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Literature Review Toward Decentralized Railway
Traffic Management

Elisa Marcelli and Paola Pellegrini

Abstract—This paper analyses the literature to identify ideas
which may be applied to decentralized real-time railway traffic
management. This system represents a new way for dealing with
railway traffic perturbations in absence of a central decision
maker. Specifically, we are interested in identifying techniques
that may constitute suitable automatic mechanisms for the emer-
gence of an effective system behaviour. In this literature review,
we discuss the possibility of exploiting the existing research works
on other transport modes. The analysis of these works makes it
clear that real-time railway traffic management is very peculiar.
Hence, we consider different approaches: hierarchical self organi-
zation, task allocation, reinforcement learning, consensus, auction
and coopetition techniques. Some promising possibilities emerge,
which we analyse proposing ideas for modelling decentralized
real-time railway traffic management.

Index Terms—Real-time railway traffic management, Multi-
agent system, Hierarchical self-organization, Task allocation,
Reinforcement learning, Consensus, Auction, Coopetition

I. INTRODUCTION

TRAFFIC management describes the process of coor-
dinating, controlling and organizing traffic to achieve

efficiency and effectiveness in the use of existing infras-
tructure capacity. In the overall traffic management problem,
some months before operations, a timetable is produced. This
timetable defines speeds, precedences and routes so that trains
can travel never encountering congested traffic conditions.
However, when an unexpected event perturbs operations caus-
ing the delay of one or more trains, trains travelling at the
planned speed may concurrently require the use of some
parts of infrastructure, which corresponds to the emergence of
conflicts. When this happens, the planned timetable becomes
infeasible and an effective alternative must be determined.
Finding this alternative is the objective of real-time railway
traffic management problem [66]: it seeks for the redefinition
of precedences and routes to minimize delay propagation.
In the literature, it is also referred to as train rescheduling
or traffic control. In this paper we use the wording real-
time railway traffic management to stress that train rerouting
is part of the problem we consider, and avoid confusion
with term train control, which is typically used for problems
related to speed profiles definition [41]. Currently, real-time
railway traffic management is performed by dispatchers in
a centralized way: a dispatcher is in charge of all traffic
traversing a control area.
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Following current practice, all decision support tools
proposing optimization techniques for traffic management con-
sider a centralized decision making. Here, decisions are made
and imposed to trains so that a system-level utility function
is optimized. This utility function is typically related to delay
propagation and is then to be minimized.

In this paper, we consider a radically different approach for
real-time railway traffic management, in which decisions are
not made in a centralized way: either the system is driven
by an emergent beaviour, or trains themselves make decisions
on how to solve conflicts, choosing precedences and routes.
These trains are intelligent and autonomous for what concerns
vehicle to vehicle and vehicle to infrastructure communication,
on the one hand, and priority and routing decision making,
on the other hand. Indeed, they may be autonomous also
as for driving, in this case being automated. However, we
consider the driving aspects independent from real-time traffic
management, as well as communication ones. We only focus
on intelligent trains capable of real-time traffic management
decision making: a driver may or may not be present on-
board, and communication is supposed to be completely
reliable. Undoubtedly, even in a decentralized system as the
one we consider, railways always require the presence of a
central traffic management. This will be in charge of tackling
situations that cannot be solved by intelligent trains alone. For
example, in case of major disruptions as the unavailability of
a part of the railway network for some hours requiring short-
turnings and cancellations, the decision making must follow
specific steps and needs to be centralized [10]. However, to-
day’s system functioning and technological capabilities allow
thinking of intelligent trains taking the burden of real-time
management of minor perturbations that generate conflicts and
occur regularly in the network.

In countries in which infrastructure use and train running are
managed by the same organization, passing from centralized
to decentralized real-time railway traffic management may be
seen as a simple movement of decision making at different lev-
els of the organization hierarchy. Centralized decision making
is concentrated at a single level of this hierarchy [13]. In some
sense, one may visualize the railway system as hierarchical
even when organizations are different. Here the infrastructure
manager may be at the top of the pyramid being in charge
of the overall network, railway undertakings in the middle
and individual trains at the bottom. However, this visualization
may definitely be arguable, and we will not consider it in the
rest of this paper. In any case, in non-centralized processes,
decision making can also be dispersed across different levels
of an organization, or across different actors or stakeholders if
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several organizations are involved. In some sense, the situation
of having major disruptions managed centrally while minor
perturbations are tackled by trains may be interpreted as an
example of dispersed decision making. However, we only
consider here the case of minor perturbations, for which we
claim that the leadership of the real-time traffic management
process can be effectively and completely shared among trains.
In [13] this is referred as decentralization, which is then the
wording we will use throughout this work. Hereinafter, we
will only focus on the literature related to decentralization as
defined here, neglecting other approaches which may concern
dispersion or fragmentation of decision making. Although
connected, these approaches are out of the scope of this paper,
in which we consider a well defined problem that results
from various discussions with railway actors. To the best of
our knowledge, anyway, no major hints from other decision
making strategies are available for real-time railway traffic
management.

In the following, we propose a literature review of possible
ways for defining such decentralized system in scheduling
or allocation problems. From this review, we try to identify
possible ways of modelling such a system for real-time railway
traffic management.

The rest of the paper is organized as follows. Initially, in
Section II, we summarize the state of the art on centralized
real-time railway traffic management, and we indicate the main
lacks of the existing approaches which may be overcome in
a decentralized system. Then, in Section III, we report the
very little existing literature on decentralized real-time railway
traffic management. In Section IV we analyse research works
on decentralized real-time traffic management in other modes
of transport. Namely, we consider road traffic, shared mobility,
air traffic and waterways traffic management. This analysis
clarifies that the problems tackled in the literature for other
modes are different and not really compatible with the one
we are interested in for railway. Specifically, major differences
exist in the need for collaboration and agreement in general, as
well as in the system constraints. In the rest of the paper, we
focus on the more general literature concerning these needs. In
Section V, we describe some different approaches that may be
used for modelling a decentralized system of intelligent trains,
and we discuss which possibilities seem the most appropriate.
Finally, in Section VI we draw conclusions.

II. STATE OF THE ART ON CENTRALIZED REAL-TIME
TRAFFIC MANAGEMENT

The real-time railway traffic management problem, in its
centralized version, is the object of a large body of literature.
Quite comprehensive reviews have been published [11], [16].

A variety of combinatorial optimization approaches have
been applied to this problem, from integer linear programming
[55], [66], [93] to alternative graphs [21], [54], to heuristics
and meta-heuristics [15], [78]. Also a reinforcement learning
approach has been proposed [82]. Here, the centralized de-
cisions are made by a simulator, which learns to discrimi-
nate between good and bad scheduling solutions in terms of
delay propagation. The approach is implemented in a trivial

example considering three trains and three stations and the
results show that reinforcement learning may be used as an
efficient alternative to classic optimization methods. All these
approaches make decisions on all trains present in a control
area over a predefined time horizon. A remarkable exception is
represented by [89]. The paper proposes a way for selecting
a smaller set of trains by identifying what the authors call
dynamic impact zone for every conflict to be tackled. Then, a
centralized decision is made concerning all these trains.

These approaches are aimed at being part of decision
support tools for dispatchers, as tested in the ON-TIME Eu-
ropean project with the collaboration of railway infrastructure
managers [63], [70]. However, the actual deployment of such
decision support tools is at its very early stages. Few successful
implementations can be identified, as the Trento-Bassano del
Grappa line in Italy, the Stavanger-Moi line in Norway, or a
network of five lines in Latvia. Unfortunately, the performance
achieved and the lessons learned from the development and
implementation of these systems are only partially available
to the community [49].

Undoubtedly, tackling the problem centrally allows the con-
sideration of the impact of decisions on the whole control area
before selecting the final ones. Hence, no myopic decisions
are made: decisions that look good when they are made but
having problematic effects in the following. In this sense, the
performance achieved by a centralized approach can hardly
be achieved by a decentralized one: the latter is myopic by
definition, decisions being based on local information. Indeed,
when management is distributed across many independent,
loosely coupled subsystems, as the decentralization approach
defined in [1], the intelligent vehicle makes decisions using
local measurements and optimizes local dynamics.

