Bounding Basis-Risk Using s-convex Orders on Beta-unimodal Distributions

L^2 Seminar Claude Lefèvre, Stéphane Loisel, Pierre Montesinos

July 2019

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

・ロト ・四ト ・ヨト ・ヨト

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

(人間) シスヨン スヨン

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Identification of worst-case scenarios

・ 回 ト ・ ヨ ト ・ ヨ ト

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Identification of worst-case scenarios

L² Seminar - Pierre Montesinos - July 2019

Basis risk

"Risk that the recoveries obtained by the entity which has faced a loss are too different from what it would have received with an indemnity-based risk transfer."

Parametric Insurance

Enterprise Risk Management in a model-free setting

Identification of worst-case scenarios

Measurement of basis risk

Definition of some risk limit for basis risk management

L² Seminar - Pierre Montesinos - July 2019

Z: parametric loss index, *L*: true loss of the insurer

・ロン ・四 と ・ ヨ と ・ ヨ と

Z: parametric loss index, *L*: true loss of the insurer

Efficient choice of the Index:

 $Z-c\leq L\leq Z+a,$

・ロト ・四ト ・ヨト ・ヨト

Z: parametric loss index, *L*: true loss of the insurer

Efficient choice of the Index:

 $Z-c\leq L\leq Z+a,$

Link between the Loss and the Index:

L=Z-c+X,

where
$$X = SY$$
, $X \in [0, a + c]$.

L² Seminar - Pierre Montesinos - July 2019

3 / 17

・ロト ・四ト ・ヨト ・ヨト

Definition An \mathbb{R}_+ -valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$X =_d SY, \tag{1}$$

where Y is a positive continuous rv, and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

Definition An \mathbb{R}_+ -valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$X =_d SY, \tag{1}$$

where Y is a positive continuous rv, and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

From *Y* **to** *X*: if $Y \sim F_Y$ and if *X* is Beta-unimodal

$$\bar{F}_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)} x^{\alpha} (I_{\beta} \phi)(x), \qquad (2)$$

where:

- $(I_{\beta}\phi)(x) = \int_{x}^{\infty} \frac{1}{\Gamma(\beta)} (t-x)^{\beta-1} \phi(t) dt$ is called the Weyl fractional-order integral operator, - $\phi(t) = \bar{F}_{Y}(t) t^{-\alpha-\beta}$.

L² Seminar - Pierre Montesinos - July 2019

4 / 17

Definition An \mathbb{R}_+ -valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$X =_d SY, \tag{3}$$

where Y is a positive continuous rv, and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

Definition An \mathbb{R}_+ -valued rv X has a continuous Beta-unimodal distribution if it has the product representation

$$X =_d SY, \tag{3}$$

where Y is a positive continuous rv, and $S \sim \mathcal{B}(\alpha, \beta)$ is a random contracting factor independent of Y.

From X to Y: if $X \sim F_X$ and if X is Beta-unimodal

$$\bar{F}_{Y}(x) = (-1)^{n} x^{\alpha+\beta} \frac{\Gamma(\alpha)}{\Gamma(\alpha+\beta)} (I_{\delta} D^{n} \psi)(x), \qquad (4)$$

where:

- $\delta \in [0,1]$ such as $\beta + \delta = n \in \mathbb{N}$,
- $\psi(t) = \overline{F}_X(t)t^{-lpha}$,
- D^n denotes the *n*-fold derivative operator.

L² Seminar - Pierre Montesinos - July 2019

5 / 17

Z: parametric loss index, *L*: true loss of the insurer

Efficient choice of the Index:

 $Z-c\leq L\leq Z+a,$

L=Z-c+X,

where X = SY, $X \in [0, a + c]$. Identify, Measure and Limit the consequences of uncertainty \mathcal{L}^2 \mathcal{L}^2 Seminar - Pierre Montesinos - July 2019 6 / 17 **Definition:** s-convexity A function ϕ defined on S is said to be *s*-convex if the inequality $[x_0, ..., x_s; \phi] \ge 0$, holds for any choice of distinct points $x_0, ..., x_s$ in S. $[x_0, ..., x_s; \phi]$ denotes a divided difference of the function ϕ at the different points $x_0, ..., x_s$.

Definition: s-convexity A function ϕ defined on S is said to be *s*-convex if the inequality $[x_0, ..., x_s; \phi] \ge 0$, holds for any choice of distinct points $x_0, ..., x_s$ in S. $[x_0, ..., x_s; \phi]$ denotes a divided difference of the function ϕ at the different points $x_0, ..., x_s$.

s differentiability condition: if $\phi^{(s)}$ exists in S, then ϕ is *s*-convex if and only if $\phi^{(s)} \ge 0$.

Definition: s-convexity

Definition: s-increasing convexity

A function ϕ is said to be *s*-increasing convex on its domain S if and only if for all choices of k + 1 distincts points $x_0 < x_1 < x_k$ in S, we have

$$[x_0, x_1, ..., x_k; \phi] \ge 0, \ k = 2, ..., s.$$

We denote by $\mathcal{U}_{s-icx}^{\mathcal{S}}$ the class of the s-increasing convex functions on \mathcal{S} .

