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Abstract
We compute flow sensitivities by modifying a CFD code which is spatially-discretized with spectral dif-
ferences. Our discrete approach relies on algorithmic differentiation. We obtain two transformed codes,
one for each differentiation mode : tangent and adjoint. Both codes compute sensitivities in an unsteady
test case of two-dimensional incompressible flow inside a periodic cube with an initial double-shear pro-
file. The sensitivities from both codes agree to within machine accuracy, and compare well with those
approximated by finite difference computations. We discuss execution times and describe our strategy to
automatically differentiate in adjoint mode a parallel code containing MPI instructions.

Introduction

The computation of sensitivities is a prerequisite to the implementation of optimization or flow control tools in simu-
lation codes for aerodynamics. One route to estimate these sensitivities is to derive a new set of continuous equations,
which need to be discretized in some way and added to the original simulation code.13 An alternative path is to de-
rive the discrete sensitivity equations by differentiating the discrete equations in the original simulation code. Two
main advantages are often attributed to the second approach, which are the knowledge of the exact gradient of the dis-
crete objective function2 and the easier generalization to higher-order derivatives.11 Its main disadvantage, however, is
that differentiating spatially and temporally discretized equations by hand quickly becomes impractical beyond trivial
schemes.

High-order methods adapted to compressible/incompressible fluid flow computations on complex geometries
have been recently developed, making them suitable candidates to become industrial tools in the near future.16 One
such code is JAGUAR,1 developed jointly between CERFACS and ONERA. Its excellent scalability, its ability to
handle structured or unstructured grids, its optimized 6-step time integration scheme as well as its high-order spatial
discretization based on spectral differences7, 8 are all positive features which inevitably come at a price: the code is
long and complex. Its differentiation for sensitivity computations is impractical. This is why we resorted to algorithmic
differentiation software in order to automate the process.

Test case

Two-dimensional double shear layer in a periodic square

We consider a two-dimensional incompressible flow in a square periodic domain spanning L = 1 in the streamwise (x)
and vertical (y) directions. The velocity field at the initial instant t0 is given by

u = U tanh
[
r (y − 1/4)

]
, y ≤ 1/2 (1)

u = U tanh
[
r (3/4 − y)

]
, y > 1/2 (2)

v = Uδ sin [2π (x + 1/4)] , (3)
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case name ’r40’ ’r80’ ’r160’
r 40 80 160
U 1 0.7072 0.5001

Table 1: The 3 shear parameters r considered in this study and their corresponding perturbation amplitudes U found
from Equation (7). In all cases, the initial enstrophy is Ωre f = 53.36.

where all quantities are made non-dimensional with L and the streamwise reference velocity U0 = 1 as follows:

t = t̃ U0/L, y = ỹ/L, x = x̃/L, U = Ũ/U0, r = r̃ L. (4)

The parameters of the problem are U, r and δ. These are the streamwise velocity amplitude, the shear parameter and
the ratio of vertical to streamwise velocity amplitudes, respectively. We set δ = 0.05 for the remainder of this study so
that it is no longer a free parameter. We analyze the evolution of the overall enstrophy Ω, defined as

Ω =

∫ 1

0

∫ 1

0

1
2
ω2

z dx dy, (5)

where ωz = ∂xv − ∂yu is the vorticity. It can be readily shown from Equations (1)-(3) and (5) that at t = t0,

Ω =
U2

3

[
6r tanh(r/4) − 2r tanh3(r/4) + 3δ2π2

]
, (6)

and we choose r = 40 with U = 1 to yield the initial enstrophy level Ωre f = 53.36 for all our considered test cases.
This implies U = U(r), which we can compute by re-arranging Equation (6) as follows:

U(r) =
[
3Ωre f /

(
6r tanh(r/4) − 2r tanh3(r/4) + 3δ2π2

)]1/2
(7)

The initial Reynolds number Re0 = U0L/ν = 1.176 × 104 was identical for all our test cases outlined on Table 1. We
show snapshots of ωz for the case r160 at four different instants on Figure 1.