However, three main challenges still need to be faced. They
are particularly critical in centralized approaches and may be at
least partially overcome in decentralized ones. First, there are
limits to the size of the control areas that may be considered
in centralized approaches. Despite the effectiveness of the
algorithms and the better and better performance of computers,
it will always be possible to define a case study too large
to be tackled. Indeed, in today’s context, in which a single
European railway area is aimed at [67], the actual problem
of real-time railway traffic management is larger than what
can be thought to ever be solvable in one shot. Few papers
try to face the challenge of size limits, either decomposing a
large network in control areas to be coordinated [17], [19],
or proposing algorithms capable of treating larger networks
than what was done before [48]. However, this challenge is
still open and there is no clearly identified research direction
for overcoming it. Indeed, when moving to a decentralized
system, in which decisions are made based on more or less
extended local knowledge, this challenge would be implicitly
solved. Moreover, if large case studies were to be tackled,
the gap in performance between centralized and decentralized
approaches would become thinner and thinner. In fact, a
centralized approach might struggle due to the size of the
case study and the short computational time available due to
the real-time nature of the problem. Thus, despite its myopic
decisions, the decentralized approach might be able to close
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the gap.
The second challenge is linked to the robustness of the

system to computer or communication failures. Indeed, in case
of a failure, at least a part of the system will always be blocked.
However, with a centralized approach, the whole control area
where the failure occurs will be touched. Instead, failures
would impact only the immediate vicinity of the interested
area with a decentralized approach.

Third, the railway market is today open to competition [4].
Indeed, with the exception of the UK, today national markets
in Europe are mostly covered by the incumbent railway un-
dertaking, which has very strong links with the infrastructure
manager in charge of real-time railway traffic management.
In a centralized system, then, there might be entrance barriers
due to the need of disclosing private information considered
competition-critical with the infrastructure manager, which is
an external entity and may be perceived as non completely
neutral. If a suitable system was designed, decentralizing
decisions would somehow favour competition between railway
undertakings, avoiding the need of revealing private informa-
tion.

III. STATE OF THE ART ON DECENTRALIZED REAL-TIME
TRAFFIC MANAGEMENT

In most of the existing literature, when real-time railway
traffic management is said to be tackled in a decentralized
way, the system is actually split into subsystems, each one
relying on one individual or tool to make decisions and provide
directions [17] [19] [44]. Therefore, traffic in a railway infras-
tructure is in general not really managed in a decentralized
way but rather a disperse one: it is simply partitioned into
geographically smaller areas where a centralized management
is in place.

To the best of our knowledge, very few papers deal with an
actual decentralized system.

In [98], decentralized real-time railway management is
achieved through swarm intelligence: trains that are locally
moving in the same direction and facing a possible common
conflict are grouped into a swarm. To coordinate with its
neighbours in the swarm, each train uses a train-to-train
communication system. To occupy a track, trains have to send
the request to a decentralized dispatching algorithm which
verifies the feasibility of such request. If the requested track
is free, the algorithm allows the train to occupy it, otherwise
the request is put in a pending list. Although this paper
presents an innovative idea, it represents a theoretical starting
point that does not give tangible solutions. For example, no
investigation is made on the mechanism to define and adapt
swarm compositions in complex networks and throughout
time. Moreover the dispatching algorithm, which in our eyes
constitutes the most important part of the approach, is only
sketched.

An approach using autonomous agents is proposed in [33].
The paper describes how agents could be used for both plan-
ning long term schedules and making short term changes when
needed. A peculiarity of this work is that agents represent
trains and tracks: when a journey has to be planned, the

considered train (T-agent) creates a list of all possible routes
it may take, ordered in terms of its own priority criteria,
and starts negotiating with tracks (S-agents) the cost of using
them. If the cost is too high for all the possible routes, the
journey is cancelled. In this system, the interest of the T-agent
is finding the more suitable route at a convenient price; at
the same time, S-agents aim to fix costs so as to satisfy as
many trains as possible to maximize revenues. Hence, both
T-agents and S-agents have an active role in the negotiations.
As [98], this paper proposes an innovative idea but does not
deepen it, remaining a hypothetical notion. Specifically, no
explanation is attempted to define track costs, for example in
case of competition. Moreover, only one to one negotiation is
envisaged, neglecting traffic conditions even in real time. In
any case, no proper algorithm for the negotiation is discussed.

A decentralized model is also presented in [83]. The pa-
per analyses the problem of dealing with train organization
presuming that trains are capable of self-organizing skills and
communicating with one another. Specifically, a finite set of
trains moving on a loop railway line is considered, where
each train has the capability of communicating (i.e., receiving
information) only with one train ahead. The behaviour of each
train is decided solving a local optimization problem aiming to
minimize its time deviation with respect to the scheduled time,
having as result two sequences: one defining its future control
strategy and the other establishing its future departure time-
line. Even if this work proposes a very interesting approach,
it is defined by an essential feature: each train has to solve a
minimization problem only with the information in its posses-
sion and the one coming from its predecessor. Independently
of the infrastructure and propagation of information, in such a
framework any decision of a train will always myopic. Indeed,
the paper is restricted to small and linear systems in which
such myopic decisions guarantee the attainment of feasible and
possibly good traffic management solutions. Unfortunately,
this is not the case of a common railway system.

Decentralized hierarchical approaches are proposed in [69]
and [39]. They exploit the concept of multi-agent system
(MAS). A MAS [34] is an aggregation of agents, intelli-
gent autonomous entities with the capability of observing
the environment, communicating with each-other and finally
making decisions based on these observations and communica-
tions. [69] presents a MAS in which real-time railway traffic
management is performed at three communicating levels. A
supervisor level makes decisions on trains’ precedence; a train
level makes choices on driving profiles, given the supervisor’s
decisions; a station level gives orders for trains arrivals and
departures and provides information to users. A learning
process is also introduced, thanks to which the supervisor
uses past situations to infer rules that anticipate conflicts. In
this work, the railway infrastructure representation is quite
abstract, omitting any consideration of the actual details of its
functioning. Another three-level approach based on MAS is
described by [39]. Here, train agents are at the bottom, station
agents are in the middle, and a traffic control center agent is at
the top level. The amount of information on the whole system
increases across these levels, passing from limited for trains,
to local for stations, to global for the traffic control center.
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Higher levels intervene if lower levels do not manage to find
a feasible solution when perturbations occur. The paper says
that a negotiation may be put in place to establish precedences
between trains, but no approach is proposed to do so.

Very recently, [45] applies reinforcement learning to the
decentralized real-time railway traffic management problem.
Here, the system automatically learns what choices bring
to good performances, and tries to replicate them whenever
suitable. This work defines an original approach for a linear
network in which bidirectional lines are represented mesoscop-
ically: some details of the actual infrastructure are neglected.
For example, only one train at a time can be on the track
between two stations. Train schedules are defined in terms of
departure times from stations, hence considering the so-called
green-wave strategy [18]: trains cannot stop along the line to
give precedence to one another, and junctions are crossed in
a first-come-first-served way. In the proposed reinforcement
learning scheme, a delay threshold is defined. If with the
selected schedule the sum of delays is less than such threshold,
the system gets a reward, otherwise it suffers a penalty.

Only the last work constitutes a basis for the decentralized
system we have in mind, which may be able to replace the
centralized decision making process in place today for the
railway network. Indeed, several aspects must necessarily be
considered. In particular, once trains detect a conflict emerging
ahead, they have to decide whether to locally reroute, e.g.,
changing the platforms used to stop at a station with respect to
the original plan, or to modify their passing order with respect
to other trains. Several trains may be involved in the conflict,
belonging to one or several railway undertakings. If they
belong to the same railway undertaking, reaching an agreement
may be easy, because defining the priority of services may
be immediate. Instead, if several railway undertakings are
involved, they may be willing to sacrifice some trains to favour
others, without necessarily wanting to share the reasons of
their choice. Moreover, the utility that a train may associate
to the passing order at a junction is in principle linked to
the possible outcomes of other conflicts at junctions it will
cross later on. Indeed, trains it may enter in conflict with in
future junctions may be different from the current ones. The
decisions then should not be completely independent.

IV. DECENTRALIZED TRAFFIC MANAGEMENT IN OTHER
MODES

As reported in Section III, decentralized approaches for real-
time railway traffic management are very rarely found in the
literature.

Differently, more works exist for other means of transport.
In this section, we discuss four of these modes, highlighting
similarities and differences with respect to the problem we
consider in this paper. Specifically, we analyse road traffic,
shared mobility, air traffic and waterways traffic management.

