Bounding Basis-Risk Using s-convex Orders on Beta-unimodal Distributions

L^{2} Seminar
Claude Lefèvre, Stéphane Loisel, Pierre Montesinos

July 2019

Motivations

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Motivations

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Motivations

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Motivations

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Identification of worst-case scenarios

Motivations

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Identification of worst-case scenarios

Measurement of basis risk

SAF $\quad L^{2}$

Motivations

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Identification of worst-case scenarios

Measurement of basis risk

Definition of some risk limit for basis risk management

Model-free approach?

Z: parametric loss index, L: true loss of the insurer

Model-free approach?

Z: parametric loss index,
L: true loss of the insurer

Efficient choice of the Index:

$$
Z-c \leq L \leq Z+a,
$$

Model-free approach?

Z: parametric loss index, L: true loss of the insurer

Efficient choice of the Index:

$$
Z-c \leq L \leq Z+a,
$$

Link between the Loss and the Index:

$$
\begin{gathered}
L=Z-c+X \\
\text { where } X=S Y, X \in[0, a+c]
\end{gathered}
$$

Beta-unimodal Distributions

Definition

An \mathbb{R}_{+}-valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$
\begin{equation*}
X={ }_{d} S Y \tag{1}
\end{equation*}
$$

where Y is a positive continuous rv , and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

Beta-unimodal Distributions

Definition

An \mathbb{R}_{+}-valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$
\begin{equation*}
X={ }_{d} S Y, \tag{1}
\end{equation*}
$$

where Y is a positive continuous rv , and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

From Y to X : if $Y \sim F_{Y}$ and if X is Beta-unimodal

$$
\begin{equation*}
\bar{F}_{X}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)} x^{\alpha}\left(I_{\beta} \phi\right)(x) \tag{2}
\end{equation*}
$$

where:

- $\left(I_{\beta} \phi\right)(x)=\int_{x}^{\infty} \frac{1}{\Gamma(\beta)}(t-x)^{\beta-1} \phi(t) d t$ is called the Weyl fractional-order integral operator,
$-\phi(t)=\bar{F}_{Y}(t) t^{-\alpha-\beta}$.

Beta-unimodal Distributions

Definition

An \mathbb{R}_{+}-valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$
\begin{equation*}
X={ }_{d} S Y \tag{3}
\end{equation*}
$$

where Y is a positive continuous rv , and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

Beta-unimodal Distributions

Definition

An \mathbb{R}_{+}-valued $\mathrm{rv} X$ has a continuous Beta-unimodal distribution if it has the product representation

$$
\begin{equation*}
X={ }_{d} S Y \tag{3}
\end{equation*}
$$

where Y is a positive continuous rv , and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

From X to Y : if $X \sim F_{X}$ and if X is Beta-unimodal

$$
\begin{equation*}
\bar{F}_{Y}(x)=(-1)^{n} x^{\alpha+\beta} \frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)}\left(I_{\delta} D^{n} \psi\right)(x) \tag{4}
\end{equation*}
$$

where:
$-\delta \in[0,1]$ such as $\beta+\delta=n \in \mathbb{N}$,
$-\psi(t)=\bar{F}_{X}(t) t^{-\alpha}$,

- D^{n} denotes the n-fold derivative operator.

Model-free approach ?

Z: parametric loss index,
 L : true loss of the insurer

Efficient choice of the Index:

$$
Z-c \leq L \leq Z+a
$$

Link between the Loss and the Index:

$$
L=Z-c+X
$$

where $X=S Y, X \in[0, a+c]$.
Identify, Measure and Limit the consequences of uncertainty

Identification: s-convex orders

Definition: s-convexity

A function ϕ defined on \mathcal{S} is said to be s-convex if the inequality

$$
\left[x_{0}, \ldots, x_{s} ; \phi\right] \geq 0
$$

holds for any choice of distinct points x_{0}, \ldots, x_{s} in \mathcal{S}.
$\left[x_{0}, \ldots, x_{s} ; \phi\right]$ denotes a divided difference of the function ϕ at the different points x_{0}, \ldots, x_{s}.

Identification: s-convex orders

Definition: s-convexity

A function ϕ defined on \mathcal{S} is said to be s-convex if the inequality

$$
\left[x_{0}, \ldots, x_{s} ; \phi\right] \geq 0
$$

holds for any choice of distinct points x_{0}, \ldots, x_{s} in \mathcal{S}.
$\left[x_{0}, \ldots, x_{s} ; \phi\right]$ denotes a divided difference of the function ϕ at the different points x_{0}, \ldots, x_{s}.
s differentiability condition: if $\phi^{(s)}$ exists in \mathcal{S}, then ϕ is s-convex if and only if $\phi^{(s)} \geq 0$.

Identification: s-convex orders

Definition: s-convexity

Definition: s-increasing convexity

 A function ϕ is said to be s-increasing convex on its domain \mathcal{S} if and only if for all choices of $k+1$ distincts points $x_{0}<x_{1}<x_{k}$ in \mathcal{S}, we have$$
\left[x_{0}, x_{1}, \ldots, x_{k} ; \phi\right] \geq 0, k=2, \ldots, s .
$$

We denote by $\mathcal{U}_{s-i c x}^{\mathcal{S}}$ the class of the s-increasing convex functions on \mathcal{S}.

