
HAL Id: hal-02617155
https://hal.science/hal-02617155v1

Submitted on 14 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Disorder-induced phase transition in Dirac systems
beyond the linear approximation

Sergey Krishtopenko, Mauro Antezza, Frédéric Teppe

To cite this version:
Sergey Krishtopenko, Mauro Antezza, Frédéric Teppe. Disorder-induced phase transition in Dirac sys-
tems beyond the linear approximation. Physical Review B, 2020, 101 (20), pp.205424. �10.1103/Phys-
RevB.101.205424�. �hal-02617155�

https://hal.science/hal-02617155v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW B 101, 205424 (2020)

Disorder-induced phase transition in Dirac systems beyond the linear approximation

Sergey S. Krishtopenko ,1,2 Mauro Antezza ,1,3 and Frédéric Teppe1,2,*

1Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, F-34095 Montpellier, France
2CENTERA Laboratories, Institute of High Pressure Physics, Polish Academy of Sciences, PL-01-142 Warsaw, Poland

3Institut Universitaire de France, 1 rue Descartes, F-75231 Paris Cedex 05, France

(Received 15 December 2019; accepted 6 May 2020; published 22 May 2020)

By using the self-consistent Born approximation, we investigate disorder effect induced by the short-range
impurities on the band gap in two-dimensional Dirac systems with the higher order terms in momentum. Starting
from the Bernevig-Hughes-Zhang (BHZ) model, we calculate the density of states as a function of the disorder
strength. We show that due to quadratic corrections to the Dirac Hamiltonian, the band gap is always affected
by the disorder even if the system is gapless in the clean limit. Finally, we explore the disorder effects by using
an advanced effective Hamiltonian describing the side maxima of the valence subband in HgTe quantum wells.
We show that the band gap and disorder-induced topological phase transition in the real structures may differ
significantly from those predicted within the BHZ model.
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I. INTRODUCTION

The rise of graphene [1] has paved the way to the intensive
investigation of Dirac fermions in condensed matter [2]. Since
then, Dirac fermion physics has also been analyzed in many
other two-dimensional (2D) systems [3]. From a general point
of view, the presence of the massless Dirac cones is protected
against any single-particle and many-body perturbations, at
least as long as the interaction does not lead to a spontaneous
breaking of symmetry [4–9]. The latter means that disorder
cannot open the band gap in the massless Dirac model with
only the linear terms in momentum [10–15].

Relatively less attention has been devoted to the study of
disorder effects in the massive Dirac model [16–18]. The anal-
ysis within the self-consistent Born approximation (SCBA)
reveals a band-gap closing above a threshold of the disorder
strength (see also Fig. 1). Note that the strong disorder may
also produce the onset of midgap impurity-induced states
in highly disordered massive Dirac models [19–21], which
needs a t-matrix approach (beyond the SCBA scheme) to be
revealed.

Many 2D systems, however, host Dirac fermions at small
momentum only, while their description requires the terms
beyond the linear approximation. Prominent examples are the
surface states of three-dimensional topological insulators (3D
TIs) [22–24] and their films [25–27]. Other 2D systems are
HgTe/CdHgTe [28–30] and three-layer InAs/GaSb quantum
wells (QWs) [31–33]. All of them are described by the
Bernevig-Hughes-Zhang (BHZ) Hamiltonian [28], in which
the quadratic corrections to the Dirac model allow for the
proper characterization of the topological states [34].

The role of disorder beyond the linear approximation be-
came yet more complicated after numerical simulations of
Li et al. [35]. By using a tight-binding version of the BHZ
Hamiltonian, they have found that disorder may induce a
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novel phase with a quantized conductance called a topolog-
ical Anderson insulator (TAI) [35]. Later, Groth et al. [36]
have shown that the formation of a TAI is caused by the
quadratic terms ∝k2σz in the BHZ Hamiltonian, which are
absent for graphene even beyond the linear approximation
[2]. Moreover, it was shown that contrary to the name “topo-
logical Anderson insulator,” such weak-disorder topological
transition is not an Anderson transition at all, and it can be
treated within the SCBA [36–38]. Although the mentioned
works [35–38] are based on the tight-binding calculations on
the square lattice with the constant a (typically a = 5 nm
[35–38]), they indicate that the disorder effects in the BHZ
Hamiltonian may differ significantly from those known in the
linear Dirac model.

In this work, we investigate how disorder changes the band
gap in Dirac systems beyond the linear approximation. By
using the SCBA, we directly calculate the density of states
(DOS) within the continuous BHZ Hamiltonian and more
advanced model [39] describing the side maxima of the va-
lence band in HgTe QWs. Our results univocally demonstrate
a crucial role of the high-order terms in the disorder effects.

