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Basis Risk Management in an Index-Based Insurance
Framework under Randomly Scaled Uncertainty

Claude Lefèvre1, Stéphane Loisel2 and Pierre Montesinos3

Abstract

This paper is concerned with the quantification of basis risk in index-based insurance
products using randomly scaled variables. To this extent, we first discuss the shape, the
unimodality and the symmetry of randomly scaled variables depending on the distribution
of the random scaling factor using Mellin transform. We explicitly obtain the distribu-
tion of a randomly scaled variable when the random scaling factor is either uniformly
distributed or of Beta type. We then determine s-convex extremal distributions for ran-
domly scaled variables and discuss the way of comparing it. Next, we define an Enterprise
Risk Management framework that relies on randomly scaled variables to assess basis risk,
introducing the class of generalized penalty functions. This ERM framework allows for
setting up basis risk limits to eventually determine a Basis Risk Capital Requirement.
The results are illustrated with particular cases that carefully challenge the methodology.
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1 Introduction and motivation

Basis risk and its impacts. Traditional indemnity transactions are familiar to risk manage-
ment as they provide a perfect hedge for claims payable to policyholders. However, the payment
process can be lengthy because it is based on the assessment of the claims adjuster. Due to
the deductibles and excluded risks generally contained in indemnity transactions, some insur-
ance and reinsurance companies fill the protection gap by concluding a parametric transaction.
These parametric transactions, also called index-based insurance or parametric risk transfers,
do not take into account the loss ultimately suffered by the protection buyer to trigger the
payment, but physical parameters directly linked to the risk against which the protection buyer
wishes to be covered. In other words, a parametric risk transfer has a pre-agreed parametric
trigger, thus defining when the contract must be paid to the protection buyer. This parametric
trigger is easily observable, making payment predictable and quick when conditions are met.
However, a parametric risk transfer does not compensate for the actual loss suffered. This
mismatch between the actual loss and the payout triggered by the index insurance gives rise
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to what is called basis risk. Following Ross and Williams [72], basis risk is defined as “the
risk that a protection buyer’s own losses exceed the payments under a risk transfer mechanism
structured to hedge against these losses.”

Most common forms of parametric risk transfers are both Non Life and Life parametric
catastrophe bonds, weather derivatives and agricultural index-based insurance. Because of
the lack of wind coverage following Hurricane Andrew, Insurance-Linked Securities (ILS) were
developed to offset the decrease in (re)insurance capacity. These products were designed to
facilitate the transfer of catastrophic insurance risk from insurers or reinsurers (referred to as
“sponsors”) to investors. Catastrophe or “cat” bonds are the most prominent form of ILS. The
ILS market reaches $13.8 billion of issuance in 2018 and $11 billion in 2019. Cat bond and ILS
capital outstanding was $13.2 billion at the end of 2008, whereas it reached $40.8 billion in 2019.
Even if indemnity trigger is the most prevalent type of trigger in the outstanding catastrophe
bonds and ILS market, parametric trigger represents 4.2% of the market, for an outstanding
capital of $1.7 billion. We refer the reader to the comprehensive handbook of Barrieu and
Albertini [6] for a detailed presentation of the ILS market.

Even if Non Life Securitization represents the majority of ILS transactions, Life Securitiza-
tion has to be mentioned too. Products like mortality bonds or longevity bonds has continued
to expand in recent years, with larger transactions in a growing list of regions now being com-
pleted on an annual basis. We refer to Peard [68] for general features of Life ILS, and to e.g.
Blake et al. [12] to address the problem of longevity risk using mortality-linked securities.

As opposed to a lack of insurance capacity, weather derivatives (WD) were directly tied to
the deregulation of the U.S. energy industry. Introduced in 1997, the use of WD has quickly
expanded beyond energy industry; see e.g. Bank and Wiesner [4] for a study in the Austrian
winter tourism industry. WD can be defined as financial instrument to hedge against the risk
of weather-related losses. Consequently, parametric trigger is at the basis of these products.
Heating Degree Days (HDD) or Cooling Degree Days (CDD) are the most common indices used
to trigger the payments, see e.g. Alaton et al. [1] or Benth and Benth [8] for issues related to
modeling and pricing weather derivatives.

Agricultural insurance is particularly concerned with the development of index-based insur-
ance products, mainly in rural regions of developing countries. According to Greatrex et al.
[41] and Barnett and Mahul [5], the number of agricultural index insurance products is likely
to be in the hundreds, spanning dozens of countries, and the number of farmers involved in
these insurance products reaches at least tens of millions. Paradoxically, despite the obvious
enthusiasm for index-based agricultural insurance, recent research points out that the demand
for such coverage remains low; see e.g. Cole et al. [17] for a study in Bangladesh, Jensen et al.
[52] in northern Kenya, Takahashi et al. [78] in Ethiopia and Elabed and Carter [33] in Mali.
Even if barriers to demand depend on many factors such as culture, regulation or trust, Jensen
and Barrett [51] and Jensen et al. [53] show that demand is reduced because of basis risk. In
fact, due to the presence of basis risk, Elabed and Carter [33, 34, 35] and Elabed et al. [36]
present index-based agricultural insurance as a sort of compound lottery which is perceived as
a complex mechanism by farmers, preventing them from signing such a contract. Therefore,
basis risk is at the heart of index-based agricultural insurance. We refer to Binswanger-Mkhize
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[11] for a general overview of the challenges of this insurance.
According to Dalhaus and Finger [21], basis risk can be decomposed into three different

sources, namely the design basis risk, the spatial basis risk and the temporal basis risk. This
decomposition is consistent with the description of basis risk given by Ross and Williams [72].
For example, in natural disaster risk transfers, the buyer and seller of protection must agree that
the index calibration takes into account the amplification of losses and secondary risks. Note
that the basis risk can turn into a favorable risk for the protection buyer when the payment given
is greater than the loss suffered. A large literature describes how to build appropriate indices,
depending on the underlying risk covered and the data available; see Leblois and Quirion [58]
for a review and Gornott and Wechsung [40] or Biffis and Chavez [10] for recent developments.

Since the cat-bond market has become mainstream, or because of low demand for index
agricultural insurance due to basis risk, several ways to quantify basis risk have been proposed.
As indicated by Ross and Williams [72], quantifying the basis risk usually helps to answer
questions like this: in cases where there is a modeled recovery in the context of parametric risk
transfer, what is the probability that this modeled recovery does not offer adequate protection?
This can be measured by the negative false probability (NFP), used by e.g. Jensen et al.
[53], Takahashi et al. [78] and Elabed et al. [36]. Another question is: what is the expected
amount by which the loss modeled exceeds the recovery modeled under the parametric risk
transfer (without giving weight to cases where recovery exceeds the loss)? Jensen et al. [52],
Woodard and Garcia [84] and Vedenov and Barnett [82] answer by proposing the semi-variance
to measure basis risk. Harrington and Niehaus [44] provide a way to measure two-sided basis
risk using the correlation coefficient between the loss ratio of the protection buyer and the
loss ratio of the index. As pointed out by Zeng [86], this measure is not actuarial-oriented.
More recently, Morsink et al. [64], via a study carried out by the World Bank, analyze the
reliability of index insurance by defining two indicators to assess the effectiveness of insurance,
namely the probability of catastrophic basis risk and the catastrophic performance ratio. The
probability of catastrophic basis risk gives the probability that a farmer will suffer more than
70% of agricultural production loss due to the non-triggering of the index. The catastrophic
performance ratio reflects what, on average, a farmer recovers per $1 of commercial premium
paid in the event that he experiences a catastrophic crop loss. The common point of all these
measures is to focus on average amounts or on acceptable thresholds.

In this paper, we do not add any contribution on how to build an index, and we do not
enter into data considerations. However, in the continuation of Lefèvre et al. [60], the added
value lies in the development of a systematic methodology to quantify basis risk, trying to
partially respond to the following remark from Jensen et al. [52]: ”Detecting the magnitude
and distribution of basis risk should be of utmost importance for organizations promoting index
insurance products, lest they inadvertently peddle lottery tickets under an insurance label.”

Quantifying basis risk. Consider a protection buyer who faces a possible loss represented
by a positive continuous random variable L. Assume the loss can be modeled by an index
represented by a positive continuous random variable Z.

Once the index is calibrated, the basis risk X comes from the difference between the loss L
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and the payout Z triggered by the index. In other words,

X =d L− Z. (1.1)

Note that since the loss may or may not be greater than the index, the variable X may take
positive values or not.

A priori, we would prefer that there is no basis risk, i.e. L =d Z. In practice, this does not
happen and a difference does exist in most situations. The main drawbacks of defining basis
risk by X =d L−Z is that the distribution of X is in general unknown or at least not perfectly
known. In fact, on the one hand the distribution of the loss is obtained by statistical studies
on the historical losses, if they are available. For instance, when the underlying risk covered
by the index-based structure is new, there is no recorded loss. On the other hand, the data
used to build the index may not be perfectly related to the underlying risk. For instance, for
very localized risks, the index requires very localized data and sometimes there are no available
weather stations in the area. Consequently, the index is built using weighted weather data
available in closest weather stations. To this extent, the difference between the loss and the
payouts triggered by the index does not reflect the basis risk, but rather the simulated basis risk.
Nevertheless, it might be reasonable to expect the difference X =d L− Z to be unimodal with
a mode at 0. For example, X could have a normal distribution of mean 0 or, more generally,
a symmetric unimodal distribution. We recall that a random variable X has a symmetric and
unimodal distribution if and only if it can be represented as X =d SY where S and Y are
two independent variables such that S is uniform on (−1, 1) and Y is non-negative (see e.g.
Dharmadhikari and Joag-Dev [32], Theorem 1.5). The property of symmetry can however be
quite restrictive for real applications. For this reason, we choose in this paper to represent X
rather as a continuous randomly scaled variable.

Definition 1.1. A real-valued random variable X has a randomly scaled distribution if it has
the product representation

X =d SY, (1.2)

where Y is a positive random variable and S is a real-valued random scaling factor, bounded
and independent of Y .

Randomly scaled variables are the natural extension of the characterization of unimodal
distributions due to Khintchine [56] and Shepp [75].

It is interesting here to mention that the usual concept of unimodality has been generalized
in different ways. Thus, X has a distribution called α-unimodal, α > 0, when X =d S

1/αY for
some variable Y and with S uniform on (0, 1) independently of Y (Olshen and Savage [66]).
On the other hand, X has a β-unimodal distribution, β > 0, when X =d (1 − S1/β)Y with S
still uniform on (0, 1) and independent of Y (following the work of Williamson [83] on multiple
monotone functions). More generally, X has a Beta-unimodal distribution when X =d SY
where S has a Beta distribution (see the book of Bertin et al. [9] for a detailed analysis).