Identification: s-convex orders

Definition: s-convexity

Definition: s-increasing convexity

Definition: s-convex order
Let X_{1} and X_{2} be two random variables that take on values in \mathcal{S}.
Then X_{1} is said to be smaller than X_{2} in the s-convex order, denoted by $X_{1} \leq_{s-c x}^{\mathcal{S}} X_{2}$ if

$$
\begin{equation*}
\mathbb{E}\left[\phi\left(X_{1}\right)\right] \leq \mathbb{E}\left[\phi\left(X_{2}\right)\right] \text { for all } \phi \in \mathcal{U}_{s-c x}^{\mathcal{S}}, \tag{5}
\end{equation*}
$$

where $\mathcal{U}_{s-c x}^{\mathcal{S}}$ is the class of all the s-convex functions $\phi: \mathcal{S} \rightarrow \mathbb{R}$.

Identification: s-convex extrema

Definition: moment space

We denote by $\mathcal{B}_{s}\left([a, b], \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$ the moment space of all the random variables valued in $[a, b]$ and with known $s-1$ moments $\mu_{1}, \ldots, \mu_{s-1}$.

Identification: s-convex extrema

Definition: moment space

We denote by $\mathcal{B}_{s}\left([a, b], \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$ the moment space of all the random variables valued in $[a, b]$ and with known $s-1$ moments $\mu_{1}, \ldots, \mu_{s-1}$.

Theorem: s-convex extrema
Let $Y \in \mathcal{B}_{s}\left([a, b], \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$.
Within $\mathcal{B}_{s}\left([a, b], \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$, there exist two unique random variables $Y_{\text {min }}^{(s)}$ and $Y_{\text {max }}^{(s)}$ such that

$$
Y_{\min }^{(s)} \leq_{s-c x} Y \leq_{s-c x} Y_{\max }^{(s)}
$$

Proof. See Denuit et al. (1999).
s-convex extrema are actually extremal distributions built from the s-1 first moments of Y.

SAF $\quad L^{2}$
L^{2} Seminar - Pierre Montesinos - July 2019

Identification: s-convex extrema

3-convex extremal distributions

Let $Y \in \mathcal{B}_{3}\left([a, b], \mu_{1}, \mu_{2}\right)$.

$$
Y_{\text {min }}^{(3)}=\left\{\begin{array}{l}
a \text { with proba } \frac{\mu_{2}-\mu_{1}^{2}}{\left(a-\mu_{1}\right)^{2}+\mu_{2}-\mu_{1}^{2}}, \\
b \text { with proba } \frac{\left(a-\mu_{1}\right)^{2}}{\left(a-\mu_{1}\right)^{2}+\mu_{2}-\mu_{1}^{2}},
\end{array}\right.
$$

and

$$
Y_{\max }^{(3)}=\left\{\begin{array}{l}
\mu_{1}-\frac{\mu_{2}-\mu_{1}^{2}}{b-\mu_{1}} \text { with proba } \frac{\left(b-\mu_{1}\right)^{2}}{\left(b-\mu_{1}\right)^{2}+\mu_{2}-\mu_{1}^{2}}, \\
b \text { with proba } \frac{\mu_{2}-\mu_{1}^{2}}{\left(b-\mu_{1}\right)^{2}+\mu_{2}-\mu_{1}^{2}} .
\end{array}\right.
$$

Generalization to Beta-unimodal distributions

Proposition (Beta-unimodal s-convex extrema)

 Let $Y \in \mathcal{B}_{s}\left(\mathcal{S}, \mu_{1}, \mu_{2}, \ldots, \mu_{s-1}\right)$, and let $\phi \in \mathcal{U}_{s-c x}^{\mathcal{S}}$. If X is Beta-unimodal, then $X \in \mathcal{B}_{s}\left(\mathcal{S}, v_{1}, v_{2}, \ldots, v_{s-1}\right)$ and the s-convex extrema in this set are$$
X_{\min }^{(s)}=S Y_{\min }^{(s)}, \quad \text { and } \quad X_{\max }^{(s)}=S Y_{\max }^{(s)}
$$

Besides, if $\phi \in \mathcal{U}_{s-i c x}^{\mathcal{S}}$, then

$$
\mathbb{E}[\phi(X)] \leq \mathbb{E}\left[\phi\left(S Y_{\max }^{(s)}\right)\right] \leq \mathbb{E}\left[\phi\left(S Y_{\max }^{(s-1)}\right)\right] \leq \ldots \leq \mathbb{E}\left[\phi\left(S Y_{\max }^{(2)}\right)\right]
$$

which can be written as,
$\forall k \in \llbracket 2, s \rrbracket, X \leq_{k-c x} X_{\max }^{(s)} \leq_{k-c x} X_{\max }^{(s-1)} \leq_{k-c x} \ldots \leq_{k-c x} X_{\max }^{(2)}$.
When $\phi \in \mathcal{U}_{s-i c x}^{\mathcal{S}}$, the more moments, the sharper the bounds !