Definition: s-convexity

Definition: s-increasing convexity

Definition: s-convex order

Let X_1 and X_2 be two random variables that take on values in S. Then X_1 is said to be smaller than X_2 in the *s*-convex order, denoted by $X_1 \leq_{s-cx}^{S} X_2$ if

$$\mathbb{E}[\phi(X_1)] \le \mathbb{E}[\phi(X_2)] \text{ for all } \phi \in \mathcal{U}_{s-cx}^{\mathcal{S}},$$
(5)

where $\mathcal{U}_{s-cx}^{\mathcal{S}}$ is the class of all the *s*-convex functions $\phi : \mathcal{S} \to \mathbb{R}$.

Definition: moment space

We denote by $\mathcal{B}_s([a, b], \mu_1, \mu_2, ..., \mu_{s-1})$ the moment space of all the random variables valued in [a, b] and with known s - 1 moments $\mu_1, ..., \mu_{s-1}$.

A (10) × (10) × (10) ×

Definition: moment space

We denote by $\mathcal{B}_s([a, b], \mu_1, \mu_2, ..., \mu_{s-1})$ the moment space of all the random variables valued in [a, b] and with known s - 1 moments $\mu_1, ..., \mu_{s-1}$.

Theorem: s-convex extrema Let $Y \in \mathcal{B}_{s}([a, b], \mu_{1}, \mu_{2}, ..., \mu_{s-1})$. Within $\mathcal{B}_{s}([a, b], \mu_{1}, \mu_{2}, ..., \mu_{s-1})$, there exist two unique random variables $Y_{min}^{(s)}$ and $Y_{max}^{(s)}$ such that $Y_{min}^{(s)} \leq_{s-cx} Y \leq_{s-cx} Y_{max}^{(s)}$.

Proof. See Denuit et al. (1999). s-convex extrema are actually extremal distributions built from the s-1 first moments of *Y*.

Identification: s-convex extrema

3-convex extremal distributions Let $Y \in \mathcal{B}_3([a, b], \mu_1, \mu_2)$.

$$\mathbf{Y}_{min}^{(3)} = \begin{cases} a \text{ with proba} & \frac{\mu_2 - \mu_1^2}{(a - \mu_1)^2 + \mu_2 - \mu_1^2}, \\ b \text{ with proba} & \frac{(a - \mu_1)^2}{(a - \mu_1)^2 + \mu_2 - \mu_1^2}, \end{cases}$$

and

$$Y_{max}^{(3)} = \begin{cases} \mu_1 - \frac{\mu_2 - \mu_1^2}{b - \mu_1} & \text{with proba} & \frac{(b - \mu_1)^2}{(b - \mu_1)^2 + \mu_2 - \mu_1^2}, \\ b & \text{with proba} & \frac{\mu_2 - \mu_1^2}{(b - \mu_1)^2 + \mu_2 - \mu_1^2}. \end{cases}$$

L² Seminar - Pierre Montesinos - July 2019

・ロト ・四ト ・ヨト ・ヨト

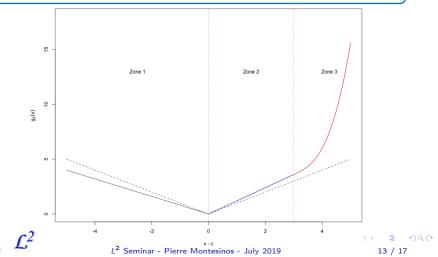
Proposition (Beta-unimodal s-convex extrema) Let $Y \in \mathcal{B}_{s}(\mathcal{S}, \mu_{1}, \mu_{2}, ..., \mu_{s-1})$, and let $\phi \in \mathcal{U}_{s-cx}^{\mathcal{S}}$. If X is Beta-unimodal, then $X \in \mathcal{B}_{s}(\mathcal{S}, v_{1}, v_{2}, ..., v_{s-1})$ and the s-convex extrema in this set are $X_{min}^{(s)} = SY_{min}^{(s)}$, and $X_{max}^{(s)} = SY_{max}^{(s)}$. Besides, if $\phi \in \mathcal{U}_{s-icx}^{\mathcal{S}}$, then $\mathbb{E}[\phi(X)] < \mathbb{E}[\phi(SY_{max}^{(s)})] \le \mathbb{E}[\phi(SY_{max}^{(s-1)})] \le \dots \le \mathbb{E}[\phi(SY_{max}^{(2)})],$ which can be written as, $\forall k \in [\![2,s]\!], X \leq_{k-cx} X_{max}^{(s)} \leq_{k-cx} X_{max}^{(s-1)} \leq_{k-cx} \dots \leq_{k-cx} X_{max}^{(2)}.$ When $\phi \in \mathcal{U}_{s-icx}^{\mathcal{S}}$, the more moments, the sharper the bounds !