Random scaling relations like (1.2) have received some attention in theoretical and applied
probability. Distributional characterizations by such relations are established by Pakes and
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Navarro [67]. Asymptotics of products of random variables are studied by e.g. Cline and
Samorodnitsky [16], Hashorva et al. [48] and Yang and Wang [85]. Various applications aim to
represent an economic environment (Tang and Tsitsiashvili [81], Asimit et al. [3]), a systemic
background risk (Côté and Genest [18]) or a dependency structure for claim sizes (Hashorva
[45], Hashorva and Ji [46]).

By (1.2), the basis risk X corresponds to an underlying positive random variable Y coupled
with an independent random scaling factor S. Because the “true” basis risk is not available,
the methodology introduced in this paper assumes the distribution of Y is known. Typically,
Y is a given as positive function of the index Z. For example, we consider later the cases where
Y =d Z and Y =d

√
Z. On the contrary, the methodology proposes different distributions for

the random scaling factor S so that it modifies the shape of the distribution of the product
X =d SY , for a given Y . Then, we provide a way to control this additional uncertainty by
taking into account the information available on the values of the first moments of S.

Quantifying the basis risk is part of an Enterprise Risk Management (ERM) framework. In
the approach developed here, the first step is to define the worst possible scenarios from the
available information on uncertainty. This is done using the theory of s-convex extremal dis-
tributions studied by Denuit et al. [28, 29] and Hürlimann [49]. Note that bounding problems
are a classsical subject in actuarial risk theory; see e.g. De Vylder [22, 23], De Vylder and
Goovaerts [25], Kaas and Goovaerts [54, 55], Brockett and Cox [13], Denuit and Lefèvre [27],
Lefèvre and Utev [59], among many others. Once the scenarios have been obtained, the second
step consists in measuring the consequences of the basis risk using a family of flexible and repre-
sentative penalty functions. These functions generalize more realistically the penalty functions
examined in Lefèvre et al. [60] since they add a criteria based on the size of the uncertainty with
respect to the size of the index. Finally, the third step is to determine limits for the basis risk.
These limits are introduced as a capital requirement to cope with the consequences of basis risk.

The paper is organized as follows. In Section 2, we deduce some results related to the
shape of the distribution of a randomly scaled variable. We first deal with the case where the
distribution of X is gaussian and we explicitly identify the positive random variable Y hidden
in X. We then provide the distribution of a randomly scaled variable where the random scaling
factor is of Beta type. We close this Section by discussing the unimodality and the symmetry
of a randomly scaled variable. Section 3 is devoted to the convex ordering of randomly scaled
relations. In this Section, we use the (known) s-convex orders and s-convex extremal distribu-
tions and we adapt it to random scaling relations. In Section 4, we present an Enterprise Risk
Management approach by introducing the class of generalized penalty functions to quantify
basis risk. We continue the description of the ERM framework in Section 5 by providing a sys-
tematical way to set up basis risk limits. We eventually define a basis risk capital requirement.
Section 6 illustrates the methodology for several forms of basis risk, including light and heavy
tailed distributions for the index.
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2 On the distribution, the unimodality and the symme-

try of randomly scaled variables

In this Section, we justify the use of randomly scaled variables in the basis risk assessment as a
way to drop the symmetry and unimodality assumptions inherent to the decomposition given
by Dharmadhikari and Joag-Dev [32].

In subsection 2.1.1 we begin by discussing the ideal case where the distribution of the basis
risk is unimodal and symmetric and we provide the distribution function of the random variable
Y hidden in X.

In subsection 2.1.2 we consider the general case of randomly scaled variables and we explicitly
give the distribution of a randomly scaled variable when the random scaling factor is of Beta
type with integer parameters. From now, we are concerned with the resulting shape of the
distribution of a randomly scaled variable. Consequently, we first deal with the ordering of
two randomly scaled variables in the stochastic dominance sense, to eventually recall (known)
results on the asymptotics of randomly scaled variables in subsection 2.1.3. Tail behavior of
randomly scaled variables is directly related to our risk management purpose. Later in the
paper we illustrate the role of light and heavy tails in the basis risk assessment.

Once we move from unimodal and symmetric random variables to randomly scaled ones, we
wonder if a randomly scaled variable can still be unimodal, symmetric or both at the same time
and we provide the conditions that have to be fulfilled. As announced in the introduction, we
show that a randomly scaled variable is not necessarily unimodal nor symmetric. Consequently,
randomly scaled variables stand for a quite malleable class of random variables that allow for
the modification of the distribution of the basis risk to eventually generate different scenarios
for its assessment.

2.1 On the distribution of X =d SY

As it is stated in the introduction Khintchine [56] and then Shepp [75] give a characterization
of unimodal distributions, namely a random variable X is said to be unimodal if and only if it
can be written as X =d UV , where V and U are independent and U is uniformly distributed
on the unit interval. Later, it has been shown that X has a symmetric about 0 and unimodal
distribution if and only if it can be represented as X =d U1Y where U1 and Y are two inde-
pendent variables such that Y is non-negative and U1 is uniformly distributed over (−1, 1) (see
e.g. Dharmadhikari and Joag-Dev [32], Theorem 1.5). This case is of utmost importance in
our work since it corresponds to the ideal case where the difference between the loss and the
payout triggered by the index is for instance normally distributed. It is then worth describing
the distribution of the random variable Y hidden in X when X is symmetric and unimodal.

2.1.1 On the decomposition of Dharmadhikari and Joag-Dev [32]

We begin by providing the distribution of X =d U1Y for a general positive random variable Y .
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Proposition 2.1. Let X =d U1Y have a symmetric about 0 and unimodal distribution. Let FY
be the distribution function of Y and fY its density. Then

FX(x) =



1

2

(
x

∫ ∞
x

fY (y)

y
dy + FY (x) + 1

)
, x ≥ 0,

1

2

(
x

∫ ∞
−x

fY (y)

y
dy + (1− FY (−x))

)
, x ≤ 0.

(2.1)

Proof. The proof is based on the independence between U1 and Y . Only the case x ≤ 0 is
shown. Let x ≤ 0, then

P(X ≤ x) =
1

2

∫ 0

−1
P

(
Y ≥ x

u

)
du+

1

2

∫ 1

0

P

(
Y ≤ x

u

)
du

=
1

2

∫ 0

−1

∫ ∞
x/u

fY (y)dydu =
1

2

∫ ∞
−x

∫ x/y

−1
fY (y)dudy

=
1

2

(
x

∫ ∞
−x

fY (y)

y
dy + (1− FY (−x))

)
.

Equation (2.1) can be reversed in the sense that the distribution of Y can be recovered if
the one of X is known.

Proposition 2.2. Let X =d U1Y have a symmetric about 0 and unimodal distribution. Let FX
be the distribution function of X and fX its density. Then

FY (x) = 2FX(x)− 1− 2xfX(x), x ≥ 0, (2.2)

Proof. From the case x ≥ 0 in Proposition 2.1, we obtain∫ ∞
x

fY (y)

y
dy =

2FX(x)

x
− 1

x
− FY (x)

x
. (2.3)

Derivating (2.3) with respect to x yields the announced result.

This property gives the form of the random variable Y hidden in X when X is symmetric
and unimodal. When X is assumed to be normally distributed with mean 0 and variance σ2,
the following example provides the form of the density of the corresponding Y .

Example 2.1. Let X =d U1Y be normally distributed with mean 0 and variance σ2. We directly
obtain the density of Y by differentiating (2.2) with respect to x, yielding

fY (x) =
2x2

σ3
√

2π
exp

(
− x2

2σ2

)
, x ≥ 0.

This random variable Y has a mode at σ
√

2.
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2.1.2 Extension to general randomly scaled variables

Whatever the form of S and Y , the moments of the general randomly scaled variable X =d SY
are given by

E[Xk] = E[Sk]E[Y k], k ∈ N.

As Y is a positive random variable, then E[X] = 0 if and only if E[S] = 0. We will see later in
this section that the random scaling factor is responsible for the unimodality and the symmetry
of the overall distribution of X.

From here and subsequently, let Ua be a uniformly distributed random variable over (−a, a)
and S be a general random variable distributed over (−a, a). In the sequel of the paper, we
are particularly concerned with the case where S is of scaled Beta type. This case is referred
to as Sa. The scaled Beta distribution, also known as the four-parameter Beta distribution or
the translated Beta distribution, enlarges the support of the usual Beta distribution; see e.g.
Hanson [43] and Carnahan [15]. In fact, if Sa follows a scaled Beta distribution with parameters
α, β > 0 over [−a, a], denoted by Sa ∼ Beta([−a, a], α, β), then

Sa =d 2aS̃ − a = a(2S̃ − 1), (2.4)

where S̃ ∼ Beta([0, 1], α, β). Thus, Sa takes values over [−a, a] and the moments of Sa are
directly obtained with (2.4). In addition the density of Sa is given by

f(x) =
(x+ a)α−1(a− x)β−1

B(α, β)(2a)α+β−1
, −a ≤ x ≤ a and α, β > 0.

From now, we shift our attention to the case where Y is known (for instance given by
(2.2)) but we allow for the random scaling factor to be modified. We provide some results
on the shape of the resulting randomly scaled variable X =d SY . First of all, the dis-
tribution of X =d UaY can be easily obtained whereas the case where X =d SaY with
Sa ∼ Beta([−a, a], α, β) is not straightforward. The next proposition gives the distribution
of X when Sa ∼ Beta([−a, a], n,m), n,m ≥ 1.

Proposition 2.3. Let X =d SaY with Sa ∼ Beta([−a, a], n,m), n and m are integers veryfing
n,m ≥ 1. Then

FX(x) =



P(Sa ≤ 0) +
1

2n+m−1

n−1∑
k=0

(
n+m− 1

n− k − 1

)
P

(
Y S̃k ≤

x

a

)
, x ≥ 0,

1

2n+m−1

m−1∑
k=0

(
n+m− 1

m− k − 1

)
P

(
Y Ŝk >

−x
a

)
, x ≤ 0,

(2.5)

where {
S̃k ∼ Beta([0, 1], k + 1,m),

Ŝk ∼ Beta([0, 1], k + 1, n).
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The proof of Proposition 2.3 is given in Appendix. The next point raised is the ordering
of random scaling variables in the stochastic dominance order. Let X1 and X2 be two random
variables, not necessarily randomly scaled. Then X1 is said to be smaller than X2 in stochastic
dominance, denoted as X1 ≤st X2, if and only if P(X2 ≤ x) ≤ P(X1 ≤ x); see Denuit et al. [31]
for an entire presentation of this stochastic order.