II. TWO-BAND BHZ MODEL AND SCBA

The low-energy BHZ Hamiltonian has the form

H2D(k) =
(

HBHZ(k) 0

0 H∗
BHZ(−k)

)
, (1)

where the asterisk stands for complex conjugation, k =
(kx, ky) is the momentum in the plane, and HBHZ(k) = εkI2 +
da(k)σa. Here, I2 is a 2 × 2 unit matrix, σa are the Pauli ma-
trices, εk = C − Dk2, d1(k) = −Akx, d2(k) = −Aky, d3(k) =
M − Bk2, and k2 = k2

x + k2
y . In the QWs case, the mass pa-

rameter M describes inversion between the electronlike E1
and holelike H1 subbands: M > 0 corresponds to a trivial
state, while M < 0 for a quantum spin Hall insulator (QSHI)
state [28]. For the surface states of 3D TIs, nonvanishing
M conforms to the gap opened due to the tunnel coupling
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between the opposite surfaces in the thin films [25–27]. A
block-diagonal form of H2D(k) in Eq. (1) (cf. Refs. [40,41])
allows one to focus on the upper block only, while the calcu-
lations for the lower block are performed in the same way.

In order to calculate the DOS in the presence of disorder,
we add the random impurity potential to HBHZ(k):

Vimp(r) =
∑

j

v(r − R j ), v(r) =
∫

d2q
(2π )2

ṽ(q)eiq·r, (2)

where Rj denotes the position of impurities and v(r) is the
potential of an individual impurity, which is assumed to
be isotropic, i.e., ṽ(q) = ṽ(q) with |q| = q. Then, we start
from the Dyson equation in the momentum representation for
the disorder-averaged Green’s function Ĝ(k, ε) and the self-
energy matrix �̂(k, ε) considered in the SCBA, and illuminate
the dependence on the direction of k by applying a unitary
transformation such as H̃BHZ(k) = U (θk )HBHZ(k)U (θk )−1.
After some calculations provided in the Supplemental Mate-
rial [42], we get the following self-consistent equations:

�̂(k, ε) = ni

∫ Kc

0

k′dk′

2π

(
V0(k, k′)2G′

11 V−1(k, k′)2G′
12

V+1(k, k′)2G′
21 V0(k, k′)2G′

22

)
,

Vn(k, k′)2 =
∫ 2π

0

dθ

2π
|ṽ(k − k′)|2 cos nθ, (3)

where ni is the concentration of impurities, and G′
i j ≡

Gi j (k′, ε) are the components of the Green’s function
Ĝ(k, ε) = [ε − H̃BHZ(k) − �̂(k, ε)]−1. In Eqs. (3), we intro-
duce a cut-off wave vector Kc = π/a0 (where a0 is the lattice
constant), corresponding to the size of the Brillouin zone (cf.
Refs. [16–18]). Once the Green’s function is known, the DOS
can be calculated as

D(ε) = −gS

π

∫ Kc

0

kdk

2π
Im{Tr[Ĝ(k, ε + i0)]}, (4)

where the factor gS = 2 takes into account the contribution
from the lower block in Eq. (1).

To proceed further, we assume ṽ(q) = u0, which corre-
sponds to the disorder formed by the short-range impurities
[16–18]. In this case, the self-energy matrix is independent of
k and has the form �̂(ε) = �0(ε)I2 + �z(ε)σz. Under these
conditions, the set in Eq. (3) is written as

�0 = W 2

4π

∫ K2
c

0

X + Dx

�(x, ε)
dx, �z = W 2

4π

K2
c∫

0

Y − Bx

�(x, ε)
dx, (5)

where W is a disorder strength defined as W 2 = niu2
0,

X (ε) = ε − C − �0(ε), Y (ε) = M + �z(ε), and �(x, ε) =
(D2 − B2)x2 + (2BY + 2DX − A2)x + X 2 − Y 2. Note that
the above integrals are calculated analytically [42], transform-
ing Eq. (5) into the set of algebraic equations numerically
solved by simple iterations.

First, we consider the case of the linear Dirac model,
corresponding to zero values of B and D. As shown in Fig. 1,
the band gap of the massive Dirac fermions decreases by
increasing W until it vanishes above a critical value W ∗. Such
behavior was also investigated previously [16–18]. For the
gapless system, disorder does not open a band gap as was

FIG. 1. (a) Color map of the DOS as a function of the disorder
strength W for the massive Dirac fermions with the energy E =
±√

M2 + A2k2, where |M| = 9.5 meV and A = 358 meV nm. The
white curves represent the band edges with vanishing DOS described
by Eq. (6). (b),(c) The DOS at different values of W for |M| = 9.5
meV and |M| = 0 meV.

shown before for graphene [10–15]. This is also seen from
Eq. (5), as �z(ε) = 0 is the self-consistent solution at M = 0
and B = D = 0. Note that the changes of DOS with W are
independent of the sign of M in the linear model.

