x| → ∞. The
literature on the subject is vast, and we refer to [42] for an overview and references in
the case of the Korteweg-de Vries (KdV) equation as a perturbation of the inviscid
Burgers (iB) equation, where a complete asymptotic description is available, and
to [32] for an introduction to the modulation theory for more general equations
and an extensive list of references. Let us also specifically mention [31, 75] for a
description of the Whitham modulation theory in the case of the SGN equations,
and [21, 39, 56, 64, 65, 67] for some numerical experiments. In contrast to these
works, we do not consider here steplike initial data, but study the appearance
of modulated oscillations from smooth rapidly decaying initial data, from which
solitary wave resolution is the expected large-time asymptotic behavior.

We will observe the emergence of modulated oscillations from initial data set as
unidirectional waves for (19). Based on Riemann invariants, the solution to (19)

with initial data satisfying u(x, t = 0) = 2
√

1 + ζ(x, t = 0)− 2 can be described as

a simple wave with r(x, t) := u(x, t) + 2
√

1 + ζ(x, t)− 2 satisfying the iB equation

(20) ∂tr + (1 + 3
4r)∂xr = 0.
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Any spatially localized smooth solution to (20) develops a shock in finite time. We
consider in the following initial data of the form ζ(x, t = 0) = exp(−(x − x0)2),
where x0 is a constant whose role is to avoid the propagation of oscillations beyond
the boundary of the computational domain.

We first consider the SGN equations (17) with δ = 0.1. We use N = 210 Fourier
modes on the computational domain 3[−π, π]. We set x0 = −3, and compute
Nt = 104 time steps for 0 ≤ t ≤ 5. The solution can be seen as a function of time in
Fig. 16, and the formation of modulated oscillations in place of the non-dispersive
shock is clearly visible.

SGNgausse01water.pdf SGNgauss1e1zetawater.pdf

Figure 16. Solution to the SGN equations (17) with δ = 0.1 for

ζ(x, t = 0) = exp(−(x + 3)2), u(x, t = 0) = 2
√

1 + ζ(x, t = 0) − 2
in dependence of time; on the left u, on the right ζ.

A cross-section of the plot on the right of Fig. 16, specifically the solution ζ at
time t = 5, is shown on the left of Fig. 17. One sees that the rightmost oscillation
has already evolved into a localized solitary wave, indicating the onset of solitary
wave resolution. The Fourier coefficients on the right of the same figure show that
the solution is numerically well resolved.

For smaller values of δ, the modulated oscillations become more localized with
stronger gradients. To treat the same initial data as in Fig. 16 for δ = 10−2, we use
N = 212 Fourier modes for x ∈ 2.5[−π, π] and Nt = 104 time steps for 0 ≤ t ≤ 1.3.
The solution to (17) for t = 1.3 can be seen in Fig. 18.

The fact that the solutions from Fig. 18 are more demanding on computational
resources is also clear from Fig. 19 where the Fourier coefficients for the solutions
in Fig. 18 are shown. Despite higher resolution the Fourier coefficients decrease to
the order of 10−4 (the relative conservation of the third quantity in (1) is of the
order of 10−10) which implies a numerical error well below plotting accuracy.

Using the same settings for the WGN equations (18) yields qualitatively similar
results. We note however that the exponential decay rate for the WGN equations
is smaller than the corresponding one for the SGN equation, consistently with the
same observation for solitary waves in the preceding section. Therefore to study
the case of δ = 0.1 for the WGN equations, we use the same numerical parameters
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SGNgauss1e1t5zeta.pdf SGNgauss1e1t5zetafourier.pdf

Figure 17. Function ζ of Fig. 16 at t = 5 on the left, and the
Fourier coefficients on the right.

SGNgausse02t13u.pdf SGNgausse02t13zeta.pdf

Figure 18. Solution to the SGN equations (17) with δ = 0.01 for

ζ(x, t = 0) = exp(−(x + 3)2), u(x, t = 0) = 2
√

1 + ζ(x, t = 0) − 2
at t = 1.3; on the left u, on the right ζ.

as for the SGN equations except for a higher number of Fourier modes (N = 211).
The solution at t = 5 can be seen in Fig. 20.

The behavior of Fourier coefficients as shown in Fig. 21 is similar to that shown
in Fig. 17, although twice the resolution in Fourier space is needed in order to
achieve the same decrease.

