
HAL Id: hal-02617321
https://hal.science/hal-02617321

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Degradation prediction of PEM fuel cell based on
artificial intelligence

Loïc Vichard, Fabien Harel, Alexandre Ravey, Pascal Venet, Daniel Hissel

To cite this version:
Loïc Vichard, Fabien Harel, Alexandre Ravey, Pascal Venet, Daniel Hissel. Degradation prediction
of PEM fuel cell based on artificial intelligence. International Journal of Hydrogen Energy, 2020, 45
(29), pp.14953-14963. �10.1016/j.ijhydene.2020.03.209�. �hal-02617321�

https://hal.science/hal-02617321
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

 

Degradation prediction of PEM fuel cell based on artificial intelligence 

L. Vicharda,b, F. Harelb,d, A. Raveya,b, P. Venetb,c, D. Hissela,b 

 
aFEMTO-ST Institute, Univ. Bourgogne Franche-Comté, UTBM, CNRS, Belfort, France 

bFCLAB, CNRS , Belfort, France 
cUniv Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, INSA Lyon, CNRS, Ampère, Villeurbanne, France 

d AME-Eco7, Univ Gustave Eiffel, IFSTTAR, Univ Lyon, Lyon, France 
 

Abstract 

In the last years, Proton Exchange Membrane Fuel Cells (PEMFC) became a promising energy converter for both 

transportation and stationary applications. However, durability of fuel cells still needs to be improved to achieve a 

widespread deployment. Degradation mechanisms and aging laws are not yet fully understood. Therefore, long-term 

durability tests are necessary to get more information. Moreover, degradation models are requested to estimate the 

remaining useful life of the system and take adequate corrective actions to optimize durability and availability. This paper 

presents in a first part the results of a long-term durability test performed on an open cathode fuel cell system operated 

during 5000 hours under specific operating conditions including start/stop and variable ambient temperature. Performance 

evolution and degradation mechanisms are then analyzed to understand influence of operating conditions and how to 

extend the durability. In a second part of the paper, the results are used to build a degradation model based on echo state 

neural network in order to predict the performance evolution. Results of the degradation prediction are very promising as 

the normalized root mean square error remains very low with a prediction time over 2000 hours. 

Keywords: fuel cell system, fuel cell aging, long term durability test, degradation model, echo state network 

 

1. Introduction 

Today’s electric vehicles are mainly powered by lithium-ion 

batteries and there is a long way before they become 

dominant in the global automotive market. Autonomy of 

electric vehicles is still too weak to compete with traditional 

gas vehicles [1]. A solution to improve the autonomy is to 

hybridize the powertrain by including not only batteries but 

also alternative electrochemical devices [2]. Proton 

Exchange Membrane Fuel Cell (PEMFC) is regarded to have 

a great potential due to the merits of high energy density, 

high conversion efficiency, low operating temperature and 

zero gas emission [3]. However, their durability is still a 

limitation and needs to be improved to achieve a worldwide 

commercialization [2]. Integrated in a vehicle, a fuel cell 

system is subjected to rough operating conditions [4][5], 

such as load variations [6], air impurities, temperature and 

humidity cycling, cold ambient temperatures [7][8], 

vibrations and shocks which accelerate their degradation 

[4][9]. In 2010, the US Department Of Energy (DOE) fixed a 

durability target at 5000 hours for transportation applications 

whereas current durability is around 4000 hours. For several 

years many researches have carried out to improve this 

durability. Researches focus on improving the system design 

and the choice of materials, and on reducing the causes of 

degradation by implementing optimal supervision and 

energy management strategies.  

As part of a continuous durability improving approach, 

prognostic methods allow to estimate the end of life of the 

components and then deciding adequate actions at the right 

time in order to extend possibly the durability [10][11].  

Based on historical data describing the performance 

evolution, prognostic methods model the degradation which 

then allows predicting the state of health of the considered 

system. In the case of Proton Exchange Membrane Fuel Cell 

(PEMFC), different approaches have been proposed in the 

literature which can be classified according to three 

categories: model-based methods, data-driven methods and 

hybrid methods [12][13]. 

To build a suitable degradation model, a good understanding 

of the system performance evolution and the degradation 

mechanisms occurring within the system is primordial. 

