Bounding Basis-Risk Using s-convex Orders on Beta-unimodal Distributions

23rd International Congress
Insurance: Mathematics and Economics
Claude Lefèvre, Stéphane Loisel, Pierre Montesinos

July 2019

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

2 / 15

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Identification of worst-case scenarios

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Identification of worst-case scenarios

Measurement of basis risk

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Identification of worst-case scenarios

Measurement of basis risk

Definition of some risk limit for basis risk management

Model-free approach?

Z: parametric loss index,

L: true loss of the insurer

Model-free approach?

Z: parametric loss index,

L: true loss of the insurer

Efficient choice of the Index:

$$Z-c \leq L \leq Z+a$$
,

Model-free approach?

Z: parametric loss index,L: true loss of the insurer

Efficient choice of the Index:

$$Z - c \le L \le Z + a$$
,

Link between the Loss and the Index:

$$L = Z - c + X,$$

where X = SY, $X \in [0, a + c]$.

Beta-unimodal Distributions

Definition

An \mathbb{R}_+ -valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$X =_{d} SY, (1)$$

where Y is a positive continuous rv, and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

Beta-unimodal Distributions

Definition

An \mathbb{R}_+ -valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$X =_{d} SY, \tag{1}$$

where Y is a positive continuous rv, and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

From Y to X: if $Y \sim F_Y$ and if X is Beta-unimodal

$$\bar{F}_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)} x^{\alpha} (I_{\beta} \phi)(x), \tag{2}$$

where:

-
$$(I_{\beta}\phi)(x) = \int_{x}^{\infty} \frac{1}{\Gamma(\beta)} (t-x)^{\beta-1} \phi(t) dt$$
 is called the Weyl fractional-order integral operator, - $\phi(t) = \bar{F}_{Y}(t) t^{-\alpha-\beta}$.

Definition: s-convexity

A function ϕ defined on S is said to be s-convex if the inequality

$$[x_0,...,x_s;\phi]\geq 0,$$

holds for any choice of distinct points $x_0, ..., x_s$ in S.

 $[x_0,...,x_s;\phi]$ denotes a divided difference of the function ϕ at the different points $x_0,...,x_s$.

Definition: s-convexity

A function ϕ defined on $\mathcal S$ is said to be s-convex if the inequality

$$[x_0,...,x_s;\phi] \geq 0,$$

holds for any choice of distinct points $x_0, ..., x_s$ in S.

 $[x_0,...,x_s;\phi]$ denotes a divided difference of the function ϕ at the different points $x_0,...,x_s$.

s differentiability condition: if $\phi^{(s)}$ exists in \mathcal{S} , then ϕ is s-convex if and only if $\phi^{(s)} \geq 0$.

Definition: s-convexity

Definition: s-increasing convexity

A function ϕ is said to be s-increasing convex on its domain \mathcal{S} if and only if for all choices of k+1 distincts points $x_0 < x_1 < x_k$ in \mathcal{S} , we have

$$[x_0, x_1, ..., x_k; \phi] \ge 0, \ k = 2, ..., s.$$

We denote by $\mathcal{U}_{s-icx}^{\mathcal{S}}$ the class of the s-increasing convex functions on \mathcal{S} .

Definition: s-convexity

Definition: s-increasing convexity

Definition: s-convex order

Let X_1 and X_2 be two random variables that take on values in S. Then X_1 is said to be smaller than X_2 in the s-convex order, denoted by $X_1 < \mathcal{S}_{s-c} \times X_2$ if

$$\mathbb{E}[\phi(X_1)] \le \mathbb{E}[\phi(X_2)] \text{ for all } \phi \in \mathcal{U}_{s-cx}^{\mathcal{S}}, \tag{3}$$

where $\mathcal{U}_{s-cx}^{\mathcal{S}}$ is the class of all the s-convex functions $\phi: \mathcal{S} \to \mathbb{R}$.