The situation changes dramatically if we consider the
square terms ∝Bk2σz. Although we also include the terms
∝Dk2I2 representing the electron-hole asymmetry, the DOS
evolution remains qualitatively the same even as for D = 0.
Further, we focus on HgTe QWs, which require nonvan-
ishing D for their description [39,43]. As the band order-
ing in HgTe QWs is affected by hydrostatic pressure [44],
temperature [45,46], and strain [47,48], we note to consider
HgTe/Cd0.7Hg0.3Te QWs grown on (001) CdTe buffer at zero
temperature and pressure [44].

Figure 2 shows the evolution of DOS with the disorder
strength W for the HgTe QWs of different QW width. As is
seen, in contrast to the linear model, now the band-gap evolu-
tion strongly depends on the sign of M. If M > 0, the band gap
decreases with W and vanishes at a critical value W ∗, and then
it is reopened again at W > W ∗. Such behavior represents
the disorder-induced topological phase transition previously
discovered in the tight-binding calculations [35,36]. Let us
now analyze it within the continuous BHZ model.

Since the finite DOS is associated with a finite imaginary
part of the functions �0(ε) and �z(ε), the band-gap region
is characterized by the solution of Eq. (5) with purely real
quantities �0(ε) and �z(ε). The band edges can be obtained
by solving the following equations:

X (ε) = Y (ε), X (ε) = −Y (ε), (6)

where the overbar stresses the values found on the set of
real numbers. As seen from Fig. 2, two curves described by
Eq. (6) cross at the transition point W = W ∗, where Y (ε)
changes the sign. As shown by Groth et al. [36], Y (ε) has a
meaning of the renormalized topological mass and its negative
sign corresponds to the TAI state. We note that the disorder-
induced phase transition at M > 0 in Fig. 2 is caused by the
negative values of B in HgTe QWs [28,41,43], resulting in
�z(ε) < 0. In the systems with B > 0, such transition arises
at M < 0.
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FIG. 2. Band structure and color map of the DOS as a function of the disorder strength W calculated in the two-band BHZ model for
HgTe QW at different QW width: d = 6 nm (M > 0), d = dc (M = 0), and d = 7 nm (M < 0). The band parameters are provided in the
Supplemental Material [42]. The white curves represent the edges of the area with the vanishing DOS described by Eq. (6). The green curve is
found from Y (ε) = 0. The bottom panels show the DOS at several values of W .

As mentioned above, the disorder does not open the gap for
the linear massless Dirac fermions. Figure 2 demonstrates that
due to the square terms ∝Bk2σz, the gapless state becomes a
critical state with W ∗ = 0, and the band gap is now affected
by the disorder. Interestingly, one may conclude that since the
surface states of 3D TIs are described by the BHZ Hamilto-
nian, they are not robust to the surface disorder. However, the
parameters M and B are not independent for 3D TIs [25–27].
In the absence of the tunnel coupling between the opposite
surfaces, M = 0 but B vanishes as well [25,26]. The latter
prevents the band-gap opening by the disorder.

We have considered a role of the square terms in the
disorder-induced topological phase transition in Dirac sys-
tems. Further, we investigate how the higher-order terms be-
yond the BHZ model affect the band gap in the real structures.
These terms are crucial for the side maxima (SM) of the
valence subband in HgTe QWs [39,44]

III. FOUR-BAND 2D MODEL AND SCBA

The advanced Hamiltonian for HgTe QWs including the
second electronlike E2 and holelike H2 subbands is written as

H2D(k) =
(

H4×4(k) 0

0 H∗
4×4(−k)

)
(7)

with the blocks H4×4(k) and H∗
4×4(−k) defined as

H4×4(k) =

⎛
⎜⎜⎜⎝

εk + d3(k) −Ak+ R1k2
− S0k−

−Ak− εk − d3(k) 0 R2k2
−

R1k2
+ 0 εH2(k) A2k+

S0k+ R2k2
+ A2k− εE2(k)

⎞
⎟⎟⎟⎠,

(8)
where εE2(k) = C + M + 	E1E2 + BE2(k2

x + k2
y ), εH2(k) =

C − M − 	H1H2 + BH2(k2
x + k2

y ), and 	E1E2 and 	H1H2 are
the gaps between the E1 and E2 subbands and the H1 and H2
subbands, respectively [39].