Nowadays, degradation laws and mechanisms of fuel cell are 

not fully understood. Then, experimental studies with a 

system operating on test benches or integrated in actual 

applications are important to get information about these 

degradation mechanisms. In the literature, there is a lack a 

long-term durability tests which are costly and time 

demanding. For this purpose, this study carried out a long-

term durability test on a complete open cathode fuel cell 

system for 5000 hours (DOE target) under operating 

conditions close to transportation applications.  

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/
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In a first part, the prognostic discipline will be introduced 

and existing tools in the literature will be presented. In a 

second part, the experimental context and the long-term 

durability tests will be detailed. The fuel cell system, the 

cycling profile and the chosen health indicators will be 

highlighted, then results will be drawn. Performance 

evolution of the system will be observed and influence of 

operating conditions and operating time on degradation and 

performance will be analyzed. Based on these analyses, a 

method to model performance evolution using echo state 

neural networks, with respect to operating time and 

according to operating conditions will be detailed. The 

structure of the network, its parameters, the learning scheme 

and chosen inputs will be presented. Finally, predictions 

provided by the model will be highlighted and discussed. 

The obtained degradation model can be used to estimate 

remaining useful life, to anticipate maintenance operation or 

to optimize energy management in order to extend the 

system durability. 

2. Prognostic 

2.1 Background 

The objective of the prognostic discipline is to estimate the 

remaining useful life of a system in order to anticipate 

maintenance operations and to adapt energy management.  

The concept of prognostic discipline is highlighted in the 

Figure 1. The purpose is to use historical data describing the 

evolution of a State-Of-Health (SOH) indicator with respect 

to the operating time and according to operating conditions, 

to build a degradation model. Once the model is built, it can 

be used with new inputs to predict the SOH indicator i.e. the 

performance evolution, with respect to the operating time 

and according to operating conditions.  

 

Figure 1: Prognostic concept 

When the predicted SOH indicator value reaches a threshold 

of failure defined by the user, the remaining useful life can 

be quantified as the difference between the predicted time 

when threshold is reached and the present time. Generally 

the end of life is defined as 10% of performance loss, versus 

beginning of life and for automotive fuel cell stacks [10] but 

the end of life can be also defined as the inability to meet 

user specifications [14].  

2.2 Methods 

Several methods to model the performance evolution can be 

found in the literature. These methods can be classified 

according to three categories: model-based, data-driven and 

hybrids [10][12][13]. 

2.2.1 Model-based methods 

Model-based methods are based on analytical models to 

reproduce the dynamic behavior of the studied system 

according to the degradation mechanisms. The main 

advantage of the model-based methods is that their do not 

require a large amount of data. Lechartier et al. [15] 

proposed a degradation model of a fuel cell composed of a 

static part and a dynamic part that are independent. The static 

part is based on equations describing physical phenomena 

and Butler-Volmer law. The dynamic part is based on an 

electrical equivalency of the physical phenomena. 

Parameters of the models are updated based on 

characterizations: polarization curves and electrochemical 

impedance spectroscopy. Bressel et al. [16] used an extended 

Kalman filter to estimate the state of health of a fuel cell and 

to predict its degradation evolution. Bressel et al. [17] also 

proposed a model based method using the energetic 

macroscopic representation with time varying parameters to 

forecast the fuel cell remaining useful life for a given power 

reference. Lee et al. [18] proposed a method for estimating 

the state and remaining useful life of a single PEMFC cell 

through an equivalent impedance model based on 

electrochemical impedance spectroscopy (EIS). The author 

uses charge transfer resistance and double layer capacitance 

as major parameters for judging degradation. EIS is a very 

suitable tool to get information about state of health of a fuel 

cell system but for now dedicated to laboratory conditions. 

Kimotho et al. [19] proposed a prognostic approach based on 

adaptive particle filter. The proposed method lies in the 

introduction of a self-healing factor after each 

characterization and the adaptation of the model parameters 

to fit the degradation evolution. Results show that prognostic 

method is reliable with majority of the predictions falling 

within 5% error. Zhang et al. [20] proposed an approach 

based on two physical models. The first one receives a signal 

directly observable and related to the stack voltage. The 

second one is fed periodically by measurements from 

physical characterizations of the stack. Characterizations 

give good information about the SOH evolution. Then, the 

prognostic procedure is implemented using Particle Filtering 

(PF).  