A. Road Traffic Management

Approaches for decentralized traffic management have been
widely studied in the field of road transport. The number of
vehicles moving on road or public highway has significantly

grown in the last years and traffic congestion has become a
major issue in many large cities and crowded areas. To analyse
this issue, many works regarding the idea of constructing
simulation models for road traffic management have been
presented [9] [29] [51]. These models describe the use of
MAS to deal with vehicles and infrastructures, with the goal
of testing principles and making useful traffic control plans of
action.

In [29] it is described the use of reactive agents in con-
trolling road vehicles in a simulated traffic environment.
Each driving agent receives external information about the
environment through sensors and, based on these, makes its
own decisions. The behaviour that an agent applies is given
by a set of rules which describes actions it shall carry out
in order to keep a civil conduct, e.g., always driving on
the streets or decelerating when a crossroad is met. These
rules are influenced by several behaviour parameters with the
aim of creating different driving styles, as happens in real
life. In this way, it is possible to let some vehicles drive
more or less aggressively, or regulate their speed as preferred,
making every agent in some way dissimilar from each other.
Indeed, this system may be seen as a self-organized road traffic
management one.

In [25], agents are used to study systems to primarily
reduce traffic jams in crossroads. As before, the system is
decentralized and each agent can autonomously make its own
decisions submitting to road rules. The paper proposes a
reservation-based procedure to be used instead of traffic lights,
so that vehicles have time gaps during which they are allowed
to occupy the crossroad. Reservations are made on a first-
come first-served basis, i.e., the first vehicle which demands
the permission to cross the intersection at a certain time has
its reservation accepted. The advantage of this method with
respect to a simple first-come first-served approach consists in
the possibility for vehicles to adapt their speed to the reser-
vation they obtain. As reported in [75], a noticeable amount
of studies focus on mechanisms for autonomous vehicles to
cross intersections. Many of them are based on decentralized
decision making. However, differently from the railway traffic
management problem we consider, the mechanisms have the
objective of minimizing the intersection crossing time while
ensuring safety. To the best of our knowledge, no consideration
of vehicle utilities is ever mentioned.

A policy for collision control among multiple vehicles is
given in [64]. The article uses MAS to study the coop-
eration between several vehicles on the same route, with
the possibility of leaving or entering the scene at any time,
focusing on collision avoidance. More recently, [77] solves
the same problem with a combination of optimal control and
sequential decision making. The paper shows how to use tools
from reachability theory for obtaining model-based heuristics
capable of coordinating vehicles.

To tackle congestions in the network rather than in a
crossroad, [14] proposes a MAS approach. Specifically, agents
deal with congestions before actually meeting other vehicles,
by making use of traffic density forecast. Agents are divided
into driving and infrastructure agents, and they move in a
virtual environment representing physical roads and junctions.
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The focal point is that driving and infrastructure agents do
not communicate with each other. To make the bridge among
them, the paper uses delegate or lightweight agents, named
ant-agents. They can follow two possible behaviours: either
they explore their neighbouring areas, looking for traffic
congestion, or they are intention ants, providing infrastructure
agents information on the routes driving agents aim to use.
Note that the name ant-agent comes from the fact that these
agents behave similarly to ants looking for food and leaving
pheromones behind when they reach a food source. In this
case, pheromones represent traffic information to be used by
other ant-agents: the longer an agent takes to traverse a route,
the more pheromones it deposits, giving local information
about traffic jam.

The same objective but with a completely different per-
spective is pursued by [74]. Here, traffic management does
not emerge from the behaviour of vehicle-agents that need
to coordinate. Instead, each external traffic controller operates
on a part of the network and need to make coherent traffic
management decisions. The main objective is minimizing the
total amount of time that vehicles spend travelling through
the network in a predefined time horizon. The proposed
optimization approach dynamically recognizes which traffic
controllers should be put in the same cluster (i.e., controller
influencing and having impact on each other) and optimized
together, and when it is not appropriate to do so.

MAS are also used to study cooperative control in road
traffic management, namely the coordination of a group of
vehicles that travel on the same route. For example, the
collaboration between autonomous vehicles is the central topic
of [32]. The main goal of the paper is to get a control approach
of the formation of groups of agents, robust to communication
network changes.

The works reported in this section show how agents are used
in road traffic to model cars’ selfish acting: cars are not directly
controllable units of the system. On the opposite, at least up to
a certain degree, trains are directly controllable by dispatchers,
and to some extent must remain such. Hence, they cannot
necessarily act in a selfish way, but must pursue somehow
the good performance of the overall system. Therefore, the
analysed approaches cannot be exported to model the real-
time railway traffic management system: the export would
only make sense if cars were modelled as agents aiming for
the overall optimal traffic flow. Indeed, the transfer of ideas
from road traffic to railway traffic is far-fetched, due to the
fundamental differences between the two systems.

Moreover, even if there were approaches aiming at this
overall optimality, a further difference between road and
railway traffic must be taken into account. Specifically, in road
traffic an attitude called human error must be considered [23],
where failures must be analysed to understand and predict
car driving violations. In this regard, some works focus on
the importance of driver violations in the case of road traffic
simulation. For example, in [24] agents are used to describe
a simulation, taking as a model real drivers’ behaviour. The
aim of the article is to make the simulation as realistic as
possible, focusing on some features that are an important
part of real driver decision making processes. In particular,

the model relies on opportunistic strategies. In railway traffic,
opportunistic strategies cannot be accepted. For example, in
road traffic, violations of safety distance between cars often
occur. In railway, these violations are not allowed: the system
automatically triggers emergency braking if a train manages to
get too close to the preceding one. In this sense, no flexibility
is possible, and any decentralized real-time traffic management
approach does not need to take care of it.

B. Shared Mobility Management

The term shared mobility identifies transfers from one place
to another which take place with shared vehicles: users do
not exploit their own cars, bicycles or bikes, instead they use
rental services paying for the vehicle according to a predefined
rental rate. Shared mobility has grown tremendously in the past
decade both because of its increasingly competitive prices and
efficiency but also for its environmentalist facet: it decreases
traffic congestion and reduces several forms of pollution. From
a business point of view, shared mobility could spread also
thanks to the birth of many companies and platforms offering
transfer services. Anyway, a variety of concerns arise linked
to this newborn system.

A solid approach for shared mobility using a reinforcement
learning algorithm is proposed in [38]: vehicles are modelled
as autonomous agents, giving advices when a driver is in
control and directing otherwise, learning how to behave by
using rewards. The paper seeks to tackle two main problems:
assigning vehicles to users and performing vehicle rebalance,
i.e., redistributing idle vehicles to high demand areas. An
autonomous vehicle is rewarded each time it has a positive
behaviour, specifically whenever it serves pending requests
or it moves to a highly requested empty area. The main
objective is to maximize such rewards and this drives the
learning mechanism: the vehicle observes the reward obtained
as a consequence of its behaviour and tends to replicate what
previously resulted to be benefiting.

An interesting method for decentralized shared mobility is
presented in [79] and is based on the idea of co-utility. The
term co-utility defines a strategy of cooperation between more
than one participant, where each participant utility maximiza-
tion is linked also to the increase of other participants utility.
One of the key principles of co-utility is that “helping others
is the best rational option even if players are selfish”. The
paper proposes a decentralized system which may reduce two
of the main concerns when dealing with shared mobility. First,
it may reduce the lack of trust, i.e., the fact that users may
not appreciate sharing a vehicle with strangers. Second, the
privacy concern linked to the sharing of personal information.
In such system, drivers and passengers may interact without
any central authority checking on exchanges. The system may
be controlled by some kind of reputation technique ensuring
fairness. Each user is assigned an identification number and,
for a vehicle sharing to take place, driver and passenger users
have to publish advertisements compatible with each other
(i.e., route, time, geographical zone).

All the works on decentralized shared mobility manage-
ment, exemplified by the ones presented in this section, aim to
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the coordination of vehicles and users each having a personal
objective. This perspective cannot be transferred to real-time
railway traffic management, where trains must try to stick
as much as possible to an existing timetable. However, the
idea at the basis of co-utility in which the utility of a system
component depends on the one of other components as well,
and hence somehow on the performance of the system, may
be interesting, as will be mentioned in Section V-F.