Identification: s-convex extrema

Definition: moment space

We denote by $\mathcal{B}_s([a,b],\mu_1,\mu_2,...,\mu_{s-1})$ the moment space of all the random variables valued in [a,b] and with known s-1 moments $\mu_1,...,\mu_{s-1}$.

Identification: s-convex extrema

Definition: moment space

We denote by $\mathcal{B}_s([a,b],\mu_1,\mu_2,...,\mu_{s-1})$ the moment space of all the random variables valued in [a,b] and with known s-1 moments $\mu_1,...,\mu_{s-1}$.

Theorem: s-convex extrema

Let $Y \in \mathcal{B}_s([a, b], \mu_1, \mu_2, ..., \mu_{s-1})$.

Within $\mathcal{B}_s([a,b], \mu_1, \mu_2, ..., \mu_{s-1})$, there exist two unique random variables $Y_{min}^{(s)}$ and $Y_{max}^{(s)}$ such that

$$Y_{\min}^{(s)} \leq_{s-cx} Y \leq_{s-cx} Y_{\max}^{(s)}.$$

Proof. See Denuit et al. (1999).

s-convex extrema are actually extremal distributions built from the s-1 first moments of Y.

Identification: s-convex extrema

3-convex extremal distributions Let $Y \in \mathcal{B}_3([a,b], \mu_1, \mu_2)$.

and

$$Y_{max}^{(3)} = \begin{cases} \mu_1 - \frac{\mu_2 - \mu_1^2}{b - \mu_1} & \text{with proba } \frac{(b - \mu_1)^2}{(b - \mu_1)^2 + \mu_2 - \mu_1^2}, \\ b & \text{with proba } \frac{\mu_2 - \mu_1^2}{(b - \mu_1)^2 + \mu_2 - \mu_1^2}. \end{cases}$$

Generalization to Beta-unimodal distributions

Proposition (Beta-unimodal s-convex extrema)

Let $Y \in \mathcal{B}_s(\mathcal{S}, \mu_1, \mu_2, ..., \mu_{s-1})$, and let $\phi \in \mathcal{U}_{s-cx}^{\mathcal{S}}$. If X is Beta-unimodal, then $X \in \mathcal{B}_s(\mathcal{S}, \upsilon_1, \upsilon_2, ..., \upsilon_{s-1})$ and the s-convex extrema in this set are

$$X_{min}^{(s)} = SY_{min}^{(s)}$$
, and $X_{max}^{(s)} = SY_{max}^{(s)}$.

Besides, if $\phi \in \mathcal{U}_{s-icx}^{\mathcal{S}}$, then

$$\mathbb{E}[\phi(X)] \leq \mathbb{E}[\phi(SY_{\textit{max}}^{(s)})] \leq \mathbb{E}[\phi(SY_{\textit{max}}^{(s-1)})] \leq ... \leq \mathbb{E}[\phi(SY_{\textit{max}}^{(2)})],$$

which can be written as,

$$\forall k \in [2, s], X \leq_{k-cx} X_{max}^{(s)} \leq_{k-cx} X_{max}^{(s-1)} \leq_{k-cx} \dots \leq_{k-cx} X_{max}^{(2)}.$$

When $\phi \in \mathcal{U}_{s-icx}^{\mathcal{S}}$, the more moments, the sharper the bounds!

Measure

Penalty functions

A penalty function g allows us to represent the consequences of a positive or negative difference between the Loss and the Index.

Two examples

$$g(L-Z) = \eta(c-X)_x + \gamma(X-c)_+ + \begin{cases} \psi_n(x), \\ -\gamma(x-(c+d))_+ + \varphi_\kappa(x), \end{cases}$$
 where

where

$$\psi_n(x) = \gamma(x - (c+d))_+^n,$$

$$arphi_{\kappa}(\mathbf{x}) = \gamma \kappa \left(\exp \left(\frac{(\mathbf{x} - (\mathbf{c} + \mathbf{d}))_{+}}{\kappa} \right) - 1 \right)$$

Note: ψ_n is *n* increasing convex, φ_{κ} is ∞ increasing convex.