For a complex system whose degradation mechanisms are 

influenced by many factors, inferring an analytical model 

can be very difficult. These methods are therefore rather 

dedicated to simple systems whose physic laws and 

degradation mechanisms are well understood. 
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2.2.2 Data-driven methods 

Data driven methods are considered as black box approaches 

to realize a prognostic. They do not require system 

knowledge and physical laws to start a prognostic. Measured 

data and historical data are used to learn the dynamic 

behavior of the system. Therefore, data-driven prognostic 

methods are particularly relevant for complex systems whose 

degradation laws are not well understood. Napoli et al. [21] 

used a classical neural network to predict stack voltage and 

cathode temperature of a 5 kW fuel cell. Results showed that 

the proposed method can reproduce the impact of different 

stoichiometric ratio on the voltage under different operating 

conditions. Ibrahim et al. [22] used a discrete wavelet 

transform to predict the power of a fuel cell. Results showed 

that the method is satisfying as the prediction error is less 

than 3%. Silva et al. [23] propose a data-driven method to 

predict the output voltage reduction of a fuel cell caused by 

degradation during nominal operating conditions. The 

proposed method is based on an Adaptative Neuro-Fuzzy 

Inference Systems (ANFIS) and use as an input the measure 

output voltage of the fuel cell. Results show that the 

proposed method is suitable to predict voltage loss. Liu et al. 

[24] proposed a data-based method using Long Short-term 

memory (LSTM) recurrent neural network (RNN) to 

estimate the remaining useful life of a PEMFC. Results are 

verified with experimental aging data and show that the 

prediction accuracy of the proposed method is 99.23% and 

the root mean square error is 0.003. Zhu et al. [25] presented 

a data driven method for inferring the remaining useful life 

of a fuel cell. They proposed a method based on the use of a 

Gaussian process state space model which allows to estimate 

the evolution of the latent states and the future behavior of 

the fuel cell voltage. Ma et al. [26] proposed a prognostic 

data-driven method based on the use of Grid Long Short 

Term Memory (G-LSTM). The proposed method was 

experimentally validated, and results indicate that the 

proposed Grid long short-term memory network can predict 

the fuel cell degradation in a precise way. Morando et al. 

[27] used an Echo State neural Network (ESN) for fuel cell 

prognostic purpose. They model and predict the fuel cell 

voltage evolution with a mean average percentage error 

lower than 5%. Moreover, the study revealed that the 

computational requirements for ESN are very low. Hua et al. 

[28] also used the ESN as a prognostic method. They also 

ensure that ESN structure has demonstrated better 

performances especially in reducing the computational 

requirements. The study compares the single-input structure 

with a multiple-input structure. Results show that the 

multiple-inputs has a better performance under both static 

and dynamic operating conditions. 

 

 

2.2.3 Hybrid methods 

Hybrid approaches combine data-driven approaches and 

model-based approaches, cumulating advantages of both 

approaches. Jouin et al. [29] proposed a hybrid prognostic 

method which aims at predicting the power losses of a fuel 

cell stack running under constant operating conditions and 

constant current. The proposed method is based on a new 

empirical modeling for power aging and joint particle filters 

framework. When enough data are available, the prediction 

of the behavior is promising compared to experimentation. 

Remaining useful life can be estimated over 500 hours with 

an error lower than 5%. Cheng et al. [30] proposed a hybrid 

prognostic method for a fuel cell. The method is based on a 

data-driven approach: Least Square Support Vector Machine 

(LSSVM), combined with a model-based approach: 

regularized particle filter. The results showed that the 

proposed hybrid method combines both advantages of data-

driven and model-based approaches by providing a higher 

accuracy of the predicted remaining useful life. Liu et al. 

[31] propose an hybrid method to predict the degradation 

evolution and estimate the remaining useful life of a PEMFC 

under different current loads. In a first part the machine 

learning based on an Adaptative Neuro-Fuzzy Inference 

System (ANFIS) tool is used to predict the long-term 

degradation evolution. In a second part the remaining useful 

life is estimated by using a semi-empirical degradation 

model based on Unscented Kalman Filter algorithm (UKF). 