Simulations

The Navier-Stokes equations are solved for the flow described in the previous section using JAGUAR, with the Mach
number set to zero and using 3602 degrees of freedom based on a regular square grid. The flux point locations followed
Legendre collocation in transformed space, the CFL was kept constant at 0.5 and the Riemann solver was based on the
Roe scheme. We compared the output from JAGUAR against a fully spectral in-house code for periodic incompressible
flows (MatSPE), which allowed us to do grid resolution studies and to validate our simulations. We compare Ω(t)
between the fully spectral code and JAGUAR on Figure 2 (left). The agreement between the 2 codes is extremely good.
We note that the JAGUAR computations were carried out with the serial and parallel versions of the code. The latter is
based on message passing interface (MPI) instructions and ran on 4 processors.

Algorithmic differentiation

Sometimes referred to as automatic differentiation (AD), it is a tool that takes computer code as input. Some AD
tools rely on operator overloading, others on source code transformation. In the latter case - the only one that will
concern us, the output of the AD tool is a new code in the same programming language as the original code. If the
original code computed a set of dependent variables Yi based on independent variables X j, then the new code will
compute those derivatives dYi/dX j selected by the user. Since JAGUAR is written in modern FORTRAN, we chose
an AD tool compatible with key features from recent FORTRAN standards and which is currently still supported by
a team of developers. This tool is called TAPENADE,3 developed by INRIA. It can differentiate code in one of two
modes: tangent or adjoint. The tangent mode is most suitable when one seeks derivatives of many Yi with respect to
few X j, while the adjoint mode is mandatory whenever few Yi are to be differentiated with respect to a large number of
variables X j. The transformations inflicted by the AD tool on the original code will be radically different between the
two differentiation modes, with the adjoint mode producing a new code which is the most challenging to both generate
and recognise.

While AD tools can differentiate serial code on their own and are considered a fairly mature technology for
this task, differentiating code with MPI directives in adjoint mode is still challenging. Few examples are available in

2

DOI: 10.13009/EUCASS2019-831



SENSITIVITY COMPUTATIONS USING AUTOMATIC DIFFERENTIATION IN A HIGH-ORDER CFD CODE

Figure 1: Spatial distribution of ωz

(
Ωre f

)−1/2
for case r160 at 4 instants t

(
Ωre f

)1/2
= {0, 7, 10, 23} in the following

respective order: top left, top right, bottom left and bottom right.

the literature where AD tools had to analyze code lines containing MPI directives and generate their adjoint.9, 14 We
emphasize the difference between the differentiation of code below the parallelisation layer4, 5 and differentiating code
with MPI instructions. At present, the least experimental route is to re-write the MPI calls using the adjoinable MPI
(AMPI) library12 before differentiation with TAPENADE. At the time of writing, some MPI functions used in JAGUAR
are not supported by the AMPI library, and hence the structure of the MPI communications has to be modified in the
parallel version of JAGUAR in order to include exclusively AMPI-supported calls. Only then can the new code be
migrated to AMPI and later differentiated by TAPENADE. It is worth underlining that the additional work necessary
to obtain a parallel adjoint code with respect to a serial adjoint code is considerable. However, JAGUAR is designed
to perform well on parallel supercomputers which are mandatory to tackle industrial problems, so that there would be
little use of an adjoint serial code other than solving toy problems.