6. Comparison with the Camassa-Holm equation

The emergence of modulated oscillations in the examples of the preceding section
does not exclude the possibility of finite-time shock formation or other type of
singularities for solutions with different initial data. An example of an equation
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SGNgausse02t13ufourier.pdf SGNgausse02t13zetafourier.pdf

Figure 19. Fourier coefficients of the solutions shown in Fig. 18.
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Figure 20. Solution to the WGN equations (18) with δ = 0.1 for

ζ(x, t = 0) = exp(−(x + 3)2), u(x, t = 0) = 2
√

1 + ζ(x, t = 0) − 2
in dependence of time; on the left u, on the right ζ.
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Figure 21. Fourier coefficients of the solutions shown in Fig. 20.



NUMERICAL STUDY OF THE SGN AND WGN EQUATIONS 23

with such a behavior is the Camassa-Holm equation [13]

(21) (1− 5δ2

12 ∂
2
x)∂tw + ∂xw + 3

2w∂xw −
δ2

4 ∂
3
xw − 5δ2

24

(
2(∂xw)(∂2xw) + w∂3xw

)
= 0.

Here we chose coefficients from [20] (see (17) therein), where it is proved that (21)
is a higher order (when compared with (20) or the KdV equation) unidirectional
model for the SGN equations (17) (and hence the WGN equations (18) as well),
provided we set

(22)

{
u = w + δ2

12∂
2
xw + δ2

6 w∂
2
xw,

ζ = u+ 1
4u

2 + δ2

6 ∂t∂xu−
δ2

6 u∂
2
xu− 5δ2

48 (∂xu)2.

This equation generates both dispersive shock waves (see for instance [1, 41]) and
finite-time singularities in the form of surging wavebreaking [19]. Let us finally men-
tion that (21) and (17) are of the same kind, namely quasilinear nonlocal dispersive
equations involving only differential operators.

The set of initial data for which solutions to (21) lead to finite-time wavebreaking
contain any smooth and odd function w0 = w(·, t = 0) such that w′0(0) < 0 and
w0(x) < 0 for x > 0 [62]; we choose here

w0(x) = −x exp(−x2).

Inferring initial data for ζ, u through (22) would require to know ∂t∂xu(·, t = 0),
however we can approximately solve the equations with a harmless O(δ4) approxi-
mation by setting

(23)

{
u(·, t = 0) =: u0 = w0 + δ2

12∂
2
xw0 + δ2

6 w0∂
2
xw0

ζ(·, t = 0) = u0 + 1
4u

2
0 − δ2

6 ∂
2
x(u0 + 3

4u
2
0)− δ2

6 u0∂
2
xu0 − 5δ2

48 (∂xu0)2

where we used (21) to infer that

∂tu = ∂tw +O(δ2) = −(∂xw + 3
2w∂xw) +O(δ2) = −(∂xu+ 3

2u∂xu) +O(δ2).

We consider the example δ2 = 0.1. For the computation we use N = 211 Fourier
modes for x ∈ 5[−π, π] and Nt = 104 time steps for t ≤ 10. The SGN solution for
the initial data (23) can be seen in Fig. 22. Obviously strong gradients appear, but
these do not lead to a shock formation.

This example is numerically challenging because of convergence problems for the
GMRES algorithm which imply a pollution of the Fourier coefficients at high wave
numbers. Therefore we use a dealiasing according to the 2/3-rule which means that
the Fourier coefficients corresponding to the highest one third of the wave numbers
are put equal to 0. If this is done, the example is well resolved in space as can be
seen in Fig. 23 where the Fourier coefficients of the solution in Fig. 22 are shown
for t = 10, and in time as inferred by the relative conservation of the third quantity
in (1) to the order of 10−12. Once again, using the WGN equations (18) instead
of (17) does not modify substantially the behavior of the solution, and we do not
show the corresponding pictures.

7. Near-cavitation initial data

In Sections 5 and 6, we used initial data leading to shocks for simplified models,
and observed for each scenario that the solutions to both the SGN and WGN equa-
tions remained smooth. This leaves open the important question of global-in-time
well-posedness of the equations. Let us recall that the local well-posedness of the
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SGNCHt10uwater01.pdf SGNCHt10zetawater01.pdf

Figure 22. Solution to the SGN equations for the initial data
(23) with δ = 0.1.

SGNCHt10ufourier01.pdf SGNCHt10zetafourier01.pdf

Figure 23. Fourier coefficients of the solutions shown in Fig. 22
for t = 10.