Zhou et al. [32] proposed an hybrid method to estimate the 

remaining useful life of a PEMFC. The approach is based on 

the combination of a physical aging model and an 

autoregressive and moving average (ARMA) model. The 

prediction accuracy and robustness are experimentally 

demonstrated with degradation tests performed on two types 

of PEMFC stack.  

Hybrid methods are tough to be developed. Indeed, 

combining data-driven approaches and model-based 

approaches allow to cumulate advantages of both approaches 

but the drawbacks are also cumulated. Therefore, these 

methods require high amount of data and a good 

understanding of the physical laws.  

Consequently, among the three categories presented 

previously, a data-driven method has been preferred in this 

study and specially a method based on the use of a neural 

network. Degradation laws and mechanisms of fuel cells are 

still not fully mastered and understood then physical models 

are very complex to build. In addition, in this study the 

operating conditions are changed all along the 

experimentation with a variable ambient temperature. 

Moreover, the studied system is a commercial system then 

information about components characteristics are not 

available. Therefore, a neural network which is independent 
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of the degradation laws is particularly relevant and suitable 

for this purpose as shown in Jemei et al. [33] and will be 

preferred in this study. 

 

3. Experimental context 

3.1 Mobypost project 

The European project Mobypost aimed at designing and 

developing a fleet of ten fuel cell hydrogen electric vehicles 

(FCHEV)[16],[17]. Theses compact and lightweight vehicles, 

illustrated in Figure 2, are dedicated to postal delivery 

applications. A real-time monitoring of all the components 

of the vehicles is performed in real time all along the driving 

cycles which has led to create a significant database.  

 

Figure 2 : a vehicle of the Mobypost fleet 

 

3.2 PEMFC in fuel cell hydrogen electric vehicles 

In such vehicles, an open-cathode PEMFC system is 

integrated as a range extender in the powertrain architecture 

highlighted in Figure 3. The PEMFC system powers the DC 

bus with a constant current to recharge the battery pack 

during stop phases or to support it during driving phases. 

The battery pack provides the current dynamics required for 

the propulsion of the vehicle through two in-wheels 

permanent magnet synchronous machines set up with their 

associated inverters.  

 

Figure 3: Mobypost vehicle architecture 

 

3.3 PEMFC system 

This PEMFC system, illustrated in Figure 4, is a commercial 

AIRCELLTM system from H2SYS company. The system 

integrates an open cathode fuel cell stack, an air supply line, 

a hydrogen supply line, a cooling management system, 

humidification system, electronics to control electrical fluxes 

and a controller to supervise actions and safety functions. Its 

nominal power is 1kW and the stack is composed of 28 cells.  

The open cathode stack with forced-convection and dead-end 

anode is air cooled by fans and self-humidified by short-

circuits. The nominal operating point is 50A, 62°C (stack 

temperature) and the ambient operating temperature range 

specified by the manufacturer is +5°C to 35°C. 

Once the system is started up, it is self-powered and 

communicates through a CAN bus network its physical 

operating data such as fuel cell temperature, stack current 

and voltage of the twenty-eight cells.  

 

Figure 4: Fuel cell system 

4. Long term durability test 

4.1 Test bench 
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The Figure 5 proposes an illustration of the autonomous test 

bench used for the durability test. This test bench is 

composed of a climatic chamber, an active load, a fluids 

control and an electronic control unit dedicated to control 

and communications with the fuel cell system. The test 

bench also integrates its own sensors. 

During experiments, the fuel cell system is placed in a 650L 

ADF type climate chamber (-20°C to +100°C, ±0.5°C) from 

BIA climatic company. The climatic chamber controls the 

ambient temperature. It is worth noting that in the 

experimental room, the air relative hygrometry is controlled 

to be around 50% at 21°C. This point signifies that water 

content in ambient air remains identical all along the 

experiments. To ensure the environmental conditions inside 

the climatic chamber and constantly renew the air, an air 

circulation was set up as it can be seen in Figure 5.  

 

Figure 5: Test bench 

4.2 Cycling profile 

The purpose of the durability test was here to analyze in lab 

the system performance evolution when considering the 

same operating conditions than on the actual FC vehicle. A 

postal delivery lasts about four hours during which the fuel 

cell system provides a quite constant current to the DC bus. 