C. Air Traffic System

Air Traffic Management (ATM) deals with all functions
necessary for safety and efficiency of movements during
all phases of a flight, starting from the departure from an
airport, considering all intermediate flight phases, until arrival
at destination airport. Nowadays, the coordination of aircraft
movements is done through centralized ground-based systems:
decisions are made centrally by air traffic controllers and
imposed to aircraft. However, several research works deal with
the idea of a less and less centralized control system. They are
motivated by the growing development of the automation field
and by the ever-increasing number of aircraft flying every day,
which significantly complicates centralized ATM.

A partially decentralized ATM architecture is presented
in [92]. The authors believe that a totally centralized solution
is computationally extremely complex and expensive, while
a fully decentralized ATM would be unacceptable. Thus the
paper proposes a trade off, introducing a middle ground solu-
tion. “Smart aircraft” are introduced, equipped with a Flight
Management System with the ability to compute route changes
and to perform conflict detection and resolution. Concurrently,
a central authority gets control in highly congested airspace.

Another partially decentralized system is proposed in [2].
Here, each aircraft is given an initial schedule defined by a
sequence of points specifying its route from start to end. If any
problem arises, an aircraft has the possibility to locally modify
its trajectory solving an optimization problem. The proposed
method considers a set of agents (i.e., aircraft), each one aware
of the state and goal of every agent in a predefined region.
Therefore, at every time step, each agent has to solve an
optimization problem requiring information on its neighbours’
position and goal details. Each agent then uses the computed
solution for the subsequent movements. Note that, for large
enough regions, the problem comes down to classic centralized
management.

A novel concept named “free flight” [35] paves the way to-
ward decentralization. It defines a system in which aircraft do
not have predefined routes. Free flight gives the possibility to
partially or completely eliminate centralized ATM, giving the
entire power of choosing route, speed and altitude to aircraft
themselves. One key aspect when dealing with decentralized
control systems is defining ways to identify and solve conflicts:
to avoid collisions, free flight uses the idea of an imaginary
area surrounding each aircraft, called protected zone, where
no other aircraft is allowed; surrounding such zone is the alert
zone: if a generic aircraft is in the alert zone of another aircraft,
both have to start a protocol of conflict resolution. Several
conflict resolution approaches have been proposed over the

last two decades, relaying on pilots or on automated conflict
resolution algorithms.

In particular, [56] proposes free flight conflict resolution
strategies, analysing it both as a single and as a multi-objective
optimization problem. In the former case, the objective func-
tion is the sum of flight times of each aircraft and gas mileage,
and constraints are defined by aircraft technical requirements
(e.g., maximum and minimum altitude). In the latter case, the
function to be optimized is a vector which represents the fact
that the considered aircraft may be motivated by several goals
(e.g., delay, gas consumption).

Another research work on conflict resolution is presented
in [91] where the authors describe two possible strategies,
named non-cooperative and cooperative, and propose several
conflict resolution methods using different techniques. Non-
cooperative conflict resolution usually takes place in emer-
gency situations when aircraft do not share any information
and solve conflicts with no coordination at all. The cooperative
one describes situations where aircraft jointly decide the
strategy to be applied. Note that, in non-cooperative conflict
resolution, aircraft have a finite number of collectively feasible
behaviours and have to select a subset of them which prevents
any possible arising conflict.

A further decentralized conflict resolution method is pro-
posed in [22]. Conflicts are handled from the aircraft point
of view with the aim of developing decoupled conflict reso-
lution procedures: each local conflict resolution procedure is
independent from the ones applied in different locations. The
paper first defines necessary and sufficient conditions for the
existence of such procedures. Then, it analyses several possible
conflicts which meet these conditions and may therefore be
solved through the proposed procedures.

One more conflict resolution approach is described in [68]:
the paper proposes a negotiation process for decentralized
conflict resolution based on game theory. Each aircraft is seen
as a player and conflict resolution is tackled as a two-player
game where each player aims to find a route minimizing a
predefined cost function. An interesting feature of this method
is the fact that, during negotiation, each aircraft has to reveal
its proposed strategies to solve the conflict, but it does not
have to give any other information (e.g., cost function).

In [53], an approach is proposed with aircraft considered
as autonomous hybrid automata, i.e., time invariant hybrid
systems without inputs. Specifically, the paper analyses three
possible cases where one, two or three aircraft are considered.
In particular, given a set of predefined aircraft, it defines
possible evolutions for their state. It analyses all possible
trajectories and computes the optimum one, preventing any
type of possible collision. When two or more aircraft are
considered, the computed optimal solution, known as Round-
about hypothesis, is for aircraft to coordinate their trajectory
as classic car movements at roundabouts.

A MAS approach is presented in [6] with agents (i.e.,
aircraft) moving in a network described as a graph in which
nodes are unique way-points. Agents iteratively communicate
with each other by sending messages containing logistic
information (e.g., location, altitude speed). Each agent has to
perform a three-step decision process: a perception step, i.e.,
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agents receive and store information about neighbour agents;
a decision step, i.e., based on the received information, agents
upload their velocity to avoid possible collisions; an action
step, i.e., agents update their information message and send it
to other agents.

This analysis shows that in decentralized air traffic man-
agement two main issues emerge: trajectory optimization and
conflict detection and resolution. Although in principle the
same holds for real-time railway traffic management, a major
difference exists. Specifically, the degree of freedom of aircraft
as for trajectory is much higher than the one of trains, which
have predefined intermediate stops and have anyway to travel
on existing tracks. It is true that typically aircraft travel on
airways, i.e., on specific routes in the airspace, but airways
aim is mostly the simplification of air traffic controllers’ tasks.
In free flight, no constraints need to be imposed and traffic
management approaches are designed consequently. Therefore,
when dealing with air traffic management, conflict resolution
techniques can exploit a significantly higher flexibility. On
the opposite, fewer speed profile possibilities are available
for aircraft: while a train can stop and wait for virtually any
time lapse, aircraft always need to keep a minimum safety
speed. This makes air traffic and railway traffic management
greatly unequal with respect to essential problem characteris-
tics. Hence, the proposals summarized in this section are not
directly exportable to the problem we consider in this paper.

D. Waterway Traffic System
As air and railway traffic, waterway traffic is currently

managed in a centralized way by the Vessel Traffic Service
(VTS): a service or set of services set up by competent
authorities, designed to increase the safety and efficiency
of waterway traffic and to protect the marine environment.
Recently, several works have been proposed for the study of
vessel motions and conflict detection.

On the first topic, [95] and [96] make a big use of data
provided by the Automatic Identification System (AIS). This
is an automatic tracking system used in the naval field, which
includes information about identification number, speed, route
and position of vessels. In particular, both papers use AIS
statistics as input and model validation data for the proposed
MAS. The simulations turn out to develop realistic situations
which may be useful for many goals, e.g., to simulate the
construction of structural works, to analyse the occurrence of
possible conflicts, to develop more efficient traffic methods.
Although it is not the focus of these papers, they propose de-
centralized approaches thanks to which vessels autonomously
navigate in the waterway network.

Always using AIS data, [97] proposes a three-step MAS
method for waterway traffic management. The first one is
a learning step, where AIS data is used as basis for vessel
motions and how they relate with each other. The second step
requires sensing, i.e., forecast information on the surroundings,
to enable better navigation. The third step is the planning
one: it consists of programming route schedules. Several types
of agents interact with each other, including vessel agents
that simulate vessels behaviour, and shore station agents that
handle long-range route scheduling.

Similarly, [84] proposes a MAS approach: maritime space
is split into a variety of zones organized as nodes of a directed
acyclic graph. Waterway traffic management is carried out by
traffic control agents, and vessels are represented by individual
agents. Historical data are used to generate and validate the
simulator.

A further approach using agents is presented in [87]. The pa-
per tackles the problem of vessel movements and interactions
using a multi-agent path finding method: an iterative algorithm
computing vessel paths is proposed, and it uses AIS data as
an input. Such algorithm works either in historical mode, i.e.,
using historical AIS data, or in live mode, working with real-
time streams of information. At each iteration, a coordination
path finding procedure is performed to set up coordinated paths
for neighbouring agents. A proof of the proper functioning of
this algorithm is proposed by the same authors in [88].

An interesting study aiming to mimic human decision mak-
ing is proposed in [86]. The paper develops a model to handle
vessel motions, as well as to manage possible dangerous
events. The model is based on the military strategy named
Observe Orient Decide Act (OODA). Conceptual Blending
Theory, i.e., a theory explaining the human procedure for
dealing with information, is used to model OODA to develop
a working thread assessment model. By doing so, the paper
implements a human behavioural simulation model to process
vessel movements and thread assessments.