Proposition 2.4. Let S be distributed over (smin, smax) with smin ≤ 0 ≤ smax and let FS be its
distribution function. Let Y1 and Y2 be two positive random variables independent from S. If
Y1 ≤st Y2, then

P(SY1 ≤ x) ≥ P(SY2 ≤ x), x ≥ 0,

P(SY1 ≤ x) ≤ P(SY2 ≤ x), x ≤ 0.

Proof. For x ≥ 0,

P(SY1 ≤ x) = FS(0) +

∫ smax

0

P(Y1 ≤ x/s)dFS(s)

≥ FS(0) +

∫ smax

0

P(Y2 ≤ x/s)dFS(s) = P(SY2 ≤ x).

For x ≤ 0,

P(SY1 ≤ x) =

∫ 0

smin

P(Y1 ≥ x/s)dFS(s) ≤
∫ 0

smin

P(Y2 ≥ x/s)dFS(s) = P(SY2 ≤ x).

An equivalent result can be obtained when the random scaling factors are ordered in the
stochastic dominance sense.

Proposition 2.5. Let Y be a positive random variable with distribution function FY and let
S1 and S2 be distributed over (smin, smax) with smin ≤ 0 ≤ smax. Assume both S1 and S2 are
independent from Y . If S1 ≤st S2, then

P(S1Y ≤ x) ≥ P(S2Y ≤ x), x ∈ R.

2.1.3 Tails of randomly scaled variables

A natural question is the nature of the tail of the random scaling variable X. For instance, we
wonder if it is possible that X =d Y S is light-tailed knowing that Y is heavy-tailed. Actually,
this issue has already been studied in Embrechts and Goldie [37], Cline and Samorodnitsky
[16], Tang [79], Tang [80], Hashorva and Pakes [47] and Hashorva et al. [48]. We recall the
definition of three classes of interest.

Definition 2.1. Let F be a cumulative distribution function and F̄ = 1− F .
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(i) F ∈ Rα if F̄ is regularly varying, i.e.

lim
t→∞

F̄ (λt)

F̄ (t)
= λ−α for some α ≥ 0, all λ ≥ 1.

(ii) F ∈ I if F̄ is intermediate regularly varying, i.e.

lim
λ↓1

lim inf
t→∞

F̄ (λt)

F̄ (t)
= 1.

(iii) F ∈ S if F̄ is subexponential, i.e.

F̄ (t) > 0 for every t and lim
t→∞

F ∗ F (t)

F̄ (t)
= 2,

where ∗ denotes convolution.

Besides, we recall that Rα ⊂ I ⊂ S . Denoting by FY the distribution function of Y , by
FS the one of S and by FX the one of the product X =d Y S, Embrechts and Goldie [37] prove
that if FY ∈ Rα for some α > 0 and either F̄S(x) = o(F̄Y (x)) or FS ∈ Rα then FX ∈ Rα.
Then, Cline and Samorodnitsky [16] prove that if FY ∈ I and F̄S(ux) = o(F̄X(x)) for some
u > 0, then FX ∈ I . Besides, they find four conditions that must be verified to conclude
that if FY ∈ S then FX ∈ S . In the same spirit, [79] removes the last condition from Cline
and Samorodnitsky [16] with the only cost of adding a mild condition to the distribution FY .
Furthermore, the case where S is unbounded is carefully watched in Tang [80]. Cline and
Samorodnitsky [16] also deal with the particular case where FS has a bounded support, which
corresponds actually to our framework of randomly scaled relations. In this case, they obtained
(corollary 2.5) that if FY ∈ S and S is a bounded random variable, then FX ∈ S . Hashorva
et al. [48] discuss the asymptotic behavior of FX when S ∈ [0, 1], considering it as a random
discount factor. The particular case of tail asymptotics under beta random scaling has been
highlighted in Hashorva and Pakes [47] through the determination of which maximal domain of
attraction contains FX when the membership of FY is known. In a nutshell, X =d SY belongs
to the same class as Y . The result of Cline and Samorodnitsky [16] concerning bounded random
scaling factor is of particular interest because it allows for adding heavy tails in the uncertainty,
or equivalently, it allows for basis risk to take great values.

2.2 On the unimodality of X =d SY

Then we focus on the unimodality of a randomly scaled variable. In the genesis of the forthcom-
ing result, the problem of the unimodality of the sum of independent unimodal random variables
has been tackled by Ibragimov [50] who show that in general convolutions of unimodal distribu-
tions are not unimodal. To this extent, the set of strongly unimodal distributions is introduced
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and defined as follows: the distribution of a random variable A is strongly unimodal if A + B
has a unimodal distribution whenever B is independent of A and has a unimodal distribution.
Furthermore, Ibragimov [50] prove that a continuous random variable is strongly unimodal if
its probability density function f is logconcave (i.e. log f is concave).

Later Cuculescu and Theodorescu [20] introduce the notion of multiplicative strong uni-
modality which is defined as the preservation of unimodality in product of independent random
variables. They first show that all unimodal distribution at 0 are multiplicative strong uni-
modal and that the resulting product is unimodal at 0. Indeed, take Y with positive support
and unimodal about 0 so that Y =d UV where U is uniform on (0, 1), V is non-negative and
U and V are independent. Then, the randomly scaled variable X =d SY of the form (1.2) can
be written as X =d SUV =d U(SV ), and therefore X (real-valued) is unimodal about 0.

They then demonstrate that a unimodal random variable S̃ is multiplicative strong unimodal
if and only if it is one-sided and absolutely continuous, with a density fS̃ having the property
that t 7→ fS̃(et) is log-concave in R when S̃ is non-negative. For positive variables, a change of
variable entails that S̃ is multiplicative strong unimodal if and only log S̃ is strongly unimodal.
Since location and scale do not affect log-concavity, if S̃ is multiplicative strong unimodal so
does S = uS̃ + v, u 6= 0 and v ∈ R; see e.g. Simon [76] or Alimohammadi et al. [2] for recent
contributions.

We hence deduce the next proposition by combining results from Ibragimov [50] and Cu-
culescu and Theodorescu [20].

Proposition 2.6. Let X =d SY be a randomly scaled variable.

i) If both S and Y are unimodal and either S or Y is multiplicative strong unimodal, then
X is unimodal.

ii) In particular, if S or Y is unimodal at 0, then X is unimodal at 0.

Therefore, we obtain the following corollary when X =d UaY .

Corollary 2.1. If X =d UaY then X is necessarily unimodal at 0.

However unimodality of a randomly scaled variable is not always guaranteed. To this extent,
we illustrate Proposition 2.6 with an insightful example involving the scaled Beta distribution
over [−1, 1].

Example 2.2. Let Y be a positive unimodal random variable. Let S1 ∼ Beta([−1, 1], α, β).
It is known form e.g. Alimohammadi et al. [2] that S1 is multiplicative strong unimodal if

and only if α > 0 and β ≥ 1. In this case, X =d S1Y is unimodal.
Now, assume Ŝ1 is Beta distributed with parameters α < 1 and β < 1. Then X̂ = Ŝ1Y may

not be unimodal anymore. For instance, Figure 2.1 represents the density of X̂ (solid blue line)
and X (dashed black line) when Y ∼ Γ(4, 2) and Ŝ and S are Beta distributed over [−1, 1] with
parameters (0.2, 0.2) and (2, 2) respectively.

As a result, we obtain the following corollary when the random scaling factor follows a scaled
Beta distribution.
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Figure 2.1: Densities of X̂ (solid blue line) and X (dashed black line) when Y ∼ Γ(4, 2) and Ŝ
and S are Beta distributed over [−1, 1] with parameters (0.2, 0.2) and (2, 2) respectively.

Corollary 2.2. Let α > 0 and β ≥ 1. If Sa ∼ Beta([−a, a], α, β) then X =d SaY is unimodal
(not necessarily at 0).

The question of the quantification of the mode of the randomly scaled variable X is far
from easy. The mode is defined as the maximum value taken by the density and it rapidly
involves intractable calculations. Nevertheless, when the distribution of X is known then the
mode can be relatively easily obtained numerically; see e.g. Basu and DasGupta [7], Sato [73]
or Gavriliadis [39]. The question of the mode is related to the one of the symmetry of the
distribution of X.

2.3 On the symmetry of X =d SY

The last point we deal with is the symmetry of a randomly scaled variable. This topic has
received some attention in the literature; see among many others the book by Galambos and
Simonelli [38] and Simonelli [77] or Hamedani and Volkmer [42]. There exist many charac-
terizations of the symmetry such as X, or equivalently its distribution function, is said to be
symmetric about x0 if and only if X −x0 =d x0−X or X is said to be symmetric if and only if
there exists a value x0 such that fX(x0 + x) = fX(x0− x) for all real x where fX is the density

12



of the random variable X (not necessarily randomly scaled). These two characterizations, al-
though they are intuitive, do not allow for straightforward calculation in our case since there is
no simple expression for the density nor the distribution function of a randomly scaled variable.

However, the Mellin transform stands for a powerful tool when it comes to dealing with the
product of (independent) random variables.

Definition 2.2. (Galambos and Simonelli [38])
Let Y be a nonnegative random variable with distribution function FY . The Mellin transform
of Y is defined as

MY (s) =

∫ +∞

0

tsdFY (t),

where s is a complex number and MY (s) is assumed finite.

To extend the definition of the Mellin transform to arbitrary random variable X (not nec-
essarily randomly scaled), let X+ and X− denote the nonnegative and the negative part of X,
respectively. Since both X+ and X− are nonnegative their Mellin transforms, denoted respec-
tively by MX+(s) and MX−(s), are well defined. Then the Mellin transform of X is given
by

MX(s) =MX+(s) + γMX−(s),

where γ2 = 1 is a formal indeterminate.
Among all the results related to Mellin transform, we point out that the Mellin transform

of the product of independent random variables is the product of their Mellin transforms. In
particular for a randomly scaled variable X =d SY ,

MX(s) =MS(s)MY (s) =
(
MS+(s) + γMS−(s)

)
MY (s).

Further, from Simonelli [77] a random variable X is symmetric about 0 if and only ifMX+(s) =
MX−(s) for all s in some neighborhood of 0. In particular when X is randomly scaled, Y is
positive thus the symmetry ofX only depends on the bounded random variable S. The following
proposition characterizes the symmetry of X =d SY .

Proposition 2.7. Let X be randomly scaled with X =d SX where S is any random variable
distributed over [−a, a] independent from Y .