Based on this application, the Figure 6 highlights the cycling 

profile used to age the system on the laboratory test bench 

under the same conditions that it would operate in a range 

extender architecture [34]. In order to respect average postal 

delivery duration, the system provides a constant current at 

its nominal operating point (50A, 60°C) for four hours. This 

operating phase is followed by two hours of rest by turning 

off the system. This cycle of six hours was repeated 

continuously to allow accelerated analysis of performance 

degradation. Considering this cycling profile, 5000 operating 

hours equals to 1250 startups/shutdowns and is equivalent to 

approximately 4 years of vehicle service with a daily postal 

delivery cycle.  

Table 1 : Ambient temperature evolution 

Stage 1 
Operating time 

duration 

Ambient 

temperature 

1 1000 h 20°C 

2 1000 h 30°C 

3 400 h 20°C 

4 600 h  7°C 

5 1000 h 20°C 

6 1000 h 10°C 

 

 

Figure 6: cycling profile 

Otherwise, integrated in a vehicle means the system operates 

under a variable ambient temperature and this ambient 

temperature mainly depends on the period of the year. To 

consider these variations, the system was integrated into a 

climatic chamber. The ambient temperature value was 

changed per period to approach seasonal variations. The 

ambient temperature evolution is presented in the Table 1. 

 

4.3 State of health indicator 

To follow performance evolution and quantify degradation, a 

State Of Health (SOH) indicator has to be defined. The SOH 

of a fuel cell system refers to the quantification of the 

performance potential compared with a nominal reference. 

The SOH can be quantified by the loss of power that the 

system can provide for a specific current value. In the case of 

this study, the system output current remains unchanged then 

the system health evolution can be observed with the system 

output voltage.  
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4.4  Voltage evolution 

To follow system output voltage evolution during all the 

experimentation, the operating conditions must be identical. 

To respect this rule, once a day, the average output voltage is 

computed during a duration of 1000 seconds. In this period, 

the fuel cell temperature is stabilized around 60°C and 

nominal operating conditions are assured. The results of this 

durability test are presented on the Figure 7. The system 

output voltage is highlighted with respect to the operating 

time and the ambient temperature. 

These results lead to the following observations: 

� Stage 1: during the first 1000 hours the ambient 

temperature was set up at 20°C. It can be observed 

that the system output voltage decreases constantly 

overtime due to natural degradation of the 

components.  

 

� Stage 2: the ambient temperature was then elevated 

and set up at 30°C for the next 1000 hours. As soon 

as the ambient temperature was elevated, the slope of 

the system output voltage drop is increased. Higher 

ambient temperatures seem to accelerate degradation 

of the system.  

 

� Stage 3: the ambient temperature was reduced and set 

up at 20°C. As soon as the ambient temperature was 

reduced a voltage increase can be observed: the 

operating point seems to be changed. Moreover, the 

system output voltage evolution remains quite 

constant during the 400 hours. Degradation is no 

more noticeable. Reducing the ambient temperature 

seems to lead to a recovery of the system 

performance with long term phenomena. 

 

� Stage 4: the ambient temperature was reduced again 

and set up at 7°C. Once more, as soon as the 

temperature was reduced, a slight variation of the 

operating point can be noticed. Contrary to the 

previous stage, here the system output voltage clearly 

increases during the entire stage. This verify previous 

observations, reducing the ambient temperature seems 

to lead to a recovery of the system performance with 

long term phenomena. Moreover, low ambient 

temperature seems to reduce the system degradation 

significantly. 

 

� Stage 5: the ambient temperature was elevated and 

set up at 20°C for the next 1000 hours. The 

degradation slope returned negative as the system 

output voltage decreases with a constant slope quite 

closed to the stage 1.  

 

� Stage 6: the ambient temperature was reduced and set 

up 10°C for the next 1000 hours. Once more, as soon 
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Figure 1: Evolution of system output voltage all along the experimentation 
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as the ambient temperature was reduced a variation of 

the operating point can be noticed: direct elevation of 

the voltage. Moreover, all along the stage, the system 

output voltage increases constantly. Degradation 

slope became positive as in stage 4 what verifies 

previous observations. 