A distributed problem solving network as an approach for
waterways traffic management is proposed in [42]. Vessels
are all processing nodes in the proposed network. They share
information thanks to a communication protocol. The paper
elaborates organizational structuring and an expectation-based
negotiation mechanism to get to effective vessels cooperation.

To achieve a distributed waterway traffic management, [43]
suggests a cooperation method mainly based on inter-vessels
communication. The paper proposes a five-step cooperative
manoeuvring procedure in a secure and well-functioning con-
flict resolution approach. When a conflict is detected, vessels
communicate with each other and make out local conflict
resolution plans. To make sure that feasible local plans exist,
hierarchical structures are created, so that global decisions are
made based on needs of most “important” vessels.

In the same way as for air traffic management, decentralized
waterway traffic management has a prominent degree of
freedom characterizing routes and conflict resolution which
is not to be found in railway networks. As for air traffic,
the main difference between railway and waterway systems
lies in their basic structure: the first is characterized by pre-
defined and fixed paths constrained by tracks, and they cannot
be changed no matter how critic a situation is. The latter
can exploit more flexible routes (sea lanes) with the actual
possibility of being modified when needed. Differently from
the air traffic management case, in waterway complete stops
can be envisaged, although they are not as simply achieved as
in railway. Therefore, as above, research works dealing with
waterway traffic management can hardly be exploited for the
problem we are tackling.
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V. MODELLING POSSIBILITIES FOR DECENTRALIZED
REAL-TIME RAILWAY TRAFFIC MANAGEMENT

As discussed in Section IV, the literature on other modes
of transport cannot be easily exported to real-time railway
traffic management. Hence, in this section we analyse different
approaches which may be at the basis of the emergence of
an effective behaviour of a decentralised system as the one
we are considering in this paper. Recall that trains’ behaviour
concretises in having each train taking one of the routes avail-
able for performing its mission and respecting precedences
at junctions when it needs to let another train pass first. This
behaviour brings to a collective system’s behaviour, which can
be assessed considering a function of resulting delays. The
approaches we present in this section are of two types.

On the one hand, we present approaches in which the
behaviour of the system emerges from the application of
predefined rules without any actual decision made by trains.
Rules may come from some hierarchy relations between trains
(Section V-A) or be driven by task allocation principles, where
a task may be seen as passing first at a junction (Section V-B).
Moreover, they may be automatically learned from the histor-
ical outcomes of similar situations (Section V-C).

On the other hand, we describe approaches in which the
behaviour of the system results from trains decisions, on which
they reach an agreement. This agreement may be reached
thanks to the attainment of a consensus (Section V-D) or to
an auction negotiation (Section V-E). Finally, we analyse the
case of system components that simultaneously cooperate and
compete for making the best decisions (Section V-F).

A. Hierarchy

A hierarchy is the organization of components or indi-
viduals into groups, based on their degree of importance.
The development of hierarchical systems is very common in
social structures of any kind. In these systems, the higher
the importance of a member is, the more it has privileges
and power. Dominance hierarchy formations are a common
peculiarity of animal kingdoms, where animals behave based
on their hierarchical ranking. The accepted explanation for the
presence of animal hierarchies is the so called winner-loser
effect. With winner-loser effect it is defined the condition in
which the individual possibility of winning or losing a contest
is affected by previous results. Namely, if an individual wins a
contest, this raises its probability of winning the following one;
respectively, with the losing effect, losing a contest decreases
the probability of winning in the future.

Modelling a hierarchical structure in the problem of decen-
tralized real-time railway traffic management may be consid-
ered as defining a hierarchy of trains. As we will see, this
hierarchy may be implied by many factors and may define the
order of passage of trains at a junction. Specifically, suppose
that a train suffers a delay with respect to the timetable,
causing the occurrence of a conflict: if it ran at the planned
speed, it would use a junction at the same time as another
train. The conflict corresponds to a contest. In this case, the
hierarchical ranking between the two trains may be used to

identify the winning one, i.e., the one that has the power to
decide which one passes first.

Winner-loser effects have been widely discussed in animal
groups. In [26] a model for the formation of hierarchies is
proposed. Each individual is characterized by two factors: the
winner-loser effect and the resource holding power (RHP).
The first one, as already explained, is strictly related to the
results of the previous contests; instead the RHP is a physical
attribute that defines the capability of an individual of winning
or losing (e.g., its strength). An important feature of the
proposed model is that, when a contest occurs, each individual
has no information about its opponent except for a time
invariant assessment of its RHP. The model is used to examine
how winner-loser effects affect the formation of hierarchical
structures. It considers different cases: when only one between
the winner and the loser effect is significant and if both winner-
loser effects matter. The fact of having no information on
the opponents is no longer present in [27], where the same
research group presents an updated version of the model. Each
individual has an estimate of its opponent’s RHP. The accuracy
of the estimation changes and its effects on the formation of
hierarchies are studied.

The two models just mentioned are the central topic of [47].
The paper evaluates and analyses the results of these models
on the basis of simulations, mainly focusing on the number of
contests necessary for the emergence of hierarchical structures.

A review of previously published works is also proposed
in [52]. It analyses [26] together with the models in [3] and
[40], both examining the emergence of hierarchies due to
winner-loser effects. Apart from examining the accuracy of
these models to represent the observed behaviour of groups
of individuals, an interesting aim of the review is to try
finding alternative ways of defining the RHP. As already said
before, the RHP is an inner value that specifies the strength
of each individual and, therefore, the models do not give a
mathematical formulation to quantify it. The paper links the
RHP of an individual to the number of times it won and lost,
making it easy to compute.

The idea proposed by these models could fit well our goal of
modelling decentralized real-time railway traffic management,
at least in a first step. Both winner-loser effect and RHP value
are adaptable concepts in the case of railway. As mentioned
above, a contest takes place when more than a train wishes
to cross a junction at the same time or in a short interval. It
is trivial to see that if only two trains are meeting, winning
a contest is equivalent to going first. Instead, if several trains
meet, it is less immediate to understand who wins and who
loses. A way of dealing with more trains could be to rank
the ones having to cross a junction and assign a value to
each train based on its position on the obtained list. The
winner-loser effect can be seen as based on the history of each
train, defined by what happened in the previous meetings. In
a simple design, the RHP value could represent the different
types of trains that may have different priority, e.g, high-speed
trains, conventional trains, freight trains and dangerous freight
trains. Note that the use of this kind of model makes the
background information and the predefined priority of each
train affect its path, but does not consider any other factor
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which may have an impact on the importance for a train to go
first.

Somehow allowing the consideration of other factors, a dif-
ferent approach is proposed in [7], where hierarchy formations
are established using game theory. In particular, this work uses
a multi-player version of the Hawk-Dove game. In this game,
when two players aim to the control of a resource, they can
chose between an aggressive hawk strategy or a passive dove
one. The choice of the strategy depends on the expected reward
obtainable with it. When two hawks fight, they go on until one
decides to leave because of the injuries sustained; if two doves
meet, they don’t fight but equally share the resource; when a
dove and a hawk meet, the dove leaves and the hawk gets the
entire resource. Hence, this model has the peculiarity of not
having past results interfering with the possibility of winning
or losing a contest: no winning-losing effect is present but,
based on the strategy chosen, an individual has a defined prob-
ability of winning. An earlier and more elaborated version was
proposed by the same research group in [8], where more than
two individuals can compete at the same time. Although this
version may be suitable to represent many situations, it comes
with a significant increase of complexity. This complexity is
not always acceptable, especially in dynamic environments.
The idea of using strategies as proposed in [7] and [8] could
be interesting for the problem we are considering, moving a
step toward train decision making. To apply it, it would be
necessary to define what the reward associated to a strategy
is in the trivial case of several trains meeting at a junction:
these rewards may be linked to the features of the trains but
also to external factors such as delay, number of passengers
or importance of the goods transported. As a further step,
this model could be extended to a more complex system,
with the consequence of having to deal with multiple agents
and a large set of all possible strategies, for example based
on the need to cross several junctions one after the other.
Moreover, the possibilities of having or not perfect information
on other agents rewards would be an interesting development,
particularly suitable for the railway traffic context in which
we may think of different railway undertakings not wanting
to share their utility functions. As mentioned above, unlike the
winner-loser approaches, this model can value how important
it is for a train to go first. In this way, the model allows to
better deal with peculiar situations, for example when two
trains meet right after the departure, and hence without any
background on previous contests.