If X is symmetric, then X is symmetric about 0.
In addition, X is symmetric about 0 if and only if S is symmetric about 0.

Proof. Let X =d SY with Y is a positive random variable and S is distributed over [−a, a] and
independent from Y . Note that MY −(s) = 0 for all s. Then, X is symmetric about 0 if and
only if

0 =MX+(s)−MX−(s)

=MS+(s)MY (s)−MS−(s)MY (s)

=MS+(s)−MS−(s),

yielding the announced result.
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We recall that the symmetry of X about 0 and P(X < 0) = 1/2 are not equivalent; see
Galambos and Simonelli [38] page 27 for a counter example. Combining all the results, we
obtain the following corollaries depending on the form of the random scaling factor.

Corollary 2.3. Let X =d SaY be a randomly scaled variable, where Sa is distributed over
(−a, a). The following assertions are equivalent:

i) Sa ∼ Beta([−a, a], α, α), α ≥ 1,

ii) Sa is unimodal about 0,

iii) Sa is symmetric about 0,

iv) X is unimodal about 0,

v) X is symmetric about 0.

Corollary 2.4. Let S be a non-symmetric random variable distributed over (−a, a) and let Y
be unimodal at 0. Then X =d SY is unimodal at 0 but is not symmetric.

For instance, a suitable distribution for Y is the exponential one.

To close the discussion on the shape of randomly scaled variables, we now come back to the
positive random variable Y when X is symmetric and unimodal. In fact, the symmetry of X
can be used to obtain the distribution of Y . We deduce the Mellin transform of Y using the
fact that if X is symmetric, so does S.

Proposition 2.8. Let X =d SY be a symmetric randomly scaled variable about 0. Then the
Mellin transform of Y is given by

MY (s) =
MX+(s)

MS+(s)
.

Proof. Since both X and S are symmetric, then MX(s) = MX+(s)(1 + γ) and MS(s) =
MS+(s)(1 + γ). Besides, the independence between S and Y yields

MY (s) =
MX(s)

MS(s)
=
MX+(s)

MS+(s)
.

Once the Mellin transform of Y is known, the density of Y can be obtained by reversing
the Mellin transform. The resulting density is then given by,

fY (x) =
1

2π

∫ +∞

−∞
|x|−it−1MY (t)dt, x ≥ 0. (2.6)

However, solving (2.6) is in general not an easy task; see Galambos and Simonelli [38] for some
examples. In the next example we deal with the case where X is normally distributed with
mean 0 and variance σ2. We hence complement Example 2.2 by providing the Mellin transform
of the positive random variable Y hidden in X.
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Example 2.3. Let X be a normally distributed random variable with mean 0 and variance σ2.
From Theorem 1.5 of Dharmadhikari and Joag-Dev [32], X =d U1Y . By definition, X and U1

are symmetric and their Mellin transform are given by

MX+(s) =
σs2

s−1
2

√
2π

Γ

(
s+ 1

2

)
, and MU+

1
(s) =

1

2(s+ 1)
, Re(s) > −1.

By Proposition 2.8, the Mellin transform of Y is given by

MY (s) =
σs2

s+1
2 (s+ 1)√

2π
Γ

(
s+ 1

2

)
, Re(s) > −1.

In addition, from Example 2.2 we have,

fY (x) =
2x2

σ3
√

2π
exp

(
− x2

2σ2

)
, x ≥ 0. (2.7)

In other words, we have shown that

1

2π

∫ +∞

−∞
|x|−it−1σ

t2
t+1
2 (t+ 1)√

2π
Γ

(
t+ 1

2

)
dt =

2x2

σ3
√

2π
exp

(
− x2

2σ2

)
, x ≥ 0.

In our framework, both the distributions of Y and S are known. However, the random
scaling factor plays the role of the link between the chosen Y and the corresponding X. The
methodology proposed in this work focuses on the role of the random scaling factor to assess
basis risk. The next section is devoted to the theory of convex orders, adapted for random
scaling relations.

3 Convex ordering of randomly scaled relation

The theory of stochastic orders has a variety of uses in theoretical and applied probability, and
especially in actuarial science. Much of this theory can be found in the comprehensive books
by Shaked and Shanthikumar [74] and Müller and Stoyan [65]. An important class of stochastic
orders is provided by the orders called s-convex whose properties have been studied in depth by
Denuit et al. [28, 29]. These orders are the key tool used in this section to compare randomly
scaled relations. For the sake of brevity, we will only recall a few elements on the s-convex
orders when necessary. The purpose of this section is twofold. It first enlarges the result given
by Lefèvre et al. [60] on transferring s-convex order for any random scaling relation, it then
provides the s-convex extremal distributions in this general framework. In an ERM approach,
these extremal distributions stand for the worst case scenarios.
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3.1 Transferring the s-convex order

Before proceeding further, let S be a subinterval of the real line R and US
s−cx be the class of

all s-convex functions φ : S → R. A function φ : S → R is said to be s-increasing convex if φ
is k-convex, k = 1, . . . , s. We denote by U S

s−icx the class of s-increasing convex functions. All
random variables discussed in this paper are defined on a common probability space (Ω,F ,P),
and we denote by Supp(X) the support of the random variable X. In this context, let S and Y
be two random variables such that Supp(S) = [a, b] ⊂ R and Supp(Y ) = D ⊆ R+. In addition,
let ȳ = sup(D) and y = inf(D) be the supremum and the infimum of D respectively. For given
[a, b] and D ⊆ R+, the subinterval A is given by

A =


(ay, bȳ) if 0 ≤ a < b < +∞,
(aȳ, bȳ) if a ≤ 0 < b < +∞,
(aȳ, by) if −∞ < a < b ≤ 0.

Consequently when X =d SY , then Supp(X) = A . From here and subsequently, we assume
UA
s−cx is non-empty.

When two random scaling factors S1 and S2 are ordered in the s-convex sense, a natural
question is to wonder if this stochastic order can be transferred to the corresponding randomly
scaled variable X. Proposition 3.1 provides the answer.

Proposition 3.1. Let X1 = S1Y and X2 = S2Y two randomly scaled variables, with Si ⊥ Y ,
i = 1, 2. If S1 ≤[a,b]

s−cx S2 then X1 ≤A
s−cx X2.

Proof. From Denuit et al. [28], if S1 ≤[a,b]
s−cx S2, then yS1 ≤[ya,yb]

s−cx yS2 for y > 0 which is ver-
ified since Y ∈ D ⊆ R+. For y = 0, E[φ(yS1)] = E[φ(yS2)] = E[φ(0)]. Consequently, the
independence between Y and Si, i = 1, 2 yields

E[φ(X1)] =

∫
E[φ(yS1)]dFY (y),

≤
∫

E[φ(yS2)]dFY (y),

≤ E[φ(X2)].

Then, X1 ≤A
s−cx X2.

In the literature, the roles of S and Y are usually reversed. In fact, it is assumed that the
Y ’s are ordered in the s-convex sense, and that the distribution of the random scaling factor is
completely known (unimodality in e.g. Denuit et al. [28, 29], α-unimodality in Brockett et al.
[14] and Beta-unimodality in Lefèvre et al. [60]). Proposition 3.1 still holds when S and Y are
reversed providing the hypotheses on the variables playing the role of the Si’s hold.

Again, Proposition 3.1 remains valid when we consider two random variables Y1 and Y2 that
are identically distributed instead of the same Y .
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Proposition 3.2. Let X1 = S1Y1 and X2 = S2Y2 be two randomly scaled variables, with Y1, Y2
identically distributed and independent of (S1, S2). If S1 ≤[a,b]

s−cx S2, then X1 ≤A
s−cx X2.

The dependence structures between S1 with S2 and Y1 with Y2 are not involved in the
transfer of the s-convex order from the S’s to the X’s. The proposition can be pushed one
step further considering a product of random scaling factors. An interesting point emerges
in insurance and finance when it comes to iterating interest rates for several periods. In this
spirit, Courtois and Denuit [19] derives 2-convex bounds on multiplicative processes in an option
pricing purpose. Denoting by Yi the random discount factor of the period 1 ≤ i ≤ n, ordering
quantities such as E[Y1...YnS1] and E[Y1...YnS2] could be of particular interest. Then the latter
property is still valid if Y1...Yn ⊥ Si, i = 1, 2. The hypothesis of independence between Si,
i = 1, 2 and Y is crucial when it comes to transferring the s-convex order from the S’s to the
X’s. Generally speaking, Proposition 3.1 does not hold any more when the random scaling
factors are not independent from the Y ’s.

Once the way of transferring the initial s-convex order from a variable to another is pre-
sented, it can be used to derive s-convex extremal distributions. In a nutshell, these extremal
distributions are based on s-moment spaces and on the support of the initial random variable.
Denuit et al. [30] describes the whole methodology to built suitable s-moment spaces. For a
random variable X such that Supp(X) = A and E[Xk] = νk, k = 1, . . . , s − 1, we denote by
B(A , ν1, . . . , νs−1) its s-moment space.

3.2 s-convex extrema on random scaling relations

As presented in Denuit et al. [29], dealing with s-convex stochastic order provides so-called
extremal s-convex distributions defined on a s-moment space. These extremal distributions
are of particular interest when it comes to bounding quantities of the form E[φ(X)] for φ ∈
UA
s−cx, assuming X ∈ B(A , ν1, . . . , νs−1). In the same vein, s-convex extrema for a randomly

scaled variable are derived in the following proposition when the initial s-convex order comes
from the bounded random variable S. From here and subsequently, B([a, b], ρ1, ..., ρs−1) and
B(D , µ1, ..., µs−1) denote the s-moment spaces of the random variables S and Y respectively.

Proposition 3.3. s-convex extrema for randomly scaled variables
Let X =d SY be a randomly scaled variable. If S ∈ B([a, b], ρ1, ..., ρs−1) and Y ∈ B(D , µ1, ..., µs−1),
then X ∈ B(A , ν1, ..., νs−1) where

νk = ρk µk, k = 1, s− 1. (3.1)

Furthermore, within B(A , ν1, ..., νs−1) the s-convex extremal distributions of X are

X
(s)
min = S

(s)
minY and X(s)

max = S(s)
maxY.

Proof. Equation (3.1) is a direct consequence of the independence between S and Y . The

existence of the extremal distributions S
(s)
min and S

(s)
max are due to Denuit et al. [29]. The result

is obtained using Proposition 3.1.
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By definition of the extremal distributions, X
(s)
min ≤A

s−cx X ≤A
s−cx X

(s)
max. The s-convex

extremal distributions of any randomly scaled variable are obtained in two steps. First the
extremal distributions of the random scaling factor S are easily obtained using results given by
De Vylder [24] or Denuit et al. [29, 30], providing its s-moment space is known. Obviously, the
distribution of S impacts the resulting extremal distribution. Second, Proposition 3.3 ensures
s-convex extremal distributions on X are obtained by multiplying the resulting random variable
by Y . The presentation of the bounds is omitted for reasons of brevity.