From basis risk budget to risk limits

Framework

First, we consider a symmetric range of possible values for uncertainty: a = c, i.e. L = Z - a + X, with $X \in [0, 2a]$.

Let BR^{Sym} be the two-sided uncertainty budget. The way we limit the consequences of a difference is finding the window of uncertainty (the value of a) such that the budget is not overpassed.

We look for $\hat{a}_f^{(s)}$ defined as,

$$\hat{a}_f^{(s)} = argmin \left| BR^{Sym} - \mathbb{E}[g(X_{max}^{(s)} - c)] \right|, \quad with \quad f = \psi_n, \varphi_\kappa.$$

Numerical illustrations

Parameters

$$a=c=5, \qquad d=2.5, \qquad \eta=\gamma=1 \ Y\sim \mathcal{U}[0,10], \quad \alpha=4, \ \beta=2, \quad BR^{Sym}=3.5417.$$

Numerical illustrations

Parameters

$$a = c = 5, \qquad d = 2.5, \qquad \eta = \gamma = 1$$

 $Y \sim \mathcal{U}[0, 10], \quad \alpha = 4, \ \beta = 2, \quad BR^{Sym} = 3.5417.$

Convex order used	$\hat{a}_{\psi_2}^{(s)}$	$\hat{a}_{\psi_3}^{(s)}$	$\hat{a}_{\psi_{4}}^{(s)}$	$\hat{a}_{\psi_6}^{(s)}$
2	4.5268	4.4686	4.4015	4.2746
3	-	4.6292	4.5521	4.4002
4	-	-	4.6335	4.4730

Table: Values of $\hat{a}_{\psi_n}^{(s)}$ for s=2,3 and 4, for n=2,3,4 and 6

Numerical illustrations

Parameters

$$a = c = 5, \qquad d = 2.5, \qquad \eta = \gamma = 1$$

 $Y \sim \mathcal{U}[0, 10], \quad \alpha = 4, \ \beta = 2, \quad BR^{Sym} = 3.5417.$

Convex order used	$\hat{a}_{\psi_2}^{(s)}$	$\hat{a}_{\psi_3}^{(s)}$	$\hat{a}_{\psi_4}^{(s)}$	$\hat{a}_{\psi_6}^{(s)}$
2	4.5268	4.4686	4.4015	4.2746
3	-	4.6292	4.5521	4.4002
4	-	-	4.6335	4.4730

Table: Values of $\hat{a}_{\psi_n}^{(s)}$ for s=2,3 and 4, for n=2,3,4 and 6

Convex order used	$\hat{a}_{arphi_{\kappa_2}}^{(s)}$	$\hat{a}_{arphi_{\kappa_3}}^{(s)}$	$\hat{a}_{arphi_{\kappa_{f 4}}}^{(s)}$	$\hat{a}_{arphi_{\kappa_6}}^{(s)}$
2	4.6324	4.4783	4.3351	4.1020
3	5.0058	4.8033	4.6172	4.3206
4	5.2321	5.0000	4.7870	4.4510

Table: Values of $\hat{a}_{\varphi_{\kappa}}^{(s)}$ for s=2,3 and 4, for $\kappa_2,\kappa_3,\kappa_4$ and κ_6

Conclusion

Promise kept?

Identification of s-convex extrema for Beta-Unimodal random variables,

Conclusion

Promise kept?

Identification of s-convex extrema for Beta-Unimodal random variables.

Measurement of basis risk in "model-free" context, and show the impact of information (in terms of moments) on basis risk assessment,

Conclusion

Promise kept?

Identification of s-convex extrema for Beta-Unimodal random variables.

Measurement of basis risk in "model-free" context, and show the impact of information (in terms of moments) on basis risk assessment,

Propose a way to set up **risk limit** for basis risk, relative to extremal s-convex bounds.

Is basis risk always bounded?