Sensitivities

We define the following two quantities

J1 = Ω(t) (8)

J2 =

∫ T

0
Ω(t) dt (9)

3

DOI: 10.13009/EUCASS2019-831



SENSITIVITY COMPUTATIONS USING AUTOMATIC DIFFERENTIATION IN A HIGH-ORDER CFD CODE

0 5 10 15 20 25 30 35
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 r=40, 384x384, MatSPE
r=80, 384x384, MatSPE
r=160, 384x384, MatSPE
r=40, 72x72, p=4, JAGUAR
r=80, 72x72, p=4, JAGUAR
r=160, 72x72, p=4, JAGUAR

0 5 10 15 20 25

-0.4

-0.3

-0.2

-0.1

0

r=40, FD
r=80, FD
r=160, FD
r=40, tangent AD
r=80, tangent AD
r=160, tangent AD

Figure 2: (left) Evolution of Ω(t) at 3 different values of r, JAGUAR vs. fully spectral and incompressible code MatSPE.
The legend includes the number of Fourier modes used in each direction for the MatSPE simulation (of which 1/3 are
zero-padded for dealiasing), while the JAGUAR data includes parameter p which is the selected order of the spatial
discretization of the spectral difference scheme. The grid used in the JAGUAR simulation was a 72 × 72 structured
mesh which, together with the setting p = 4, yields 360 degrees of freedom (DoF) per spatial direction. So we are
effectively comparing 2562 DoF with MatSPE against 3602 DoF with JAGUAR. (right) Sensitivities dJ1/dr, computed
with both finite difference (FD) and the tangent-differentiated codes.

which, when differentiated with respect to r, yield the two sensitivities we compute by means of algorithic differenti-
ation. dJ1/dr is a time-dependent sensitivity, while dJ2/dr is not. This implies dJ2/dr can be computed through AD
in both tangent and adjoint modes, while dJ1/dr can only be computed in tangent mode. Both sensitivities will be
compared against the finite difference (FD) estimates, computed with 2 independent realisations at r and r + dr, where
dr/r = 10−5.

Results and discussion

We modify JAGUAR in order to wrap the part of the code which takes r as input and computes J1(t) as output. In
this form, TAPENADE differentiates the wrapped portion of the code into one which computes both J1 and dJ1/dr (in
tangent mode). We compare this output to the estimate of dJ1/dr based on FDs in Figure 2 (right). The agreement
is excellent. The serial differentiated code is 1.9 times slower than the (serial) non-differentiated code. Since the FD
computation takes exactly twice the execution time of the non-differentiated code, it appears that the higher accuracy
of sensitivity computations from tangent AD comes with the added benefit of a slightly faster computation.

Similarly, we wrap the part of the code which takes r as input and computes J2(t) as output. We use TAPENADE
to differentiate this version of the code in tangent and adjoint modes. The temporal integration is carried out from
t = 0 to the n − th iteration of the time integration loop in JAGUAR, with n = 104 and n = 2 × 104. We show
the output of both code sensitivities used with the 2 different time integration bounds on Table 2, together with the
corresponding estimate computed with FDs. The results for dJ2/dr computed with tangent and adjoint derivation
modes agree to within numerical round-off error, while the FD estimate agrees less with the previous two due to the
lesser accuracy of FDs. The agreement between the serial differentiated codes and the parallel counterparts validates
the MPI transformations to JAGUAR, the migration to AMPI and the differentiation by TAPENADE of the AMPI
code. We cannot stress enough how different the serial and parallel codes are from one another once differentiated in
adjoint mode. To illustrate this further, both serial and parallel adjoint codes need seed values to compute the target
gradient. The latter is recovered in a new, automatically generated differential variable. While in the serial code the
differential variable contains all of the target gradient, in the parallel code the target gradient is split amongst the
different processes. The way in which it is split will depend on the type of reduction operation applied to compute it (a
sum over processes in our case) and on the type of partitionning applied by the CFD code.9 JAGUAR uses a zero-halo
partitioning scheme, and in order to recover the gradient with the parallel adjoint code we need to sum the value of
the gradient obtained by each process. The agreement between this sum and the result from the serial adjoint code is
evident on Table 2.
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T = 104 steps T = 2 × 104 steps
F. Diffs. -1.41688730E-03 -4.5418736E-03
Tangent -1.416883548249268E-03 -4.54186815284618E-03
Adjoint -1.416883548249464E-03 -4.54186815284581E-03
F. Diffs. MPI -1.41688737E-03 -4.5418739E-03
Tangent AMPI -1.41688354824940E-03 -4.54186815284779E-03
Adjoint AMPI -1.41688354824757E-03 -4.54186815284222E-03

Table 2: Estimates of dJ2/dr according to 3 different computation methods, for serial code on one processor and
parallel (MPI or AMPI) codes with 4 processors. Only computed for the case with r = 160, and for 2 integration
intervals.