Proposition 3.4 illustrates the fact that knowing information either on S or Y leads to
sharper bounds. The result can be extended to any product as long as the factors are mutually
independent.

Proposition 3.4. Let X =d SY be a randomly scaled variable and assume X ∈ B(A , ν1, ..., νs−1).
Then,

X ≤A
s−cx

{
S(s)
maxY

SY (s)
max

≤A
s−cx S

(s)
maxY

(s)
max ≤A

s−cx X̃
(s)
max, (3.2)

where X̃
(s)
max ∈ B(A , ν1, ..., νs−1) denotes the general s-convex maximum of X, i.e. without

knowing X is randomly scaled.

Proof. By definition of S
(s)
max, thenX ≤A

s−cx S
(s)
maxY . Besides, Proposition 3.1 yields E[φ(S

(s)
maxY )] ≤

E[φ(S
(s)
maxY

(s)
max)]. The result is the same when we begin by Y . The last inequality comes from

the fact that S
(s)
maxY

(s)
max ∈ Bs(A , ν1, ..., νs−1). Combining it with the definition of X̃

(s)
max yields

the announced result.

3.3 Comparison of s-convex extrema

The previous subsections give the worst case scenarios represented by the extremal distribu-
tions. In our ERM approach, we would like worst case scenarios to be sorted in function of
the available information. In other words, since the 2-convex extremal distribution is built
only with the first moment whereas the 4-convex distribution uses the three first moments, it
seems relevant to require the resulting 4-convex worst case scenario to be less serious than the
2-convex one.

Assume X ∈ B(A , ν1, . . . , νs−1) is a random variable, not necessarily randomly scaled. By

definition, X
(3)
max ∈ B(A , ν1, ν2) ⊂ B(A , ν1) and for φ ∈ U A

2−cx, both E[φ(X
(3)
max)] ≤ E[φ(X

(2)
max)]

and E[φ(X)] ≤ E[φ(X
(2)
max)] hold. However nothing guarantees E[φ(X)] ≤ E[φ(X

(3)
max)] ≤

E[φ(X
(2)
max)] is verified; see Lefèvre et al. [60] for an insightful example. This constraint, re-

ferred to as the ERM requirement is at the basis of our methodology. To this extent, we
provide theoretical results that make the s-convex extremal distributions comparable.
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Formally, since B(A , ν1, . . . , νs−1) ⊂ B(A , ν1, . . . , νs−2) given the same νk, 1 ≤ k ≤ s − 2,
then

X(s)
max ≤(s−1)−cx X

(s−1)
max .

If all the available information is used, assuming s ≥ 2, the same reasoning yields

X ≤s−cx X(s)
max ≤(s−1)−cx X

(s−1)
max ≤(s−2)−cx . . . ≤2−cx X

(2)
max,

which can be rewritten as

E[φs(X)] ≤ E[φs(X
(s)
max)] ≤ E[φs−1(X

(s−1)
max )] ≤ . . . ≤ E[φ2(X

(2)
max)], (3.3)

where φk ∈ U A
k−cx, k = 2, . . . , s. It is clear that unless

φ ∈
s⋂

k=2

U A
k−cx, (3.4)

inequalities in (3.3) involve a priori different functions. We are now ready to state the following
result, which shows the s-convex extremal distributions can be compared in the s-convex order
if φ is k-convex, k = 2, . . . , s.

Proposition 3.5. Let X ∈ B(A , ν1, . . . , νs−1), not necessarily randomly scaled. Then

E[φ(X)] ≤ E[φ(X(s)
max)] ≤ E[φ(X(s−1)

max )] ≤ . . . ≤ E[φ(X(2)
max)],

hold for φ ∈
⋂s
k=2 U A

k−cx.

Proof. Let X ∈ B(A , ν1, . . . , νs−1) and assume φ ∈
⋂s
k=2 U A

k−cx,. By definition of X
(s)
max and

φ, E[φ(X)] ≤ E[φ(X
(s)
max)]. In addition, X

(s)
max ∈ B(A , ν1, . . . , νs−1) ⊂ B(A , ν1, . . . , νs−2), then

E[φ(X
(s)
max)] ≤ E[φ(X

(s−1)
max )], leading to E[φ(X)] ≤ E[φ(X

(s)
max)] ≤ E[φ(X

(s−1)
max )]. We proceed in

the same way for s− 1, . . . , 2.

Basically, comparing X
(s)
max with X

(s−1)
max in the s-convex order can be done only if the function

is both s and s− 1 convex. The higher degree convex functions is not a new concept, see e.g.
Popoviciu [70, 69], Kuczma [57] and Denuit et al. [28] and references therein. In Proposition
3.5, if the function φ is increasing, then φ is said to be s-increasing convex. The class of s-
increasing convex functions on A is denoted by U A

s−icx. In the literature, s-increasing convex
functions are referred to as s-times monotone functions, see e.g. Maksa and Páles [61], McNeil
and Nešlehová [62] and Rajba [71].

When A admits a finite left end point Popoviciu [69] give a characterization of s-increasing
convex functions. Assume the left endpoint of A , say a, is finite, and let us denote by ψs,a :
A 7→ R+ the function defined by ψs,a(x) = (x − a)s, s = 1, 2, . . .. Also, let ψs−1,t,+ denote
the function defined by ψs−1,t,+(x) = (x − t)s−1+ . Popoviciu [69] (Theorem 8) showed that the
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functions ψk,a, k = 0, . . . , s− 1 and ψs−1,t,+, t ∈ A , span U A
s−icx. More precisely, for n ≥ s, let

the function ϕn be of the form

ϕn(x) =
s−1∑
j=0

γj(x− a)j +
n−s∑
j=0

βj(x− tj)s−1+ , (3.5)

where γ0, . . . , γs−1 are non-negative constants, β0, . . . , βn−s are non-negative constants, and
t0 < t1 < . . . < tn−s ∈ A . Then every φ ∈ U A

s−icx is the uniform limit of a sequence {ϕn, n ≥ s},
where the ϕn’s are of the form (3.5).

Before we shift our attention to the next section, let us deal with the product of increasing
convex functions. According to Popoviciu [70], it is in general impossible to characterize the
order of convexity of the product of two functions. Nevertheless, it is direct to deal with the
particular case of two positive s-increasing convex functions.

Proposition 3.6. Let f : A 7→ R+ and φ : A 7→ R+ be two positive s-increasing convex
functions. Then f × φ ∈ U A

s−icx.

Proof. From Popoviciu [70], the divided difference of order s of f × φ is given by

[x0, . . . , xs; f × φ] =
s∑

k=0

[x0, . . . , xs−k; f ][xs−k, . . . , xs;φ],

where x0, . . . , xs ∈ A . Since f ∈ U A
s−icx, [x0, . . . , xs−k; f ] ≤ 0 for k ≤ s. For the same reason,

[xs−k, . . . , xs;φ] ≥ 0 for k ≤ s. Consequently [x0, . . . , xs; f × φ] ≥ 0. For n > s,

[x0, . . . , xn; f × φ] = [x0, . . . , xn; f ]φ(xn) +
n∑
k=1

[x0, . . . , xn−k; f ][xn−k, . . . , xn;φ].

This time, the sign of [x0, . . . , xn; f ] is unknown and we can not conclude [x0, . . . , xn; f×φ] ≥ 0.

To close the discussion on the comparison of s-convex extremal distributions, the ERM
requirement is fulfilled if the function used to measure the consequences of basis risk belongs
to the class introduced in (3.4). The next section is devoted to the definition of the fonctions
used to measure the consequences of the basis risk, referred to as generalized penalty functions.

4 Quantifying two-sided basis risk

The aim of this section is to provide the second and third steps of our basis risk quantifica-
tion method. The second step consists in quantifying basis risk thanks to generalized penalty
functions. In the third step, we derive basis risk limits and propose a way to cope with conse-
quences of basis risk. For a fixed basis risk budget, basis risk limits are defined as the affordable
maximum window of uncertainty.
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4.1 Motivation

Lefèvre et al. [60] introduce a particular class of functions, referred to as penalty functions.
These functions worsen the consequences of a great difference between the real loss and the
value taken by the parametric index. In other words, a penalty function transforms linear
consequences into convex ones. For the sake of clarity, we formalize the required conditions to
define a penalty function in the following definition.

Definition 4.1. Initial Penalty Function (IPF)
Let n be a positive integer. A function gn : R→ R+ is called an initial penalty function if both
gn ∈

⋂n
k=2 U R

k−cx and gn(0) = 0 hold.

From Proposition 3.6 and Definition 4.1, we provide some examples of Initial Penalty Func-
tions.

Example 4.1. Let x ∈ R. The function g2 : x 7→ λx2, λ > 0 is the simplest IPF.
Because the symmetry of g2 may be too restrictive, it can be enlarged to gn : x 7→ λx2(x−d)n+,

or to gn : x 7→ λx2(1 + (x − d)n+). Such a form takes into account both negative and positive
values of uncertainty, i.e. measures the impact of both upside and downside basis risks. In this
representation, the parameter d stands for a critical level. When the uncertainty is greater than
the critical level, the consequences of basis risk worsen dramatically (depending on the value of
n).

Of course, it is possible to set several layers of impacts say d1, . . . , dk, k being a positive
integer since the function gn : x 7→ λx2

∏k
i=1(1 + (x− di)n+) is an IPF.

It is even possible to increase the power n according to the layer. In fact, let ni ≥ n be the
power associated to the layer i, i = 1, . . . , k. The function gn : x 7→ λx2

∏k
i=1(1 + (x− di)ni

+ ) is
an IPF.

If one is interested in modifying the impact when x < 0, he has to take care of the resulting
order of convexity of the function. For instance, f : x 7→ g2(x)(1+(c−x)4+), c < 0 is only 2 and
4-convex. Therefore, f is not an IPF and only the 2 and 4-convex extrema can be computed.