SGN equations has been proved in [60]5 —and later on in more general frameworks
in [4,24,36,47]— but that the technique in these works (essentially energy methods)
does not provide any global-in-time result, in particular due to the fact that the
functional setting is not controlled by conserved functionals listed in (1). It should
be mentioned that the Boussinesq system obtained when neglecting the nonlinear
dispersive terms in (SGN) is known to be globally well-posed provided that the non-
cavitation assumption infR(1 + ζ) > 0 is initially satisfied, by [5, 71]; see also [66].
This result does not generalize easily to the SGN or the WGN equations. Very
recently, Bae and Granero-Belinchón showed in [8] that if the non-cavitation as-
sumption initially fails to hold at one single point and some symmetry assumptions

5very recently improved in [45] to allow less regular initial data.
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are enforced, then solutions to (SGN) (or rather an equivalent reformulation when
the non-cavitation assumption holds) preserve these assumptions for positive times
and cannot remain smooth globally in time.

Motivated by this result, we consider the initial data

(24) ζ(x, t = 0) = −0.9 exp(−x2), u(x, t = 0) = −x exp(−x2).

The non-cavitation assumption is valid initially and hence will remain valid as long
as the solution remains smooth. Indeed we can define, given any x ∈ R and t > 0,
hx,t(τ) = 1 + ζ(Xx,t(τ), τ) where Xx,t(τ) is the backward characteristic defined by
X ′x,t(τ) = u(Xx,t(τ), τ) and Xx,t(t) = x. One then observes that, by the conserva-
tion of mass equation, one has for any τ ∈ [0, t], h′x,t(τ) = −hx,t(τ)(∂xu)(Xx,t(τ), τ),

and hence 1 + ζ(x, t) =
(
1 + ζ(Xx,t(0), t = 0)

)
exp

( ∫ t
0
−(∂xu)(Xx,t(τ), τ) dτ

)
> 0.

As we see in the numerical results below, such initial data produce very steep gra-
dients, and a possible blowup scenario which deserves to be investigated in more
details.

To address this question we use N = 212 Fourier modes for x ∈ 2.5[−π, π] with
dealiasing and Nt = 104 time steps for t ≤ 3 to solve the SGN equations for the
initial data (24). The solution can be seen in Fig. 24.

Figure 24. Solution to the SGN equations for the initial data
(24), on the left u, on the right ζ.

The function ζ develops some cusp-like structure which is strongly peaked. The
solution at the final time is shown in Fig. 25. The function u appears to stay
smooth.

To decide whether a blow-up is possible in this case, we show the L∞ norms of
both ζ and ζx in Fig. 26 in dependence of time. Whereas the L∞ norm of ζ grows
for some time, it reaches a maximum for t ∼ 2.5 and decreases then. Thus there
is no L∞ blow-up, but the strong gradient can be seen in the same figure on the
right. But also the L∞ norm of the gradient appears to reach a finite maximum.
This would indicate that one is close to a cusp-like situation, but that the solution
stays smooth in this example.

Note that the solution is well resolved: the resolution in time as indicated by
the relative conservation of the conserved quantities is of the order of 10−9, and
the Fourier coefficients of the solution are shown in Fig. 27. The above results do
not change within numerical precision if the computation is repeated with N = 214

Fourier modes.
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Figure 25. Solution to the SGN equations for the initial data (24)
for t = 3, on the left u, on the right ζ.

Figure 26. L∞ norms of the solution ζ to the SGN equations for
the initial data (24) on the left and for its gradient on the right.

Figure 27. The Fourier coefficients of the solution to the SGN
equations for the initial data (24), on the left u, on the right for ζ.

8. Outlook

In this paper we have investigated numerically several aspects of solutions to
Serre-Green-Naghdi type equations. First we have obtained a family of supercritical
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solitary waves of the fully dispersive system with no upper bound on the admissible
velocities, alike the explicit family of solitary waves of the original Serre-Green-
Naghdi system. Investigating the dynamic stability of these solitary waves, we
have found no sign of instability, even for large velocities. We have also set up
several experiments for which solutions to either the original or fully dispersive
Serre-Green-Naghdi system develop zones of rapid modulated oscillations and/or
steep gradients, but we have never monitored finite-time singularity formations.

On the numerical side, we have shown that an approach based on a Fourier
spectral method combined with the Krylov subspace iterative method GMRES is
very efficient and allows to study with high accuracy computationally demanding
problems. From a numerical point of view, there are two main directions of re-
search worth exploring to further improve the code: first better preconditioners
for GMRES adapted to the situations to be studied could increase the efficiency
(which would be helpful in higher dimensions) and allow to study even more extreme
situations which is mainly interesting from a theoretical point of view. Secondly
one could improve the time integration by studying stiff integrators for PDEs with
stiffness in the nonlinear part, see for instance [12] and references therein.
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