To synthesize, the operating time leads to an irreversible 

degradation on the system as the global performance trend is 

to decrease. Otherwise, an impact of the ambient temperature 

on the performance and the degradation can be observed 

with short-term and long-term phenomena. Firstly, short-

term variations of the operating point are directly linked to 

the ambient temperature value. Secondly, long-term 

phenomena acting on the degradation are depending on the 

ambient temperature: the higher the ambient temperature, the 

higher the degradation, the lower the ambient temperature 

the lower the degradation. Moreover, reducing ambient 

temperature seems to lead to a recovery of the system 

performance as the degradation slope (performance 

evolution) becomes positive. 

4.5 Analysis 

Previous section showed that ambient temperature variations 

lead to a variation of the operating point which is linked to 

the net output power supplied by the system. This means that 

ambient temperature directly affects the net output power 

supplied by the system. The system output current remains 

equal to 50A all along the experimentation, what implies that 

the power required by ancillaries inside the system varies 

according to the ambient temperature. This variation of the 

power required by the ancillaries can be explained by the air-

cooling regulation to maintain the fuel cell stack temperature 

at 60°C. The higher the ambient temperature, the higher the 

air flow rate to cool the fuel cell stack, the higher the power 

required by the fans. 

This link between ambient temperature and cooling air flow 

can explain long-term phenomena acting on system 

degradation. In this system, the humidification strategy 

remains unchanged whatever the ambient temperature. 

Therefore, if the air flow increases for higher ambient 

temperatures then the evacuation of the water created by 

electrochemical reactions will be accelerated. In other words, 

the higher the ambient temperature, the lower the water 

content in the fuel cell membranes. Then, reducing the 

ambient temperature leads to re-moisture of the membranes 

which can explains the long-term performance recoveries 

observed during the experimentation.  

To conclude on this durability test, the system has operated 

for 5000 hours under variable ambient temperature 

conditions and numerous start/stop cycles and the 

performance degradation is lower than 10%. Global 

efficiency is higher than 49% and degradation rate is 

11µV/cell/h. 

This kind of system: open cathode, air-cooled and self-

humidified seems to be a very promising energy converter 

integrated in a low power range extender architecture for 

transportation applications. Moreover, experimentation 

carried out in this study showed that better humidification 

conditions would lead to a significant reduction of the 

degradation so a significant durability improvement.  

Based on this durability test and the presented aging data the 

purpose of this study is to propose a method to model the 

degradation according to the operating time and ambient 

temperature variations which have shown a significant 

influence on the system performance.  

 

5. Degradation model 

Several structures of neural network have been presented in 

the literature. Recurrent Neural Networks (RNN) are 

particularly suitable to model non-linear temporal signals. 

Morando et al. [36] proposed a comparative study of 

different neural network architectures used for fuel cell 

prognostic purpose. They showed that RNN and more 

specially Echo State Networks (ESN) provide very good 

results and very interesting computing times. Consequently, 

ESN with multiple inputs will be preferred as a tool to model 

the performance evolution of the studied system. 

5.1 Echo state network 

5.1.1 Background & structure 

Echo state network was introduced by Jaeger et al. [37] at 

the beginning of the 2000s. This type of recurrent neural 

network reproduces more faithfully the functioning of the 

human brain as the hidden layers are replaced by a reservoir 

of neurons. The structure is highlighted in the Figure 8.  

 

Figure 8: ESN architecture 

with: 

- ����  the number of neurons in the reservoir. 

- � the number of inputs. 

- � the number of outputs. 

- ��	 the input weight matrix. 
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- �
��  the output weight matrix. 

- ���� the reservoir weight matrix. 

The input weight matrix and the weight matrix of the 

reservoir are created randomly. Concerning the optimization 

of the weights, only the output weight matrix is optimized by 

a multi linear regression. Therefore, computing times to 

build the model are much lower compared to feedforward 

neural network or again Long Short-Term Memory neural 

networks (LSTM).  

5.1.2 ESN parameters 

Some parameters configure an ESN. They can be listed as 

following: 

- The number ���� of neurons in the reservoir. 

Theoretically, a high number of neurons leads to a better 

accuracy of the model. However, it is important to pay 

attention to not define a too important number of neurons 

since computation times are very closely related. 

- The leaking rate 
. Between 0 and 1, the leaking rate can 

be defined as the ability to forget the previous states. In 

other words, the leaking rate refers to the influence of 

previous states on the current state. 