Whatever the form of the chosen IPF, it only deals with the difference between the loss
and the index by fixing an additive constraint. In other words, penalty functions introduced in
Definition 4.1 lay the stress on the size of the uncertainty, without taking into account the size
of the loss (or equivalently, the size of the index). In order to illustrate the issue, consider any
of the IPF given in Example 4.1. On the one hand, assume the value of the loss is 200 whereas
the value of the index is 100 : then the difference is 100. The penalty function yields, say
gn(100). On the other hand, assume the value of the loss is 2 000 000 and the one of the index
is 1 999 900. Once again the difference is 100, and the penalty function leads to the same level
of consequences, gn(100). In the first case the difference represents half of the loss, whereas it
represents only 0.005% in the second case. Comparing the size of the uncertainty with the size
of the loss is equivalent to comparing the size of the uncertainty with the size of the index. By
adopting this point of view, we focus on the quality of the index. If the ratio “uncertainty on
index” is high, the index does not reflect the loss properly. On the other hand, if the ratio is
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low, then the index is efficient. Therefore, the upcoming section generalizes the initial penalty
function by increasing the impact of the uncertainty when the ratio “uncertainty on index” is
greater than a predefined acceptable value.

4.2 Generalized penalty functions

To overpass the disadvantage of the initial penalty function, we propose a way to improve the
measurement of the consequences of basis risk. This improvement involves the ratio “uncer-
tainty on index” so that the impact of the uncertainty is increased when the ratio is greater than
an acceptable value. Therefore, we introduce an impact function that takes three parameters
in input.

Definition 4.2. Impact Function
Let n be a positive integer. A function

hn :

{
R× R+ × R+ → [1,+∞[

(x, z, l) 7→ hn(x/z, l)
,

is called an impact function if it verifies the following conditions,

- hn is continuous,

- hn(x/z, l) = 1 for l ≥ x/z,

- hn(x/z, l) > 1 for l < x/z,

- hn ∈ U R+

n−icx.

The parameter x stands for the size of the uncertainty whereas z represents the size of
the index. The positive parameter l represents the maximal acceptable ratio. When the ratio
“uncertainty on index” remains under l, the consequences of the difference between the loss
and the index are not modified (hn(x/z, l) = 1). On the other hand, the impact is increased
when the ratio is greater than the acceptable value ((hn(x/z, l) > 1). Let l > 0, and n ∈ N?. A
suitable hn is for example

hn

(
x

z
, l

)
= 1 +

(
x

z
− l
)n

+

, x ∈ R, z ∈ R+. (4.1)

From now on, the greater the ratio the greater the consequences. Once the initial penalty
function and the impact function are formalized, we can introduce the generalized penalty
function ξn as

Definition 4.3. Generalized Penalty Function
A function

ξn :

{
R× R+ × R+ → R+

(x, z, l) 7→ ξn(x, z, l)
,
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is called a generalized penalty function if it can be written as,

ξn(x, z, l) = gn(x)hn

(
x

z
, l

)
, x ∈ R, z ∈ R+, l > 0,

where gn is an initial penalty function, and hn is an impact function, n being a positive integer.

Therefore, the impact function hn behaves like a multiplicative factor which increases the
initial consequences of a difference between the loss and the index. This multiplicative factor
intervenes only if the size of the uncertainty is greater than a level based on the size of the
index. Consequently, because of the form of both gn and hn, ξn(x, z, l) ≥ gn(x), ∀x ∈ R,
∀z ∈ R+ and ∀l > 0. The generalized penalty functions are used to measure the consequences
of the uncertainty in the worst case scenarios. Consequently, an important point to look at is
the order of convexity of theses functions to make sure the ERM requirement is fulfilled.

Proposition 4.1. Let ξn be a generalized penalty function built with an initial penalty function
gn and an impact function hn. Then for a given (z, l) > 0,

ξn ∈
n⋂
k=2

U R
k−cx.

Proof. The proof is a direct consequence of Proposition 3.6

Obviously, by definition of l, when l → ∞, ξn(x, z, l) = gn(x) for all z ∈ R+. This means
when the acceptable ratio is infinite, the generalized penalty function is merely the initial
penalty function. For instance,

ξn(x, z, l) = λ
(
1 + (x− d)n+

)(
1 +

(
x

z
− l
)n

+

)
, (4.2)

for x ∈ R, z ∈ R+, n ∈ N?, d > 0 and l > 0 is a generalized penalty function. Note that ξn
defined in (4.2) penalizes only positive differences.

4.3 Computation of basis risk measurement in worst case scenarios

We must now quantify the consequences of the basis risk X in each worst case scenario. For this,
we calculate the (positive) measure associated with X, denoted Cn ≡ Cn(X), which corresponds
to the average value of the generalized penalty for X, i.e. Cn = E[ξn(X,Z, l)]. Note that for Z
fixed, Cn(X) is convex in X.

The generalized penalty function ξn has been built so that ξn ∈
⋂n
k=2 U R

k−cx. Consequently
Proposition 3.5 holds, and the ERM requirement is fulfilled. The following proposition gives
the general form of the maximal basis risk measurement.
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Proposition 4.2. Let n be an integer and let ξn be a generalized penalty function. Assume the
uncertainty is a randomly scaled variable with S ⊥ Y , S ⊥ Z and S ∈ B([−a, a], ρ1, . . . , ρn−1).
The s-convex basis risk measurement is hence defined as a function of the scenario s, namely

C(s)
n (a) = Cn

(
X(s)
a,max

)
= Cn

(
S(s)
a,maxY

)
, s = 2, . . . , n, a > 0. (4.3)

In addition,
Cn(a) ≤ C(s)

n (a) ≤ C(s−1)
n (a) ≤ . . . ≤ C(2)

n (a). (4.4)

Proof. Equation (4.4) is obtained combining the fact that ξ ∈
⋂n
k=2 U R

k−cx and Proposition
3.5.

As presented in Denuit et al. [29], s-convex extremal distributions are atomic ones and in
particular, the number of points of the s-convex maximal distribution is k + 1 where k ∈ N?

is such that s = 2k if s is an even number or s = 2k + 1 if s is odd. Therefore, denoting si,
i = 1 . . . , k the points of the s-convex maximal distributions and pi their associated mass, then

C(s)
n (a) =

k∑
i=1

piCn (siY ) , (4.5)

and the difficulty lies in the computation of Cn (siY ). We point out that when the distributions

of both Y and Z are fixed, C
(s)
n (0) = 0 and C

(s)
n is strictly increasing in a. This allows for

defining basis risk limits in the following way.

5 Setting up basis risk limits

The way to measure basis risk presented in previous sections lays the stress on the ratio between
the value of the uncertainty and the value of the index. For each scenario, one is able to derive
average consequences of basis risk. The last step in our methodology is to set up basis risk
limits in order to be able to manage and to control basis risk. In this Section, we first define
the basis risk limits, we then adopt two points of view to derive sound basis risk management.

5.1 Fixed basis risk budget

The first point of view is to fix beforehand a basis risk budget. In fact, the entity facing basis
risk is able to define a basis risk budget based on an ERM criterion, for instance risk appetite.
This basis risk budget can be defined as the monetary amount that allows for coping with
consequences of basis risk when these consequences are measured with a generalized penalty
function. To this extent, basis risk limits naturally appears as the maximal affordable basis
risk.
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In other words, let Sa ∈ B([−a, a], ρ1, ρ2, ..., ρs−1), a > 0, and let π > 0 be the fixed basis
risk budget. Then the basis risk limit in scenario s, denoted by a(s), is defined as the value of
the parameter a such that

C(s)
n (a) = π. (P1)

From this point of view, solving (P1) yields one value of a(s) for each scenario s. By doing so,
we completely manage the weight of uncertainty in the size of the ultimate loss.

In fact, basis risk limits can be expressed as the acceptable probability that the ratio between
the value of the uncertainty and the value of the index exceeds the predefined threshold l
involved in the impact function of the generalized penalty function. By definition,

P

(
SaY

Z
> l

)
= γ, γ ∈ [0, 1]. (5.1)

We draw the attention on the fact that we do not deal with the s-convex maximum distribution
of Sa but with its underlying distribution. In addition, let T =d Y/Z then SaT is a randomly
scaled variable. Since solving (P1) yields one value of a(s) for each scenario s, we equivalently
obtain one value of γ for each scenario, denoted by γ(s), given by

γ(s) = P
(
S(s)
a T > l

)
.

If the resulting γ(s) is not satisfactory from the point of view of the basis risk bearer the index
can be rejected. Note from Proposition 2.4 that for a fixed Sa, if T1 ≤st T2 then γ

(s)
1 ≤ γ

(s)
2 .

Consequently, T plays a key role in the determination of the basis risk limits. In the following
subsection we deal with the reversed problem.

5.2 Basis risk capital requirement

Whereas in the previous subsection basis risk budget was fixed and we aimed at deducing the
basis risk limits, here we are interested in the reversed problem, namely we want to obtain
the basis risk budget knowing the basis risk limits. In other words, we begin by fixing the
parameter γ introduced in (5.1), then we have to find the corresponding parameter a in Sa to
eventually obtain one basis risk budget for each scenario.

The next proposition ensures that hl : a 7→ P (SaT > l), can be reversed. In addition we
provide an interesting result on the limit of this function.

Proposition 5.1. Let l > 0, Sa be a random scaling factor distributed over [−a, a] and T be
a positive random variable, independent from Sa, with density fT . Assume the [0, 1]-valued

random variable U =
Sa + a

2a
admits a strictly decreasing survival distribution function. Let

hl(a) = P(SaT > l) =

∫ ∞
l/a

P

(
U >

l

2at
+

1

2

)
fT (t)dt,∀a ∈ R+, a > 0.
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Then hl is continuous and strictly increasing. In addition,

lim
a→+∞

hl(a) = P

(
U >

1

2

)
, (5.2)

providing the limit exists.

Proof. For all a ∈ R+, lim
x→a

hl(x) = hl(a), ensuring the continuity of hl.

Let ã = a+ ε, ε > 0, and t ∈ [l/ã,+∞[. With the strict decrease of the survival distribution of
U ,

P

(
U >

l

2ãt
+

1

2

)
> P

(
U >

l

2at
+

1

2

)
. (5.3)

Integrating (5.3) from l/a to +∞ gives∫ ∞
l/a

P

(
U >

l

2ãt
+

1

2

)
fT (t)dt >

∫ ∞
l/a

P

(
U >

l

2at
+

1

2

)
fT (t)dt = hl(a). (5.4)

Moreover,

hl(ã) =

∫ ∞
l/ã

P

(
U >

l

2ãt
+

1

2

)
fT (t)dt >

∫ ∞
l/a

P

(
U >

l

2ãt
+

1

2

)
fT (t)dt. (5.5)

Combining (5.4) and (5.5) yields

∀a ≥ 0, ∀ã > 0, a < ã⇒ hl(a) < hl(ã),

proving thus the function hl is strictly increasing.
Let t ∈ [l/a,+∞[. Since the survival distribution function of U is strictly decreasing,

P(U > 1) < P

(
U >

l

2at
+

1

2

)
≤ P

(
U >

1

2

)
. (5.6)

Integrating (5.6) yields

0 <

∫ ∞
l/a

P

(
U >

l

2at
+

1

2

)
fT (t)dt ≤ P

(
U >

1

2

)∫ ∞
l/a

fT (t)dt. (5.7)

Taking the limits, providing it exits, of (5.7) leads to

0 < lim
a→+∞

hl(a) ≤ P

(
U >

1

2

)
.