B. Task Allocation

The problem of assigning tasks to a collection of agents
is known as task allocation and is a very common problem
in everyday life applications. A remarkable example is easily
recognizable in all the most famous electronic commerce
companies, such as Amazon or eBay, funded in the last couple
of decades. In fact, when an order arrives, it is assigned to an
agent, usually a robot, that takes care of the preparation tasks.
These companies usually have to deal with a huge number
of shipments per day, making the process of organizing the
distribution of tasks to different agents essential.

In real-time railway traffic management, assigning tasks
to a set of trains needing to cross a junction may mean
deciding the order of the trains: the tasks may be going first,
second and so on. Task allocation rules may then define train
precedences. Alternatively, from a dual perspective, a junction
may be the focus of the model and tasks may correspond
to the fact of being traversed by each train. Allocating tasks
in a specific order would bring to define trains’ precedence.
Indeed, in a complex network including several junctions and
the possibility of re-routing, these examples cannot be so easily
applied. However, it may be possible to think of a mechanism
that allocate tasks considering their interdependence.

The definition of a taxonomy of task allocation problems
is the central topic of [37] and [59]. In [37], multi-robot task
allocation problems are classified using three features: robot,
task and time. Different approaches are proposed if: robots can
manage only one task at a time or are capable of handling more
tasks; tasks require one or more robots; allocation time must
be immediate or can be planned in advance. Similarly, [59]
classifies task allocation problems but focusing on temporal
and ordering constrains. Hence, tasks are classified based on
their urgency of being carried out and on the specific order they
need to be executed in. In [37], all the approaches considered
are performed in a centralized way. Instad, [59] gives a
brief categorization of decentralized approaches underlining,
however, the limited number of existing works.

In [31] the problem of task allocation is analysed in the
context of MAS, proposing a model called TRACE (Task
and Resource Allocation in Computational Economy). The
paper characterizes each task by four factors: type, duration,
deadline and priority. The type factor specifies the necessary
characteristics that an agent should have in order to accomplish
the task; the amount of time needed to complete the task is
the duration; the deadline gives information about the latest
possible time for a task to be carried out; the priority tells
how important the task is. Each agent to whom a task can be
allocated, can be different and have dissimilar abilities from
the others. This matching between task and agent’s capability
to perform it, somehow leads back to the ideas of hierarchies:
the most suitable agent wins the task. However, a more
elaborated procedure is proposed here to take into account of
the multiplicity of capable agents and of their organization.
Specifically, the TRACE model groups agents in so-called
organizations. In each of them there is an agent in charge or
resource management and a set of agents who may be either
permanent or marketable. A task can be allocated either to an
agent or to an organization. When it is allocated to an agent,
the resource manager can ask for help to the other agents in
the organization. When it is assigned to an organization, the
resource manager decides if it can be accomplished with the
available resources. Otherwise, he can ask for extra help to the
other organizations who may accept to temporarily share their
marketable agents. In our opinion, this model is not appropri-
ate for modelling real-time railway traffic management, due,
first of all, to the very specific characteristics that define each
task (i.e., type, duration, deadline and priority). In the problem
we are interested in, tasks characteristics would strictly depend
on the train-agent performing them. For example, the task
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“going first through a junction” may have different durations
depending on the selected train-agent. If it is allocated to a
high-speed train running at full speed, it will have a very short
duration. If it is allocated to a freight train right after a stop,
the duration will be much longer. Also, if thinking to the dual
perspective of a representation focused on junctions, the same
issue remains: if the order of tasks allocated to a junction
is high-speed train first and freight train second, the task
durations will be different from the case of opposite ordering.
Specifically, if the “high-speed train” task is performed first,
it will have the duration corresponding to a free network
run. Instead, if it is performed second, additional braking
and acceleration times will have to be included in the task
duration. The same holds for the ”freight train” task, although
the specific times will be different from those of the high
speed train. A further aspect which makes the TRACE model
unsuitable for our problem is the idea of organizations possibly
sharing tasks’ burden among different agents which is not
really compatible with the definition of trains precedences.
Differently, the concept of grouping agents in organization
which manage tasks internally may be an interesting hint to
be exploited. In particular, it may represent the case of several
trains having to cross a junction and belonging to few railway
undertakings. Here, the task “going first through a junction”
may be allocated to a railway undertaking-organization, which
would decide to which of its trains-agents assign it.

A mathematical approach to the task allocation problem is
presented in [30]. The paper studies the problem of allocating
tasks to a set of agents represented as nodes in a graph:
two nodes are linked if the corresponding agents can com-
municate with each other. The authors propose a distributed
iterative algorithm to perform a task allocation through a
linear programming model. At each iteration a subset of tasks
are allocated to agents in the neighbourhood of a randomly
selected one. If throughout successive iterations all tasks can
be allocated, the algorithm stops. Otherwise some constrains
in the local allocations are relaxed.

In [36] the task allocation problem is studied in the field
of a multi-robot system using an Artificial Immune Network
model. In the system, B cells produce antibodies that interact
with antigens, with the feature that each antibody can interact
only with one specific type of antigen. In the paper, robots
behave as B cells and tasks as antigens. When a task has
to be allocated, each robot is associated to a specific value
that describes its capability to perform the task. The proposed
algorithm chooses the robot for a specific task based on this
value.

The last two models proposed could both represent inter-
esting solutions for modelling decentralized real-time railway
traffic management. In particular, the global solution presented
in [36], can be almost directly used in our case. The cells
allocated to each antigen may be the trains which have to
cross a specific junction. The value describing the capability
to perform a task may reflect aspects as trains priorities,
current state and possibly the cost of the delay which may
come from the task allocation. However, capturing aspects
as the multiplicity of trains operated by the same railway
undertaking or the interdependence of junctions may not be

straightforward. Indeed, the former may possibly enter in the
capability quantification, while for the latter a different variant
of the model needs to be designed.

For applying [30] to our problem, the model proposed
should be adapted even for the independent junction case.
However, it is particularly interesting due to the use of the
concept of neighbourhood. In our case, the neighbourhood
may be interpreted in temporal terms: the task allocation may
be done only considering the trains which get to a junction
in a certain time interval. As time passes, the interval may
shift and, hence, the neighbourhood may change. Indeed,
such procedure would require the definition of further rules,
to replace the centralized management with a decentralized
approach in which each train simply follows predetermined
rules.

C. Reinforcement Learning
An approach quite often used for managing decentral-

ized systems is reinforcement learning. The Swiss Federal
Railways (SBB-CFF-FFS) is currently developing such an
approach for decentralized real-time railway traffic manage-
ment [28], although no details on this development are
available. Generally speaking, in reinforcement learning the
system is in charge of defining the rules which will drive its
behaviour. It does so through replicating the same process a
large number of times, each time receiving feedback on the
quality of the rules applied. Eventually, good rules emerge
without the definition of specific criteria: these criteria emerge
in the replications and do not need to be fully explained or
understood.

In decentralized real-time railway traffic management, this
may mean, for example, exploiting the records of historical
decisions made by dispatchers in the practice, to learn how to
replicate their principles. Alternative to historical data, another
option may be to simulate a large number of perturbed traffic
situations managed through some optimization algorithm. In
principle, any source of data that allows the assessment of
good traffic management rules may be the basis of a rein-
forcement learning approach for our problem.

In [73] and some following papers (e.g., [100]), reinforce-
ment learning is used to schedule jobs on a set of machines
in a decentralized decision making framework. The aim is
obtaining good scheduling solutions extremely quickly. The
vision is resource-based: machines choose in which order
they shall complete jobs. Here, learning means iteratively
improving the decision policy with respect to the optimization
of the global costs. To do so, particular attention needs to
be paid to the definition of each resource’s choice criterion,
which shall reflect as much as possible the global aim. In a
railway perspective, this would translate into having a track
which needs to be used by several trains to choose which
train shall cross it first. The choice should be based on a
criterion coherent with the overall system aim, for example
delay minimization. This perspective may become unsuitable
when one of the possible choices consists in deciding whether
to use a track or to re-route.