- The spectral radius of the reservoir weight matrix, 

between 0 and 1, refers to the effective time constant of 

the ESN. Higher spectral radius leads to a slower decay 

of impulse response. The spectral radius value also 

determines the amount of nonlinear interaction of input 

components through the time. This parameter 

corresponds to the maximum eigenvalues of the reservoir 

matrix. The reservoir matrix is created randomly then its 

spectral radius value is also random. In order to obtain a 

reservoir matrix with the desired spectral radius, the 

reservoir matrix is divided by its spectral radius and then 

multiplied by the desired spectral radius.   

 

5.1.3 Learning scheme 

The learning scheme of an ESN is governed by the following 

steps. In a first time, the reservoir update ��(�) is computed 

as in the equation (1). ��(�) = ����	. �(�) + ���� . �(� − 1)� (1) 

with ��(�) the reservoir update, �(�) the ESN input and  �(� − 1) the output value of the reservoir according to the 

previous state. W��� is normalized by dividing it by its 

spectral radius value and then multiplied by the desired 

spectral radius value. Based on the previous equation, the 

reservoir output can be express as following: �(�) = (1 − α). �(� − 1) + α. ��(�) 
 

(2) 

with 
 the leaking rate. 

Then can be determined the output of the ESN !(�) from the 

previous equations: !(�) = �(�
�� . �(�)) (3) 

where � is a nonlinear function as a sigmoid, tangent, etc. 

The purpose of the learning scheme is to optimize the output 

matrix �
�� in order to estimate the output !(�) of the ESN  

as close as possible to the real value !�#�$��  by minimizing 

the quadratic error (4). 

ε�!, !�#�$��� = '1( )�!�(�) − !��#�$��(�)�*+
	,-  

(4) 

 

with T the number of samples. 

5.2 Model inputs 

The purpose of a degradation model is to reproduce and 

predict the performance evolution of a system according to 

the operating conditions. Results of the durability tests 

highlighted that the performance and the degradation of the 

fuel cell system show relationships with the ambient 

temperature and the operating time. In our case, the 

operating time variable is meaningful as the system operates 

at nominal operating point during the entirety of the 

durability test. In the case of the current profile is different, 

the operating time variable would not be relevant as aging 

image. To tackle this issue, the total electric charge (Ah) 

supplied by the system would be much more meaningful as 

input variable referring to the aging. Accordingly, in this 

study ambient temperature and operating time are defined as 

inputs of the proposed model. Moreover, a fuel cell system is 

a dynamic system. It implies that the output system voltage 

at previous states is linked to the output voltage at present 

state through a non-linear differential relationship. 

Consequently, for the proposed model, output voltage at 

previous state is defined as an input. 

Obviously, adding more input variables leads to a better 

model generality. In our case, the load current is constant 

then it is not relevant as an input variable. In the case of a 

different current profile, considering this current as an input 

variable would have been required. Moreover, in our case 

and as already explained, the water content in the ambient air 

is unchanged all along the test, then the relative humidity 

would not be relevant as an input variable. Facing another 

situation, considering the relative humidity as an input 

variable would have been relevant.  

Nevertheless, adding more input variables would lead to 

higher computational requirements and higher equipment 

requirements such as sensors, wiring, data logging, etc. This 

is a reason why a good compromise between model accuracy 

and measured variables must be reached.   
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To summarize, the proposed model includes three inputs: 

ambient temperature, operating time and output voltage at 

previous state. It is worth noting that once the model is built, 

the output voltage at previous state becomes the predicted 

output voltage at previous state.  

5.3 Results 

The model has been developed with the AnacondaTM 

environment and the used programming language is python 

which is suitable for machine learning purpose. The leaking 

rate is set at 0.5 and the spectral radius is set at 0.5. These 

parameters were identified empirically. The computing time 

to build the model is about two seconds. The computer used 

to build the model runs with Windows 10 and integrates a 

CPU Intel core I7-6800k 3.40GHz, a GPU NVIDIA TITAN 

X and 64 giga of memory.  

Firstly, the learning rate was set at 60%. The learning rate is 

defined as the ratio between the quantity of data used for the 

training and the total quantity of data in the database. With a 

learning rate set at 60%, the model has been built and trained 

with the entire ambient temperature range, then performance 

recoveries observed previously are learnt. Results are 

highlighted in the Figure 9. It can be observed that the model 

is able to predict the voltage evolution with a very good 

reliability whatever the ambient temperature. The 

Normalized Root Mean Square Error (NRMSE) is equal to 

0.098 with a prediction over 2000 hours.  
 