The function hl is strictly increasing and admits a horizontal asymptote, proving thus Equation
(5.2).
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Now, we are allowed to reverse the function hl, yielding

â = h−1l (γ). (P2)

The parameter â denotes the value of a such that the probability that the ratio SâY/Z is greater
than l equals γ. Solving (P2) yields the basis risk budget induced by the parameter γ. For

each scenario s, we obtain a basis risk budget π
(s)
γ defined as

π(s)
γ = C(s)

n (â) = C(s)
n

(
h−1l (γ)

)
.

From Proposition 2.5, if Sa ≤st S̃a, then π
(s)
γ ≤ π̃

(s)
γ highlighting thus the role of the random

scaling factor in the determination of the basis risk budget.
Contrary to (P1), solving (P2) yields one value of the parameter a for all the scenarios,

namely â, but one value of the basis risk budget based on the initial known value of γ for each
scenario. To this extent, we define the value π

(s)
γ as a Basis Risk Capital Requirement of level

γ. This capital requirement ensures to lead to affordable consequences of basis risk, and to
uncertainties that do not weight more than l times the size of the index in the total loss with a
given and chosen probability γ. In other words, this ensures to select efficient indices. From an
ERM point of view (5.2) stands for a criterion to select or reject an index. For a given index,
if the probability that the uncertainty exceeds l times the value of the index is closed to one
half, then the uncertainty is maximal, the basis risk limits are huge and the resulting basis risk
capital requirement is infinite. In other words, this particular index is not affordable.

6 Practical implementation of the methodology

In this section, we apply and illustrate our methodology. First we identify the s-convex extremal
distributions of the basis risk then we chose a generalized penalty function and we end by solving
both (P1) and (P2). As we focus so far on the importance of taking into account both the size
of the uncertainty and the size of the index, we lay the stress on three types of uncertainty. For
a given distribution of the index Z, we deal with i) Y = Z, ii) Y =

√
Z and iii) Y = Z̃ where

Z̃ is an independent copy of Z.
In case i) the loss L can be written as L = (1 + S)Z = S̃Z, i.e. L is randomly scaled. In

this case, the index Z is multiplied by a random scaling factor S̃ in order to take into account
the unperfect link between the index and the loss. Cases ii) and iii) allow the basis risk to be
dependent from the index.

In order to compare light with heavy tails, results are given for Z ∼ Γ(κ, r), κ > 0 and
r > 0 and for Z ∼ Pareto(ω,m), m > 0 and ω > 0. We recall that the density of a Pareto
distribution is given by

f(x) = ω
ωm

xm+1
, for x ≥ ω,

where m > 0 is the shape parameter.
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In this illustration, we focus on the case where the random scaling factor is either uniformly
distributed over (−a, a) or of Beta type over (−a, a). As before, these two cases are denoted by
Ua and Sa respectively. In short, we denote by SB(α, β) the case where Sa ∼ Beta([−a, a], α, β).

In order to keep the computation tractable, the generalized penalty function is given by

ξn(x, z, l) = (x− c)n+

(
1 +

(
x

z
− l
)n

+

)
, x ∈ R, z, l > 0.

We assume n ≥ 4 so that ξn is at least 4 increasing convex and we set l = 5%. Now we must
focus on the existence of Cn(siY ) = E[ξn(siY, Z, l)] introduced in (4.5) and given by

Cn(siY ) = λE

(siY − c)n+

(
1 +

(
si
Y

Z
− l
)n

+

) .
Obviously, if si ≤ 0, Cn(siY ) = 0. For the sake of clarity, the general forms of Cn(siY ) are given
in Appendix for the three cases i), ii) and iii) and when Z is either Gamma or Pareto distributed.
The following Proposition gives the form of the function hl introduced in Proposition 5.1 when
the random scaling factor is uniformly distributed over (−a, a).

Proposition 6.1. Let Sa ∼ U [−a, a], and l > 0.
The function hl is

i) for Y = Z,

hl(a) =
a− l
2a

.

ii) For Y =
√
Z, when Z ∼ Γ(κ, r), κ > 0 r > 0,

hl(a) =
1

2
P

(
Z <

(
a

l

)2
)
− l

2a

Γ(κ+ 1/2)

r1/2Γ(κ)
P

(
Zκ+1/2 <

(
a

l

)2
)
,

where Zκ+1/2 ∼ Γ(κ+ 1/2, r).

When Z ∼ Pareto(ω,m), and ω > 1/2,

hl(a) =
1

2

1− ωm
(
ω ∨

(
a

l

)2
)−m− lmωm

2a(m− 1/2)

ω1/2−m −

(
ω ∨

(
a

l

)2
)1/2−m

 .

iii) For Y = Z̃, Z̃ being an independent copy of Z, when Z ∼ Γ(κ, r), κ > 1 r > 0,

hl(a) =
1

2
P

(
Z̃

Z
>
l

a

)
− l

2a

Γ(κ− 1)Γ(κ+ 1)

Γ(κ)2
P

(
Z̃κ−1
Zκ+1

>
l

a

)
,
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where Z̃κ−1 ∼ Γ(κ− 1, r) and Zκ+1 ∼ Γ(κ+ 1, r).

When Z ∼ Pareto(ω,m), the function hl is

hl(a) =


1

4(m+ 1)

(
a

l

)m
if

l

a
≥ 1,

1

2
− lm2

2a(m2 − 1)
+

1

4(m− 1)

(
l

a

)m
if

l

a
< 1.

The function hl is the survival function of the randomly scaled variable S × Y/Z. To this
extent, the general form of hl when the random scaling factor is of Beta type with integer
parameters is given by Proposition 2.3.

6.1 Light tailed randomly scaled uncertainty

We are ready to solve (P1) and (P2) in cases i) Y = Z, ii) Y =
√
Z and iii) Y = Z̃, Z̃ being an

independent copy of Z when Z is Gamma distributed with parameters, say κ = 5 and r = 2.
We set c = 0.1E[Z] = 0.25 and π = 0.25E[Z] = 0.625.

First of all, Figure 6.2 illustrates the shape of C
(s)
n (a) in case i) Y = Z for s = 2 (solid

line), s = 3 (dashed line) and s = 4 (dotted line) with random scaling factors SB(1, 4) (top
left), SB(4, 1) (top right), Ua (bottom left) and SB(0.5, 0.5) (bottom right). As expected, the
more moment, the sharper the bounds, i.e. the solid curve is always above the dashed one
which is itself above the dotted one. Further, we can see the bounds for SB(4, 1) take the
greater values. This is due to the fact that when Sa ∼ Beta([−a, a], 4, 1), P(Sa > 0) = 0.9375.
The resulting X =d SaY is right shifted (strictly positive mode) and not symmetric, increasing
thus the size of the uncertainty. On the contrary, the case where Sa ∼ Beta([−a, a], 1, 4) yields
P(Sa > 0) = 0.0625. The resulting X =d SaY is left shifted (strictly negative mode) and not
symmetric. Therefore the bounds remain low. Further, the case where the random scaling
factor is uniformly distributed over (−a, a) looks like the one where Sa ∼ Beta([−a, a], 0.5, 0.5).
In fact, since E[Ua] = E[Sa] = 0, the 2 convex bounds are the same.

From now, we focus on the cases where the random scaling factor is either uniformly dis-
tributed over (−a, a) or is SB(4, 1). Table 1 summarizes the basis risk limits for each scenario
s = 2, 3, 4 for the three different cases i), ii) and iii) for Ua and SB(4, 1).

Ua SB(4, 1)

s-cx order Y = Z Y =
√
Z Y = Z̃ Y = Z Y =

√
Z Y = Z̃

2 0.3894 0.7743 0.2802 0.3529 0.7045 0.2641
3 0.4508 0.8904 0.3055 0.4077 0.8094 0.2882
4 0.4914 0.9663 0.3212 0.4218 0.8367 0.2947

Table 1: Basis risk limits a(s) for s = 2, 3, 4 in cases i), ii) and iii) for Z ∼ Γ(5, 2).
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Figure 6.2: C
(s)
4 (a) for s = 2 (solid line), s = 3 (dashed line) and s = 4 (dotted line) with random

scaling factors SB(1, 4) (top left), SB(4, 1) (top right), Ua (bottom left) and SB(0.5, 0.5)
(bottom right) in case i) Y = Z.

One notes for a given type of uncertainty, a(s) increases with the order of convexity. This is
explained by the available information in scenario, or equivalently by the number of moments
used to compute the s-convex extremal distributions. The higher the convex order the more
information, and consequently the greater the affordable a for a given basis risk budget. Fur-
thermore, for a fixed convex order, i.e. for a given scenario, case iii) leads to the lowest values
of a, whereas the greatest are reached in case ii). This is partially explained using the fact
P(
√
Z > x) ≤ P(Z > x) for x ≥ 1. Case iii) highlights the importance of having taken into ac-

count the ratio T = Y/Z. Since Z̃ is an independent copy of Z, then E[gn(Z)] = E[gn(Z̃)] where
gn is the IPF contained in the generalized penalty function, i.e. gn(x) = (x−c)n+. Consequently
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case i) and case iii) would have lead to the same consequences. In other words, an uncertainty
behaving as the index leads to the same consequences than an independent uncertainty. When
one adopts an ERM point of view, these two cases do not have the same signification.

Now, we move to the resolution of Problem (P2). We fix γ = 0.05 and we first find the
values of â in each cases i), ii) and iii). Table 2 sums up the resulting basis risk limits (the
value of â) in cases i), ii) and iii) for Sa ∼ U [−â, â].

Y = Z Y =
√
Z Y = Z̃

â 0.0555 0.06324 0.0338

Table 2: Values of â corresponding to γ = 0.05 for cases i), ii) and iii), when Z ∼ Γ(5, 2).

It remains to read on Figure 6.2 the corresponding values of π
(s)
γ . Small γ’s yield small â’s

leading hence to small π
(s)
γ . For instance, the corresponding π

(s)
γ for case i) are 1.6343 × 10−6,

0.8171 × 10−6 and 0.5447 × 10−6 for s = 2, 3, 4, respectively. From a basis risk point of view,
for a fixed type of uncertainty, π

(s)
γ decreases when the convex order increases. Since the

corresponding value of a is constant, and because the scenarios are sorted in function of the
convex order, then π

(2)
γ > π

(3)
γ > π

(4)
γ .