Measure

Penalty functions

A penalty function g allows us to represent the consequences of a positive or negative difference between the Loss and the Index.

L^{2} Seminar - Pierre Montesinos - July 2019

Measure

Two examples

$$
g(L-Z)=\eta(c-X)_{x}+\gamma(X-c)_{+}+\left\{\begin{array}{l}
\psi_{n}(x), \\
-\gamma(x-(c+d))_{+}+\varphi_{\kappa}(x)
\end{array}\right.
$$

where

$$
\psi_{n}(x)=\gamma(x-(c+d))_{+}^{n}
$$

and

$$
\varphi_{\kappa}(x)=\gamma \kappa\left(\exp \left(\frac{(x-(c+d))_{+}}{\kappa}\right)-1\right)
$$

Note: ψ_{n} is n increasing convex, φ_{κ} is ∞ increasing convex.

From basis risk budget to risk limits

Framework

First, we consider a symmetric range of possible values for uncertainty: $a=c$, i.e. $L=Z-a+X$, with $X \in[0,2 a]$.

Let $B R^{\text {Sym }}$ be the two-sided uncertainty budget. The way we limit the consequences of a difference is finding the window of uncertainty (the value of a) such that the budget is not overpassed.

We look for $\hat{a}_{f}^{(s)}$ defined as,

$$
\hat{a}_{f}^{(s)}=\operatorname{argmin}\left|B R^{S y m}-\mathbb{E}\left[g\left(X_{\max }^{(s)}-c\right)\right]\right| \text {, with } f=\psi_{n}, \varphi_{\kappa} .
$$

Numerical illustrations

Parameters

$$
\begin{array}{lll}
a=c=5, & d=2.5, & \eta=\gamma=1 \\
Y \sim \mathcal{U}[0,10], & \alpha=4, \beta=2, & B R^{S y m}=3.5417
\end{array}
$$

Numerical illustrations

Parameters

$$
\begin{array}{lll}
a=c=5, & d=2.5, & \eta=\gamma=1 \\
Y \sim \mathcal{U}[0,10], & \alpha=4, \beta=2, & B R^{S y m}=3.5417 . \\
\hline
\end{array}
$$

Convex order used	$\hat{a}_{\psi_{2}}^{(s)}$	$\hat{a}_{\psi_{3}}^{(s)}$	$\hat{a}_{\psi_{4}}^{(s)}$	$\hat{a}_{\psi_{6}}^{(s)}$
2	4.5268	4.4686	4.4015	4.2746
3	-	4.6292	4.5521	4.4002
4	-	-	4.6335	4.4730

Table: Values of $\hat{a}_{\psi_{n}}^{(s)}$ for $s=2,3$ and 4 , for $n=2,3,4$ and 6

Numerical illustrations

Parameters

$$
\begin{array}{lll}
a=c=5, & d=2.5, & \eta=\gamma=1 \\
Y \sim \mathcal{U}[0,10], & \alpha=4, \beta=2, & B R^{S y m}=3.5417 .
\end{array}
$$

Convex order used	$\hat{a}_{\psi_{2}}^{(s)}$	$\hat{a}_{\psi_{3}}^{(s)}$	$\hat{a}_{\psi_{4}}^{(s)}$	$\hat{a}_{\psi_{6}}^{(s)}$
2	4.5268	4.4686	4.4015	4.2746
3	-	4.6292	4.5521	4.4002
4	-	-	4.6335	4.4730

Table: Values of $\hat{a}_{\psi_{n}}^{(s)}$ for $s=2,3$ and 4 , for $n=2,3,4$ and 6

Convex order used	$\hat{a}_{\varphi_{\kappa_{2}}}^{(s)}$	$\hat{a}_{\varphi_{\kappa_{3}}}^{(s)}$	$\hat{a}_{\varphi_{\kappa_{4}}}^{(s)}$	$\hat{a}_{\varphi_{\kappa_{6}}}^{(s)}$
2	4.6324	4.4783	4.3351	4.1020
3	5.0058	4.8033	4.6172	4.3206
4	5.2321	5.0000	4.7870	4.4510

Table: Values of $\hat{a}_{\varphi_{\kappa}}^{(s)}$ for $s=2,3$ and 4 , for $\kappa_{2}, \kappa_{3}, \kappa_{4}$ and κ_{6}

Conclusion

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

Conclusion

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

Measurement of basis risk in "model-free" context, and show the impact of information (in terms of moments) on basis risk assessment,

SAF $\quad L^{2}$

Conclusion

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

Measurement of basis risk in "model-free" context, and show the impact of information (in terms of moments) on basis risk assessment,

Propose a way to set up risk limit for basis risk, relative to extremal s-convex bounds.

Is basis risk always bounded ?
SAF $\quad L^{2}$
L^{2} Seminar - Pierre Montesinos - July 2019