Figure 9: Results with learning rate = 60% 

The learning rate value is really important, and users must be 

very carefully according to their application. In a second 

time, the learning rate was set at 33%. A learning rate set at 

33% refers to an operating duration about 1600 hours and an 

ambient temperature range between 20°C and 30°C used to 

build the model. The results of the performance prediction 

are presented in the Figure 10.  
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In this figure, it can be observed that the results are not 

satisfying. The prediction, is close to the reality from 1600 

hours to 2000h where the ambient temperature is 30°C. Once 

the ambient temperature is reduced to 20°C (stage 3) the 

predicted degradation is attenuated in the image of the stage 

1 but the performance recovery is not reproduced by the 

model. The same thing can be observed for stages 4 and 6 

when ambient temperature is 7°C and 10°C. The predicted 

voltage evolution presents a negative slope, lower than the 

other stages but not positive as expected. To summarize with 

a learning rate set at 33% the performance recovery 

phenomena are not reproduced as the model did not learn 

them. 

In a same way, the Figure 11 highlights a prediction with a 

learning rate set at 20% which refers to the first 1000 

operating hours. In this case, only the first stage has been 

used to train and build the model. This signifies that the 

model has been trained with an ambient temperature value 

always equal to 20°C.  Therefore, in this case the model does 

not know that the ambient temperature affects the system 

performance and degradation, not even higher ambient 

temperature (30°C). This is the reason why the performance 

evolution is quite constant as a continuity of the first 1000 

hours. In the Figure 10, despite the performance recovery 

phenomena are not considered, the ambient temperature 

effects are considered in some ways as the performance 

evolution slopes varies with the ambient temperature. 

Contrary, as shown in Figure 11, with a learning rate of 20% 

the ambient temperature value does not affect prediction at 

all. 

 

Figure 11: Results with learning rate = 20% 

Depending on the application and the operating conditions, 

the influence of the learning rate on the model reliability can 

be very significative. In the case of the threshold of failure is 

defined at 17.5V then with a learning rate set at 33% the 

estimated end of life of the system would be about 3000 

hours. With a learning rate set at 60% then the estimated end 

of life seems to be higher than 6000 hours.  

To conclude on this prognostic tool, the reliability is very 

promising as the NRMSE is equal to 0.098 with a prediction 

over 2000 hours and 3000 hours of learning under variable 

operating conditions. It could be integrated online to model 

performance evolution and estimate in real time the 

remaining useful life of the system based on historical 

measured data. The higher the number of measured data, the 

higher the accuracy of the model.  

6. Conclusion 

This study presents a method to model the degradation of a 

fuel cell system in order to estimate its remaining useful 

lifetime. Firstly, a long-term durability test of 5000 hours 

was presented. This test was carried out to observe 

performance evolution of a complete open cathode fuel cell 

system under transportation conditions: start/stop and 

variable ambient temperature. Then, results were analyzed in 

order to understand performance evolution. Analysis showed 

that the ambient temperature has an influence on the 

performance and the degradation of the system with short 

and long term phenomena. Low ambient temperature leads to 

Figure 10: Results with learning rate = 33% 
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better humidification conditions and significantly reduces the 

degradation rate. This system seems very reliable for the 

application as the average degradation rate is 11µV/cell/h 

after 5000 operating hours and the performance loss is 9% 

versus the beginning of life. It must be underlined that these 

experimental results are better than the durability target 

performances set by the US DOE for automotive 

applications. Finally, measured data were used to build a 

degradation model based on echo state neural network. 

Results show that the proposed prognostic tool is very 

suitable as the degradation prediction is very accurate with a 

prediction time over 2000 hours whatever the ambient 

temperature and computing times about 2 seconds.  

7. Perspectives 

Analysis of the aging data and the understanding of the 

degradation mechanisms and causes following the long-term 

durability test will be used to develop an intelligent energy 

management and humidification strategy in order to extend 

the fuel cell system durability.  

In addition, the proposed prognostic tools can be integrated 

in future systems in order to estimate in real time the 

remaining useful life and to anticipate the maintenance 

operations. It can be also used to adapt energy management 

strategy to optimize the system durability. 
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