6.2 Heavy tailed randomly scaled uncertainty

Here, we move to a heavy tailed distribution for Z, assuming Z ∼ Pareto(m,ω). Studies
conducted for the Gamma distribution can easily be replicated for the Pareto case. However
here, the existence of Cn in case i), ii) and iii) is guaranteed for m > n, m > n/2 and m > 2n,
respectively. These conditions are quite restrictive since they require the eight first moments
of Z to exist in case iii). If this condition is not fulfilled, then the only acceptable value for a is
0. In other words, only where there is no basis risk is affordable (and costs 0). To this extent,
assume the shape parameter of the Pareto distribution is lower than 2, then the methodology
can be applied but only for n = 1. In this case, the generalized penalty function is only 2
convex. Consequently, only the 2 convex bound can be computed. To reach the 3 convexity of
the generalized penalty function and hence to compute the 3 convex bound, the methodology
requires the shape parameter to be greater than 6. In Table 3, we close the discussion by
providing the basis risk limits in case i), ii) and iii) for m = 1.8 and ω = 1 (only the first
moment of Z exists) for c = 0.1E[Z] = 0.225 and π = 0.25E[Z] = 0.5625.

Ua SB(4, 1)

s-cx order Y = Z Y =
√
Z Y = Z̃ Y = Z Y =

√
Z Y = Z̃

2 0.4557 0.7200 0 0.3419 0.5445 0

Table 3: Basis risk limits a(s) for s = 2 in cases i), ii) and iii) for Z ∼ Pareto(1.8, 1).
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In summary. We have adopted an ERM point of view to quantify the consequences of basis
risk inherent to an index-based insurance transaction. The quantification methodology consists
in a three steps procedure. Wort-case scenarios are derived from the available information
on the uncertainty. Measurement of consequences of basis risk is done thanks to generalized
penalty functions, to ultimately derive basis risk capital requirement. This value stands for the
price of the average consequences of a mismatching between the value taken by the index and
the real incurred loss. In other words, this is the required amount to mop up losses due to
the use of index-based insurance instead of an indemnity-based insurance. From this point of
view, the ”real” price of index-based insurance products is greater than the net premiums ask
by the supplier of the coverage. Consequently, this may be an explanation of the low demand
in several countries.

Appendix

• Proof Proposition 2.3 Before we proceed further, we recall from Pakes and Navarro [67]
the following result. Let S ∼ Beta([0, 1], α, β) and let Y be a random variable independent
from S. Then X =d SY is said to be Beta unimodal, and

P(SY ≤ x) =
Γ(α + β)

Γ(α)
xα(Iβφ)(x), (6.1)

where the function φ depends on FY by

φ(t) = FY (t)t−α−β,

and the function Iβφ is defined as

(Iβφ)(x) =
1

Γ(β)

∫ ∞
x

(t− x)β−1φ(t)dt,

i.e., it corresponds to the Weyl fractional integral of φ; see Miller and Ross [63] or Debnath and
Bhatta [26].

Now, let n and m be two integers greater than 1 such that Sa ∼ B([−a, a], n,m). First, let
x ≥ 0. Then,

P(X ≤ x) = P(Sa ≤ 0) +

∫ a

0

P(Y ≤ x/u)fSa(u)du. (6.2)

The proof is now based on the calculation of the integral in the right hand side of (6.2). Let
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Ia =
∫ a
0

P(Y ≤ x/u)fSa(u)du.

Ia =
Γ(n+m)

Γ(n)Γ(m)(2a)m+n−1

n−1∑
k=0

(
n− 1

k

)
an−k−1

∫ a

0

FY (x/u)uk(a− u)m−1du

=
Γ(n+m)

Γ(n)Γ(m)(2a)m+n−1

n−1∑
k=0

(
n− 1

k

)
an+m−k−2xk+1

∫ +∞

x/a

FY (t)t−m−(k+1)

(
t− x

a

)m−1
dt,

=
Γ(n+m)

Γ(n)Γ(m)(2)m+n−1

n−1∑
k=0

(
n− 1

k

)(
x

a

)k+1 ∫ +∞

x/a

FY (t)t−m−(k+1)

(
t− x

a

)m−1
dt,

=
1

2m+n−1

n−1∑
k=0

(n+m− 1)!

(n− k − 1)!(m+ k)!

Γ(m+ k + 1)

Γ(k + 1)

(
x

a

)k+1

(Imφk)

(
x

a

)
,

=
1

2m+n−1

n−1∑
k=0

(
n+m− 1

n− k − 1

)
P

(
Y S̃k ≤

x

a

)
,

where S̃k ∼ Beta([0, 1], k + 1,m) according to (6.1).

When x ≤ 0,

P(X ≤ x) =

∫ 0

−a
F̄Y (x/u)fSa(u)du = Ja.

This time, we obtain

Ja =
Γ(n+m)

Γ(n)Γ(m)(2a)m+n−1

∫ 0

−a
F̄Y (x/u)(a− u)m−1(a+ u)n−1du

=
Γ(n+m)

Γ(n)Γ(m)(2a)m+n−1

m−1∑
k=0

(
m− 1

k

)∫ a

0

F̄Y (−x/u)ukam−k−1(a− u)n−1du

=
Γ(n+m)

Γ(n)Γ(m)(2a)m+n−1

m−1∑
k=0

(
m− 1

k

)(
−x
a

)k+1 ∫ +∞

−x/a
F̄Y (u)u−n−(k+1)

(
u− −x

a

)n−1
du

=
1

2m+n−1

m−1∑
k=0

(n+m− 1)!

(n− k − 1)!(n+ k)!

Γ(n+ k + 1)

Γ(k + 1)

(
−x
a

)k+1

(Inφk)

(
−x
a

)
,

=
1

2m+n−1

m−1∑
k=0

(
n+m− 1

m− k − 1

)
P

(
Y Ŝk >

−x
a

)
,

where Ŝk ∼ Beta([0, 1], k + 1, n) according to (6.1).

• Existence of Cn
As a reminder,

ξn(x, z, l) = (x− c)n+

(
1 +

(
x

z
− l
)n

+

)
, x ∈ R, z, l > 0,
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and C
(s)
n (a) =

∑k
i=1 piCn (siY ). We must then calculate

E[(siY − c)n+] and E

[
(siY − c)n+

(
si
Y

Z
− l
)n

+

]
.

To lighten the reading, we drop the index i.

i) Y = Z

E[(sY − c)n+] =
n∑
k=0

(
n

k

)
(−c)n−ksk

∫ +∞

c/s

ykdFY (y).

When Z ∼ Γ(κ, r), ∫ +∞

c/s

ykdFY (y) =
Γ(κ+ k)

rkΓ(κ)
P

(
Yk >

c

s

)
,

where Yk ∼ Γ(κ+ k, r).

When Z ∼ Pareto(ω,m),∫ +∞

c/s

ykdFY (y) =
m

m− k
ωkP(Yk > ym), m > k, k = 0, . . . , n.

where Yk ∼ Pareto(ω,m− k) and zm = max

(
c

s
, ω

)
.

ii) Y =
√
Z

E[(s
√
Z − c)n+] =

n∑
k=0

(
n

k

)
(−c)n−ksk

∫ +∞

(c/s)2
zk/2dFZ(z),

E

[
(s
√
Z − c)n+

(
s√
Z
− l
)n

+

]
=

n∑
k=0

n∑
j=0

(
k

n

)(
n

j

)
sk+j(−c)n−k(−l)n−j

∫ v

u

z
k−j
2 dFZ(z),

where u =
c2

s2
and v =

s2

l2
.

When Z ∼ Γ(κ, r),∫ +∞

(c/s)2
zk/2dFZ(z) =

Γ(κ+ k/2)

rk/2Γ(κ)
P

(
Zk/2 >

(
c

s

)2
)
,
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where Zk ∼ Γ(κ+ k/2, r) and

∫ v

u

z
k−j
2 dFZ(z) =

Γ
(
κ+ k−j

2

)
Γ(α)r

k−j
2

(
P
(
Z k−j

2
≤ v
)
− P

(
Z k−j

2
≤ u

))
1v>u,

where Z k−j
2
∼ Γ

(
κ+ k−j

2
, r
)

with κ > n/2.

When Z ∼ Pareto(m,ω),∫ +∞

(c/s)2
zk/2dFZ(z) =

m

m− k/2
ωk/2P(Zk/2 > zm), m > k/2, k = 0, . . . , n.

where Zk/2 ∼ Pareto(ω,m− k/2) and zm = max

((
c

s

)2

, ω

)
and

∫ v

u

z
k−j
2 dFZ(z) =

mωm

m− k−j
2

(
z

k−j
2
−m

m − v
k−j
2
−m
)

1v>ω,

where zm = max(u, ω), u = (c/s)2, v = (s/l)2.

iii) Y = Z̃

E

(sZ̃ − c)n+

(
s
Z̃

Z
− l

)n

+

 =
n∑
k=0

n∑
j=0

(
k

n

)(
n

j

)
sk+j(−c)n−k(−l)n−jI(k, j),

where

I(k, j) =

∫ +∞

(c/s)

∫ sy/l

0

yk+jz−jdFZ(z)dFZ(y).

When Z ∼ Γ(κ, r),

I(k, j) =
Γ(κ− j)

Γ(κ)
rj
∫ +∞

c/s

yk+jP

(
Yj ≤

sy

l

)
dFZ(y),

where Yj ∼ Γ(κ− j, r). Since P

(
Yj ≤

sy

l

)
≤ 1, for all y > 0 and all k ∈ N, then

I(k, j) ≤ Γ(κ− j)
Γ(κ)2

Γ(κ+ k + j)

rk
P

(
Yk+j >

c

s

)
,

where Yk+j ∼ Γ(κ+ k + j, r). Then I(k, j) < +∞ for κ > n.
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When Z ∼ Pareto(ω,m),

I(k, j) =
m2ωm−j

(m+ j)(m− k − j)
zk+j−mm − J (k, j), m > 2n,

where zm = max

(
c

s
, ω

)
and

J (k, j) =
m2ω2m

m+ j
×



(
l

s

)m+j
zk−2mm

2m− k
, zm > lω/s,

ω−(m+j)

m− k − j

(
zk+j−mm −

(
lω

s

)k+j−m)
+

(
l

s

)k+j−m
ωk−2m

2m− k
, zm < lω/s.
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