The opposite, job-centric perspective is very seldom adopted
in scheduling approaches. Indeed, it is the choice made by
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SBB-CFF-FFS. Here, trains learn how to define interaction
strategies which allow all of them to reach their final station
effectively.

Indeed, the idea of using reinforcement learning is valuable
if it is possible to define a priori what a good solution is.
Long tests are necessary to train the system, and for each of
these test it must be possible to state if the strategy chosen
brought a good result or not. In a sense, the decentralization
through reinforcement learning can be successful to obtain
a computationally efficient approach to reproduce the results
of a centralized decision. Instead, if the decentralization is
aimed at, for example, allowing the non-disclosure of private
information, it may not be possible to define a suitable test-
bed to train the system. In the context of real-time railway
traffic management, this non-disclosure condition is indeed
an appealing trait of a decentralized system. For example,
railway undertaking may prefer not to share information on
the internally defined priority of some trains, especially in the
context of increasing competition which is envisaged for the
system at the European level. Another issue that may hinder
the use of an approach based on reinforcement learning in the
railway context is the natural lack of understanding behind
specific choices. In a competitive system in which actors
acceptance is important, it will be in our eyes crucial to be able
to explain the functioning of the system. Indeed, this is not an
issue in countries as Swiss, where the main railway companies
operate their own networks as they run the trains along it.
Instead, in countries subject to EU directives, competition is
expected to increase in the future.

D. Consensus
The decision making process in decentralized systems is

often modelled as the consensus problem. Consensus means
getting all the components of a system to reach a common
decision about certain tasks of interest.

In MAS, reaching consensus consists in a procedure where
all the agents in the network interact with each other, with the
purpose of reaching an agreement on a common behaviour.
The process that leads to consensus is modelled through
iterative interaction algorithms where, at each iteration, agents
reveal their opinion to the others, moving toward a common
behaviour.

In real-time railway traffic management, reaching a consen-
sus may be the process of getting a common decision that
all the components of the system need to observe and follow.
Specifically, the consensus should be reached on how to use
limited resources, i.e., in what order trains should pass through
a junction in case of conflict, or what route should each train
follow.

Over the last decades the increasingly frequent use of dis-
tributed systems has made the design of converging consensus
algorithms a central research topic. Overviews focusing on
recent works on consensus and MAS are given in the surveys
[12] and [62]. Both studies analyse consensus in complex
dynamic systems, taking into account the effects of time delay
in the general performance.

The problem of consensus under time delays is also studied
in [90]. Two different types of time delay are considered:

input delay and communication delay. The first defines the
delay given by the necessary time for the input to arrive at the
agents, the latter is given by the time gap between transmitting
information and receiving it. The paper analyses the consensus
problem with input delay only and when both information and
input delay are present.

A particular kind of consensus problem in MAS is the one
that considers one agent as special, with dynamics independent
of the others, and is known as leader-following consensus
problem. For example, [58] considers the leader following
consensus problem in the case of time-varying interaction
topology, i.e, when the structure of the interconnection be-
tween agents is not fixed but changes over time.

Similarly, [72] considers topologies that change in a dy-
namic way. It examines the conditions that guarantee the
convergence in time-varying networks when the information
exchange is not complete and trusted.

The cited works tackle the continuous consensus problem.
Continuous consensus decisions require the group to achieve
consensus for one of an infinite number of options, while
the discrete consensus decisions require the group to choose
from a finite set of options. The latter is often referred to
as the best-of-n problem, where n stands for the number of
available options. [94] proposes a literature review of the state
of the art on the formalization and solution of this problem.
For example, [71] considers a population of agents, in which
each agent is either committed to one of the available options
or is uncommitted. Agents can obtain a noisy estimate of
the quality associated to each option. At macroscopic level,
a decision is taken as soon as the entire population or a
large fraction of it is committed to a single option. At micro-
scopic level, the paper represents the behaviour of individual
agents as a probabilistic finite state machine that describes
the commitment dynamics. An agent probabilistically and
periodically changes between a committed and non-committed
state according to two types of transitions: spontaneous and
interactive. Spontaneous transitions model the discovery of
an option or the abandonment of commitment to it with a
given probability. Interactive transitions model the recruitment
and cross-inhibition processes resulting from the interaction
between differently committed agents.

An important feature that generally characterizes consensus
algorithms is that, in order to reach an agreement, they
perform a number of iterations in which agents observe each
other’s behaviour before converging. For example, it may be
necessary to reach a consensus on the speed of several agents
sharing an infrastructure. Initially all agents travel at different
speeds. Throughout iterations, they progressively start moving
uniformly, converging to a somehow average speed, or to the
speed of the leader. This problem can be relevant in the railway
system for synchronizing the speed of trains which follow each
other, for allowing energy efficiently and avoiding continuous
braking and acceleration mostly in high speed lines [50].
Instead, the definition of trains routes and precedences in real-
time railway traffic management cannot be effectively dealt
with through iterative adjustments aiming to converge to the
same behaviour of all trains. Hence, the algorithms proposed
to tackle the consensus problem are not suitable.
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Furthermore, although at first sight discrete consensus prob-
lem may closely match real-time railway traffic management,
a relevant difference exists. In particular, in discrete consensus,
agents do not have individual competing preferences, and they
all aim to the best solution for the group. Indeed, it would
be socially very good if this could be reproduced in railway,
but we do not believe it to be an actual possibility in an
increasingly competitive context as the one we consider.

E. Auctions

Another method that allows coming to an agreement on the
use of resources by several agents is represented by auctions.
In auctions, several agents bid on one or more resources and
the ones that mostly value the resources obtains them. This is
the principle behind auctions, and several mechanisms exist to
try to enforce it.

In real-time railway traffic management problem, resources
may represent the right of passing through a junction at a
certain time, or in a certain position of the schedule. Trains
would then bid, possibly each valuing the resource in different
ways, and the negotiation in the auction would bring to the
final routes and precedences. Specific bids would be the result
of trains’ decision making on the value to assign to each
resource. If the auction is designed in particular ways, for
example considering bundles of resources rather than single
ones, each train’s evaluation may remain to some extent private
information.

Three main properties that may be sought for in the def-
inition of these mechanisms are budget balance, individual
rationality and incentive compatibility [46]. A mechanism is
budget balanced when the overall amount paid and received
by the agents participating in the exchanges sums to zero.
A mechanism is individual rational when no agent is dis-
advantaged by participating, i.e., the amount paid plus the
utility it associates to the acquired resources is always at
most equal to the maximum cost or disutility it is ready to
bear. A mechanism is incentive compatible if no agent has
an advantage from cheating. In general, it corresponds to no
agent having an advantage from declaring a willingness to
pay different from the true one for a resource. Unfortunately,
a mechanism cannot be at the same time budget balanced,
individual rational and incentive compatible, as shown in [57].
Hence, at most two of these properties must be privileged in
the design of a mechanism.

Auctions have been used in very different contexts. In
the transportation field, they are frequently considered to
solve pricing problems, for example for the use of automated
vehicles [99] or for the definition of highway tolls [85].
In [20], micro-auctions are used to properly set traffic lights
in a flow-dependent manner. The idea is to have phases,
i.e., specifications of which lanes of traffic at an intersection
may flow, bidding for becoming active depending on traffic
detections. The phase which proposes the highest bid becomes
active (after the appropriate yellow). This approach is not
uninteresting from a railway traffic management perspective.
However, it may only represent the case of having as ob-
jective function the maximization of train flows, regardless

the timetable. Even in this case, the flow detection shall be
attentively designed, since indeed arrival flows on tracks and
roads are very different in magnitude.

Following principles similar to the ones of auctions, [65]
proposes a combinatorial exchange mechanism applied to air
transport. A combinatorial exchange is an auction mechanism
in which several agents negotiate bundles of resources. In
the paper, resources correspond to the right for an aircraft of
using airport infrastructures or airspace sectors capacity at a
given time. Indeed, only times and routes which are coherent
with each other are relevant for the exchanges. This problem
emerges in the timetable definition phase. Airlines participate
to the exchange having an original allocation, which they try to
improve. No money exchanges occur, but if an airline desires
the use of a highly valued resource, it must be willing to
renounce to one or more resources which together bring the
same value to the market. A mechanism as the last one may
suit the real-time railway traffic management problem quite
nicely: railway undertakings may manage several trains which
need to cross the network encountering different conflicts.
They may be willing to sacrifice a train for favouring another
one. Many trains may bid on the same resource, i.e., many
trains may be involved in a conflict. Moreover, bundles of
resources may be considered: the value associated to a train
passing first at a junction also depends on its passing orders
at future ones. However, two main issues emerge. On the one
hand, a design principle is not straightforward: what happens if
a railway undertaking has only one train, and cannot sacrifice
anything to obtain good passing orders for it. On the other
hand, the size of the problems to tackle may become very
large, due to the consideration of all junctions trains may cross.
Hence, the computational performance of solution algorithms
may hardly be suitable for real-time decision making.