12 / 17

Measure

Penalty functions

A penalty function g allows us to represent the consequences of a positive or negative difference between the Loss and the Index.



Measure

Two examples $g(L-Z) = \eta(c-X)_{x} + \gamma(X-c)_{+} + \begin{cases} \psi_{n}(x), \\ -\gamma(x-(c+d))_{+} + \varphi_{\kappa}(x), \end{cases}$ where $\psi_n(x) = \gamma(x - (c + d))_+^n,$ and $\varphi_{\kappa}(x) = \gamma \kappa \left(\exp\left(\frac{(x - (c + d))_{+}}{\kappa} \right) - 1 \right)$

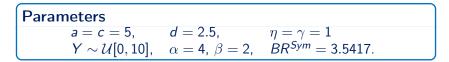
Note: ψ_n is *n* increasing convex, φ_{κ} is ∞ increasing convex.

L² Seminar - Pierre Montesinos - July 2019

Framework First, we consider a symmetric range of possible values for uncertainty: a = c, i.e. L = Z - a + X, with $X \in [0, 2a]$. Let BR^{Sym} be the two-sided uncertainty budget. The way we limit the consequences of a difference is finding the window of uncertainty (the value of a) such that the budget is not overpassed. We look for $\hat{a}_{f}^{(s)}$ defined as,

$$\hat{a}_{f}^{(s)} = \operatorname{argmin} \left| BR^{Sym} - \mathbb{E}[g(X_{max}^{(s)} - c)] \right|, \text{ with } f = \psi_n, \varphi_\kappa.$$

Numerical illustrations



L² Seminar - Pierre Montesinos - July 2019

16 / 17

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()

Numerical illustrations

Parameters							
a = c = 5, d	= 2.5,	$\eta =$	$\gamma = 1$				
$a = c = 5,$ $d = 2.5,$ $\eta = \gamma = 1$ $Y \sim \mathcal{U}[0, 10],$ $\alpha = 4, \beta = 2,$ $BR^{Sym} = 3.5417.$							
Convex order used	$\hat{a}^{(s)}_{\psi_2}$	$\hat{a}^{(s)}_{\psi_3}$	$\hat{a}^{(s)}_{\psi_4}$	$\hat{a}_{\psi_6}^{(s)}$			
2	4.5268	4.4686	4.4015	4.2746			
3	-	4.6292	4.5521	4.4002			
4	-	-	4.6335	4.4730			

Table: Values of $\hat{a}_{\psi_n}^{(s)}$ for s = 2, 3 and 4, for n = 2, 3, 4 and 6

<ロ> <四> <ヨ> <ヨ>

Numerical illustrations

Parameters							
a=c=5, a	l = 2.5,	$\eta =$	= $\gamma = 1$				
$a = c = 5,$ $d = 2.5,$ $\eta = \gamma = 1$ $Y \sim \mathcal{U}[0, 10],$ $\alpha = 4, \beta = 2,$ $BR^{Sym} = 3.5417.$							
Convex order used	$\hat{a}_{\psi_2}^{(s)}$	$\hat{a}_{\psi_3}^{(s)}$	$\hat{a}_{\psi_{\mathbf{A}}}^{(s)}$	$\hat{a}_{\psi_6}^{(s)}$			
2	4.5268	4.4686	4.4015	4.2746			
3	-	4.6292	4.5521	4.4002			
4	-	-	4.6335	4.4730			

Table: Values of $\hat{a}_{\psi_n}^{(s)}$ for s = 2, 3 and 4, for n = 2, 3, 4 and 6

Convex order used	$\hat{a}^{(s)}_{arphi_{\kappa_2}}$	$\hat{a}^{(s)}_{arphi_{\kappa_3}}$	$\hat{a}^{(s)}_{arphi_{\kappa_4}}$	$\hat{a}^{(s)}_{arphi_{\kappa_6}}$
2	4.6324	4.4783	4.3351	4.1020
3	5.0058	4.8033	4.6172	4.3206
4	5.2321	5.0000	4.7870	4.4510

Table: Values of $\hat{a}_{\varphi_{\kappa}}^{(s)}$ for s = 2, 3 and 4, for $\kappa_2, \kappa_3, \kappa_4$ and κ_6

L² Seminar - Pierre Montesinos - July 2019

イロト イヨト イヨト イヨト

Conclusion

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

< ロ > < 同 > < 三 > < 三 > <

Conclusion

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

Measurement of basis risk in "model-free" context, and show the impact of information (in terms of moments) on basis risk assessment,

L² Seminar - Pierre Montesinos - July 2019

Conclusion

Promise kept ?

Identification of s-convex extrema for Beta-Unimodal random variables,

Measurement of basis risk in "model-free" context, and show the impact of information (in terms of moments) on basis risk assessment,

Propose a way to set up **risk limit** for basis risk, relative to extremal s-convex bounds.

Is basis risk always bounded ?

< □ > < 同 > < 回 > < 回 > < 回