T = 104 steps T = 2 · 104 steps
F. Diffs. 1.8 hrs(×2) 3.8 hrs(×2)
Tangent 3.1 hrs 6.2 hrs
Adjoint 58.5 hrs 123.2 hrs
F. Diffs. MPI 0.48 hrs(×2) 1.08 hrs(×2)
Tangent AMPI 0.81 hrs 1.62 hrs
Adjoint AMPI 9.53 hrs 18.1 hrs

Table 3: Same as Table 2 but showing computation times.

Table 3 shows the time taken by the computations. Both the tangent and the adjoint codes output by TAPENADE
are free from further optimization. It is clear that the adjoint mode is very greedy on time. Initially we ran out of
memory since in adjoint mode, a forward code execution is first carried out where snapshots of the data buffers are
stored at every iteration in the time integration loop. In order to remedy this problem, we use an option of TAPENADE
(binomial checkpointing) to specify the number of snapshots one is willing to store during a specific loop, at the
expense of additional recomputation time.15 Eventually, we chose to store 20 snapshots in the time stepping loop. This
compromise reflects the challenge of using the adjoint mode for unsteady simulations as we do. We underline that
most adjoint CFD computations - for instance using commercial software10 - are done in stationary situations through
iterative solution procedures with a set number of iterations (of the order of a few hundred). In these cases, one can do
away in adjoint mode by storing only the final fixed-point solution - see the F.A.Q. section in TAPENADE’s website.
This is in stark contrast with our approach, where nonstationarity is intrinsic to our problem and the backwards time
integration must be carried out based on storing and/or recomputing the intermediate results. Developing strategies to
overcome this computational barrier is the object of current research.6 We report an execution time in adjoint mode
which is longer than in tangent mode by a factor of 19-20 for the serial codes and 11-12 for the parallel codes. The
difference is due to the fact that the parallel code was stripped of many code lines which were not absolutely necessary
to the present computation. In the serial code that was handed to TAPENADE, the source files and subroutine calls
that allow JAGUAR to tackle various other problems (3D, compressible, different Riemann solvers, boundary condition
types, etc...) were kept, inducing more differentiated code which did not modify the final answer yet required additional
storage/recoveries from the backup buffers.

We emphasize that in adjoint mode the computation time would remain approximately constant as we increase
the number of variables J2 is differentiated with respect to. In tangent mode, it would grow linearly with the number of
additional variables J2 is differentiated with respect to. Hence the adjoint mode could still be preferable in those cases
where the sensitivity of J2 is needed with respect to a large number of parameters.

Conclusions and future work

The maturity of TAPENADE to cope with a modern FORTRAN code for computational fluid dynamics has allowed
us to differentiate modified code in order to obtain sensitivity estimates in a simple test case. Many lessons have been
learnt on the way the source code should be modified for a correct differentiation by TAPENADE. The differentiation
of the parallel code, in particular, requires considerable code modifications. Even though the differentiation process is
automatic, it should not be regarded as a black-box procedure. The output code requires careful analysis and checking,
by means of comparison with FD or by using tools supplied with TAPENADE.

The simplicity of the test case, from a fluid mechanics point of view, does not preclude more complicated
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simulations from being amenable to the same type of code differentiation, since it is the complexity of the code rather
than that of the flow which modulates the performance/ability of TAPENADE to generate correctly differentiated code.
Our target is set on the implementation of an optimal control loop in which the output sensitivities are iteratively used
to reach a given goal.
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