The idea of using auctions to allocate track access rights
to railway undertakings has been briefly explored in [81].
Specifically, different existing mechanism are considered, and
their merits and lacks are discussed. This work may definitely
be used as a basis for defining a decentralized real-time railway
traffic management approach, but significant modifications
need to be made. In particular, in [81] the timetable definition
problem is tackled, which takes place some months before
operations. Although this problem is very similar to the one
we consider in this paper, in timetabling it is possible that no
track is allocated to a train or to a railway undertaking. Instead,
in real-time railway traffic management, trains are actually
running and they need to be fit in the schedule. To guarantee
the accessibility of the network, specific mechanisms may be
proposed.

F. Coopetition

The expression coopetition is the combination of the words
cooperation and competition, mainly used in inter-corporations
backgrounds. It describes peculiar situations where companies
compete in a market but simultaneously make some kind of
profit cooperating with each other.

In decentralized real-time railway traffic management, trains
can be seen as agents interacting in a coopetition framework.
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They would compete in order to obtain the best conditions for
themselves, trying to pass first at junctions and travel along
the shortest route. At the same time, though, trains would
cooperate for the general performance of the system, with
the common aim of getting good results in terms of delays.
Hence, their routes and precedences would be fixed taking
into account this common aim. This cooperation may bring the
indirect reward that emerges in repeated games: each train may
have interest in making decisions so that the system is well
performing. Although in some cases a train may be penalized
by cooperation, the criterion linked to the overall performance
indirectly implies that no one is too disadvantaged. Hence,
in repetitions of a decision making situation in which a train
itself happens to be the most penalized one, it can count on
being somehow protected thanks to the system perspective.

The idea of coopetition is often combined in an interesting
way with game-theory models where the participants are seen
as players of a specific game. In particular, one of the first
works to explore the idea of combining coopetition and game
theory can be found in [5]. The book proposes to apply the
idea of exploiting game theory models in which each agent
has more than one possible strategy, analyses the obtainable
results and then chooses the best alternative. Specifically, each
“player” has to foretell the initial behaviour of its competitors
as well as their possible reaction to its moves in order to fully
assess all strategies. This work is considered a landmark in
the field of business game.

A work that takes inspiration from [5] is [61]. The paper
provides a recent review on coopetition and game theory. The
paper briefly clarifies why using game theory in the context of
coopetition can bring benefits. Moreover, the review presents a
mainly generic solution to do so in the context of both normal-
form and form-based games, i.e., games that are split into
sequential independent situations.

As briefly described at the beginning of this section, the
idea of coopetion is mainly developed in the field of business,
where concrete examples can be found. Specifically, [76]
describes the idea of co-branding as some kind of strategic
coopetition agreed between two or more companies, specifi-
cally between Nike and Apple. After calculating basic data on
these companies (e.g., annual growth rate) the paper analyses
the possible pay-offs of the coopetition using a decision tree.
Results are discussed afterwards, coming to the conclusions
that both companies would benefit from a coopetitive alliance.

Somehow in a similar spirit, [60] analyses the problem
emerging in the context of Japanese insurance companies using
a game theoretical approach. The paper examines the problem
using a well-detailed scheme: the suggested model is split
into two stages. It considers two companies having to choose
how to behave in the market while keeping the behaviour of
the other under control. In the first stage of the game each
company independently chooses how much of its budget to
invest in loss-prevention advertisement, described using an in-
vestment cost function. Then, investments are made public and
the second phase of the game begins: policy sales investment
are chosen and based on these choices the game is analysed
looking for a possible equilibrium. An aspect that makes this
paper particularly interesting and that is not always present

in the literature, is the fact that the whole game is formally
described using a mathematical formalization, clarifying the
details of the proposal and making its reproduction possible.
Indeed, a variant of this formalization may be proposed for the
real-time railway traffic management problem. However, the
paper analyses the very trivial case when only two participants
are considered. The problem we are trying to examine is way
more complex in both the number of members and the amount
of parameters. Hence, even if this work may be seen as a
first step in the right direction, it has to be deeply extended
to be actually used for decentralized real-time railway traffic
management.

VI. CONCLUSIONS

In this paper, we proposed an analysis of the state of the
art aiming to identify possible ways to model decentralized
real-time railway traffic management. This problem consists
in defining trains’ routes and precedences when perturbations
occur and the planned timetable becomes infeasible. The
one proposed is a new approach opposed to the currently
deployed centralized systems. Although still being virtually
unexplored in academic literature, its potential is investigated
by railway infrastructure managers in different European coun-
tries. Indeed, industry sees that decentralized decision making
may allow the development of a system featuring important
characteristics which lack in the current centralized one.

We first described the current literature on centralized and
decentralized real-time railway traffic management systems.
This showed how little has been done concerning the latter.
Thus, we focused on the more extensive existing literature
on other transport modes, seeking for possibilities of cross-
fertilization. Namely, we considered road, shared mobility, air
and waterways systems. Although intuitively these systems
may appear quite similar to the railway one, we realised
that important differences exist and this convinced us to head
toward other directions.

In particular, we analysed the process which may be fol-
lowed to reach a common behaviour in decentralized systems.
Specifically, we focused on rule-based processes, in the form
of hierarchies, task allocation or reinforcement learning, and
on decision making ones, modelled as consensus seeking, auc-
tions and coopetition. For most of these processes, we found
and pointed out promising ideas that could be actually used for
modelling decentralized real-time railway traffic management.

After this analysis, we think that a rule-based approach may
be used as a starting point. These approaches have the advan-
tage of translating in quite simple algorithms, which may thus
find solutions to the trains’ routes and precedences definition
problem in very short times. Moreover, their simplicity may
ease their explanation to the community. Indeed, although part
of the industry is already looking with interest at decentral-
ization, there is still a long way to go before it is considered
as actually possible for deployment. In this perspective, we
think a hierarchical approach could be the most appropriate, al-
though task allocation ones are also promising. As for learning
approaches, despite their undeniable interesting characteristics,
we think their utilization is made more complex by the need
of very big databases necessary for the learning itself.
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While using simple approaches to widen the acceptance of
decentralized real-time railway traffic management, we think
academia may focus on more complex ones for enhancing the
performance of the system. Indeed, the system must be capable
of achieving performance that are comparable with those of
the current state of the art on centralized approaches. We doubt
that rule-based approaches may be able to do so. Instead,
decision making ones may definitely succeed. Namely, we
think that auction-based approaches look the most promising,
although significant effort must still be done for making them
applicable to the problem at hand. Probably, also coopetition
approaches may be explored, but their definition is quite light
for the moment and the effort required may hence be even
bigger.

In future research, we will work on the actual instantiation
of some of the identified promising ideas. This will most likely
allow a further shrink of the panel of possibilities, up to the
identification of a single most promising one to be developed
and deeply studied.

A decentralized approach may allow overcoming some
important issues of the current system. Once such an approach
is formalized and tested, the choice between decentralized and
centralized system shall be considered as a trade-off. This
trade-off is nicely presented in [80], as a sort of key for the
analysis of current practice in different European countries.
In the paper, decentralization is interpreted differently from
what we do here. We intend it as having the system behaviour
emerging from the combination of individual trains behaviour.
It may be rule-based or result from an actual decision making
process, but in any case it does not involve any organization
having decisional power over all trains in an area. In [80],
a system is decentralized when local control centres with
decisional autonomy exist. Despite this different interpretation,
the analysis made in the paper fits our scope, too. Specifically,
deciding whether let a centralized organization make decisions
or decentralize them requires a very good understanding of
the system to anticipate how it may be affected by losses
and benefits. For example, a centralized approach warrants
a general and global perspective, hence facilitating rapid and
decisive coordinated actions. Instead, a decentralized system
may exploit the high flexibility brought by a very detailed
knowledge of the local context and a direct control over
resources.
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