Then, with a unitary transformation such as H̃4×4(k) =
V (θk )H4×4(k)V (θk )−1, the self-energy matrix �̂4×4(k, ε) in
the SCBA has the form [42]

�̂4×4(k, ε) = ni

∫ Kc

0

k′dk′

2π

×

⎛
⎜⎜⎜⎜⎝

V 2
0 G′

11 V 2
−1G′

12 V 2
+2G′

13 V 2
+1G′

14

V 2
+1G′

21 V 2
0 G′

22 V 2
+3G′

23 V 2
+2G′

24

V 2
−2G′

31 V 2
−3G′

32 V 2
0 G′

33 V 2
−1G′

34

V 2
−1G′

41 V 2
−2G′

42 V 2
+1G′

43 V 2
0 G′

44

⎞
⎟⎟⎟⎟⎠,

(9)

where ni, Kc, and Vn(k, k′)2 are the same as those for Eq. (3),
while G′

i j ≡ Gi j (k′, ε) are the components of the averaged
Green’s function Ĝ(k, ε) = [ε − H̃4×4(k) − �̂(k, ε)]−1. In the
case of the short-range impurities, the self-energy matrix is
diagonal and independent of ε and Eq. (9) transforms into the
set of algebraic equations numerically solved by an iteration
procedure [42].

Figure 3 shows the DOS evolution with the disorder for
the same QW widths as in Fig. 2. As is seen for the 6-nm
QW, the disorder-induced phase transition at W = W ∗ is still
identified. However, the values of W ∗ and the areas with the
vanishing DOS differ significantly in two models. Particularly,
the renormalized band gap in the BHZ model may even
exceed the largest gap known for the HgTe QWs [47], while
the four-band model predicts the lower values.

Another feature, which cannot be addressed in the BHZ
model, is the evolution of the DOS associated with the SM of
the top valence subband. In the clean limit, the side maxima
result in the large steplike increasing of the DOS. At nonzero
W , such steplike behavior can be also used for qualitative
determination of the SM position. The white and green curves
in the top panels of Fig. 3 represent the evolution of the band
edges in the 
 point and the side maxima, respectively. In
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FIG. 3. Band structure and the DOS as a function of the disorder strength W calculated in the four-band 2D model [39] for HgTe QW
at different QW widths: d = 6 nm, d = dc, and d = 7 nm. The band parameters are provided in the Supplemental Material [42]. The white
curves represent the edges of the area with the vanishing DOS found from the numerical calculations. The green curve shows the energy edge
of the side maxima identified in the DOS. The bottom panels represent the DOS at several values of W for each of the QW widths.

contrast to the BHZ model, these curves can be identified only
in the numerical calculations. As the SM position primarily
depends on the distance between E2 and H2 subbands [39],
its evolution with the disorder remains qualitatively the same
for any values of M.

As is seen, the SM contribution increases with the disorder
and strongly affects the area with the vanishing DOS. For the
inverted HgTe QWs, the SM may result in the band-gap clos-
ing and transition into the semimetal state. The latter is clearly
seen for the 9-nm-wide HgTe QW representing indirect-gap
QSHI (see Fig. 4). Indeed, the upper boundary of the area with
the vanishing DOS represents the evolution of the conduction
band edge, while the lower boundary corresponds to the SM
evolution. The semimetal state arises when the side maxima
exceed the conduction band bottom. Note that such state also
exists in the wide HgTe QWs in the clean limit [49,50]. Thus,
the disorder may not only yield to the band inversion as
explained by Groth et al. [36] but induce the semimetal state
as well.

FIG. 4. Band structure and the DOS as a function of the disorder
strength W for the 9-nm-wide HgTe QW. The white curves represent
the edges of the black area with the vanishing DOS identified in the
numerical calculations.

To clarify if the disorder range in Figs 2–4 is relevant
for the HgTe QWs, we calculate the electron mobility μW

caused by the short-range impurities [42]. The calculations,
performed in the relaxation-time approximation [51] within
the BHZ model, evidence that W < 200 corresponds to μW >

4 m2/V s for the electron concentration nS = 1011 cm−2. This
is comparable with the experimental values for HgTe QWs
[52]. Note that the mobility evaluation in the BHZ model is
quite reliable for the conduction band, since it requires the
description of electronic states only in the vicinity of the
Fermi level, in contrast to the self-energy matrix, which is
calculated over the whole Brillouin zone.

IV. CONCLUSIONS

We have investigated the disorder effect caused by the
short-range impurities on the band gap and DOS in Dirac
systems beyond the linear approximation. By using the SCBA
and continuous BHZ model, we show that the quadratic
corrections to the Dirac Hamiltonian always result in the
band-gap renormalization even if the system is gapless in the
clean limit. We have also explored the role of the high-order
terms beyond the BHZ model [36] in the disorder effect
in HgTe QWs. We have shown that the disorder-induced
phase transition in the real structures may differ significantly
from those predicted within the BHZ model. Our findings
thus clearly demonstrate the invalidity of the BHZ model for
quantitative description of the disorder effects in HgTe QWs.
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